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CONVERGENCE OF A FINITE-VOLUME SCHEME FOR A
DEGENERATE-SINGULAR CROSS-DIFFUSION SYSTEM

FOR BIOFILMS

ESTHER S. DAUS, ANSGAR JÜNGEL, AND ANTOINE ZUREK

Abstract. An implicit Euler finite-volume scheme for a cross-diffusion system modeling
biofilm growth is analyzed by exploiting its formal gradient-flow structure. The numerical
scheme is based on a two-point flux approximation that preserves the entropy structure
of the continuous model. Assuming equal diffusivities, the existence of nonnegative and
bounded solutions to the scheme and its convergence are proved. Finally, we supplement
the study by numerical experiments in one and two space dimensions.

1. Introduction

Biofilms are organized, cooperating communities of microorganisms. They can be used
for the treatment of wastewater [11, 22], as they help to reduce sulfate and to remove
nitrogen. Typically, biofilms consist of several species such that multicomponent fluid
models need to be considered. Recently, a multi-species biofilm model was introduced by
Rahman, Sudarsan, and Eberl [24], which reflects the same properties as the single-species
diffusion model of [16]. The model has a porous-medium-type degeneracy when the local
biomass vanishes, and a singularity when the biomass reaches the maximum capacity,
which guarantees the boundedness of the total mass. The model was derived formally
from a space-time discrete walk on a lattice in [24]. The global existence of weak solutions
to the single-species model was proved in [17], while the global existence analysis for the
multi-species cross-diffusion system can be found in [15]. The proof of the multi-species
model is based on an entropy method which also provides the boundedness of the biomass
hidden in its entropy structure. Numerical simulations were performed in [15, 24], but no
numerical analysis was given. In this paper, we analyze an implicit Euler finite-volume
scheme of the multi-species system that preserves the structure of the continuous model,
namely positivity, boundedness, and discrete entropy production.
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The model equations for the proportions of the biofilm species ui are given by

1.eq1.eq (1) ∂tui + divFi = 0, Fi = −αip(M)2∇uiq(M)

p(M)
in Ω, t > 0, i = 1, . . . , n,

where Ω ⊂ Rd (d ≥ 1) is a bounded domain, αi > 0 are some diffusion coefficients, and
M =

∑n
i=1 ui is the total biomass. The proportions ui(x, t) are nonnegative and satisfy

M ≤ 1. We have assumed for simplicity that the functions p and q only depend on the
total biomass and are the same for all species. The function p ∈ C1([0, 1]) represents how
favorable the current location is for incoming biofilm species. If the surrounding location
is not able to accomodate more biomas, i.e. M = 1, then the species cannot move, i.e.
p(M) = 0. In particular, the function p is decreasing. To recover the single-species model
of [16] (see (5) below), we choose

1.q1.q (2) q(M) :=
p(M)

M

∫ M

0

sa

(1− s)b
ds

p(s)2
, M > 0,

where a, b ≥ 1 (see the Appendix for details). Equations (1) are complemented by initial
and mixed boundary conditions:

ui(0) = u0
i in Ω, i = 1, . . . , n,1.ic1.ic (3)

ui = uDi on ΓD, ∇Fi · ν = 0 on ΓN ,1.bc1.bc (4)

where uD = (uD1 , . . . , u
D
n ) is a constant vector such that

∑n
i=1 u

D
i < 1, ΓD is the contact

boundary part, ΓN is the union of isolating boundary parts, and ∂Ω = ΓD ∪ ΓN . We refer
to Appendix A for details on the modeling assumptions and the derivation of the model.

We recover the single-species model of [16] if all species are the same and all diffusivities
αi are equal, αi = 1 for i = 1, . . . , n. Indeed, summing (1) over i = 1, . . . , n and using
definition (2), it follows that

∂tM = div

(
p(M)2∇Mq(M)

p(M)

)
= div

(
Ma

(1−M)b
∇M

)
,1.eqM1.eqM (5)

which makes the degenerate-singular structure of the model evident.
Equations (1) can be written as the cross-diffusion system

1.eq21.eq2 (6) ∂tui − div

( n∑

j=1

Aij(u)∇uj
)

= 0 in Ω, t > 0,

where the nonlinear diffusion coefficients are defined by

1.A1.A (7) Aij(u) = αiδijp(M)q(M) + αiui
(
p(M)q′(M)− p′(M)q(M)

)
, i, j = 1, . . . , n.

Due to the cross-diffusion structure, standard techniques like the maximum principle and
regularity theory cannot be used. Moreover, the diffusion matrix (Aij(u)) is generally
neither symmetric nor positive definite.
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The key of the analysis, already observed in [15], is that system (6)-(7) allows for an
entropy or formal gradient-flow structure. Indeed, introduce the (relative) entropy

H(u) =

∫

Ω

h∗(u|uD)dx, where

h∗(u|uD) = h(u)− h(uD)− h′(uD) · (u− uD),

h(u) =
n∑

i=1

(
ui(log ui − 1) + 1

)
+

∫ M

0

log
q(s)

p(s)
ds,

defined on the set

1.O1.O (8) O =

{
u = (u1, . . . , un) ∈ (0,∞)n :

n∑

i=1

ui < 1

}
.

A computation gives the entropy identity [15, Theorem 2.1]

dH

dt
+ 2

n∑

i=1

αi

∫

Ω

p(M)2

∣∣∣∣∇
√
uiq(M)

p(M)

∣∣∣∣
2

dx = 0.

Thus, H is a Lyapunov functional along the solutions to (1). Moreover, under some
assumptions on p, the entropy production term (the second term on the left-hand side)
can be bounded from below, for some constant C > 0, by

n∑

i=1

αi

∫

Ω

p(M)2

∣∣∣∣∇
√
uiq(M)

p(M)

∣∣∣∣
2

dx

≥ C

∫

Ω

Ma−1|∇M |2
(1−M)1+b+κ

dx+
n∑

i=1

∫

Ω

p(M)q(M)|∇√ui|2dx,1.ineq1.ineq (9)

yielding suitable gradient estimates. Moreover, it implies that (1 −M)1−b−κ is integrable
for some κ > 0, showing that M < 1 a.e. in Ω, t > 0, which excludes biofilm saturation
and allows us to define the nonlinear terms.

Another feature of the entropy method is that equations (1), written in the so-called
entropy variables wi = ∂h∗/∂ui, can be written as the formal gradient-flow system

∂tu− div(B(w)∇w) = 0,

with a positive semidefinite diffusion matrix B. Since the derivative (h∗)′ : O → Rn is
invertible [15, Lemma 3.3], u can be interpreted as a function of w, u(w) = [(h∗)′]−1(w),
mapping Rn to O. This gives automatically u(w) ∈ O and consequently L∞ bounds
without the use of a maximum principle. This property, for another volume-filling model,
was first observed in [7] and later generalized in [19]. The aim of this paper is to derive and
analyze a finite-volume scheme for (1)-(4) which preserves the above-mentioned features
of the continuous equations.

In the literature, there exist also other biofilm models. For instance, the authors of [26]
proposed a biofilm growth model, surrounded by fluid flow, which takes into account the
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growth, decay, detachment, and adhesion of biofilms. Using a finite-volume method, the
authors studied numerically the evolution of biofilms for different strengths of the flow.
Finite-volume-based schemes were developed in [25] for the simulation of biofilm processes
in closed conduits, like a piper. The authors studied numerically the properties of their
scheme and in particular its sensitivity to the variation of some numerical (time step, grid
size) and physical parameters (length of the piper, initial thickness of the biofilm).

Finite-difference schemes were also proposed in the literature for the discretization of
hyperbolic biofilm models. In particular, one-dimensional simulations are presented in
[27] for a phase-field model, which takes into account the biofilm growth, its deformation,
and the detachment phenomena, while in [28] the authors exhibited some two-dimensional
simulations for the same model. We also mention [13], where a nonlinear hyperbolic system
for the formation of biofilms was derived. Using an explicit-implicit method in time and a
finite-difference method in space, the authors showed simulations of their model in three
space dimensions.

Closer to our numerical study is the work [23], where the authors proposed a finite-
volume discretization of single-species biofilm models including degenerate, singular, and
cross diffusion terms. One of these diffusion effects is given by (5). However, no numerical
analysis was performed in [23]. Such an analysis is provided in this paper.

To this end, we propose an implicit Euler scheme in time (with time step size ∆t) and
a finite-volume discretization in space (with grid size parameter ∆x), based on two-point
approximations. The challenge is to formulate the discrete fluxes such that the scheme
preserves the entropy structure of the model and to design the fluxes such that we are
able to establish the upper bound M < 1 a.e. in Ω, t > 0. We suggest the discrete fluxes
(19), where the coefficient p(M)2 is replaced by (p(MK)2 + p(ML)2)/2, and K and L are
two neighboring control volumes with a common edge (see Section 2.1 for details). We
establish a discrete counterpart of (9) in Lemma 4.3. This result is proved by exploiting
the properties of the functions p and q (see Proposition 4.1 and [15, Lemma 3.4]) and
distinguishing carefully the cases M ≤ 1 − δ and M > 1 − δ for sufficiently small δ > 0.
However, due to the lack of chain rule at the discrete level, we cannot conclude that the
“discrete” biomass satisfies M < 1. To overcome this issue, we need to assume that the
diffusivities are all equal. Then, summing the finite-volume analog of (1) over i = 1, . . . , n,
we obtain a discrete analog of the diffusion equation (5) for M that allows us to apply a
discrete maximum principle, leading to M < 1.

Our results can be sketched as follows (see Section 2.3 for the precise statements):

(i) We prove the existence of finite-volume solutions with nonnegative discrete propor-
tions ui,K and discrete total biomass MK < 1 for all control volumes K.

(ii) The discrete solution satisfies a discrete analog of the entropy equality (which be-
comes an inequality in (24)) and of the lower bound (9) for the entropy production.

(iii) The discrete solution converges in a certain sense, for mesh sizes (∆x,∆t)→ 0, to
a weak solution to (1).

There are several finite-volume schemes for other cross-diffusion systems in the mathe-
matical literature. Most of the works exploit the entropy structure of the equations, except
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[21] where the Laplacian structure of a population model is exploited to design a conver-
gent linear finite-volume scheme. For instance, in [2, 3, 4], the sum of the L2-norm of the
population densities is used as a Lyapunov functional to perform a numerical analysis for
finite-volume schemes for various cross-diffusion models. Closer to the framework of this
paper are the works [1, 8, 10], where the authors used, roughly speaking, a Boltzmann-type
entropy functional to prove the convergence of some two-point flux approximation schemes
for a seawater intrusion model [1], a model which describes the physical vapor deposition
process [10], and an ion transport model [8].

