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RATE OF ESTIMATION FOR THE STATIONARY

DISTRIBUTION OF STOCHASTIC DAMPING HAMILTONIAN

SYSTEMS WITH CONTINUOUS OBSERVATIONS

SYLVAIN DELATTRE, ARNAUD GLOTER, AND NAKAHIRO YOSHIDA

Abstract. We study the problem of the non-parametric estimation for the
density π of the stationary distribution of a stochastic two-dimensional damp-

ing Hamiltonian system (Zt)t∈[0,T ] = (Xt, Yt)t∈[0,T ]. From the continuous

observation of the sampling path on [0, T ], we study the rate of estimation

for π(x0, y0) as T → ∞. We show that kernel based estimators can achieve
the rate T−v for some explicit exponent v ∈ (0, 1/2). One finding is that the

rate of estimation depends on the smoothness of π and is completely different

with the rate appearing in the standard i.i.d. setting or in the case of two-
dimensional non degenerate diffusion processes. Especially, this rate depends

also on y0. Moreover, we obtain a minimax lower bound on the L2-risk for

pointwise estimation, with the same rate T−v , up to log(T ) terms.

1. Introduction

The class of hypo-elliptic diffusion processes, for which the diffusion coefficient
is degenerate, has been the subject of many recent works and is used for modeling
in many fields, such as mathematical finance, biology, neuro-science, mechanics,
ecology,... (see e.g. [8], [11], [7] and references therein). In this paper, we focus on
the situation of a bi-dimensional hypo-elliptic process, describing the evolution in
time of the couple position/velocity of some quantity. The velocity Y is modeled
by a non degenerate one-dimensional diffusion process, while the position X is its
integral, and the resulting bi-dimensional process Z = (X,Y ) is hypo-elliptic. Our
aim is to estimate the density π of the stationary measure of this diffusion process,
under the assumption of an ergodic setting.

The problem of non-parametric estimation of the stationary measure of a con-
tinuous mixing process is a long-standing problem (see for instance N’Guyen [13],
or Comte and Merlevede [3] and references therein). Based on sample of length
T of the data Comte and Merlevede [3] find estimators of the stationary measure,
converging at rate depending on the smoothness of the stationary measure and
slower than

√
T , as it is usual in non-parametric problems.

In the specific context where the continuous time process is a one-dimensional
diffusion process, observed continuously on some interval [0, T ], the finding is dif-

ferent. It is shown that the rate of estimation of the stationary measure is
√
T (see

Kutoyants [10]). The rate of estimation is thus independent of the smoothness of
the object that one estimates, in contrast to the typical non-parametric situation.
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The optimal estimator is very specific to the diffusive nature of the process as it
relies on the local time of the process. Remark that if the process is a diffusion ob-
served discretely on [0, T ] with a sufficiently high frequency it is possible to estimate

with rate
√
T also (see [12], [4]).

The case of multi-dimensional non-degenerate diffusions is treated in Dalalyan
and Reiß [6] and Srauss [14]. In that case, the local time process is not available,
but it is shown that for non degenerate diffusion process of dimension d = 2, there
exists an estimator of the pointwise values of the stationary measure with rate√
T/ log(T )2. This rate of estimation does not depend on the smoothness of the

stationary measure for d = 2. In the situation of a non degenerate diffusion with
dimension d ≥ 3, they find estimators whose rate is polynomial in T , depends on
both the smoothness of the stationary measure and the dimension d ≥ 3. For d ≥ 3,
the rate is strictly slower than

√
T , but faster than the rate appearing in standard

multivariate density estimation from T i.i.d. observations. Hence, for d ≥ 3, the
diffusive structure of the process, enables to get a faster estimation rate than for
the i.i.d. case, as well.

In the case of hypo-elliptic processes, fewer results exist for the estimation of
the stationary distribution. In [5], the authors consider the case of two-dimensional
process Z = (X,Y ), where Y is a velocity and X a position. Based on a discrete
sampling of the path of size n, they propose an estimator of the stationary mea-
sure which converges at a non parametric rate depending on the smoothness of the
stationary measure. Assuming that the stationary measure has anisotropic regu-
larity (k1, k2), the proposed estimator has a rate depending on the harmonic mean
2/(1/k1 + 1/k2) as it is for the optimal rate of estimation of distribution on in the
case of i.i.d. sequence.

