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Abstract

The objective of this paper is to analyze material instability of a rate–
independent smooth elastic-inelastic transition model with a finite elastic
range. In contrast with standard rate-independent models for metals with a
yield surface, the smooth model depends nonlinearly on the total deformation
rate tensor so analysis of material instability requires special attention. Ex-
pressions are developed for the limit load, and a uniform homogeneous stress
state is perturbed by a shearing velocity gradient to obtain a perturbation
vector that must vanish to maintain equilibrium. It is shown that the mode
for instability of this perturbation is consistent with Rice’s condition that the
traction vector applied to the shearing material surface remains stationary.
The analytical predictions for example problems are compared with results
of numerical simulations of localization.

Keywords: elastic-inelastic transition, limit load, localization, instabilities,
smooth model

1. Introduction

Lubliner et al. (1993) generalized previous work by the first author and
developed a rate-independent overstress model with a smooth elastic-inelastic
transition and a finite elastic range for which the inelastic deformation rate
depends linearly on the stress rate. Their model included both kinematic
and isotropic hardening. This model was generalized for large deformations
in [Panoskaltsis et al. (2008)] but the function h used in this generalization
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limited attention to sharp elastic-inelastic transitions. Einav (2012) gener-
alized previous hypo-plastic and hyper-plastic models which predict rate-
independent smooth stress-strain curves with no finite elastic range and for
which the inelastic deformation rate depends linearly on the total strain rate.
It is also noted that Kolymbas (1981) considered a constitutive equation for
large deformations of sand which is modeled as a rate-independent material
with no finite elastic range and with nonlinear dependence on the rate of
deformation tensor.

Hollenstein et al. (2013, 2015) developed a large deformation model which
exhibits a smooth elastic-inelastic transition using overstress with a yield sur-
face. This model can be considered as a unifying generalization to large defor-
mations of the models in [Perzyna (1963); Lubliner et al. (1993); Panoskaltsis
et al. (2008); Einav (2012)] since it models both rate-independent and rate-
dependent materials exhibiting: smooth elastic-inelastic transitions with fi-
nite elastic ranges (like for metals) and smooth stress-strain curves with no
finite elastic ranges (like for soils). In this paper, this model will be referred
to as a smooth model for short.

The smooth model developed in [Hollenstein et al. (2013)] is an Eulerian
formulation of constitutive equations based on the work of Eckart (1948) who
was the first to propose an evolution equation directly for an elastic defor-
mation measure which includes an inelastic deformation rate. In particular,
this Eulerian formulation does not need definitions for total deformation or
inelastic deformation measures. The magnitude of the inelastic deformation
rate in the evolution equation (9) is controlled by a scalar function Γ and
its direction is determined by a symmetric tensor Ap that is defined by an
elastic distortional deformation tensor and it independent of the rate of de-
formation. In the general form of the smooth model, the scalar Γ is specified
by

Γ = (a0 + b0〈g〉) + (a1 + b1〈g〉)ε̇ , (1)

where a0, b0, a1, b1 are non-negative constants, g is a yield function that is
independent of rate, the Macaullay brackets 〈g〉 are defined by

〈g〉 = max(0, g) , (2)

and ε̇ is the equivalent total distortional deformation rate defined in (7).
The main physical features of this large deformation overstress smooth

model can be discussed with reference to the function Γ. First, it is ob-
served that there are no loading and unloading conditions and the model

2

                  



predicts smooth response for all values of the constants a0, b0, a1, b1. If
a0 = b0 = 0, the model predicts rate-independent response, otherwise it
predicts rate-dependent response. If b0 = b1 = 0, the model has no finite
elastic range, which is typical of soils, whereas if a0 = a1 = 0, the model
has a finite elastic range, which is typical of metals. Moreover, for this latter
case the model predicts vanishing inelastic deformation rate when g ≤ 0 and
it predicts a smooth elastic-inelastic transition as g becomes positive. This
smooth response is a more physical representation of the elastic-inelastic
transition in metals than the sharp transition predicted by the standard
yield surface model. Also, in this paper, attention is limited to the simplest
rate-independent case with a finite elastic range by specifying

a0 = b0 = a1 = 0 . (3)

Hill (1959) analyzed constitutive equations for solids without a natural
time for which the non-symmetric Piola-Kirchhoff stress rate Π̇ is related to
the rate Ḟ of the deformation gradient by a fourth order tensor L, such that

Π̇ = L · Ḟ . (4)

This equation describes rate-independent material response when L is a ho-
mogeneous function of order zero in Ḟ, which can be nonlinear in F. In
general, the elastic response in this model is hypoelastic since a strain en-
ergy function may not exist. However, suitable restrictions can be placed
on L to ensure that the elastic response in this model is hyperelastic. Hill
(1959) also considered a special case when Π̇ is determined by the derivative
of a potential function with respect to Ḟ. In particular, Hill (1959) analyzed
general aspects of uniqueness and stability in this class of materials.

Rice (1976) used a piecewise linear form of the rate-type constitutive
equation (4) to study localization of plastic deformation. The localization
mode was determined by the condition that the jump in the rate of the
traction vector applied on a material surface be stationary to a jump in the
rate of deformation given by

Ḟ = Ḟ0 + g ⊗N , (5)

where Ḟ0 is the uniform rate of deformation far from the localization, N is the
unit normal to the localized material surface in its reference configuration, g
is a vector that needs to be determined by the analysis and a⊗b is the tensor
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product between two vectors a,b. Rice explained that nonlinear dependence
of L in (4) on Ḟ0 can be handled by considering an unlimited number of
models based on different L.

Since inelastic distortional deformation rate in the smooth model depends
nonlinearly on the current rate of deformation tensor D, the rate of traction
applied to the material surface also depends nonlinearly on D. Consequently,
application of Rice’s criterion to the smooth model requires special attention.
It will be shown that if vanishing of the current rate of the traction vector
is used as an instability criterion for the smooth model that this criterion
yields the same conditions for instability as those for instability of a velocity
perturbation from a homogeneous static state with Ḟ0 = 0.

With regard to rate-independent constitutive equations for metals with a
yield surface and a finite elastic range it is noted that Petryk (1992) included
inertia in a dynamic analysis of instability in an incrementally nonlinear
continua with a constitutive equation of the type (4) based on a velocity po-
tential. An important conclusion of that work is that ”the derived condition
for the instability of uniform quasi-static straining does not coincide with
that for instability of equilibrium and both differ in general from the familiar
condition of strong ellipticity loss formulated for the tangent moduli”.

Hutchinson and Tvergaard (1981) analyzed shear band formation in plane
strain for kinematic hardening plasticity and for a plasticity theory based on
yield surface corner development. Also, Petryk and Thermann (2002) studied
post-critical plastic deformation using the concept of a representative nonuni-
form solution in a homogeneous rate-independent material characterized by
an incrementally nonlinear corner theory of plasticity. Specifically, indeter-
minacy of a post-critical representative solution was removed by eliminating
unstable solution paths. In this regard, it was shown in (Forest and Rubin,
2016) that the smooth model eliminates indeterminacy in rate independent
crystal plasticity because the model does not require loading and unloading
conditions.

With regard to rate-independent constitutive equations for geological ma-
terials with no finite elastic range it is noted that Kolymbas (1981) analyzed
bifurcation in a constitutive equation for sand with nonlinear dependence on
the rate of deformation tensor. Chambon et al. (2000) also conducted an
assumed mode bifurcation analysis of a shear band using a nonlinear consti-
tutive equation of the type (4) that was characterized by ν linear relations,
as suggested by Rice (1976).

Additional analysis of questions of loss of uniqueness and stability of
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boundary value problems can be found in books like (Nguyen, 1993; Petryk,
2000; Nguyen, 2002; Besson et al., 2009; Bigoni, 2012). The explicit results
provided in these books heavily rely on the structure of the rate-independent
elastoplastic constitutive equations, and especially on the existence of a
multibranch tangent operator relating the strain rate to the stress rate.

The main objective of the present work is to consider material instability
of the rate–independent smooth model. An outline of this paper is as follows.
Section 2 presents the basic equations of the nonlinear Eulerian formulation
of inelasticity. Section 3 presents an analysis of the limit load and Section
4 analyzes material instability by perturbing a homogeneous static deforma-
tion. Section 5 presents another analysis of material instability and Section
6 develops the small deformation equations. Section 7 discusses analytical
results for example problems. Section 8 presents details of the numerical
implementation of the small deformation equations and compares the finite
element results with the analytical results for the example problems discussed
in Section 7. Finally, Section 9 presents a discussion of the main results. De-
tails of the tensorial notation used in this paper can be found in [(Rubin,
2013), Ch. 2].

2. Basic equations of the Eulerian formulation of inelasticity

This section summarizes the main equations of the nonlinear Eulerian
large deformation formulation of inelasticity. Both the standard rate-independent
model and a smooth elastic-inelastic transition model developed in [Hollen-
stein et al. (2013) will be considered.