One of the main difference, and also one of the main difficulty, of this work compared
to the literature comes from the strategy used for the existence proof. Indeed, in [1, 8, 10]
the authors are able to prove the nonnegativity (as in [2, 3, 4]) and upper bounds on
the solutions to their schemes thanks to some weak maximum principle, and they deduce
the existence of finite-volume solutions via a topological degree argument. Then they
established a discrete version of the entropy-dissipation inequality which enables them to
obtain uniform estimates needed for their convergence proofs. However, for system (1)-(4),
even if the assumption on the diffusion coefficients provides an upper bound for M , no
a priori estimates are available to show the nonnegativity of the densities ui by using a
maximum principle.

Instead, we adapt at the discrete level the so-called boundedness-by-entropy method
[7, 19]. In this method, we use the (relative) entropy density h∗ to prove the nonnegativity
and the existence of a solution to the scheme thanks to a discrete entropy inequality and
the application of a topological degree argument; see Theorem 2.1. The adaptation of this
technique to the discrete level represents the first main originality of this work. We remark
that this strategy is also applied in [20] to prove the existence (and the convergence) of a
finite-volume scheme for a population cross-diffusion system.

The second difficulty is the derivation of suitable discrete gradient estimates by proving a
lower bound for the entropy production. We are able to “translate” (9) to the discrete case;

see Lemma 4.3. This proof uses a Taylor expansion of x 7→
√
q(x)/p(x) and a monotonicity

property of this function. This is the second main originality of the paper.
The paper is organized as follows. The notation and assumptions on the mesh as well as

the main theorems are introduced in Section 2. The existence of discrete solutions is proved
in Section 3, based on a topological degree argument. We show a gradient estimate, an
estimate of the discrete time derivative, and the lower bound for the entropy production in
Section 4. These estimates allow us in Section 5 to apply the discrete compactness argument
in [5] to conclude the a.e. convergence of the proportions and to show the convergence of
the discrete gradient associated to ∇(uiq(M)/p(M)). The convergence of the scheme is
then proved in Section 6. In Section 7, we present some numerical results in one and
two space dimensions. They illustrate the L2-convergence rate in space of the numerical
scheme, show the convergence of the solutions to the steady states and the evolution of
the relative entropy functional.
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2. Numerical scheme and main results
sec.num

In this section, we introduce the numerical scheme and detail our main results.
sec.nota

2.1. Notation and assumptions. Let Ω ⊂ R2 be an open, bounded, polygonal domain
with ∂Ω = ΓD ∪ ΓN ∈ C0,1, ΓD ∩ ΓN = ∅, and meas(ΓD) > 0. We consider only two-
dimensional domains Ω, but the generalization to higher dimensions is straightforward.
An admissible mesh M = (T , E ,P) of Ω is given by a family T of open polygonal control
volumes (or cells), a family E of edges, and a family P of points (xK)K∈T associated
to the control volumes and satisfying Definition 9.1 in [18]. This definition implies that
the straight line between two centers of neighboring cells xKxL is orthogonal to the edge
σ = K|L between two cells K and L. The condition is satisfied by, for instance, triangular
meshes whose triangles have angles smaller than π/2 [18, Examples 9.1] or Voronöı meshes
[18, Example 9.2].

The family of edges E is assumed to consist of the interior edges σ ∈ Eint satisfying σ ∈ Ω
and the boundary edges σ ∈ Eext fulfilling σ ⊂ ∂Ω. We suppose that each exterior edge
is an element of either the Dirichlet or Neumann boundary, i.e. Eext = EDext ∪ ENext. For a
given control volume K ∈ T , we denote by EK the set of its edges. This set splits into
EK = Eint,K ∪ EDext,K ∪ ENext,K . For any σ ∈ E , there exists at least one cell K ∈ T such that
σ ∈ EK . We denote this cell by Kσ. When σ is an interior cell, σ = K|L, Kσ can be either
K or L.

The admissibility of the mesh and the fact that Ω is two-dimensional implies that

2.estmesh2.estmesh (10)
∑

K∈T

∑

σ∈EK

m(σ)d(xK , σ) ≤ 2
∑

K∈T

m(K) = 2m(Ω),

where d is the Euclidean distance in R2 and m the 1 or 2-dimensional Lebesgue measure.
Now, let σ ∈ E be an edge. We define

dσ =

{
d(xK , xL) if σ = K|L ∈ Eint,
d(xK , σ) if σ ∈ Eext,K ,

and the transmissibility coefficient is defined by

2.trans2.trans (11) τσ =
m(σ)

dσ
,

Figure 1 illustrates an admissible mesh of Ω = (0, 1)2 composed of triangles.
We assume that the mesh satisfies the following regularity requirement: There exists

ξ > 0 such that

2.regmesh2.regmesh (12) d(xK , σ) ≥ ξdσ for all K ∈ T , σ ∈ EK .
The size of the mesh is denoted by ∆x = maxK∈T diam(K).

Let NT ∈ N be the number of time steps, ∆t = T/NT be the time step and set tk = k∆t
for k = 0, . . . , NT . We denote by D an admissible space-time discretization of QT :=
Ω× (0, T ) composed of an admissible mesh M of Ω and the values (∆t, NT ). The size of
D is defined by η := max{∆x,∆t}.
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Eint

Eext

•

•

xL
xK

K

L

σ = K|L ∈ Eint

dσ nK,σ

Figure 1. Example of an admissible mesh composed of triangles (inspired
by an illustration in [9]).fig_primal_mesh

As it is usual for the finite-volume method, we introduce functions that are piecewise
constant in space and time. A finite-volume scheme provides a vector vT = (vK)K∈T ∈ R#T

of approximate values of a function v and the associate piecewise constant function, still
denoted by vT ,

vT =
∑

K∈T

vK1K ,

where 1K is the characteristic function of K. The vector vM, containing the approximate
values in the control volumes and the approximate values on the Dirichlet boundary edges,
is written as vM = (vT , vED), where vED = (vσ)σ∈EDext ∈ R#EDext . For a vector vM, we
introduce for K ∈ T and σ ∈ EK the notation

2.vKsigma2.vKsigma (13) vK,σ =





vL if σ = K|L ∈ Eint,K ,
vσ if σ ∈ EDext,K ,
vK if σ ∈ ENext,K

and the discrete gradient

2.Dsigma2.Dsigma (14) Dσv := |DK,σv|, where DK,σv = vK,σ − vK .
The discrete H1(Ω) seminorm and the (squared) discrete H1(Ω) norm are then defined by

|vM|1,2,M =

(∑

σ∈E

τσ(Dσv)2

)1/2

, ‖vM‖2
1,2,M = ‖vM‖2

0,2,M + |vM|21,2,M,2.norm2.norm (15)

where ‖ · ‖0,p,M denotes the Lp(Ω) norm

‖vM‖0,p,M =

(∑

K∈T

m(K)|vK |p
)1/p

, ∀1 ≤ p <∞.

sec.scheme
2.2. Numerical scheme. We are now in the position to define the finite-volume dis-
cretization of (1)-(4). Let D be a finite-volume discretization of QT . The initial and
boundary conditions are discretized by the averages

u0
i,K =

1

m(K)

∫

K

u0
i (x)dx for K ∈ T ,sch.icsch.ic (16)
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uDi,σ =
1

m(σ)

∫

σ

uDi ds for σ ∈ EDext, i = 1, . . . , n.sch.bcsch.bc (17)

We suppose for simplicity that the Dirichlet datum is constant on ΓD such that uDi,σ = uDi
for i = 1, . . . , n. Furthermore, we set uki,σ = uDi,σ for σ ∈ EDext at time tk.

Let uki,K be an approximation of the mean value of ui(·, tk) in the cell K. Then the
implicit Euler finite-volume scheme reads as

m(K)

∆t
(uki,K − uk−1

i,K ) +
∑

σ∈EK

Fki,K,σ = 0,sch1sch1 (18)

Fki,K,σ = −τσαi(pkσ)2DK,σ

(
uki q(M

k)

p(Mk)

)
,sch2sch2 (19)

where K ∈ T , σ ∈ EK , i = 1, . . . , n, and the value pkσ is defined by

2.psigma2.psigma (20) (pkσ)2 :=
p(Mk

K)2 + p(Mk
K,σ)2

2
,

recalling definition (11) for τσ and notation (13) for Mk
K,σ.

Observe that definitions (13) and (14) ensure that the discrete fluxes vanish on the
Neumann boundary edges, i.e. Fki,K,σ = 0 for all σ ∈ ENext,K , k ∈ N, and i = 1, . . . , n. This
is consistent with the Neumann boundary conditions in (4).

For the convergence result, we need to define the discrete gradients. To this end, let
the vector uM = (uT , uED) as defined before. Then we introduce the piecewise constant
approximation uD = (u1,D, . . . , un,D) by

ui,D(x, t) =
∑

K∈T

uki,K1K(x) for x ∈ Ω, t ∈ (tk−1, tk],reconstrucreconstruc (21)

ui,D(x, t) = uDi for x ∈ ΓD, i = 1, . . . , n.reconstrucbordreconstrucbord (22)

For given K ∈ T and σ ∈ EK , we define the cell TK,σ of the dual mesh as follows (see
Figure 2):

• If σ = K|L ∈ Eint,K , then TK,σ is that cell (“diamond”) whose vertices are given by
xK , xL, and the end points of the edge σ.
• If σ ∈ Eext,K , then TK,σ is that cell (“triangle”) whose vertices are given by xK and

the end points of the edge σ.

An example of a construction of such a dual mesh can be found in [12]. The cells TK,σ
define a partition of Ω. The definition of the dual mesh implies the following property. As
the straight line between two neighboring centers of cells xKxL is orthogonal to the edge
σ = K|L, it follows that

2.para2.para (23) m(σ)d(xK , xL) = 2m(TK,σ) for all σ = K|L ∈ Eint,K .
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edges of the dual mesh

Figure 2. The dual mesh associated to the primal mesh of Figure 1 (in-
spired by an illustration in [9]).fig_dual_mesh

We define the approximate gradient of a piecewise constant function uD in QT given
by (21)-(22) as follows:

∇DuD(x, t) =
m(σ)

m(TK,σ)
DK,σu

k νK,σ for x ∈ TK,σ, t ∈ (tk−1, tk],

where the discrete operator DK,σ is given in (14) and νK,σ is the unit vector that is normal
to σ and points outward of K.

sec.main
2.3. Main results. Our first result guarantees that scheme (16)-(20) possesses a solution
and that it preserves the entropy dissipation property. Let us collect our assumptions:

(H1) Domain: Ω ⊂ R2 is a bounded polygonal domain with Lipschitz boundary ∂Ω =
ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, and meas(∂ΓD) > 0.

(H2) Discretization: D is an admissible discretization of QT satisfying the regularity con-
dition (12).

(H3) Data: u0 = (u0
1, . . . , u

0
n) ∈ L2(Ω; [0,∞)n) , uD = (uD1 , . . . , u

D
n ) ∈ (0,∞)n is a constant

vector,
∑n

i=1 u
0
i < 1 in Ω,

∑n
i=1 u

D
i < 1, and α1, . . . , αn > 0, a, b ≥ 1.

(H4) Functions: p ∈ C1([0, 1]; [0,∞)) is decreasing, p(1) = 0, and there exist c, κ > 0 such
that limM→1(−(1−M)1+κp′(M)/p(M)) = c. The function q is defined in (2).