In this paper, we focus on the situation where the process is observed continu-
ously on [0, T ] and our goal is to determine what is the optimal rate of estimation
of π in this context. Assuming that the stationary density (x, y) 7→ π(x, y) has an
anisotropic Hölder regularity with index k1 with respect to the variable x, and k2

with respect to y, we construct an estimator of π(x0, y0) based on (Xt, Yt)t∈[0,T ].

This estimator achieves some rate T−v(k1,k2) and this rate of convergence depends
on the smoothness of π in a very specific way. Indeed, the expression of the rate
of estimation involves only k1 or k2, depending on the relative positions of these
two smoothness indexes. This shows the specificity of the estimation problem for
continuous observation of process Z = (X,Y ) with a non degenerate diffusive ve-
locity Y , and a degenerate component X. It is noteworthy that we find a rate of
estimation slower than in the case of continuous observation of a non-degenerate
diffusion in dimension 2. Another interesting finding is that the rate of estimation
of π(x0, y0) depends on the point where one estimates the stationary measure, and
is slower for points corresponding to null velocity y0 = 0. A crucial ingredient in the
study of the rate of estimation is to derive the variance of a kernel estimator with
a choice of bandwidth (h1, h2). We show that the variance of the kernel estimator
depends in a completely unsymmetrical way on h1 and h2. As a consequence, we
get that the optimal bandwidth choice for the estimator is such that one of the
two bandwidth can go almost arbitrarily fast to 0, while the optimal choice for the
other bandwidth depends sharply on the smoothness of the stationary measure.

Also, we show a lower bound for the minimax risk of estimation of π(x0, y0) on a
class of hypo-elliptic diffusion models with stationary measure of Hölder regularity
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(k1, k2). This proves that it is impossible to estimate uniformly on this class with
a rate faster than T−v(k1,k2) (up to log(T ) term).

The outline of the paper is the following. In Section 2, we present the model
and give assumptions that are sufficient to get an ergodic system with stationary
measure admitting a density π. In Section 3, we present the construction of the
estimator and states the results on their rate of convergence (in Theorem 1 for
y0 6= 0, and Theorem 2 for y0 = 0). In Section 4, we prove the upper bound on the
variance of the kernel estimator. We also illustrate the very specific behaviour of the
variance of the kernel estimator for hypo-elliptic diffusion by numerical simulations.
In Section 5, we state and prove minimax lower bounds for the risk of estimation.
In the Appendix, we prove some technical results used in the proofs of Section 4.

2. Hamiltonian system and mixing property

Let us consider (Ω,A,P), some probability space on which a standard one dimen-
sional Brownian motion (Bt)t≥0 is defined. We assume that the process (Zt)t≥0 =
(Xt, Yt)t≥0 is solution of the stochastic differential equation

dXt = Ytdt(2.1)

dYt = a(Xt, Yt)dBt − [β(Xt, Yt)Yt + V ′(Xt)]dt,(2.2)

where (X0, Y0) is a random variable independent of (Bt)t.
We introduce the following regularity assumption on the coefficients.
Assumption HReg:

• The functions a : R2 → R is a C∞ function and a > a(x, y) ≥ a > 0, and
for some constants a > a > 0.
• The function β : R2 → R is continuously differentiable, and such that
|β(x, y)| ≤ β for all (x, y) ∈ R2, and for some constant β > 0. Moreover,
we have β(x, y) > β, ∀x ∈ [l,∞), y ∈ R, where l ≥ 0, β > 0 are two
constants.
• The function V : R→ R is lower bounded, and with C2 regularity.

It is shown in [17], that under the assumptions HReg the S.D.E. (2.1)–(2.2)
admits a weak solution, which satisfies the Markov property, and the associated
semi group (Pt)t≥0 is strongly Feller [17], which in turn implies that the process is
strongly Markovian. Let us stress that the sign condition on β for large x together
with the existence of lower bound on V are crucial to insure that the solution of
(2.1)–(2.2) does not explode in finite time. Of course, if we know that (x, y) 7→
a(x, y), (x, y) 7→ yβ(x, y) and x 7→ V ′(x) are globally Lipschitz, the solutions of the
S.D.E. exists in the strong sense.