A material point is located by x in the present configuration and the
velocity v is given by

v = ẋ , (6)

where a superposed (˙) denotes material differentiation with respect to time
t. The velocity gradient L, rate of deformation D, deviatoric part D′′ of D
and the effective total distortional strain rate ε̇ are defined by

L = ∂v/∂x , D =
1

2
(L + LT ) , L =

1

3
(D · I) I + L′′ ,

D′′ = D− 1

3
(D · I) I , ε̇ =

√
2

3
D′′ ·D′′ = (

2D′′

3ε̇
) ·D , (7)

where I is the second order unit tensor and A · B = tr(ABT ) is the inner
product between two second order tensors (A,B).
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Motivated by the work in (Eckart, 1948; Leonov, 1976; Flory, 1961; Ru-
bin and Attia, 1996), the Eulerian formulation proposes evolution equations
directly for elastic deformation measures. Specifically, in the absence of in-
elastic dilatational rate, the elastic dilatation is equal to the total dilatation
J , which is determined by the evolution equation

J̇ = JD · I , (8)

and the elastic distortional deformation is a second order, symmetric, positive-
definite, unimodular tensor B′e, which is determined by the evolution equa-
tion

Ḃ′e = LB′e + B′eL
T − 2

3
(D · I)B′e − ΓAp ,

Ap = B′e − (
3

B′−1e · I
) I , Γ ≥ 0 .

(9)

In this equation, Γ controls the magnitude of inelastic deformation rate and
Ap controls its direction. When Γ vanishes the response is elastic and B′e
is the unimodular part of the left Cauchy-Green deformation tensor so the
model reproduces general isotropic elastic response. Also, when loading van-
ishes with L = 0 and Γ is positive, inelastic deformation rate causes B′e to
approach the identity tensor, which causes deviatoric stress to vanish.

Next, introducing the deviatoric distortional elastic strain g′′e by

g′′e =
1

2
B′′e , B′′e = B′e −

1

3
(B′e · I) I , (10)

the yield function g can be specified by

g = 1− κ

γe
, γe =

√
3

2
g′′e · g′′e , (11)

where κ is a hardening variable that is determined by an evolution equation.
Although the Eulerian formulation of constitutive equations does not depend
on any measure of inelastic deformation, most models introduce an equiva-
lent inelastic deformation rate ε̇p. The term ΓAp in (9) represents inelastic
deformation rate and it can be shown that when g′′e is small this term can
be approximated by ΓAp ≈ D

′′
p = Γg′′e , where D

′′
p is an auxiliary tensor.

Consequently, within the context of the Eulerian formulation, the equivalent
inelastic deformation rate ε̇p can be approximated by

ε̇p =

√
2

3
D′′p ·D′′p =

2

3
Γγe , D′′p = Γg′′e , (12)
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which depends only on Γ and γe. Then, for simplicity the evolution equation
for κ is specified by

κ̇ =
3

2
Hε̇p = HΓγe , H > −1 , (13)

where H is a constant that controls the rate of hardening if H is positive and
the rate of softening if H is negative. For latter reference, it is noted that

γ̇e
γe

=
3

4γ2e
[
1

3
(B′e · I)B′′e + B′′eB

′′
e −

8γ2e
9

I] ·D− Γ , (14)

Here, the strain energy Σ per unit mass is specified for a compressible
neo-Hookean material in the form

ρ0Σ = µ[kU(J) +
1

2
(α1 − 3)] , α1 = B′e · I , k =

2(1 + ν)

3(1− 2ν)
, (15)

where (kµ, µ) are the constant zero-stress bulk and shear moduli, respectively,
ν is Poisson’s ratio, U controls the energy of dilatation, which satisfies the
restrictions

U(J) ≥ 0 , U(1) = 0 ,
dU

dJ
(1) = 0 ,

d2U

dJ2
> 0 ,

d2U

dJ2
(1) = 1 , (16)

α1 is pure measure of elastic distortion and ρ0 is the constant stress-free
reference mass density. In the purely mechanical theory, the integral of the
rate of material dissipation D is defined by the rate of work done on the body
minus the rates of kinetic and strain energies, which in local form is given by

D = T ·D− ρΣ̇ ≥ 0 , (17)

and the Cauchy stress T is determined by the hyperelastic form

T = −p I + T′′ , p = p(J) = −µkdU
dJ

, T′′ = J−1µB′′e , (18)

where use has been made of the conservation of mass to determine the current
mass density ρ

ρ = J−1ρ0 . (19)

Using these constitutive equations, the rate of material dissipation requires

D =
1

2
J−1µΓ[B′e · I−

9

B′−1e · I
] ≥ 0 . (20)
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which can be shown to be satisfied for all states of the material (Rubin and
Attia, 1996). The restriction (17) for the purely mechanical theory is identical
to the restriction in the thermomechanical theory (Rubin and Attia, 1996)
that the rate of material dissipation ρθξ′ ≥ 0 is non-negative when attention
is restricted to isothermal response (i.e., θ = constant) and the strain energy
function Σ is assumed to be equal to the isothermal Helmholtz free energy.

Furthermore, it is noted that the evolution equations for the elastic defor-
mation measures (J,B′e) determine elastic deformations from the zero-stress
state of the material given by

T = 0 for J = 1 , B′e = I . (21)

In addition, the evolution equations (8) and (9) are Eulerian in the sense
that they are insensitive to arbitrariness of: a reference configuration; an
intermediate stress-free configuration; a total deformation measure; and a
plastic deformation measure (Rubin, 2012).

2.1. Determination of the stress rate

With the help of (8), (9), (10) and (18) it can be shown that

J

µ
Ṫ = (D · I)(kJ2d

2U

dJ2
I− 5

3
B′′e) + LB′e + B′eL

T − 2

3
(B′e ·D) I− 2Γg′′e . (22)

If Γ vanishes then the response is elastic and if Γ is a homogeneous function
of order one in the rate D then the response is rate-independent. Otherwise,
the response is rate-dependent.

Moreover, from (11) it follows that

∂g

∂g′′e
= (

3κ

2γ2e
) g′′e . (23)

Consequently, for this simple model, the rate of inelasticity in (22) is normal
to the yield function g in (11).

2.2. The standard rate-independent model

For the standard rate-independent model, the derivative of the yield func-
tion is given by

ġ = ĝ − Γg ,

ĝ =
3κ

4γ3e
[
1

3
(B′e · I)B′′e + B′′eB

′′
e −

8γ2e
9

I] ·D , g =
κ

γe
+H . (24)
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Then, the loading conditions and the consistency condition are given by

Γ = 0 for (g < 0) and (g = 0 with ĝ ≤ 0) ,

Γ =
1

1 +H
(

3

4κ2
)[

1

3
(B′e · I)B′′e + B′′eB

′′
e −

8κ2

9
I] ·D for (g = 0 with ĝ > 0) .

(25)

2.3. The smooth transition model

For the general smooth-transition model [Hollenstein et al. (2013)] the
function for Γ is specified by (1) and in this paper, attention is limited to
the simplest rate-independent case for metals with a finite elastic range by
specifying (3) so that Γ is given by

Γ = b1ε̇ 〈g〉 . (26)

Then, with the help of (7), (22) and (26) the stress rate can be expressed in
the form

J

µ
Ṫ = LB′e + B′eL

T + (kJ2d
2U

dJ2
I⊗ I− 5

3
B′′e ⊗ I) ·D− 2

3
(I⊗B′e) ·D

− 2b1 〈g〉(g′′e ⊗
2D′′

3ε̇
) ·D ,

(27)

which shows that the tangent stiffness is not symmetric and that it depends
nonlinearly on D.

Using either (25) or (26), the evolution equations (8), (9) and (13) pre-
dict rate-independent response since they are homogeneous of order one in
rate. Moreover, they predict elastic response when the rate of inelasticity Γ
vanishes.