For our main results, we need the following technical assumption:

(A1) The diffusion constants are equal, αi = 1 for i = 1, . . . , n.

Remark 2.1 (Discussion of the hypotheses). The assumption on the behavior of p when
M → 1 quantifies how fast this function decreases to zero as M → 1. An integration
implies the bound

p(M) ≤ K1 exp(−K2(1−M)−κ) for 0 < M < 1,

with K1 and K2 some positive constants. We imposed this technical assumption to show a
discrete version of (9), following the proof of [15, Lemma 3.4]; see Lemma 4.3. The lower
bound on the entropy production term is needed to prove the convergence result.

The upper bound for p is also used in [15] to deduce an estimate for (1 −M)1−b−κ in
L1(Ω), impliying that M < 1 in Ω. Unfortunately, this estimate requires the multiple use
of the chain rule which is not available on the discrete level. Therefore, we assume that
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the diffusivities αi are equal and apply a weak maximum principle to the equation for Mk

to deduce the bound Mk
K < 1 for all K ∈ T .

In [15], the parameters in the definition (2) of q need to satisfy a, b > 1. We are able
to allow for the slightly weaker condition a, b ≥ 1; this is possible since we allow for equal
diffusivities (condition (A1)). �

We introduce the discrete entropy

H(ukM) =
∑

K∈T

m(K)h∗(ukK |uD),

where

h∗(ukK |uD) = h(ukK)− h(uD)− h′(uD) · (ukK − uD)

with h(ukK) =
n∑

i=1

(
uki,K(log uki,K − 1) + 1

)
+

∫ Mk
K

0

log
q(s)

p(s)
ds

is the relative entropy density.

thm.ex Theorem 2.1 (Existence of discrete solutions). Let hypotheses (H1)-(H4) and (A1) hold.
Then there exists a solution (ukK)K∈T , k=0,...,NT with ukK = (uk1,K , . . . , u

k
n,K) to scheme (16)-

(20) satisfying

uki,K ≥ 0, Mk
K =

n∑

i=1

uki,K ≤M∗ for K ∈ T , k = 0, . . . , NT ,

where M∗ = supx∈Ω{MD,M0(x)} < 1. Moreover, the discrete entropy dissipation inequal-
ity

2.edi2.edi (24) H(ukM) + ∆t
n∑

i=1

Ii(u
k
M) ≤ H(uk−1

M ), k = 1, . . . , NT ,

holds with the entropy dissipation

2.ed2.ed (25) Ii(u
k
M) =

∑

σ∈E

τσ(pkσ)2

(
Dσ

(√
uki q(M

k)

p(Mk)

))2

, i = 1, . . . , n.

For the convergence result, we introduce a family (Dη)η>0 of admissible space-time dis-
cretizations of QT indexed by the size η = max{∆x,∆t} of the mesh. We denote by
(Mη)η>0 the corresponding meshes of Ω. For any η > 0, let uη := uDη be the finite-volume
solution constructed in Theorem 2.1 and set ∇η := ∇Dη .

thm.conv Theorem 2.2. Let the hypotheses of Theorem 2.1 hold. Let (Dη)η>0 be a family of admis-
sible discretizations satisfying (12) uniformly in η. Furthermore, let (uη)η>0 be a family of
finite-volume solutions to scheme (16)-(20). Then there exists a function u = (u1, . . . , un)
satisfying u(x, t) ∈ O (see (8)) such that

ui,η → ui a.e. in QT , i = 1, . . . , n,



BIOFILM CROSS-DIFFUSION SYSTEM 11

Mη =
n∑

i=1

ui,η →M =
n∑

i=1

ui < 1 a.e. in QT ,

∇η

(
ui,ηq(Mη)

p(Mη)

)
⇀ ∇

(
uiq(M)

p(M)

)
weakly in L2(QT ).

The limit function satisfies the boundary condition in the sense

uiq(M)

p(M)
− uDi q(M

D)

p(MD)
∈ L2(0, T ;H1

D(Ω)),

with H1
D(Ω) := {v ∈ H1(Ω) : v = 0 on ΓD} and it is a weak solution to (1)-(4) in the sense

n∑

i=1

(∫ T

0

∫

Ω

ui∂tφidxdt+

∫

Ω

u0
i (x)φ(x, 0)dx

)
3.weakformu3.weakformu (26)

=
n∑

i=1

∫ T

0

∫

Ω

p(M)2∇
(
uiq(M)

p(M)

)
· ∇φi dxdt,

for all φi ∈ C∞0 (Ω× [0, T )).

We also need the assumption αi = 1 for i = 1, . . . , n for the proof of Theorem 2.2. Indeed,
due to the lack of chain rule at the discrete level, it is not clear how to identify the weak limit
of the term p(Mη)

2∇η(ui,ηq(Mη)/p(Mη)). Another difficulty comes from the degeneracy
of p when M = 1, which prevents the proof of a uniform bound on ∇η(ui,ηq(Mη)/p(Mη))
from the entropy inequality (24). Our strategy relies on the uniform upper bound satisfied
by Mη obtained in Theorem 2.1. Thanks to this bound, the monotonicity of p, and the
inequality (24), we can establish a uniform bound on the L2 norm of ∇η(ui,ηq(Mη)/p(Mη))
and identify its weak limit. The numerical experiments in Section 7 seem to indicate that
the assumption αi = 1 is purely technical and that the scheme still converges in the case
of different diffusivities.

3. Existence of finite-volume solutions
sec.ex

In this section, we prove Theorem 2.1. To this end, we adapt the entropy method used
in [15] to the discrete level. The idea is to solve a regularized version of scheme (18)-(19) in
the entropy variable which ensures that the proportions ui of the biofilm species belong to
the set O, defined in (8). First, we define a fixed-point operator that provides the solution
to the linearized problem. Then the existence of a fixed point is shown by a topological
degree argument that is based on a discrete entropy inequality. Finally, we perform the
limit when the regularization terms vanish.

3.1. Proof of Theorem 2.1. We proceed by induction. For k = 0, we have u0 ∈ O with
u0
i ≥ 0 for K ∈ T , i = 1, . . . , n by assumption and M0 ≤ M∗ = supx∈Ω{MD,M0(x)} by

construction. Assume that there exists a solution uk−1
M for some k ∈ {1, . . . , NT} such that

uk−1
K ≥ 0, Mk−1

K =
n∑

i=1

uk−1
i,K ≤M∗ for K ∈ T .
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The construction of a solution ukM is divided into several steps.

Step 1. Definition of a linearized problem. We introduce the set

Z =
{
wM = (w1,M, . . . , wn,M) : wi,σ = 0 for σ ∈ EDext,

‖wi,M‖1,2,M <∞ for i = 1, . . . , n
}
.

Let ε > 0. We define the mapping Fε : Z → Rθn by Fε(wM) = wεM, with θ = #T + #ED,
where wεM = (wε1,M, . . . , w

ε
n,M) is the solution to the linear problem

3.lin3.lin (27) ε

(
−
∑

σ∈EK

τσDK,σw
ε
i + m(K)wεi,K

)
= −

(
m(K)

∆t
(ui,K − uk−1

i,K ) +
∑

σ∈EK

Fi,K,σ
)
,

for K ∈ T , i = 1, . . . , n with

3.bc3.bc (28) wεi,σ = 0 for σ ∈ EDext, i = 1, . . . , n.

Here, ui,K is a function of wi,K , defined by

3.w3.w (29) wi,K = log
ui,Kq(MK)

p(MK)
− log

uDi q(M
D)

p(MD)
i = 1, . . . , n,

and Fi,K,σ is defined in (19). Note that Fi,K,σ depends on wM via uM and MM.
It is shown in [15, Lemma 3.3] that the mapping O → Rn, uK 7→ wK , is invertible. For

the convenience of the reader, we recall briefly the argument. We rewrite (29) as

3.inv3.inv (30)
uDi
MD

exp(wi,K) =
ui,K
MD

q(MK)/p(MK)

q(MD)/p(MD)
for all K ∈ T , i = 1, . . . , n,

sum this identity over i = 1, . . . , n, and introduce the function Φ(M) = Mq(M)/p(M):

Φ(MK) = Φ(MD)
n∑

i=1

uDi
MD

exp(wi,K) for all K ∈ T .

Since Φ is increasing, Φ(0) = 0, and limM→1 Φ(M) = ∞, there exists a unique solution
MK ∈ (0, 1) to this nonlinear equation. Using this value in (30), we obtain immediately
the invertibility of O → Rn, uK 7→ wK . This shows that uK = u(wK) is well-defined and
uK ∈ O. We infer that Fi,K,σ is well-defined too. Since MK =

∑n
i=1 ui,K , we infer that

0 ≤ ui,K < 1. Definitions (13) and (14) ensure that DK,σw
ε
i = 0 for all σ ∈ ENext,K . The

existence of a unique solution wεK to the linear scheme (27)-(28) is now a consequence of
[18, Lemma 9.2].

Step 2. Continuity of Fε. We fix i ∈ {1, . . . , n}. We derive first an a priori estimate for
wεi,M. Multiplying (27) by wεi,K , summing over K ∈ T and using the symmetry of τσ with
respect to σ = K|L, we arrive at

ε
∑

σ∈E

τσ(Dσw
ε
i )

2 + ε
∑

K∈T

m(K)|wεi,K |2 = −
∑

K∈T

m(K)

∆t
(ui,K − uk−1

i,k )wεi,K −
∑

σ∈E
K=Kσ

Fi,K,σwεi,K

=: J1 + J2,3.aux13.aux1 (31)
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where in the term J2 the sum is over all edges σ ∈ E , and to each given σ we associate the
cell K = Kσ. For the left-hand side, we use the definition (15) of the discrete H1(Ω) norm

ε
∑

σ∈E

τσ(Dσw
ε
i )

2 + ε
∑

K∈T

m(K)|wεi,K |2 = ε‖wεi,M‖2
1,2,M.

By the Cauchy-Schwarz inequality and definition (19) of Fi,K,σ, we find that

|J1| ≤
1

∆t

(∑

K∈T

m(K)(ui,K − uk−1
i,K )2

)1/2(∑

K∈T

m(K)(wεi,K)2

)1/2

≤ 1

∆t
‖ui,M − uk−1

i,M‖0,2,M ‖wεi,M‖1,2,M,

|J2| ≤
∑

σ∈E
K=Kσ

τσp
2
σDσ

(
uiq(M)

p(M)

)
Dσw

ε
i

≤
(∑

σ∈E

τσ
(
p2
σ

)2
(
Dσ

(
uiq(M)

p(M)

))2)1/2(∑

σ∈E

τσ(Dσw
ε
i )

2

)1/2

.