We now introduce an assumption on the potential V of the system that ensure
that the process tends to some equilibrium.

Assumption HErg: one has lim
|x|→∞

V ′(x)sign(x) = +∞.

Is is shown in [17] that under HReg and HErg, one can construct a Lyapounov
function Ψ ≥ 1, and that a stationary probability π exists and is unique for the
process Z = (X,Y ), and satisfies π(Ψ) <∞. It is shown in [17] (see Theorem 2.4)
that for some D > 0 and ρ > 0,

(2.3) ∀t ≥ 0, ∀z ∈ R2, sup
|f |≤Ψ

∣∣∣∣Pt(f)(z)−
∫
R2

f(z′)π(dz′)

∣∣∣∣ ≤ DΨ(z)e−ρt
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for any function measurable function f such as f/Ψ is bounded on R and where
(Pt)t≥0 is the semi group of Z,

Pt(f)(z) = E[f(Xt, Yt) | (X0, Y0) = z].

Remark that under HReg and HErg, it is possible to construct a Lyapounov

function such that Ψ(x, y) ≥ 1
C exp

(
1
C [|y|2 + V (x)]

)
, for some constant C > 0 (see

(3.10) in [17]). As a consequence, (2.3) applies to functions f with exponential
growth, and the invariant distribution admits finite exponential moments.

Hence, we can state the following proposition

Proposition 1. Assume that the coefficients of the equation (2.2) satisfy HReg
and HErg, then there exists a stationary solution Z = (X,Y ) to the S.D.E. (2.1)–
(2.2), and the stationary distribution is unique and admits some density π. More-
over, there exist constants Derg > 0 and ρ > 0 such that for any bounded measurable
functions f , g, we have

(2.4) ∀t ≥ 0, |cov(f(Z0), g(Zt))| ≤ Derg‖f‖∞‖g‖∞e
−ρt.

The Proposition (1) is a consequence of the results shown in [17]. Indeed, from
the fact that the Lyapounov function Ψ is greater than 1 and integrable with respect
to the stationary measure, one can check that (2.4) is a consequence of (2.3).

3. Estimator and upper bounds

In this section we introduce the expression for our estimator of the stationary
measure π of the S.D.E. (2.1)–(2.2) and prove that the estimator achieves some
rate of convergence, depending on the smoothness of π.

Let ϕ : R → R a bounded, compactly supported function. For convenience, we
suppose that the support of ϕ is [−1, 1]. We assume that

(3.1)

∫
R
ϕ(u)du = 1,

∫
R
ϕ(u)uldu = 0, for l ∈ {1, . . . , L} where L ≥ 1.

We let h1(T ) > 0, h2(T ) > 0 be two bandwidths which converge to zero as
T →∞, and we consider a kernel estimator of π at the point (x0, y0) ∈ R2 as

(3.2) π̂T (x0, y0) =
1

T

∫ T

0

ϕh1(T ),h2(T )(Xs − x0, Ys − y0)ds,

where

(3.3) ϕh1,h2
(x− x0, y − y0) =

1

h1h2
ϕ(
x− x0

h1
)ϕ(

y − y0

h2
).

We assume that the two bandwidths satisfy,

∃K > 0, h1(T )−1 + h2(T )−1≤ K(1 + TK), ∀T > 0,(3.4) √
h1(T ) + h2(T )≤ K(log(T ))−3/2 ∧ 1, ∀T > 1.(3.5)

The two previous conditions insure that the bandwidths go faster to zero than
the logarithmic rate by (3.5), but not faster than any polynomial rates by (3.4).
Actually these two bandwidths will be specified later (see equations (3.12), (3.13),
(3.14), (3.15) in the proofs of Theorems 1 and 2).