3. Analysis of the limit load

To study the limit load, consider the normal component dfn of an element
of force df applied on a material surface with unit normal n and elemental
material area da defined by

df = Tnda , dfn = n · df = T · (n⊗ n)da . (28)

Using the results that for a material surface

d(nda)

dt
= [(D · I) I− LT ]nda , ṅ = [(D · n⊗ n) I− LT ]n , (29)
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it follows that a limit load occurs when the material derivative of dfn vanishes

˙dfn = A · (n⊗ n)da = 0 ,

A = Ṫ− LT−TLT + [
4

3
(D · I) + (D′′ · n⊗ n)]T . (30)

In general, the elastic distortional state of the material B′e can be ex-
pressed in the form

B′e =
1

3
α1 I + B′′e , (31)

where the invariant α1 is defined in (15). It was shown in (Rubin and Attia,
1996) that for any value of the deviatoric tensor B′′e the invariant α1 can be
determined by the solution of the cubic equation which requires B′e to be
unimodular

det(
1

3
α1 I + B′′e) = 1 , (32)

with a unique real solution with (α1 ≥ 3) and (α1 = 3 for B′′e = 0). Moreover,
the evolution equation for B′′e is obtained by taking the deviatoric part of (9)
to obtain

Ḃ′′e = LB′e + B′eL
T − 2

3
(B′e ·D) I− 2

3
(D · I)B′′e − ΓB′′e , (33)

To analyze the limit load it is convenient to consider the special case
of uniform proportional loading with the velocity field v and the uniform
velocity gradient L given by

v = Dx , L = D =
1

3
(D · I) I + D′′ . (34)

More specifically, the deviatoric rate of deformation D′′ and the elastic dis-
tortional deformation B′′e are specified by

D′′ =

√
3

2
ε̇N′′ , B′′e = 2

√
2

3
γe N′′ , (35)

with N′′ being a unit tensor defined by the constant Lode angle β and the
constant orthonormal triad pi, such that

N′′ =

√
2

3
[cos(

π

6
+ β)p1 ⊗ p1 + sin(β)p2 ⊗ p2 − cos(

π

6
− β)p3 ⊗ p3] ,
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N′′ ·N′′ = 1 , −π
6
≤ β ≤ π

6
. (36)

In these expressions, the eigenvalues of D′′ are defined by ε̇ and the eigenval-
ues of B′′e are defined by γe. Also, the maximum eigenvalues of D′′ and B′′e
are associated with p1 and the smallest eigenvalues are associated with p3.
Moreover, for β < 0 it is possible to think of extension in the p1 direction
with compression in the transverse p2−p3 plane and for β > 0 it is possible
to think of compression in the p3 direction with extension in the transverse
p1 − p2 plane.

For proportional loading the constitutive equation (18) yields

T = −p I + J−1µB′′e ,

Ṫ = −J dp
dJ

(D · I) I + J−1µ[−(D · I)B′′e + Ḃ′′e ] . (37)

Thus, for uniaxial tension in the p1 direction with (n = p1) and (β = −π/6)
it follows that

N′′ =

√
2

3
[p1 ⊗ p1 −

1

2
(p2 ⊗ p2 + p3 ⊗ p3)] ,

σ = T · (p1 ⊗ p1) = −p+ J−1µB′′e · (p1 ⊗ p1) ,

T · (p2 ⊗ p2) = −p+ J−1µB′′e · (p2 ⊗ p2) = 0 , (38)

and

Ṫ · (p2 ⊗ p2) = −J dp
dJ

(D · I) + J−1µ[−B′′e + Ḃ′′e ] · (p2 ⊗ p2) = 0 . (39)

Moreover, for the simple case with U in (15) and p in (18) are specified by

U = J − 1− ln(J) , p = kµ(
1

J
− 1) , (40)

it can be shown using the symbolic program Maple that (38) and (39) yield

σ =
2µγe

1 + 2γe
3k

, J = 1 +
2γe
3k

, D · I =
(α1 + 2γe)ε̇− 2Γγe

2γe + 3k
. (41)

Also, it can be shown using (30) that the limit load requires

˙dfn =
kµ[(9kα1 + 4α1γe − 4γ2e )ε̇− 2Γγe(9k + 4γe)]da

(3k + 2γe)2
= 0 , (42)
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which can be solved to obtain

2Γγe = α1[1−
4γ2e

α1(9k + 4γe)
] ε̇ . (43)

In addition, the solution of (32) for uniaxial tension in the p1 direction is
given by

α1 = A+
4γ2e
A

, A =
1

2

(
108− 64γ3e + 12

√
81− 96γ3e

)1/3
. (44)

3.1. The standard model

For the standard rate-independent model with (γe = κ) during loading,
(25) yields

2Γκ = α1(
1 + 2κ

α1

1 +H
) ε̇ , (45)

so that (43) requires

1 +
2κ

α1

1 +H
= 1− 4κ2

α1(9k + 4κ)
, (46)

where α1(κ) is determined by substituting (γe = κ) in (44).

3.2. The smooth model

For the rate-independent smooth model, Γ is given by (26) so for loading
(43) requires

γe − κ =
α1

2b1
[1− 4κ2

α1(9k + 4κ)
] , (47)

where α1(γe) is given by (44). Although H does not appear explicitly in this
expression, the values of (γe, κ) are coupled by integration of the evolution
equations, which depend on H.

4. Analysis of localization by perturbing a homogeneous deforma-
tion

This section considers small perturbations superimposed on a homoge-
neous deformation. In all cases, inertia and external body forces are ne-
glected for simplicity. Specifically, consider a deformation characterized by
uniform homogeneous fields for which

∂J/∂x = 0 , ∂B′e/∂x = 0 , ∂T/∂x = 0 , ∂κ/∂x = 0 , L = 0 . (48)
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In particular, this state satisfies equilibrium

divT = ∂T/∂x · I = ∂T/∂X · F−T = 0 , (49)

where X is the location of a material point in a fixed reference configura-
tion and F is the deformation gradient from the reference to the present
configuration. Moreover, using the fact that

d

dt
(F−1) = −F−1L , (50)

the material derivative of (49) yields

d

dt
(divT) = ∂Ṫ/∂X ·F−T−∂T/∂X ·LTF−T = ∂Ṫ/∂x ·I−∂T/∂x ·LT . (51)

Consequently, instantaneously the equation for maintaining equilibrium about
this homogeneous state reduces to

d

dt
(divT) = ∂Ṫ/∂x · I = 0 . (52)

Next, using (22) it follows that for the uniform state (48), the instanta-
neous equilibrium equation (52) requires

[kJ2d
2U

dJ2
I− 5

3
B′′e −

2

3
(B′e · I) I] ∂(D · I)/∂x + (∂L/∂x) ·B′e + B′e(

LT∂L/∂x · I)

−2

3
(B′e · ∂D/∂x)−B′′e ∂Γ/∂x = 0 . (53)

To study potential instability modes, consider a body which has been
homogeneously deformed and is at rest, and consider a perturbation with a
superposed velocity and associated velocity gradient given by

v = (
γ̇

w
) exp(ξ)m , L = γ̇ exp(ξ)(m⊗n) , D =

1

2
γ̇ exp(ξ)(m⊗n+n⊗m)

ξ = wn · x , m ·m = 1 , n · n = 1 , γ̇ > 0 , w > 0 , (54)

where the constant unit vector m defines the direction of velocity, the con-
stant unit vector n defines the direction of its dependence on x, γ̇ is a positive
constant controlling the magnitude of L and w is a positive constant wave
number. Here, attention is limited to a body which is either finite in the
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direction n or is semi-infinite with ξ ≤ 0 to ensure that the perturbation
remains bounded. Using these expressions, it follows that

∂L/∂x = γ̇w exp(ξ)(m⊗n⊗n) , ∂D/∂x =
1

2
γ̇w exp(ξ)(m⊗n+n⊗m)⊗n ,

ε̇ =
1√
3
γ̇ exp(ξ)

√
1 +

1

3
(m · n)2

∂ε̇/∂x =
1√
3
γ̇w exp(ξ)

√
1 +

1

3
(m · n)2 n . (55)

Since the expression w exp(ξ) appears in all terms in (53) it can be factored
out of the resulting equation. Also, for inelastic loading the values of Γ
developed below are non-zero and for elastic response they are zero.

4.1. The standard model

For the standard rate-independent model with Γ specified by (25) it can
be shown that

Γ = γ̇ exp(ξ)Γ , ∂Γ/∂x = γ̇w exp(ξ)Γn ,

Γ =
1

1 +H
(

3

4κ2
)[

1

3
(B′e · I)(B′′e ·m⊗n)+(B′′eB

′′
e ·m⊗n)− 8κ2

9
(m ·n)] . (56)

4.2. The smooth model

For the rate-independent smooth model with Γ specified by (26) it can
be shown that

Γ = γ̇ exp(ξ)Γ , ∂Γ/∂x = γ̇w exp(ξ)Γ n ,

Γ =
1√
3
b1〈g〉

√
1 +

1

3
(m · n)2 . (57)

4.3. The perturbation vector

For either of the specifications (25) or (26), equation (53) yields a per-
turbation vector a of the form

a = (m · n)[kJ2d
2U

dJ2
n +

1

9
(B′e · I) n− 2

3
B′′en]− 2

3
(B′′e ·m⊗ n) n

+
1

3
(B′e · I) m + (B′′e · n⊗ n) m− ΓB′′en = 0 (58)

with Γ given by (56) for the specification (25) and by (57) for the specification
(26).
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4.3.1. For m = αn with α = ±1

For the case when m is parallel to n, it can be shown that (58) requires

a = α[kJ2d
2U

dJ2
+

4

9
(B′e · I) +

1

3
(B′′e · n⊗ n)] n− (

2

3
α + Γ)B′′en] = 0 . (59)

Next, let s be an arbitrary unit vector normal to n

s · n = 0 , (60)

and rewrite (59) in the component form

a · n = α[kJ2d
2U

dJ2
+

4

9
(B′e · I)]− (

1

3
α + Γ)(B′′e · n⊗ n)] , (61a)

a · s = −(
2

3
α + Γ)(B′′e · s⊗ n) . (61b)