Since MK ∈ (0, 1) for all K ∈ T , ui,K q(MK)/p(MK) is bounded. Moreover, pσ ≤ p(0) as p
is decreasing. Hence, there exists a constant C(M) > 0 which is independent of wεi,M such
that |J2| ≤ C(M)‖wεi,M‖1,2,M. This constant does not depend on ui,K ∈ [0, 1). Inserting
these estimations into (31) yields

3.aux23.aux2 (32)
√
ε‖wεi,M‖1,2,M ≤ C(M),

where C(M) > 0 is independent of wεi,M.
We turn to the proof of the continuity of Fε. Let (wmM)m∈N ∈ Z be such that wmM → wM

as m → ∞. Estimate (32) shows that wε,mM := Fε(w
m
M) is bounded uniformly in m ∈ N.

Thus, there exists a subsequence of (wε,mM ) which is not relabeled such that wε,mM → wεM
as m → ∞. Passing to the limit m → ∞ in scheme (27)-(28) and taking into account
the continuity of the nonlinear functions, we see that wεi,M is a solution to (27)-(28) and
wεM = Fε(wM). Because of the uniqueness of the limit function, the whole sequence
converges, which proves the continuity.

Step 3. Existence of a fixed point. We claim that the map Fε admits a fixed point.
We use a topological degree argument [14], i.e., we prove that δ(I − Fε, ZR, 0) = 1, where
δ is the Brouwer topological degree and

ZR = {wM ∈ Z : ‖wi,M‖1,2,M < R for i = 1, . . . , n}.

Since δ is invariant by homotopy, it is sufficient to prove that any solution (wεM, ρ) ∈
ZR × [0, 1] to the fixed-point equation wεM = ρFε(w

ε
M) satisfies (wεM, ρ) 6∈ ∂ZR × [0, 1] for

sufficiently large values of R > 0. Let (wεM, ρ) be a fixed point and ρ 6= 0, the case ρ = 0



14 E. S. DAUS, A. JÜNGEL, AND A. ZUREK

being clear. Then wεi,M solves

3.lin23.lin2 (33) ε

(
−
∑

σ∈EK

τσDK,σw
ε
i + m(K)wεi,K

)
= −ρ

(
m(K)

∆t
(uεi,K − uk−1

i,K ) +
∑

σ∈EK

F εi,K,σ
)
,

where F εi,K,σ is defined as in (19) with uM replaced by uεM which is related to wεM by (29).
The following discrete entropy inequality is the key argument.

lem.edi Lemma 3.1 (Discrete entropy inequality). Let the assumptions of Theorem 2.1 hold.
Then for any ρ ∈ (0, 1] and ε ∈ (0, 1),

ρH(uεM) + ε∆t
n∑

i=1

||wεi,M||21,2,M + ρ∆t
n∑

i=1

Ii(u
ε
M) ≤ ρH(uk−1

M ),

where Ii(u
ε
M) =

∑

σ∈E

τσ(pεσ)2

(
Dσ

(√
uεiq(M

ε)

p(M ε)

))2

, i = 1, . . . , n,

with obvious notations for (pεσ)2 and M ε.

Proof. We multiply (33) by ∆twεi,K and sum over i = 1, . . . , n and K ∈ T . This gives

ε∆t
n∑

i=1

(
−
∑

σ∈E
K=Kσ

τσw
ε
i,KDK,σw

ε
i +

∑

K∈T

m(K)|wεi,K |2
)

+ J3 + J4 = 0, where

J3 = ρ
n∑

i=1

∑

K∈T

m(K)(uεi,K − uk−1
i,K )wεi,K ,

J4 = ρ∆t
n∑

i=1

∑

σ∈E
K=Kσ

F εi,K,σwεi,K .

By the symmetry of τσ with respect to σ = K|L, the first term is written as

ε∆t
n∑

i=1

(
−
∑

σ∈E
K=Kσ

τσw
ε
i,KDK,σw

ε
i +

∑

K∈T

m(K)|wεi,K |2
)

= ε∆t
n∑

i=1

‖wεi,M‖2
1,2,M.

Inserting definition (29) of wεi,K and using the convexity of u 7→ u(log u− 1) + 1, we obtain

J3 = ρ
n∑

i=1

∑

K∈T

m(K)(uεi,K − uk−1
i,K )

(
log uεi,K + log

q(M ε
K)

p(M ε
K)

)

− ρ
n∑

i=1

∑

K∈T

m(K)(uεi,K − uk−1
i,K )

(
log uDi + log

q(MD)

p(MD)

)

≥ ρ
∑

K∈T

m(K)
(
h(uεK)− h(uk−1

K )
)
− ρ

n∑

i=1

m(K)(uεi,K − uk−1
i,K )

∂h

∂ui
(uD)
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= ρ
∑

K∈T

m(K)
(
h(uεK)− (uεK − uD) · h′(uD)

)

− ρ
∑

K∈T

m(K)
(
h(uk−1

K )− (uk−1
K − uD) · h′(uD)

)

= ρ
∑

K∈T

m(K)
(
h∗(uεK |uD)− h∗(uk−1

K |uD)
)

= ρ
(
H(uεM)−H(uk−1

M )
)
.

We abbreviate vεi,K := uεi,Kq(M
ε
K)/p(M ε

K). Then

J4 = −ρ∆t
n∑

i=1

∑

σ∈E
K=Kσ

F εi,K,σDK,σ(wεi )

= ρ∆t
n∑

i=1

∑

σ∈E
K=Kσ

τσ(pεσ)2(vεi,K,σ − vεi,K)(log vεi,K,σ − log vεi,K).

The elementary inequality (x − y)(log x − log y) ≥ 4(
√
x −√y)2 for any x, y > 0 implies

that

J4 ≥ 4ρ∆t
n∑

i=1

∑

σ∈E

τσ(pεσ)2

(
Dσ

(√
uεiq(M

ε)

p(M ε)

))2

.

Putting all the estimations together completes the proof. �

We proceed with the topological degree argument. The previous lemma implies that

ε∆t
n∑

i=1

||wεi,M||21,2,M ≤ ρH(uk−1
M ) ≤ H(uk−1

M ).

Then, if we define

R :=

(
H(uk−1

M )

ε∆t

)1/2

+ 1,

we conclude that wεM 6∈ ∂ZR and δ(I − Fε, ZR, 0) = 1. Thus, Fε admits a fixed point.

Step 4. Limit ε→ 0. We recall that uεM ∈ O. Thus, up to a subsequence, uεM → uM ∈ O
as ε → 0. We deduce from (32) that there exists a subsequence (not relabeled) such that
εwεi,K → 0 for any K ∈ T and i = 1, . . . , n. In order to pass to the limit in the fluxes F εi,K,σ,
we need to show that MK =

∑n
i=1 ui,K < 1 for any K ∈ T . To this end, we establish the

following result:

lem.borne.sup Lemma 3.2 (L2 estimate). Let the assumptions of Theorem 2.1 hold. Then for all ε > 0,
there exists a constant C > 0 depending on H(uk−1

M ), Ω, ∆t, the mesh T , and M∗ =
supx∈Ω{MD,M0(x)} such that

∑

K∈T

m(K)
(
[M ε

K −M∗]+
)2 ≤ C

√
ε,in.borne.supin.borne.sup (34)

where z+ = max{z, 0}.



16 E. S. DAUS, A. JÜNGEL, AND A. ZUREK

Proof. Let ε > 0 be fixed. Then, summing (33) over i, we obtain

ε
n∑

i=1

(
−
∑

σ∈EK

τσDK,σw
ε
i + m(K)wεi,K

)
+ m(K)

M ε
K −Mk−1

K

∆t

+
n∑

i=1

∑

σ∈EK

F εi,K,σ = 0 for all K ∈ T .

Multiplying this equation by ∆t[M ε
K−M∗]+, summing over K ∈ T , and using 1

2
(x2−y2) ≤

x(x− y), we obtain

∑

K∈T

m(K)

2

(
[M ε

K −M∗]2+ − [Mk−1
K −M∗]2+

)
≤ J5 + J6 + J7,

where

J5 = −∆t
n∑

i=1

∑

σ∈E
K=Kσ

F εi,K,σ[M ε
K −M∗]+,

J6 = ε∆t
n∑

i=1

∑

σ∈E
K=Kσ

τσDK,σw
ε
i [M

ε
K −M∗]+,

J7 = −ε∆t
n∑

i=1

∑

K∈T

m(K)wεi,K [M ε
K −M∗]+.

We use discrete integration by parts to rewrite J5 as

J5 = −∆t
∑

σ∈E
K=Kσ

τσ(pεσ)2DK,σ

(
M εq(M ε)

p(M ε)

)
DK,σ[M ε −M∗]+.

We assume that for σ ∈ E we have M ε
K,σ ≥ M ε

K . Then, since the function M 7→
Mq(M)/p(M) is increasing (see definition (2)), we deduce that DK,σ(M ε q(M ε)/p(M ε)) ≥
0. We distinguish the following cases:

• M∗ ≥M ε
K,σ ≥M ε

K ⇒ DK,σ[M ε −M∗]+ = 0;
• M ε

K,σ ≥M∗ ≥M ε
K ⇒ DK,σ[M ε −M∗]+ = M ε

K,σ −M∗ ≥ 0;
• M ε

K,σ ≥M ε
K ≥M∗ ⇒ DK,σ[M ε −M∗]+ = M ε

K,σ −M ε
K ≥ 0.

This implies that DK,σ(M εq(M ε)/p(M ε))DK,σ[M ε −M∗]+ ≥ 0 if M ε
K,σ ≥ M ε

K . A similar
argument shows that DK,σ(M εq(M ε)/p(M ε))DK,σ[M ε −M∗]+ ≥ 0 also in the case M ε

K ≥
M ε

K,σ and we deduce that J5 ≤ 0.
For J6, we apply discrete integration by parts and the Cauchy-Schwarz inequality:

|J6| ≤ ε1/2

(
ε∆t

n∑

i=1

∑

σ∈E

τσ(Dσw
ε
i )

2

)1/2(
∆t
∑

σ∈E

τσ(Dσ[M ε −M∗]+)2

)1/2

.
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It follows from Lemma 3.1 and the L∞ bound M ε
K ≤ 1 for K ∈ T that

|J6| ≤ 2H(uk−1
M )1/2 (1 +M∗)

(
∆t
∑

σ∈E

τσ

)1/2

ε1/2.

Finally, we use the Cauchy-Schwarz inequality together with Lemma 3.1 and then the L∞

bound M ε
K ≤ 1 for K ∈ T to estimate J7:

|J7| ≤ ε1/2H(uk−1
M )1/2

(
∆t
∑

K∈T

m(K)
(
[M ε

K −M∗]+
)2

)1/2

≤ H(uk−1
M )1/2 (1 +M∗)∆t1/2 m(Ω)1/2ε1/2.

Gathering all the previous estimates, we deduce the existence of a constant C > 0 such
that (34) holds. �

We conclude from Lemma 3.2 that passing to the limit ε→ 0 in (34) that
∑

K∈T

m(K)
(
[MK −M∗]+

)2 ≤ 0,

recall that M ε
K →MK as ε→ 0 for K ∈ T . This shows that MK ≤M∗ < 1 for all K ∈ T .

We can perform the limit ε→ 0 in (33), which completes the proof of Theorem 2.1.

4. A priori estimates
sec.apriori

In this section, we establish some uniform estimates for the solutions to scheme (16)-(20).
These estimates are needed to deduce the compactness of the sequence of finite-volume
solutions obtained in Theorem 2.1. In particular, we prove a discrete gradient estimate for√
uki and an estimate for the discrete time derivative (uki,K − uk−1

i,K )/∆t.
We first state some technical properties satisfied by the functions p and q.

prop.pq Proposition 4.1 (Properties of p and q). The function M 7→
√
q(M)/p(M) is strictly

increasing for M ∈ (0, 1). Moreover, there exists a constant Cpq such that

lim
M→1

p(M)q(M)

(1−M)1−b+κ = Cpq ∈ (0,∞).4.Cpq4.Cpq (35)

Proof. The result follows from a meticulous but rather straightforward analysis as done in
the proofs of [15, Lemma 3.1, Lemma 3.4] using Hypothesis (H4). �

4.1. Gradient estimate. We deduce the following gradient estimate from the entropy
inequality (24).

lem.grad Lemma 4.1 (Gradient estimate). Let the assumptions of Theorem 2.1 hold. Then there
exists a constant C1 > 0 only depending on H(u0

M), Ω, q, p, and the upper bound M∗

defined in Theorem 2.1 such that
NT∑

k=1

∆t

∥∥∥∥
uki,Mq(M

k
M)

p(Mk
M)

∥∥∥∥
2

1,2,M
≤ C1 for all 1 ≤ i ≤ n.
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Proof. Let i ∈ {1, . . . , n}. Thanks to the uniform L∞ bound for ukM, it is sufficient to show
that there exists a constant C > 0 independent of ∆x and ∆t such that

NT∑

k=1

∆t

∣∣∣∣
uki,Mq(M

k
M)

p(Mk
M)

∣∣∣∣
2

1,2,M
≤ C.

To prove this estimate, we start from the following bound which comes from the discrete
entropy inequality (24):

4.aux4.aux (36)

NT∑

k=1

∆t
∑

σ∈E

τσ

(
Dσ

(√
uki q(M

k)

p(Mk)

))2

≤ H(u0
M)

p(M∗)2
.

Using the inequality x2 − y2 ≤ 2x(x− y) and uki,K,σ ≤ 1, we can write

NT∑

k=1

∆t
∑

σ∈E

τσ

(
Dσ

(
uki q(M

k)

p(Mk)

))2

≤ 4

NT∑

k=1

∆t
∑

σ∈E

τσ
uki,K,σq(M

k
K,σ)

p(Mk
K,σ)

(
Dσ

(√
uki q(M

k)

p(Mk)

))2

≤ 4

NT∑

k=1

∆t
∑

σ∈E

τσ
q(Mk

K,σ)

p(Mk
K,σ)

(
Dσ

(√
uki q(M

k)

p(Mk)

))2

.

By Proposition 4.1 and the bound Mk
K ≤ M∗ for K ∈ T , we obtain q(Mk

K,σ)/p(Mk
K,σ) ≤

q(M∗)/p(M∗). Therefore,

NT∑

k=1

∆t
∑

σ∈E

τσ

(
Dσ

(
uki q(M

k)

p(Mk)

))2

≤ 4q(M∗)

p(M∗)

NT∑

k=1

∆t
∑

σ∈E

τσ

(
Dσ

(√
uki q(M

k)

p(Mk)

))2

.

In view of (36), this shows the lemma. �

4.2. Estimate for the time difference. To show the convergence of the scheme, we
need an estimate for the time difference uki,K − uk−1

i,K .

lem.time Lemma 4.2 (Time estimate). Let the assumptions of Theorem 2.1 hold. Then there exists
a constant C2 > 0 not depending on ∆x and ∆t such that for all i ∈ {1, . . . , n} and
φ ∈ C∞0 (QT ),

NT∑

k=1

∆t
∑

K∈T

(uki,K − uk−1
i,K )φ(xK , tk) ≤ C2∆t‖∇φ‖L∞(QT ).

Proof. We abbreviate φkK := φ(xK , tk) and fix i ∈ {1, . . . , n}. We multiply (18) by ∆tφkK
and sum over K ∈ T and k = 1, . . . , NT

NT∑

k=1

∑

K∈T

m(K)(uki,K − uk−1
i,K )φkK = −

NT∑

k=1

∆t
∑

σ∈E
K=Kσ

Fki,K,σφkK =: J8.
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Inserting the definition of Fki,K,σ and using the symmetry of τσ with respect to σ = K|L,
we find that

J8 = −
NT∑

k=1

∆t
∑

σ∈E
K=Kσ

τσ(pkσ)2DK,σ

(
uki q(M

k)

p(Mk)

)
DK,σφ

k.

Using the Cauchy-Schwarz inequality, we obtain |J8| ≤ J80J81, where

J80 =

( NT∑

k=1

∆t|φkM|21,2,M
)1/2

,

J81 =

( NT∑

k=1

∆t
∑

σ∈E

τσ
(
(pkσ)2

)2
[
Dσ

(
uki q(M

k)

p(Mk)

)]2)1/2

.

It follows from the mesh properties (12) and (10) that

J80 ≤ ‖∇φ‖L∞(QT )

( NT∑

k=1

∆t
∑

σ∈E

m(σ)dσ

)1/2

≤ 1

ξ1/2
‖∇φ‖L∞(QT )

( NT∑

k=1

∆t
∑

K∈T

∑

σ∈EK

m(σ)d(xK , σ)

)1/2

≤ 21/2

ξ1/2
‖∇φ‖L∞(QT )

( NT∑

k=1

∆t
∑

K∈T

m(K)

)1/2

=

√
2m(Ω)T

ξ
‖∇φ‖L∞(QT ).

By Lemma 4.1, J81 ≤ C1p(0)2. This shows that |J8| ≤ C2∆t‖∇φ‖L∞(QT ), concluding the
proof. �

4.3. Lower bound for the entropy production term. In this section we establish a
discrete counterpart of inequality (9).

lem.lower Lemma 4.3 (Lower bound for the entropy production). Let the assumptions of Theorem
2.1 hold. Then there exists a constant C3 > 0 depending on p, q, a, b, and κ such that for
k = 1, . . . , NT ,

n∑

i=1

Ii(u
k
M) ≥ 1

2

n∑

i=1

∑

σ∈E

τσβ
k
K,σ

(
Dσ

√
uki
)2

+ C3

∑

σ∈E

τσ
(Mk

σ )a−1(DσM
k)2

(1−Mk
σ )1+b+κ

,3.I3.I (37)

where Mk
σ = θσM

k
K + (1− θσ)Mk

K,σ for some θσ ∈ (0, 1),

βkK,σ = min
{
p(Mk

K)q(Mk
K), p(Mk

K,σ)q(Mk
K,σ)

}
,

and we recall that Ii(u
k
M) is defined in (25).

Proof. To simplify the presentation, we omit the superindex k throughout the proof. Sum-
ming definition (25) for Ii(uM) over i = 1, . . . , n and setting f(x) =

√
q(x)/p(x), we
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obtain

I :=
n∑

i=1

Ii(uM) =
n∑

i=1

∑

σ∈E
K=Kσ

τσp
2
σ

(
DK,σ(

√
uif(M))

)2
.

We split the sum into two parts and use the product rule for finite volumes. Then I =
J90 + J91, where

J90 =
n∑

i=1

∑

σ∈E
K=Kσ

τσp
2
σ

(√
ui,K,σDK,σ(f(M)) +DK,σ(

√
ui)f(MK)

)2
1{MK,σ≥MK},

J91 =
n∑

i=1

∑

σ∈E
K=Kσ

τσp
2
σ

(√
ui,KDK,σ(f(M)) +DK,σ(

√
ui)f(MK,σ)

)2
1{MK,σ<MK}.

A Taylor expansion of f around MK,σ gives

J90 =
n∑

i=1

∑

σ∈E
K=Kσ

τσp
2
σ

(√
ui,K,σDK,σ(M)f ′(Mσ) +DK,σ(

√
ui)f(MK)

)2
1{MK,σ≥MK},

J91 =
n∑

i=1

∑

σ∈E
K=Kσ

τσp
2
σ

(√
ui,KDK,σ(M)f ′(Mσ) +DK,σ(

√
ui)f(MK,σ)

)2
1{MK,σ<MK},

where Mσ = θσMK,σ + (1− θσ)MK for some θσ ∈ (0, 1) and for K ∈ T and σ ∈ EK .
We consider the term J90 first. Expanding the square gives three terms, J90 = J901 +

J902 + J903, where

J901 =
n∑

i=1

∑

σ∈E

τσp
2
σf(MK)2

(
Dσ(
√
ui)
)2

1{MK,σ≥MK},

J902 = 2
n∑

i=1

∑

σ∈E
K=Kσ

τσp
2
σ

√
ui,K,σDK,σ(

√
ui)f

′(Mσ)f(MK)DK,σ(M)1{MK,σ≥MK},

J903 =
n∑

i=1

∑

σ∈E

τσp
2
σui,K,σf

′(Mσ)2(DσM)21{MK,σ≥MK}

=
∑

σ∈E

τσp
2
σMK,σf

′(Mσ)2(DσM)21{MK,σ≥MK},

and in the last equality we used the identity
∑n

i=1 ui,K,σ = MK,σ.
Definition (20) of p2

σ implies that p2
σ ≥ p(MK)2/2. Then, by definition of f ,

J901 =
1

2

n∑

i=1

∑

σ∈E

τσp(MK)q(MK)
(
Dσ(
√
ui)
)2

1{MK,σ≥MK}.
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By Proposition 4.1, the function f is increasing. Together with x(x− y) ≥ 1
2
(x2− y2), this

gives

J902 ≥
n∑

i=1

∑

σ∈E
K=Kσ

τσp
2
σ(ui,K,σ − ui,K)f ′(Mσ)f(MK)DK,σ(M)1{MK,σ≥MK}

=
∑

σ∈E

τσp
2
σ(DσM)2f ′(Mσ)f(MK)1{MK,σ≥MK} ≥ 0.

It remains to estimate J903. For this, we set J903 =
∑

σ∈E J903(σ), where

J903(σ) = τσp
2
σMK,σf

′(Mσ)2(DσM)21{MK,σ≥MK}.

Thanks to Proposition 4.1, there exists δ ∈ (0, 1/2) such that for all Mσ > 1− δ,

4.pq4.pq (38)
p(Mσ)q(Mσ)

(1−Mσ)1−b+κ ≥
Cpq
2
,

where the constant Cpq > 0 is defined in (35). We distinguish the cases (i) 0 ≤Mσ ≤ 1− δ
and (ii) 1− δ < Mσ < 1.

Consider first case (i). Modifying slightly the proof of [15, Lemma 3.4], it holds that for
all 0 ≤Mσ ≤ 1− δ,

f ′(Mσ) ≥ a

2Mσ

f(Mσ), p(Mσ)q(Mσ) ≥ p(1− δ)2Ma
σ

p(0)2(a+ 1)
.