4.3.2. For m× n 6= 0

For this case is it convenient to define the unit vector

s =
m× n

|m× n| , (62)

and to express the components of a in the forms

a · n = (m · n)[kJ2d
2U

dJ2
+

4

9
(B′e · I) +

1

3
(B′′e · n⊗ n)]

− 2

3
(B′′e ·m⊗ n)− Γ(B′′e · n⊗ n) = 0 , (63a)

a ·m = (m · n)[{kJ2d
2U

dJ2
+

1

9
(B′e · I)}(m · n)− 4

3
(B′′e ·m⊗ n)]

+
1

3
(B′e · I) + (B′′e · n⊗ n)− Γ(B′′e ·m⊗ n) = 0 , (63b)

a · s = −[
2

3
(m · n) + Γ](B′′e · s⊗ n) = 0 . (63c)

Given a state of the material defined by (J,B′e, κ), localization can occur
if the scalar equations (61) are satisfied by some combination of (n, s, α) or
if the scalar equations (63) are satisfied by some combination (m,n).
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5. Another analysis of localization

Rice (1976) analyzed localization in plastic deformation by considering a
body that experiences homogeneous plastic deformation with uniform veloc-
ity gradient L. Using the evolution equation (29) for the unit normal n to a
material surface and the expression for the traction vector t applied to this
material surface

t = Tn , (64)

it follows that
ṫ = Ṫn + Tṅ . (65)

Rice (1976) considered the increment of the rate ∆ṫ due to an increment ∆L
of the form

∆L = g ⊗ n , (66)

where g is a vector to be determined. Rice’s localization condition proposes
that the material experiences localized plastic flow if ∆ṫ is stationary

∆ṫ = 0 . (67)

As a special case, consider a homogeneous uniform material which has been
homogeneously deformed, is currently in a state at the elastic-inelastic bound-
ary and is at rest. Then, instantaneous application of the velocity gradient

L = g ⊗ n , (68)

yields a jump in the rate ṫ so that Rice’s criterion for this case requires

ṫ = 0 for L = g ⊗ n . (69)

Moreover, using (29) it follows that for this velocity gradient the unit normal
m remains constant

ṅ = 0 for L = g ⊗ n . (70)

Also, Rice’s assumed a piecewise-linear constitutive equation of the form (4).
Within the context of the smooth model, the inelastic distortional de-

formation rate depends nonlinearly on the total deformation rate D. Rice
(1976) explained that nonlinear dependence of L in (4) on Ḟ0 can be handled
by considering an unlimited number of models based on different L. This lat-
ter approach could include the analysis of the smooth model. Instead, here a
homogeneously deformed homogeneous unifom material is considered which

16

                  



is at rest in a state at the elastic-inelastic boundary and is instantaneously
subjected to a velocity gradient of the form

L = γ̇m⊗ n , γ̇ > 0 , m ·m = 1 , n · n = 1 , (71)

with the rate of the traction due to (71) given by (65). For this velocity
gradient it follows from (29) that n remains constant (70).

Motivated by the special case (69) of Rice’s criterion (Rice, 1976) it is
assumed that the condition for material instability requires the rate of the
traction vector to be stationary

ṫ = Ṫn = 0 for L = γ̇m⊗ n . (72)

Next, using (71) it can be shown that

D =
1

2
γ̇(m⊗ n + n⊗m) , D′′ = γ̇[

1

2
(m⊗ n + n⊗m)− 1

3
(m · n) I] ,

ε̇ =
1√
3
γ̇

√
1 +

1

3
(m · n)2 . (73)

5.1. The standard model

For the standard rate-independent model with Γ specified by (25), L
specified by (71) and with use of (73), it can be shown that

Γ = Γγ̇ , (74)

with Γ given by (56).

5.2. The smooth model

For the rate-independent smooth model with Γ specified by (26), use can
be made of (73) to show that Γ has the form (74) with Γ specified by (57).

5.3. Equivalence of the traction rate and perturbation vector criteria

Using (10), (54) and (56) or (57), equation (22) can be written in the
form

J

µγ̇
Ṫ = exp(ξ)[(m · n)(kJ2d

2U

dJ2
I− 5

3
B′′e) + (m⊗ n)B′e + B′e(n⊗m)

−2

3
(B′e ·m⊗ n) I− ΓB′′e ] . (75)
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Then, for uniform deformation (52) yields

J

µγ̇
div(Ṫ) = w exp(ξ)[(m · n)(kJ2d

2U

dJ2
I− 5

3
B′′e) + (m⊗ n)B′e + B′e(n⊗m)

−2

3
(B′e ·m⊗ n) I− ΓB′′e ] · n , (76)

which with the help of (58) can be expressed as

[
J

µγ̇w exp(ξ)
]div(Ṫ) = a . (77)

Consequently, for the velocity field (54), the traction-rate criterion (72) is
equivalent to the perturbation vector criterion (52).

6. Small deformation equations

For small deformations, it is convenient to introduce the total strain ε,
its deviatoric part ε′′ and the total volumetric stain εv, such that

ε =
1

3
εv I + ε′′ , ε′′ · I = 0 . (78)

Also, the equivalent total distortional strain rate ε̇ in (7) is defined by

ε̇ =

√
2

3
ε̇′′ · ε̇′′ . (79)

Since there is no inelastic volumetric rate of deformation in the smooth model,
the volumetric elastic strain εev equals the volumetric total strain εv and the
elastic strain εe can be expressed as

εev = εv , εe =
1

3
εv I + ε′′e , ε′′e · I = 0 , (80)

where ε′′e is the deviatoric part of εe.
The evolution equation for elastic distortional deformation rate (9) is

approximated by
ε̇′′e = ε̇′′ − Γε′′e , (81)

the equivalent elastic distortional deformation γe in (11) is specified by

γe =

√
3

2
ε′′e · ε′′e , (82)
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and the evolution equation for the equivalent plastic strain in εp (12) becomes

ε̇p =

√
2

3
D′′p ·D′′p· =

2

3
Γγe , D′′p = Γε′′e . (83)

In addition, the yield function g and evolution equation for hardening κ are
specified by (11) and (13), respectively.

The strain energy function (15) and rate of material dissipation (17) are
given by

ρ0Σ =
1

2
µ(kε2v + ε′′e · ε′′e) , U =

1

2
ε2v , D = T · ε̇− ρ0Σ̇ ≥ 0 . (84)

Then, the constitutive equation for stress becomes

T = µ(kεv I + 2ε′′e) , (85)

and the rate of material dissipation reduces to

D = Γµε′′e · ε′′e ≥ 0 , (86)

which is automatically satisfied. Moreover, it follows from (25), (26), (78),
(79), (81) and (85) that

1

µ
Ṫ = kε̇v I + 2(ε̇′′ − Γε′′e) , (87)

where for the standard model

Γ = 0 for (g < 0) and (g = 0 with ĝ ≤ 0) ,

Γ =
1

1 +H
(

3

2κ2
)[ε′′e −

4κ2

9
I] · ε̇ for (g = 0 with ĝ > 0) , (88)

and for the smooth model

Γ = b1ε̇ 〈g〉 = b1

√
2

3
ε̇′′ · ε̇′′ 〈g〉 . (89)
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6.1. Monotonic proportional loading

For monotonic proportional loading, the total distortional strain rate ε̇′′

and the elastic distortional strain ε′′e can be expressed in the forms

ε̇′′ = ε̇

√
3

2
N′′ , ε′′e = γe

√
2

3
N′′ , ε ≥ 0 , ε̇ > 0 , (90)

where the total distortional strain ε is non-negative, its rate ε̇ is positive and
N′′ is a constant unit deviatoric tensor characterizing the direction of loading
defined in (36). Using these expressions, the evolution equation (81) for the
elastic distortional strain ε′′e can be rewritten in the form

γ̇e =
3

2
ε̇− Γγe , (91)

which is solved using the initial conditions

ε(0) = 0 , κ(0) = κ0 . (92)

Specifically, using the evolution equation (13), this equation integrates to
obtain

γe =
3

2
ε− 〈κ− κ0

H
〉 . (93)

6.1.1. The standard model

Using the approximations

J = 1 + εv , B′e = I + 2ε′′e , D = ε̇ , (94)

and neglecting higher order terms in small quantities in (25) it follows that
Γ is specified by

Γ = 0 for γe < κ , Γ =
3ε̇

2κ(1 +H)
for γe = κ , (95)

so the evolution equations (91) for γe and (13) for κ are given by

dγe
dε

=
3

2
,

dκ

dε
= 0 for ε <

2

3
κ0 ,

dγe
dε

=
3

2
(

H

1 +H
) ,

dκ

dε
=

3

2
(

H

1 +H
) for ε ≥ 2

3
κ0 , (96)

which integrate to yield

γe = Min(
3

2
ε, κ0)+

3

2
(

H

1 +H
)〈ε−2

3
κ0〉 , κ = κ0+

3

2
(

H

1 +H
)〈ε−2

3
κ0〉 . (97)
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6.1.2. The smooth model