On the set {MK,σ ≥ MK} we have MK,σ ≥ Mσ ≥ MK , and thus, p2
σ ≥ p(MK)2/2 ≥

p(Mσ)2/2. Therefore, taking into account the definition of f ,

J903(σ) ≥ τσ
p(Mσ)2

2
MK,σ

a2

4M2
σ

f(Mσ)2(DσM)21{MK,σ≥MK}

=
a2

8
τσp(Mσ)q(Mσ)

MK,σ

M2
σ

(DσM)21{MK,σ≥MK}

≥ a2p(1− δ)2

8(a+ 1)p(0)2
τσM

a−1
σ

MK,σ

Mσ

(DσM)21{MK,σ≥MK}

≥ a2p(1− δ)2

8(a+ 1)p(0)2
τσM

a−1
σ (DσM)21{MK,σ≥MK},

where we used MK,σ ≥Mσ in the last inequality. Since Mσ ≤ 1−δ, we have (1−Mσ)1+b+κ ≥
δ1+b+κ and consequently,

J903(σ) ≥ a2p(1− δ)2δ1+b+κ

8(a+ 1)p(0)2

τσM
a−1
σ

(1−Mσ)1+b+κ
(DσM)21{MK,σ≥MK}.

In case (ii), using MK,σ ≥Mσ > 1− δ and p2
σ ≥ p(MK)2/2 ≥ p(Mσ)2/2, we find that

J903(σ) ≥ 1

2
(1− δ)τσp(Mσ)2f ′(Mσ)2(DσM)21{MK,σ≥MK}
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≥ 1

2
(1− δ)τσp(Mσ)q(Mσ)

(
f ′(Mσ)

f(Mσ)

)2

(DσM)21{MK,σ≥MK}.

The proof of [15, Lemma 3.4] shows that there exists a constant C4 > 0 such that

f ′(x)

f(x)
≥ C4

(1− x)1+κ
for

1

2
< x < 1.

Hence, together with (38), we infer that

J903(σ) ≥ 1

2
(1− δ)C2

4τσ
p(Mσ)q(Mσ)

(1−Mσ)1−b+κ (1−Mσ)−1−b−κ(DσM)21{MK,σ≥MK}

≥ 1

4
(1− δ)CpqC2

4τσ(1−Mσ)−1−b−κ(DσM)21{MK,σ≥MK}

≥ 1

4
(1− δ)CpqC2

4τσ
Ma−1

σ

(1−Mσ)1+b+κ
(DσM)21{MK,σ≥MK},

where in the last step we used Mσ ≤ 1 and a ≥ 1. We have proved that in both cases (i)
and (ii), there exists a constant C5 > 0 such that

J903 ≥ C5

∑

σ∈E

τσ
Ma−1

σ

(1−Mσ)1+b+κ
(DσM)21{MK,σ≥MK}.

Similarly, we expand the square in J91 such that J91 = J911 + J912 + J913, where

J911 =
n∑

i=1

∑

σ∈E

τσp
2
σf(MK,σ)2(Dσ(

√
ui))

21{MK,σ<MK},

J912 = 2
n∑

i=1

∑

σ∈E
K=Kσ

τσp
2
σ

√
ui,KDK,σ(

√
ui)f

′(Mσ)f(MK,σ)DK,σ(M)1{MK,σ<MK},

J913 =
n∑

i=1

∑

σ∈E

τσp
2
σui,Kf

′(Mσ)2(DσM)21{MK,σ<MK}.

Arguing as for the expressions J901 and J902, we obtain J912 ≥ 0 and

J911 =
1

2

n∑

i=1

∑

σ∈E

τσp(MK,σ)q(MK,σ)(Dσ(
√
ui))

21{MK,σ<MK}.

The terms in J913 are studied as before for the cases 0 ≤ Mσ ≤ 1 − δ and Mσ > 1 − δ.
Similar computations lead to the existence of a constant C6 > 0 such that

J913 ≥ C6

∑

σ∈E

τσ
Ma−1

σ

(1−Mσ)1+b+κ
(DσM)21{MK,σ<MK}.

We put together the estimates for J901 and J911,

J91J101J91J101 (39) J901 + J911 ≥
1

2

∑

σ∈E

τσ min
{
p(MK)q(MK), p(MK,σ)q(MK,σ)

}
(Dσ

√
ui)

2.
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and add J903 and J913,

J903 + J913 ≥ min{C5, C6}
∑

σ∈E

τσ
Ma−1

σ

(1−Mσ)1+b+κ
(DσM)2.J93J103J93J103 (40)

Note that J902 + J912 ≥ 0. Then I ≥ (J901 + J911) + (J903 + J913) and inserting estimates
(39) and (40), we finish the proof. �

5. Convergence of solutions
sec.convsol

Before proving the convergence of the scheme, we show some compactness properties
for the solutions to scheme (16)-(20). More precisely, we deduce from the compactness
criterion of [5] the almost everywhere convergence of ui,η. This criterion can be seen
as a discrete “compensated compactness” result in the framework of Tartar and Murat.
Then we establish the weak convergence of (a subsequence of) the discrete gradient of
ui,ηq(Mη)/p(Mη) in L2(QT ) and the convergence for the traces in a weak sense.

prop.conv Proposition 5.1 (Almost everywhere convergence). Let the assumptions of Theorem 2.2
hold and let (uη)η>0 be a family of discrete solutions to scheme (16)-(20) constructed in
Theorem 2.1. Then there exists a subsequence of (uη)η>0, which is not relabeled, and a
function u = (u1, . . . , un) ∈ L∞(QT )n such that, as η → 0,

ui,η → ui ≥ 0 a.e. in QT , i = 1, . . . , n.

Moreover, there exists M ∈ L∞(QT ) such that

Mη =
n∑

i=1

ui,η →M =
n∑

i=1

ui < 1 a.e. in QT .

Proof. Assumptions (Ax1) and (Ax3) in [5, Theorem 3.9] are satisfied due to the choice of
finite volumes. Assumption (At) is always fulfilled for one-step methods like the implicit
Euler discretization. Assumptions (a) and (b) are a consequence of the L∞ bound, while
Lemma 4.2 ensures assumption (c). Thus, the result follows directly from [5, Theorem
3.9]. �

The gradient estimate in Lemma 4.1 shows that the discrete gradient of ui,ηq(Mη)/p(Mη)
converges weakly in L2(QT ) (up to a subsequence) to some function. The following lemma
shows that the limit can be identified with ∇(uiq(M)/p(M)).

lem.convgrad Lemma 5.1 (Convergence of the gradient). Let the assumptions of Theorem 2.2 hold and
let (uη)η>0 be a family of discrete solutions to scheme (16)-(20) constructed in Theorem
2.1. Then, up to a subsequence, as η → 0,

∇η

(
ui,ηq(Mη)

p(Mη)

)
⇀ ∇

(
uiq(M)

p(M)

)
weakly in L2(QT ),

where ui and M are the limit functions obtained in Proposition 5.1.
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Proof. The goal is to establish the limit
∫

QT

∇η

(
ui,ηq(Mη)

p(Mη)

)
· φ dxdt+

∫

QT

ui,ηq(Mη)

p(Mη)
div φ dxdt→ 0 as η → 0

for all φ ∈ C∞0 (QT ) and i = 1, . . . , n. Thanks to the proof of [12, Lemma 4.4], this
result is a direct consequence of the definition of the discrete gradient operator ∇η de-
fined in Section 2.2 and Lemma 4.1, which guarantees uniform estimates on the discrete
L2(0, T ;H1(Ω)) norm of ui,ηq(Mη)/p(Mη) for i = 1, . . . , n. �

Finally, we verify that the limit function u satisfies the Dirichlet boundary condition in
a weak sense.

lem.trace Lemma 5.2 (Convergence of the traces). Let the assumptions of Theorem 2.2 hold and
let (uη)η>0 be a family of discrete solutions to scheme (16)-(20) constructed in Theorem
2.1 such that uη → u and Mη →M a.e. in QT as η → 0. Then

uiq(M)

p(M)
− uDi q(M

D)

p(MD)
∈ L2(0, T ;H1

D(Ω)).

Proof. Let us define vi,η := ui,ηq(Mη)/p(Mη) for i = 1, . . . , n. Then, using [6, Lemma 4.7]
and [6, Lemma 4.8], we can prove, thanks to Lemma 4.1 and the L∞-estimate, that up to
a subsequence, for all 1 ≤ p < +∞ as η → 0,

vi,η → vi =
ui q(M)

p(M)
strongly in Lp(ΓD × (0, T )), i = 1, . . . , n,

see for instance the proof of [6, Proposition 4.9]. Then, up to a subsequence,

convtraceconvtrace (41) vi,η → vi a.e. in ΓD × (0, T ), i = 1, . . . , n.

Moreover, by construction (21)-(22),

vi,η(x, t) =
uDi q(M

D)

p(MD)
for (x, t) ∈ ΓD × (0, T ), i = 1, . . . , n.

Thus, we deduce from (41) that

vi =
uDi q(M

D)

p(MD)
a.e. in ΓD × (0, T ), i = 1, . . . , n,

which concludes the proof. �

6. Convergence of the scheme
sec.convsch

In this section, we identify, under the assumptions of Theorem 2.2, the limit function
u = (u1, . . . , un) obtained in Proposition 5.1 as a weak solution to (1)-(4). For this, we
follow some ideas developed in [8, 12]. Roughly speaking, this approach consists of replacing
in the weak formulation (26) the weak solution by uη = (u1,η, . . . , un,η). Then, applying
the convergence results proved in the previous section and passing to the limit η → 0, we
identify the function u as a weak solution. Finally, using the uniqueness result obtained
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in [15, Theorem 2.3], if αi = 1 for i = 1, . . . , n, we conclude that the whole sequence uη
converges towards the weak solution of (1)-(4) when η → 0.

6.1. Convergence towards the weak solution. Let φ ∈ C∞0 (Ω × [0, T )) and choose
η = max{∆x,∆t} sufficiently small such that supp(φ) ⊂ {x ∈ Ω : d(x, ∂Ω) > η} × [0, T ).
In particular, φ vanishes in any cell K ∈ T with K ∩ ∂Ω 6= ∅. Again, we abbreviate
φkK = φ(xK , tk) and we fix i ∈ {1, . . . , n}. Let

ε(η) = F η
10 + F η

20, where

F η
10 = −

∫ T

0

∫

Ω

ui,η∂tφdxdt−
∫

Ω

ui,η(x, 0)φ(x, 0)dx,

F η
20 =

∫ T

0

∫

Ω

p(Mη)
2∇η

(
ui,ηq(Mη)

p(Mη)

)
· ∇φdxdt.