Using (11) and (26), the evolution equations (91) for γe and (13) for κ
are given by

dγe
dε

=
3

2
,

dκ

dε
= 0 for ε <

2

3
κ0 ,

dγe
dε

=
3

2
− b1(γe − κ) ,

dκ

dε
= Hb1(γe − κ) for ε ≥ 2

3
κ0 , (98)

which integrate to yield

γe =
3

2
ε− 3〈ε− 2

3
κ0〉

2(1 +H)
+

3

2b1(1 +H)2
[1− exp{−b1(1 +H)〈ε− 2

3
κ0〉}] ,

κ = κ0 +H〈3
2
ε− γe〉 . (99)

6.2. Small deformation limit load for uniaxial tension

For small values of γe it can be shown that

α1 = 3 . (100)

6.2.1. Limit load for the standard model

Using (100) and neglecting κ relative to unity, it follows that the condition
(46) for the limit load in the standard model requires

H = 0 . (101)

Then, using (97) the values (γeL, κL, εL) of (γe, κ, ε) for the limit load are
given by

γeL = κL = κ0 , εL =
2

3
κ0 > 0 , (102)

which corresponds to the onset of inelastic deformation rate.

6.2.2. Limit load for the smooth model

Using (100) it follows that for small deformations the limit load associated
with (47) for the smooth model requires

γe − κ =
3

2b1
. (103)
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Moreover, using (99) it can be shown that

γe − κ =
3

2b1(1 +H)
[1− exp{−b1(1 +H)〈ε− 2

3
κ0〉}] , (104)

so the values (γeL, κL, εL) of (γe, κ, ε) for inelastic loading at the limit load
are given by

γeL = κ0+
3

2b1(1 +H)
[1−H ln(−H)

(1 +H)
] , κL = κ0−

3H

2b1(1 +H)
[1+

ln(−H)

1 +H
] ,

εL =
2

3
κ0 −

ln(−H)

b1(1 +H)
for εL −

2

3
κ0 ≥ 0 . (105)

In contrast with the result (102) of the standard model that predicts a limit
load at the onset of inelastic deformation rate, the smooth model predicts a
limit load for non-positive values of H in the range

−1 ≤ H ≤ 0 , (106)

with a finite value of εL only for (H < 0). In this regard, it is noted that
even for a constant value of κ the smooth model exhibits apparent hardening.
Also, it can be shown the value εL in (105) is the same as the value of ε which
causes a peak value of the function γe(ε) in (99).

To compare the solutions for different values of (H, b1) it is convenient to
solve the first of (105) for the value κ0 which causes the limit load to occur at
a specified value γeL of elastic distortional deformation. Table 1 records the
values (κ0, κL, εL) which cause the same limit load for two values of H and
different values of b1. Figure 1 shows the loading curves of γe versus ε for the
values recorded in Table 1 with symbols indicating the values at the limit
load. From these results it can be seen that increasing b1 and decreasing H
both cause εL to decrease.
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Figure 1: Unaxial tension: Loading curves predicted by the smooth model for different
values of H showing the influence of b1. The limit load points are marked with symbols.

6.3. Small deformation perturbation vector criterion

Using (84) and the approximations (94), the perturbation vector criteria
(63) based on the mode characterized by (54) and (55) reduce to

a · n = (m · n)[k +
4

3
+

2

3
(ε′′e · n⊗ n)− 4

3
(ε′′e ·m⊗ n)]

− 2Γ(ε′′e · n⊗ n) = 0 , (107a)

a ·m = (m · n)2(k +
1

3
)− 8

3
(m · n)(ε′′e ·m⊗ n) + 1 + 2(ε′′e · n⊗ n)

− 2Γ(ε′′e ·m⊗ n) = 0 , (107b)

a · s = −2[
2

3
(m · n) + Γ](ε′′e · s⊗ n) = 0 , (107c)

where for the standard rate independent model, Γ in (56) is approximated
by

Γ =
1

1 +H
(

3

2κ2
)(ε′′e ·m⊗ n) , (108)

and for the smooth transition model use is made of (11) to rewrite Γ in (57)
in the form

Γ =
b1√

3
〈1− κ

γe
〉
√

1 +
1

3
(m · n)2 . (109)

6.3.1. Discussion of the solution procedure

Noting that the perturbation vector criterion (107) are independent of
the volumetric strain εv and the constitutive equations do not depend on
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the Lode angle β, it follows that the stress state for material instability is
independent of the pressure. Thus, with regard to material instability, states
of compression in the p3 direction correspond to states of tension in the p1

direction for the same magnitude |β| of the Lode angle. Consequently, the
full range of material instability for the models discussed in this paper can
be explored by limiting attention to the range

−π
6
≤ β ≤ 0 . (110)

For monotonic loading with a specified value of β, the state of the material
is parameterized by the value of ε and is determined by the values of (κ0, H) in
the solution (97) for the standard model and by the values of (b1, κ0, H) in the
solution (99) for the smooth model. For the standard model it is assumed that
material instability initiates at the onset of yield when (ε = 2

3
κ0, γe = κ0). For

this model, material instability first occurs at the largest negative value of H
which admits real solutions of the criterion (107). In contrast, for the smooth
model the value of ε at the onset of material instability is not known and must
be determined. Specifically, the onset of material instability is characterized
by the smallest values of ε in the solution (99) which admits real values
solutions of the criterion (107). As for the standard model, the existence of
material instability depends on the value of H with the largest negative value
of H determining the strongest material that will admit material instability.

6.3.2. Analysis of solutions of the perturbation vector criterion (107)

In general, ε′′e can be expressed in the form (90). Assuming that (ε′′e · s⊗
n 6= 0), the equation (107c) requires

Γ = −2

3
(m · n) , (111)

which ensures that (m · n 6= 0) for nonzero rate of inelasticity. Thus, (107a)
reduces to

k +
4

3
+ 2(ε′′e · n⊗ n)− 4

3
(ε′′e ·m⊗ n) = 0 . (112)

However, for small strains with |ε′′e · n ⊗ n| << 1 and |ε′′e ·m ⊗ n| << 1,
this equation has no solution so (111) is not possible. Consequently, (107c)
vanishes only when

s · ε′′en = 0 . (113)
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Fig. 1  Sketch of velocity direction m and the normal n to the failure plane  

for failure in the plane of maximum shear. 

p1 n m 
qn 

qm 

p3 

Figure 2: Material instability mode: The velocity unit direction m and the unit normal
n to the localization plane for material instability in the plane of maximum shear. These
vectors and associated angles (θm, θn) are measured relative to the principal directions pi

of the elastic distortional strain ε′′e .

Next, consider the general unit vector

n = cos(φn)[− sin(θn)p3 + cos(θn)p1] + sin(φn)p2 , (114)

which is defined by the angles (θn, φn). The vectors (m,n, s) form a right-
handed triad of unit vectors with s being orthogonal to the plane of (m,n)
and with m not necessarily being orthogonal to n. Consequently, it follows
from (113) that s and m can be defined by

s =
b

|b| , b = (ε′′en)×n , m = cos(θm−θn)(n×s)+sin(θm−θn)n , (115)

where θm is another angle to be specified.

6.3.3. Solution for uniaxial extension in the p1 direction

For uniaxial extension in the p1 direction the Lode angle is specified by
β = −π/6. Due to symmetry in the p2 − p3 plane it follows that there is no
physical dependence on the angle φn so this angle can be set equal to zero.
This causes (m,n) in (54) to lie in the p1−p3 plane of maximum shear with
(m,n, s) specified by (see Fig. 2)

m = cos(θm)p3 + sin(θm)p1 , n = − sin(θn)p3 + cos(θn)p1 ,

s = p2 for θn +
π

2
> θm . (116)
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For this case, (107c) is satisfied automatically and it follows from (107a) that
Γ is given by

Γ =
1

2(ε′′e · n⊗ n)
[
4

3
(ε′′e ·m⊗ n)− (m · n){k +

4

3
+

2

3
(ε′′e · n⊗ n)}] . (117)

Then, substituting (117) into (107b) yields the condition

F (θm, θn, γe, β, κ) = a · n = 0 , (118)

with (γe, β, κ) characterizing the state of the material at localization.
For a proper choice of εv this solution can characterize uniaxial stress in

the p1 direction and for another choice of εv it can characterize plane strain
in the p1 − p3 plane with extension in the p1 direction. It will be shown
in Section 8 that the failure mode for unaxial stress is necking which is a
limit load that requires a three-dimensional analysis and is not a material
instability mode characterized by the velocity field (54) and the perturbation
vector equations (107). However, the failure mode for plane strain extension
is a material instability mode characterized by (107).