Proposition 5.1 and Lemma 5.1 allow us to perform the limit η → 0 in these integrals,
leading to

lim
η→0

ε(η) = −
∫ T

0

∫

Ω

ui∂tφdxdt−
∫

Ω

ui(x, 0)φ(x, 0)dx

+

∫ T

0

∫

Ω

p(M)2∇
(
uiq(M)

p(M)

)
· ∇φdxdt.

Therefore, it remains to prove that ε(η)→ 0 as η → 0.
To this end, we multiply (18) by ∆tφk−1

K and sum over K ∈ T and k = 1, . . . , NT , giving

F η
1 + F η

2 = 0, where

F η
1 =

NT∑

k=1

∑

K∈T

m(K)(uki,K − uk−1
i,K )φk−1

K ,

F η
2 =

NT∑

k=1

∆t
∑

K∈T

∑

σ∈Eint,K

Fki,K,σφk−1
K .

For the proof of ε(η)→ 0 as η → 0, it is sufficient to show that F η
j0−F η

j → 0 as η → 0 for
j = 1, 2.

The arguments in [8, Section 5.2] show that

|F η
10 − F η

1 | ≤ CTm(Ω)‖φ‖C1(QT ) η → 0 as η → 0.

The remaining convergence for |F η
20 − F η

2 | is more involved. First, we rewrite F η
2 . By the

conservation of the numerical fluxes Fi,K,σ + Fi,L,σ = 0 for all the edges σ = K|L ∈ Eint

and the definition of Fki,K,σ, we infer that

F η
2 = −

NT∑

k=1

∆t
∑

K∈T

∑

σ∈Eint,K

Fki,K,σDK,σφ
k−1
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=

NT∑

k=1

∆t
∑

K∈T

p(Mk
K)2

∑

σ∈Eint,K

τσDK,σ

(
uki q(M

k)

p(Mk)

)
DK,σφ

k−1

+

NT∑

k=1

∆t
∑

K∈T

∑

σ∈Eint,K

τσ
(
(pkσ)2 − p(Mk

K)2
)
DK,σ

(
uki q(M

k)

p(Mk)

)
DK,σφ

k−1

=: F η
21 + F η

22.

Inserting the definition of the discrete gradient ∇η = ∇Dη , we can reformulate F η
20 as

F η
20 =

NT∑

k=1

∑

K∈T

p(Mk
K)2

∑

σ∈Eint,K

DK,σ

(
uki q(M

k)

p(Mk)

)
m(σ)

m(TK,σ)

∫ tk

tk−1

∫

TK,σ

∇φ · νK,σdxdt.

Thus, using the monotonicity of p, we have

|F η
20 − F η

21| ≤ p(0)2

NT∑

k=1

∑

K∈T

∑

σ∈Eint,K

m(σ)Dσ

(
uki q(M

k)

p(Mk)

)

×
∣∣∣∣
∫ tk

tk−1

(
DK,σφ

k

dσ
− 1

m(TK,σ)

∫

TK,σ

∇φ · νK,σdx
)
dt

∣∣∣∣.

In view of the proof of Theorem 5.1 in [12], there exists a constant Ccons > 0 such that
∣∣∣∣
∫ tk

tk−1

(
DK,σφ

k

dσ
− 1

m(TK,σ)

∫

TK,σ

∇φ · νK,σdx
)
dt

∣∣∣∣ ≤ Ccons∆tη.

Applying this inequality and the Cauchy-Schwarz inequality, we obtain

|F η
20 − F η

21| ≤ p(0)2Cconsη

( NT∑

k=1

∆t
∑

σ∈E

m(σ)dσ

)1/2( NT∑

k=1

∆t

∣∣∣∣
uki q(M

k)

p(Mk)

∣∣∣∣
2

1,2,M

)1/2

.

It remains to use the mesh regularity (12), property (23), and the gradient estimate given
by Lemma 4.1 to conclude that, for some constant C > 0,

F20F21F20F21 (42) |F η
20 − F η

21| ≤ C(ξ, C3)p(0)2η → 0 as η → 0.

We turn to the estimate of F η
22. To this end, we use the definition of (pkσ)2 to rewrite F η

22

as F η
22 = F η

220 + F η
221, where

F η
220 =

NT∑

k=1

∆t
∑

K∈T

∑

σ∈Eint,K

τσ
p(Mk

K,σ)2 − p(Mk
K)2

2
DK,σ

(
uki q(M

k)

p(Mk)

)
DK,σφ

k−11{Mk
K>M

k
K,σ}

,

F η
221 =

NT∑

k=1

∆t
∑

K∈T

∑

σ∈Eint,K

τσ
p(Mk

K,σ)2 − p(Mk
K)2

2
DK,σ

(
uki q(M

k)

p(Mk)

)
DK,σφ

k−11{Mk
K≤M

k
K,σ}

.
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It follows from p(Mk
K) ≤ p(Mk

K,σ) and the inequality x2 − y2 ≤ 2x(x− y) that

|F η
220| ≤ 2η‖φ‖C1(QT )

NT∑

k=1

∆t
∑

K∈T

∑

σ∈Eint,K

τσ

×
∣∣∣∣
p(Mk

K,σ)2 − p(Mk
K)2

2

√
uki,K,σq(M

k
K,σ)

p(Mk
K,σ)

DK,σ

(√
uki q(M

k)

p(Mk)

)
1{Mk

K>M
k
K,σ}

∣∣∣∣.

A Taylor expansion, for M̃k
σ = θ̃σM

k
K + (1− θ̃σ)Mk

K,σ for some θ̃σ ∈ (0, 1),

p(Mk
K,σ)2 − p(Mk

K)2 = 2p′(M̃k
σ )p(M̃k

σ )(Mk
K,σ −Mk

K),

and the Cauchy-Schwarz inequality gives

|F η
220| ≤ 2η‖φ‖C1(QT )F

η
2200F

η
2201, whereF22F22 (43)

F η
2200 = p(0)

{ NT∑

k=1

∆t
∑

σ∈E

τσ

(
Dσ

(√
uki q(M

k)

p(Mk)

))2}1/2

,

F η
2201 =

{ NT∑

k=1

∆t
∑

σ∈E

τσp
′(M̃k

σ )2
uki,K,σq(M

k
K,σ)

p(Mk
K,σ)

(DσM)21{Mk
K>M

k
K,σ}

}1/2

.

Inequality (36) shows that F η
2200 ≤ p(0)H(u0

M)1/2/p(M∗).
For the estimate of F η

2201, we use uki,K,σ ≤ 1 and C7 := sup0≤x≤M∗ p
′(x)2/p(x) <∞ (this

is finite since M∗ < 1) to infer that

F η
2201 ≤ C7

{ NT∑

k=1

∆t
∑

σ∈E

τσq(M
k
K,σ)(DσM)21{Mk

K>M
k
K,σ}

}1/2

= C7

{ NT∑

k=1

∆t
∑

σ∈E

τσ(Mk
K,σ)1−a(1−Mk

K,σ)1+b+κq(Mk
K,σ)

× (Mk
K,σ)a−1

(1−Mk
K,σ)1+b+κ

(DσM)21{Mk
K>M

k
K,σ}

}1/2

.

Set Mk
σ = θσM

k
K + (1 − θσ)Mk

K,σ as in the proof of Lemma 4.3. Using the inequality

(1−Mk
K,σ)1+b+κ ≤ 1 together with the monotonicity of x 7→ xa−1/(1−x)−1−b−κ, we obtain

F η
2201 ≤ C7

{ NT∑

k=1

∆t
∑

σ∈E

τσ(Mk
K,σ)1−aq(Mk

K,σ)
(Mk

σ )a−1

(1−Mk
σ )1+b+κ

(DσM)21{Mk
K>M

k
K,σ}

}1/2

.

By (37) and the bound

(Mk
K,σ)1−a q(Mk

K,σ) ≤ M∗

(a+ 1) p(M∗)2 (1−M∗)b
for all σ ∈ E ,
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this expression is bounded by the entropy production which is uniformly bounded due to
the entropy inequality. We have shown that F η

2200 and F η
2201 are bounded uniformly in η

such that (43) implies that F η
220 → 0 as η → 0.

Now we rewrite |F η
221| as

|F η
221| ≤ 2η‖φ‖C1(QT )

NT∑

k=1

∆t
∑

K∈T

∑

σ∈Eint,K

τσ

∣∣∣∣∣
p(Mk

K)2 − p(Mk
K,σ)2

2

√
uki,Kq(M

k
K)

p(Mk
K)

×
(√

uki,Kq(M
k
K)

p(Mk
K)

−
√
uki,K,σq(M

k
K,σ)

p(Mk
K,σ)

)
1{Mk

K≤M
k
K,σ}

∣∣∣∣∣.

Arguing as for the term |F η
220|, we see that F η

221 → 0 as η → 0.
The previous convergences and (42) imply that

|F η
20 − F η

2 | ≤ |F η
20 − F η

21|+ |F η
22| → 0 as η → 0.

To conclude the proof of Theorem 2.2, it remains to apply [15, Theorem 2.3] which shows
the uniqueness of the weak solution to (1)-(4) (in the case αi = 1 for i = 1, . . . , n) and
which implies in particular that the whole sequence (uη)η>0 converges to the weak solution.

7. Numerical experiments
sec.exp.num

We present some numerical experiments in one and two space dimensions, when the
biofilm is composed of n = 2 different species of bacteria and the function p satisfies
hypothesis (H4) (case 1) or not (case 2).

7.1. Implementation of the scheme. The finite-volume scheme (16)-(20) is imple-
mented in MATLAB. Since the numerical scheme is implicit in time, one has to solve
a nonlinear system of equations at each time step. In the one-dimensional case, we use
a plain Newton method. Starting from uk−1 = (uk−1

1 , uk−1
2 ), we apply a Newton method

with precision ε = 10−10 to approximate the solution to the scheme at time step k. In the
two-dimensional case, we use a Newton method complemented by an adaptive time step
strategy to approximate the solution of the scheme at time k. More precisely, starting
again from uk−1 = (uk−1

1 , uk−1
2 ), we launch a Newton method. Then, if the method did not

converge with precision ε = 10−10 after at most 50 steps, we half the time step and restart
the Newton method. At the beginning of each time step, we double the previous time step.
Moreover, we impose the condition 10−8 ≤ ∆tk−1 ≤ 10−2 with an initial time step set to
∆t0 = 10−5.

7.2. Test case 1. We introduce a function p that satisfies hypothesis (H4),

p.1p.1 (44) p(x) = exp(−1/(1− x)) for all x ∈ [0, 1),

and we choose a = b = 2. In this case κ = 1 and

lim
M→1

(−(1−M)2)
p′(M)

p(M)
= 1.
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This definition of p allows us to compute explicitly the value of q(M)/p(M):

q(M)

p(M)
=

1

M

(
e2/(1−M)

(
M − 1

2

)
+
e2

2

)
.qsurptest1qsurptest1 (45)

We consider a one-dimensional test case on Ω = (0, 1) with ΓD = {0}, ΓN = {1},
uD1 = uD2 = 0.1, and the following initial data:

u0
1(x) = uD1 + uD1 1[0.2,0.5](x), u0

2(x) = uD2 + uD2 1[0.5,0.8](x).

In Figure 3, we illustrate the order of convergence in space of the scheme. Since exact
solutions to the biofilm model are not explicitly known, we compute a reference solution
on a uniform mesh composed of 5120 cells and with ∆t = (1/5120)2. We use this rather
small value of ∆t because the Euler discretization in time exhibits a first-order convergence
rate, while we expect a second-order convergence rate in space for scheme (16)-(20), due to
the approximation of p(M)2 in the numerical fluxes. We compute approximate solutions on
uniform meshes made of respectively 40, 80, 160, 320, 640, 1280, and 2560 cells. Finally,
we compute the L2 norm of the difference between the approximate solution and the
average of the reference solution over 40, 80, 160, 320, 640, and 1280 cells at the final time
T = 10−3. Figure 3 shows the results for p defined in (44) and with different choices of the
diffusivities α1 and α2. We observe that the scheme converges, even when α1 6= α2, with
an order around two.
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Figure 3. L2 norm of the error in space with α1 = α2 = 1 (left) and α1 = 1
and α2 = 10 (right); p is defined in (44).Fig1

Next, we consider a two-dimensional test case on Ω = (0, 1)× (0, 1) with ΓD = {y = 1},
ΓN = ∂Ω \ ΓD, uD1 = uD2 = 0.1, α1 = 1, α2 = 5, and the initial data

u0
1(x, y) = uD1 + uD1 1[0.2,0.5](x)1[0,0.4](y), u0

2(x, y) = uD2 + 2uD2 1[0.5,0.8](x)1[0,0.4](y).

The mesh of Ω = (0, 1)2 is composed of 3584 triangles.
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In Figure 4, we show the evolution of the biomass M at different times, illustrating the
convergence to the steady state. It is proved in [15, Theorem 2.2] that the convergence in
the L2 norm is of order 1/t. Figure 5 (left) shows in logarithmic scale and for T = 110
that the convergence is slightly faster than 1/t. Numerically, we observe a convergence of
order 1/tα with α = 1.7. For larger times, the solution is close to the steady state and the
linear regime dominates.

We plot in Figure 5 (right) the behavior of the relative entropy functional H(u) versus
time. We approximate the integral between 0 and Mk

K of log(q(s)/p(s)), which appears in
the definition of H, by the midpoint quadrature rule according to
∫ Mk

K

0

log
q(s)

p(s)
ds ≈Mk

K log
(
e4/(2−Mk

K) (Mk
K − 1) + e2

)
−Mk

K

(
logMk

K + log 2− 1

)
,

for all K ∈ T and k ≥ 0. The use of such a quadrature formula could explain why
k 7→ H(uk) does not converge to zero but stays “far away” from zero even for large times.

Figure 4. Evolution of the biomass M at different times with p defined in
(44). Top left: t = 0, top right: t = 1, bottom left: t = 5, bottom right:
t = 10.Fig2
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Figure 5. Convergence of the solution to the steady state in the L2 norm
(left) and evolution of the relative entropy versus time (right) with p defined
by (44).FigNomrL2EntropTest1

7.3. Test case 2. We use a function p that does not satisfy hypothesis (H4):

p.2p.2 (46) p(x) = 1− x for all x ∈ [0, 1]

and take a = b = 1. Also here, we can also compute explicitly q(M)/p(M):

q(M)

p(M)
=

M

2(1−M)2
.

As before, we consider first a one-dimensional test case on Ω = (0, 1) with ΓD = {0},
ΓN = {1}, uD1 = uD2 = 0.1, and the initial data

u0
1(x) = uD1 + uD1 1[0.2,0.5](x), u0

2(x) = uD2 + uD2 1[0.5,0.8](x).

We investigate the L2-convergence rate in space of the scheme for different values of α1

and α2; see Figure 6. We use the same strategy as described in the previous section. In
particular, the scheme converges with an order around two.

Finally, we consider a two-dimensional test case on Ω = (0, 1)×(0, 1) with ΓD = {y = 1},
ΓN = ∂Ω \ ΓD, uD1 = uD2 = 0.01, α1 = 1, α2 = 5, and the initial data

u0
1(x, y) = uD1 + max

{
1− 82

(
x− 3

8

)2

− 82

(
y − 1

2

)
− uD1 , 0

}
,

u0
2(x, y) = uD2 + max

{
1− 82

(
x− 5

8

)2

− 82

(
y − 1

2

)
− 2uD2 , 0

}
,

which is close to one in the interior of the domain; see Figure 7 (top left). Again, we choose
a mesh of Ω = (0, 1)2 consisting of 3584 triangles.

In Figure 7, we show the evolution of the biomass M at different times. We observe
even in this case and with different diffusivities that the discrete biomass M stays strictly
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Figure 6. L2 norm of the error in space with α1 = α2 = 1 (left) and α1 = 1
and α2 = 10 (right); p is defined in (46).Fig4

smaller than one. This is not surprising since the equation for the biomass is of fast-
diffusion type when 1−M ≈ 0 such that the diffusion is very fast. Because of the mixed
boundary conditions, the biomass converges to a nonconstant steady state.

In Figure 8 (left), we investigate the rate of convergence of the solution to the steady
state u∞1 = uD1 and u∞2 = uD2 . We show the (squared) L2 norm of the difference between
ui and u∞i in logarithmic scale with final time T = 130. Similarly to the previous case, the
rate of convergence in the L2 norm seems to be better than that one obtained analytically
in [15, Theorem 2.2], which is of order 1/t. Numerically, we observe a convergence of order
1/tα with α = 1.6.

Finally, for T = 2, we illustrate the behavior of the relative entropy functional H; see
Figure 8 (right). The relative entropy can be computed explicitly thanks to

∫ Mk
K

0

log
q(s)

p(s)
ds = Mk

K log

(
Mk

K

2
+ 1

)
− 2(Mk

K − 1) log(1−Mk
K),

where K ∈ T and k ≥ 0. The numerical results indicate that H is also a Lyapunov
functional for system (1)-(4), even if the assumptions of [15] are not satisfied, and that
scheme (16)-(20) preserves the entropy structure of the model, even when the assumptions
of Theorem 2.1 do not hold.

Appendix A. Modeling
app

We briefly recall the modeling assumptions and the derivation of equations (1) from a
lattice model. For details and references, we refer to [15, Appendix A]. We consider the
evolution of the proportions uji of biofilm species on a one-dimensional spatial lattice with
the uniform cell distance h > 0, where i = 1, . . . , n denotes the species number and j ∈ Z
the number of the grid cell. In particular, the total biomass M j =

∑n
i=1 u

j
i in the jth cell

is bounded by one. Assuming that the particles of the ith species in cell j move to one of
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Figure 7. Evolution of the biomass M at different times with p defined in
(46). Top left: t = 0, top right: t = 0.1, bottom left: t = 1, bottom right:
t = 10.Fig5

the neighboring cells with transition rate T
(j−1)+
i and T

(j+1)−
i , respectively, and that the

particles from the neighboring cells move to the cell j with transition rates T j±i , the master
equations read as

∂tu
j
i = T

(j−1)+
i uj−1

i + T
(j+1)−
i uj+1

i − (T j+i + T j−i )uji .

The transition rates are supposed to be of the form

T j±i = αiqi(u
j
1, . . . , u

j
n)pi(u

j±1
1 , . . . , uj±1

n ),

where αi = αi(h) measures how fast populations move between neighboring cells and the
nonnegative functions pi and qi describe the local movement of the species.

Macroscopic equations are derived in the (formal) limit h → 0. We assume that
limh→0 αi(h)h2 = α0

i > 0, and we introduce functions ui that interpolate the grid func-
tions, ui(jh, t) = uji (t). Performing a Taylor expansion of ui, inserting these expressions
into the master equations, and passing to the formal limit h→ 0 (see [29] for details), we
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Figure 8. Convergence of the solutions to the steady state in the L2 norm
(left) and evolution of the relative entropy versus time (right) with p defined
by (46).FigL2EntropTest2

arrive at

∂tui = α0
i

∂

∂x

( n∑

j=1

Aij(u)
∂uj
∂x

)
, i = 1, . . . , n,

where

Aij(u) = δijpi(u)qi(u) + ui

(
pi(u)

∂qi
∂uj

(u)− qi(u)
∂pi
∂uj

(u)

)
.

The same procedure can be applied in the case of several space dimensions, leading to the
same equations as above, replacing ∂/∂x by ∇.

Our model is supposed to describe volume-filling effects. This means that the motivation
of the particles to leave a cell is small if the target cell is crowded and large if the departure
cell is crowded, i.e., if the total biomass M =

∑n
i=1 ui is close to the maximal cell capacity

(normalized to one). Thus, we assume that the functions pi and qi only depend on the total
biomass, pi is decreasing with pi(1) = 0, and qi is increasing. A further assumption is that
the biomass species have similar properties such that p = pi and q = qi for i = 1, . . . , n.
Then we can write

n∑

j=1

Aij(u)∇uj = p(M)2∇
(
uiq(M)

p(M)

)
,

which leads to (1).
The functions p and q are chosen in such a way that the evolution equation for the total

biomass M is consistent with the single-species biofilm model of [16] (without reaction
terms),

app.Mapp.M (47) ∂tM = div

(
Ma

(1−M)b
∇M

)
,
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where a, b ≥ 1. Thus, we choose p and q such that

p(M)2∇
(
Mq(M)

p(M)

)
=

Ma

(1−M)b
∇M.

This leads to

q(M) =
p(M)

M

∫ M

0

sa

(1− s)b
ds

p(s)2
, M > 0,

defined in (2). For instance, assuming a linear dependency of the transition rate to leave
the cell with respect to the total biomass, we may choose p(M) = 1−M , yielding

q(M) =
1−M
M

∫ M

0

sads

(1− s)b+2
.

Equation (47) is a degenerate-singular parabolic equation first suggested in [16]. It acts
as a porous-medium equation when the total biomass is small, M � 1, and as a fast-
diffusion equation when the total biomass is close to ist maximal value. The analysis in
[15] and our numerical results show that the singular value in fact is not reached, i.e.
M < 1 (if the initial total biomass is smaller than one). In real biofilms, the saturation
case M = 1 may occur but this is not covered by our model. The value M = 1 is reached
in finite time in the model of [17, Prop. 7] in the case of pure Neumann conditions and for
suitably chosen source terms.

Model equations (1) are solved in a bounded domain with suitable boundary conditions.
We may assume that the biofilm fraction ui is fixed on the boundary ΓD and that the
remaining boundary part ΓN is insulating, i.e., no biofilm species can exit or enter through
this boundary part. This leads to Dirichlet boundary conditions on ΓD and homogeneous
Neumann conditions on ΓN ; see (4). Pure Neumann conditions represent the evolution of
the biofilm mixture in a closed container.
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EGH00 [18] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. In: P. G. Ciarlet and J.-L. Lions

(eds.), Handbook Numer. Anal. 7 (2000), 713–1018.
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