6.3.4. Solution for simple shear in a plane containing p1

For simple shear in a plane containing p1, the Lode angle is specified by
β = 0◦. Due to symmetry in the p2 − p3 plane it follows that maximum
shear occurs in all planes containing p1 and there is no physical dependence
on the angle φn so this angle can be set equal to zero. This causes (m,n) in
(54) to lie in the p1−p3 plane of maximum shear with (m,n, s) specified by
(116). It will be shown in Section 8 that this is a material instability mode
characterized by the perturbation vector equations (107).

7. Examples

For all the examples discussed in this section attention is limited to the
small deformation theory with Poisson’s ratio specified by

ν =
1

3
. (119)

Also, to study the influence of changes in the material parameters (b1, H)
in the smooth model a reference material was specified with the inelastic
material parameters

b1 = 1000 , κ0 = 0.008 , H = −0.3 . (120)

26

                  



Figure 3: Loading curves for extension in the p1 direction with (β = −π/6) showing the
influence of b1 for different values of H. The onsets of material instability are marked with
symbols.

In particular, the material response due to these changes is normalized by de-
termining the value of κ0 that causes the peak value γeL of γe associated with
the limit load analysis in subsection 6.2.2 to be the same as that predicted
by (120)

γeL = 0.0090372 . (121)

The procedure described in section 5 was used to determine the state and
values (εf , γef , κf ) of (ε, κ) and the values of (θm, θn) at the onset of material
instability for each set of values (κ0, b1, H). Also, the value of εL associated
with the limit load was determined for each set of material parameters.
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7.1. Material instability results for extension (β = −π/6)

For extension in the p1 direction the Lode angle is specified by

β = −π
6
, (122)

and the results are recorded in Table 2. Figure 3 presents zoomed in figures
near the peak of the γe − ε curves showing the influence of changes in b1 for
three values of H. Figure 4 presents zoomed in figures near the peak of the
γe − ε curves showing the influence of changes in H for three values of b1.
The onsets of material instability (determined by the values εf ) are marked
with symbols. Also, the value H = −0.15 is close to the maximum negative
value of H which admits real values of the angles (θm, θn). It is interesting
to note that all 9 materials listed in Table 2 have nearly identical values for
the angles (θm ≈ 50◦, θn ≈ 44◦) for material instability.

For comparison, the value Γ in (108) was used to solve the equations
(117) and (118) for the standard model to determine the maximum negative
value of H which admits real solutions for (θm, θn) at the onset of material
instability. Specifically, the value of κ0 was specified to be equal to γeL in
(121) to obtain

κ0 = γeL = 0.0090372 , H = −0.22418 ,

θm = 48.400◦ , θn = 42.024◦ , (123)

which are values close to the values of (θm, θn) in Table 2 predicted by the
smooth model.

It is important to emphasize that the smooth model predicts material
instability for a range of values of H and in particular it predicts material
instability for larger negative values of H than the standard model, which
means it predicts material instability for less softening.

Also, the values recorded in Tables 1 and 2 for (H = −0.15) indicate that
the strains (εL, εf ) predicted by the the smooth model for the limit load and
for material instability, respectively, increase with decreasing values of b1 for
the same peak load γeL. In addition, it is noted that the values of εf are
larger than those of εL which indicates that material instability occurs after
the limit load had occured.
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Figure 4: Loading curves for extension in the p1 direction with (β = −π/6) showing the
influence of H for different values of b1. The onsets of material instability are marked with
symbols.
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Figure 5: Loading curves for simple shear (β = 0) in the p1−p3 plane of maximum shear
showing the influence of H for different values of b1. The onsets of material instability are
marked with symbols.
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7.2. Material instability results for simple shear (β = 0◦)

For simple shear in the p1 − p3 plane of maximum shear the Lode angle
is specified by

β = 0◦ , (124)

and the results are recorded in Table 2. Figure 5 presents zoomed in figures
near the peak of the γe − ε curves showing the influence of changes in b1 for
three values of H. Figure 6 presents zoomed in figures near the peak of the
γe − ε curves showing the influence of changes in H for three values of b1.
The onsets of material instability are marked with symbols. Also, the value
H = 0 is the maximum non-negative value of H that admits real values of
the angles (θm, θn). Again, it is interesting to note that all 9 materials listed
in Table 2 have nearly identical values for the angles (θm ≈ 50◦, θn ≈ 44◦) at
the onset of material instability. Also, it is observed from Fig. 5 and Fig. 6
that material instability occurs very close the the peak load with the points
at the onset of material instability indicated for H = 0 ocurring before ε
equals infinity due to the numerical convergence criterion.

For comparison, the value Γ in (108) was used to solve the equations (117)
and (118) for the standard model to determine the maximum negative value
of H that admits real solutions for (θm, θn) at localization. Specifically, the
value of κ0 was specified to be equal to γeL in (121) to obtain

κ0 = γeL = 0.0090372 , H = 0 ,

θm = 45.078◦ , θn = 44.957◦ , (125)

which are values close to the values of (θm, θn) in Table 2 predicted by the
smooth model.

For this problem, it is again noted that the smooth model predicts mate-
rial instability for a range of values of H and the maximum value of H = 0
is the same for both the smooth and standard models.

8. Finite element validations

The aim of the finite element simulations provided in this section is to val-
idate the analytical predictions for instability and localization. Specifically,
these simulations validate that the analysis predicts the relevant instability
or localization models.
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Figure 6: Loading curves for simple shear (β = 0) in the p1−p3 plane of maximum shear
showing the influence of b1. The onsets of material instability are marked with symbols.
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Figure 7: Loading and unloading curves for the smooth model in uniaxial tension for
H = −0.15 and three values of parameter b1 (see Table 1 for the corresponding values of
κ0).

8.1. Numerical implementation

The small strain version of the rate-independent smooth model discussed
in Section 5 has been implemented in the implicit finite element code Zset
(Z–set package, 2013). The numerical integration of the constitutive equa-
tions is performed using an explicit second order Runge-Kutta method with
automatic time stepping and an implicit Newton method involving the con-
sistent tangent matrix of the model. In the case of convergence problems
which frequently occur when simulating strain localization phenomena, the
Newton integration can be switched to the Runge–Kutta method at each
Gauss point of the finite element mesh.

The simulations presented in this work are performed for a softening
material with modulus H = −0.15 and for three values of parameter b1 =
500, 1000, 1500, as considered in the analytical results of Tables 1 to 3. For
each value of b1 a different value of κ0 is chosen such that the maximum
stress is the same for all tensile curves, according to the values indicated in
Tables 1 to 3. To illustrate the overstress effect in the smooth model, tensile
loading and unloading curves are presented in Fig. 7. It is apparent that
lower values of b1 lead to an increase of the overstress, as expected. The
nonlinear part of the unloading branch is clearly visible and corresponds to
the decrease and vanishing of the overstress. After reloading, the apparent
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yield stress is smaller than the value before the onset of unloading.
Finite element simulations of strain localization in rectangular plates are

performed in the next section for various loading conditions. The rectangular
plate is characterized by a ratio of length to width equal to 2.5. The plate
is modeled with a geometrical imperfection which is an invisible V–notch
corresponding to the translation in the direction 1 (along the plate’s width
direction) of one boundary node by 2.5× 10−4 times the plate’s width. This
defect induces a negligible reduction in the cross-section by this same amount.
The presence of this defect ensures triggering of a localization band starting
always at the same location for simulations involving a softening material.

The localization simulations in this section are the first ones based on
the smooth elastoplastic model proposed by Hollenstein et al. (2013). Finite
element simulations of localization phenomena in the absence of internal
length (no regularization) are still useful to detect the localization point and
also the orientation of the localization bands. Even if the band thickness is
mesh-dependent, the prediction of the orientation of the localization band
is quite robust as demonstrated for an anisotropic elastoplastic media in
(Forest and Cailletaud, 1995). Both the predicted localization point and the
orientation can therefore be compared to the analytical predictions. In the
absence of regularization, there is no point in using finer meshes than those
used in the Fig. 8 to 11.

The detection of instability modes in finite element simulations (as well
as in experiments) can be based on several criteria. The spurious mesh-
dependence observed in simulations is regarded as an indicator of localization
occurence. A reliable quantitative indicator for the onset of localization, at
least for some suitable loading conditions, is the occurrence of unloading
events outside the localization band (Petryk, 2000).

In the following simulations, a localization band is said to develop when
the total strain increases inside the band at the same time that it decreases in
the surrounding material. To detect the formation of such bands an indicator
of unloading is defined as the sign of the mechanical power of T′′ · ε̇ of the
deviatoric stress T′′. This indicator is computed at each time step of the
simulations and used to determine the first unloading event and the time
step for which a full localization band has formed.
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0.0088 0.0117
0.0092 0.0097 0.0102 0.0107 0.0112

Figure 8: Simulation of localization under plane strain extension loading conditions: Finite
element mesh and contour map of the ε–field (left) and of the unloading indicator (red:
unloading, blue: continued loading) at the last simulation step (right). The results are
obtained for H = −0.15 and b1 = 500 (see Table 1 for the corresponding values of κ0).
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Figure 9: Simulation of localization under plane strain tension loading conditions: response
curves at the integration point (GP) close to the imperfection. The points identifying the
localization interval in the numerical simulation are denoted by filled symbols and the
theoretical localization points (εf , γef ) from Table 2 are denoted by open symbols. The
results are obtained for H = −0.15 and three values of b1.

8.2. Plane strain extension of a rectangular plate

The formation of a localization band during plane strain extension is
shown in Fig. 8. The strain is concentrated into a one to two GP (Gauss
point) thick band in which it continues increasing whereas unloading is ob-
served in the red zone outside of the band. Before the onset of material
instability, the strain state of the plate is almost homogeneous. The equiv-
alent elastic strain vs. axial strain curves at a GP close to the imperfection
are exhibited in Fig. 9. The states of the GP at the onset of unloading in
the mesh and for the fully developed band are indicated with symbols. They
provide an interval of detection of material instability in the FE simulations.
Each simulated curve stops when convergence can no longer be achieved in
the finite element simulation due to strong localization.

Figure 9 shows that the theoretical predictions somewhat overestimate
the total strain at the onset of material instability. The difference between
the theoretical and finite element predictions decreases with increasing values
of b1, (i.e. for decreasing overstress values). In the limit of large b1, the
classical results obtained for the standard model are retrieved. This suggests
that the existence of the overstress postpones the onset of material instability
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0.0094 0.0108
0.0095 0.0096 0.0097 0.0098 0.0099 0.0101 0.0102 0.0103 0.0104 0.0105 0.0106

Figure 10: Simulation of shear localization: Finite element mesh and contour map of the
ε–field (left) and of the unloading indicator (red: unloading, blue: continued loading) at
the last simulation step (right). The results are obtained for H = −0.15 and b1 = 500 (see
Table 2 for the other simulation parameters).

compared to the reference standard case. Using a finer finite element mesh
leads to a thinner band and slightly earlier occurrence of the onset of material
instability (not presented here). Irrespective of the mesh size the orientation
of the band is always 45◦ with respect to the tensile axis. This value is close
to the theoretical value of the angle θn recorded in Table 2.

8.3. Simple shear of an infinite plate

For the simulation of simple shear, a square plate with a central defect is
considered. It is subjected to periodic boundary conditions in order to avoid
boundary effects in shear. A 2D mesh is used under plane strain conditions.
The material of the central element has a value κ0 which is 0.015% smaller
than the surrounding elements. The defect is nearly indiscernable but is
sufficient to trigger localization starting from this location. The mean total
shear strain applied to the plate increases monotonically and the strain field
remains quasi-homogeneous until material instability occurs causing the two
orthogonal shear bands shown in Fig. 10. The shear bands are exactly one
element thick and are oriented at 45◦ from the principal shear axes, in exact
agreement with the predicted value of θn in Table 3.
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Figure 11: Simulation of shear localization: response curves at the integration point (GP)
close to the imperfection. The points identifying the localization interval in the numerical
simulation are denoted by filled symbols and the theoretical localization points (εf , γef )
from Table 2 are denoted by open symbols. The results are obtained for H = −0.15 and
three values of b1.

The curves in Fig. 11 show that the theoretical predictions of the elastic
strain γef at the onset of material instability are in excellent agreement with
the numerical simulations. However, the theoretical predictions of the total
strain εf at the onset of material instability are a bit smaller than those of the
numerical simulations, with this difference becoming smaller with increasing
b1. The theoretical predictions are taken from Table 3. It is well-known that
shear loading is prone to localization, which is predicted to take place at the
maximum of the shear curve.

8.4. Uniaxial tension of a rectangular plate

The case of uniaxial tension of a rectangular plate must be treated using a
fully 3D model. It is well–known that the 2D plane stress model is physically
unsound because it ignores the compatibility conditions with respect to the
out-of-plane direction. As a result, the regularizing effect of the out-of-plane
necking of the thin sheet on shear banding can be observed only in the 3D
case (Besson et al., 2009). Plane stress conditions artificially promote strain
localization. The 3D plate of Fig. 12 has the same in-plane dimensions and
the same geometrical imperfection as in section 8.2. Four quadratic elements

38

                  



through the thickness are considered for the computational study of local-
ization in a thin plate in tension. It has been checked that the loading curve
up to the onset of localization is only slightly dependent on the number of
elements through the thickness and the in-plane mesh size. However, refine-
ment of the in-plane mesh size significantly influences post-failure response
as a result of shear band formation. The formation of a localization band
inclined at about 54◦ from the tensile axis is shown in Fig. 12. This band
orientation is classically observed during thin sheet deformation for standard
plasticity models using the von Mises criterion. It is also found here for the
smooth model. In addition it is noted that the localization mode charac-
terized by the velocity field (54), the perturbation vector equations (107)
and the values of θm, θn in Table 2 is not consistent with the necking mode
predicted by the numerical simulation.

Due to the combination of in-plane shear banding and out-of-plane neck-
ing modes, the limit load criterion derived in section 6.2.2 is better suited to
predict the onset of localization in uniaxial tension. This coincides with the
well-known Considère criterion classically used in tension to detect the onset
of necking in tensile specimens. The tensile curves obtained for three values
of the b1 parameters and H = −0.15 are shown in Fig. 13. The predicted
limit points are indicated on the curves according to Table 1, together with
numerically detected localization points. It is found that band formation in
the FE simulation occurs only slightly after the predicted limit loads. This
demonstrates the consistency of the limit load analysis with the theoretical
failure criterion developed for the smooth model.

9. Conclusions

The rate-independent form of the smooth transition elastic-inelastic model
developed in [Hollenstein et al. (2013)] differs from the standard rate-
independent model in that it depends nonlinearly on the direction of the
total deformation rate. Consequently, analysis of modes models of mate-
rial instability for the smooth model need special attention. The nonlinear
equations were used to develop an expression for the maximum normal force
that can be applied to a material surface as a condition for the limit load.
Also, a perturbation of an arbitrary homogeneous nonlinear state of stress
was used to develop an expression for a perturbation vector that must vanish
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0.0086 0.0116
0.0091 0.0096 0.0101 0.0106 0.0111

Figure 12: Simulation of strain localization in a 3D thin plate in uniaxial tension with
4 quadratic elements in the thickness: The finite element mesh and contour map of the
ε–field are shown together with a detailed picture of the imperfection zone. The results
are shown for H = −0.15 and b1 = 1500.

40

                  



Figure 13: Simulation of localization in uniaxial tension in a 3D thin plate using four
quadratic elements in the thickness: response curves at the integration point (GP) close to
the imperfection. The points identifying the onset of material instability in the numerical
simulation are denoted by filled symbols and the theoretical limit load points (εL, γeL)
from Table 1 are denoted by open symbols. The results are obtained for H = −0.15 and
three values of b1.

to maintain equilibrium. In addition, a special case of the material instabil-
ity criterion developed in (Rice, 1976), which requires the rate of traction
applied to a material surface to be stationary for an applied shearing rate
was developed and shown to yield the same condition that the perturbation
vector vanishes.

The small deformation equations for the smooth model were used to ob-
tain analytical results for the limit load and perturbation vector conditions
for example problems. The smooth model exhibits an overstress that in-
creases with decreasing values of the parameter b1 and it exhibits softening,
which tends to cause localization, with more rapid softening occurring for
smaller values of the parameter H. The evolution equations of the small de-
formation smooth model were solved for monotonic proportional loading to
obtain expressions for stress-strain curves that allow for analytical solutions
of the conditions for material instability. To study the influence of changes
in b1, H the initial value κ0 of the hardening parameter was determined so
that the limit load occurs at the same specified value γeL of elastic strain
for each pair b1, H. The values κL of the hardening variable and εL of the
total strain at the limit point for each pair b1, H are recorded in Table 1.
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The main results of this Table are that the limit strain εL increases with
decreasing values of b1 and increasing values of H.

In addition, the small deformation equations were programmed as a con-
stitutive model in a finite element code to obtain numerical solutions for
these example problems. Numerical simulations of example problems with
H = −0.15 were considered to examine the influence of the parameter b1.
Qualitatively, the theoretical prediction of the dependence of localization on
b1 is the same as that in the numerical simulations for all examples. The
numerical and theoretical values γef of the elastic strain and εf of the total
strain at the onset of material instability were determined. These values of
γef are in excellent agreement with the theoretical values and the differences
between the numerical and theoretical values of εf decrease with increasing
values of b1.
Plane strain extension

The theoretical and numerical predictions of the angle θn between the
normal to the shearing surface and the direction of extension are in very
good agreement. However, the theoretical values of the total failure strain
εf at the onset of material instability are larger than those of the numerical
simulations.
Simple shear

The theoretical and numerical predictions of the angle θn are in exact
agreement. However, the theoretical values of the total failure strain εf at
the onset of material instability are a bit smaller than those of the numerical
simulations.
Uniaxial tension of a 3D thin plate

The numerical simulation of a thin plate requires a 3D formulation to
capture the out-of-plane necking mode which is better predicted by the limit
load criterion than the perturbation vector criterion based on a shearing
mode of material instability. The numerical simulations predict the observed
value of θn. Also, the numerical and theoretical values of the elastic strain
εef at the limit load are in excellent agreement.

One of the main conclusions of this work is that the smooth model predicts
a tendency for the total strain at the onset of localization to be delayed by
increase in the overstress.

42

                  



Acknowledgements

This research was partially supported by MB Rubin’s Gerard Swope Chair
in Mechanics. MB Rubin would also like to acknowledge Mines ParisTech
for hosting him in November 2017 during part of his sabbatical leave from
Technion.

Declaration of interests

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

References

References

Besson, J., Cailletaud, G., Chaboche, J.-L., Forest, S., Blétry, M., 2009.
Non–Linear Mechanics of Materials. Solid Mechanics and Its Applications
167. Springer-Verlag Berlin Heidelberg.

Bigoni, D., 2012. Nonlinear Solid Mechanics: Bifurcation Theory and Mate-
rial Instability. Cambridge University Press.

Chambon, R., Crochepeyre, S., Desrues, J., 2000. Localization criteria for
non-linear constitutive equations of geomaterials. Mechanics of Cohesive-
frictional Materials: An International Journal on Experiments, Modelling
and Computation of Materials and Structures 5, 61–82.

Eckart, C., 1948. The thermodynamics of irreversible processes. iv. the theory
of elasticity and anelasticity. Physical Review 73 (4), 373.

Einav, I., 2012. The unification of hypo-plastic and elasto-plastic theories.
International Journal of Solids and Structures 49 (11-12), 1305–1315.

Flory, P. J., 1961. Thermodynamic relations for high elastic materials. Trans-
actions of the Faraday Society 57, 829–838.

Forest, S., Cailletaud, G., 1995. Strain localization in single crystals: Effect of
boundaries and interfaces. European Journal of Mechanics A/Solids 14 (5),
747–771.

43

                  



Forest, S., Rubin, M. B., 2016. A rate-independent crystal plasticity model
with a smooth elastic–plastic transition and no slip indeterminacy. Euro-
pean Journal of Mechanics-A/Solids 55, 278–288.

Hill, R., 1959. Some basic principles in the mechanics of solids without a
natural time. Journal of the Mechanics and Physics of Solids 7 (3), 209–
225.

Hollenstein, M., Jabareen, M., Rubin, M. B., 2013. Modeling a smooth
elastic–inelastic transition with a strongly objective numerical integrator
needing no iteration. Computational Mechanics 52 (3), 649–667.

Hollenstein, M., Jabareen, M., Rubin, M. B., 2015. Erratum to: Modeling
a smooth elastic–inelastic transition with a strongly objective numerical
integrator needing no iteration. Computational Mechanics 55 (2), 453–453.

Hutchinson, J. W., Tvergaard, V., 1981. Shear band formation in plane
strain. International Journal of Solids and Structures 17, 451–470.

Kolymbas, D., 1981. Bifurcation analysis for sand samples with a non-linear
constitutive equation. Ingenieur-Archiv 50, 131–140.

Leonov, A. L., 1976. Nonequilibrium thermodynamics and rheology of vis-
coelastic polymer media. Rheologica acta 15 (2), 85–98.

Lubliner, J., Taylor, R. L., Auricchio, F., 1993. A new model of generalized
plasticity and its numerical implementation. International Journal of Solids
and Structures 30 (22), 3171–3184.

Nguyen, Q. S., 1993. Bifurcation and stability in dissipative systems. CISM
Courses and Lectures No. 327, Udine, Springer Verlag, Wien.

Nguyen, Q.-S., 2002. Stability and Nonlinear Solid Mechanics. Wiley.

Panoskaltsis, V., Polymenakos, L., Soldatos, D., 2008. On large deformation
generalized plasticity. Journal of Mechanics of Materials and Structures
3 (3), 441–457.

Perzyna, P., 1963. The constitutive equations for rate sensitive plastic mate-
rials. Quarterly of applied mathematics 20 (4), 321–332.

44

                  



Petryk, H., 1992. Material instability and strain-rate discontinuities in in-
crementally nonlinear continua. Journal of the Mechanics and Physics of
Solids 40, 1227–1250.

Petryk, H., 2000. Material instabilities in elastic and plastic solids. CISM
Courses and Lectures No. 414, Udine, Springer Verlag, Wien.

Petryk, H., Thermann, K., 2002. Post-critical plastic deformation in incre-
mentally nonlinear materials. Journal of the Mechanics and Physics of
Solids 50, 50.

Rice, J. R., 1976. The localization of deformation. In: Koiter, W. (Ed.), The-
oretical and Applied Mechanics, Proceedings of the 14th IUTAM congress,
Delft. North–Holland Publishing Company, pp. 207–220.

Rubin, M. B., 2012. Removal of unphysical arbitrariness in constitutive equa-
tions for elastically anisotropic nonlinear elastic–viscoplastic solids. Inter-
national Journal of Engineering Science 53, 38–45.

Rubin, M. B., 2013. Cosserat theories: shells, rods and points. Vol. 79.
Springer Science & Business Media.

Rubin, M. B., Attia, A., 1996. Calculation of hyperelastic response of finitely
deformed elastic-viscoplastic materials. International journal for numerical
methods in engineering 39 (2), 309–320.

Z–set package, 2013. Non-linear material & structure analysis suite,
www.zset-software.com.

H = −0.01
b1 κ0 γeL κL εL

500 0.61107e-2 0.90000e-2 0.60000e-2 0.13377e-1
1000 0.75553e-2 0.90000e-2 0.75000e-2 0.96886e-2
1500 0.80369e-2 0.90000e-2 0.80000e-2 0.84590e-2

H = −0.15
500 0.66522e-2 0.90000e-2 0.60000e-2 0.88986e-2
1000 0.78261e-2 0.90000e-2 0.75000e-2 0.74493e-2
1500 0.82174e-2 0.90000e-2 0.80000e-2 0.69662e-2

Table 1: Small deformation theory: List of the parameters for the limit load predicted by
the smooth model for uniaxial stress.
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H = −0.15
b1 κ0 εL εf γef κf θm [◦] θn [◦]

500 0.66894e-2 0.80818e-2 0.13530e-1 0.83527e-2 0.48981e-2 49.550 44.389
1000 0.78633e-2 0.74741e-2 0.97824e-2 0.86938e-2 0.69663e-2 49.552 44.386
1500 0.82546e-2 0.69910e-2 0.85310e-2 0.88080e-2 0.76563e-2 49.557 44.393

H = −0.3
500 0.69629e-2 0.80818e-2 0.93304e-2 0.88848e-2 0.54297e-2 49.559 44.395
1000 0.80000e-2 0.70533e-2 0.76777e-2 0.89609e-2 0.72333e-2 49.573 44.422
1500 0.83458e-2 0.67105e-2 0.71268e-2 0.89864e-2 0.78347e-2 49.565 44.406

H = −0.9
500 0.74845e-2 0.70969e-2 0.74370e-2 0.89983e-2 0.55431e-2 49.573 44.422
1000 0.82609e-2 0.65606e-2 0.67310e-2 0.90178e-2 0.72901e-2 49.684 44.643
1500 0.85196e-2 0.63822e-2 0.64956e-2 0.90242e-2 0.78723e-2 49.746 44.768

Table 2: Small deformation plane strain uniaxial extension in the p1 direction: List of the
parameters and the failure values εf , γef , κf , θm, θn at the first point of localization. The
value of the total strain εL associated with the maximum value γeL = 0.0090372 for the
limit load criterion is also included.
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H = 0
b1 κ0 εf γef κf θm [◦] θn [◦]

500 0.60372e-2 0.23830e-1 0.90370e-2 0.60372e-2 45.225 45.251
1000 0.75372e-2 0.14928e-1 0.90371e-2 0.75372e-2 45.223 45.249
1500 0.80372e-2 0.11960e-1 0.90371e-2 0.80372e-2 45.229 45.259

H = −0.15
500 0.66894e-2 0.89228e-2 0.90372e-2 0.60373e-2 45.180 45.160
1000 0.78633e-2 0.74738e-2 0.90372e-2 0.75373e-2 45.180 45.160
1500 0.82546e-2 0.69908e-2 0.90372e-2 0.80372e-2 45.273 45.347

H = −0.9
500 0.74845e-2 0.70968e-2 0.90372e-2 0.60373e-2 45.186 45.173
1000 0.82609e-2 0.65608e-2 0.90372e-2 0.75373e-2 45.267 45.334
1500 0.85196e-2 0.63822e-2 0.90372e-2 0.80372e-2 45.431 45.663

Table 3: Small deformation simple shear: List of the parameters and the failure values
εf , γef , κf , θm, θn at the first point of localization.
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