We introduce the class of Hölder functions.
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Definition 1. For (k1, k2) ∈ (0,∞)2, and R > 0, we denote Hk1,k2(R) the set of
functions f : R2 → R such that x 7→ f(x, y) and y 7→ f(x, y) are respectively of
class Cbk1c and Cbk2c, and satisfy the control, ∀x, y in R and h ∈ [−1, 1],

|f(x, y)| ≤ R,∣∣∣∣∂bk1cf∂xbk1c
(x+ h, y)− ∂bk1cf

∂xbk1c
(x, y)

∣∣∣∣ ≤ R|h|k1−bk1c,∣∣∣∣∂bk2cf∂xbk2c
(x, y + h)− ∂bk2cf

∂xbk2c
(x, y)

∣∣∣∣ ≤ R|h|k2−bk2c.
We can state the main results on the asymptotic behaviour of the estimator.

This behaviour is different according to the fact that we estimate the value of the
stationary measure on a point (x0, y0) corresponding to a null velocity or not.

Theorem 1. Assume that Z = (X,Y ) is a stationary solution to (2.1)–(2.2) and
that Assumptions HReg, HErg hold true. We assume that the stationary distribu-
tion π belongs to the set Hk1,k2(R) for k1 > 0, k2 > 0, R > 0, with max(k1, k2) ≤ L
(recall (3.1)).

Assume that y0 6= 0. Then, there exist bandwidths (h1(T ))T , (h2(T ))T , depend-
ing only on k1 and k2, such that the estimator satisfies :

if k1 < k2/2, E
[
(π̂T (x0, y0)− π(x0, y0))2

]
≤ CT−

2k2
2k2+1 ,(3.6)

if k1 ≥ k2/2, E
[
(π̂T (x0, y0)− π(x0, y0))2

]
≤ CT−

2k1
2k1+1/2 ,(3.7)

for some constant C independent of T .

Theorem 2. Assume that Z = (X,Y ) is a stationary solution to (2.1)–(2.2) and
that Assumptions HReg, HErg hold true. We assume that the stationary distribu-
tion π belongs to the set Hk1,k2(R) for k1 > 0, k2 > 0, R > 0, with max(k1, k2) ≤ L
(recall (3.1)).

Assume that y0 = 0. Then, there exist bandwidths (h1(T ))T , (h2(T ))T , depend-
ing only on k1 and k2, such that the estimator satisfies :

if k1 < k2/3, E
[
(π̂T (x0, y0)− π(x0, y0))2

]
≤ C(

T

log T
)−

2k2
2k2+2 ,(3.8)

if k1 ≥ k2/3, E
[
(π̂T (x0, y0)− π(x0, y0))2

]
≤ CT−

2k1
2k1+2/3 ,(3.9)

for some constant C independent of T .

Remark 1. The rates of estimation obtained in Theorems 1–2 are completely dif-
ferent with the usual one in several ways. First, they do not depend on the harmonic
mean of the smoothness index k1, k2, as it is usual in non-parametric setting. Sec-
ond, the rate depends on the point (x0, y0) where the density is estimated. We state
in Section 5 a minimax lower bound for the L2 risk of estimation of π(x0, y0) with
the same rates (up to log terms).

The asymptotic behaviour of the estimator relies on the standard bias variance
decomposition. Hence, we need sharp evaluations for the variance of the estimator,
that are stated below, and will be proved in Section 4.

Proposition 2. Assume that Z = (X,Y ) is solution to (2.1)–(2.2), that Assump-
tions HReg, HErg, hold true and ‖π‖∞ ≤ R for some R > 0.
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Assume that y0 6= 0. Then, there exists some constant C, such that for all T > 0,

Var(π̂T (x0, y0)) ≤ C

(
1

Th2(T )
∧ 1

T
√
h1(T )

)
+ Cε(T, h1(T ), h2(T )),

where

(3.10) ε(T, h1(T ), h2(T )) ≤ |log(h1(T )h2(T ))|C

T
.

Proposition 3. Assume that Z = (X,Y ) is a solution to (2.1)–(2.2), that As-
sumptions HReg, HErg, hold true and that ‖π‖∞ ≤ R for some R > 0.

Assume that y0 = 0. Then, there exists some constant C, such that for all T > 0,

Var(π̂T (x0, y0)) ≤ C
(

ln(T )

Th2(T )2
∧ 1

Th1(T )2/3

)
+ Cε(T, h1(T ), h2(T )),

where

ε(T, h1(T ), h2(T )) ≤ |log(h1(T )h2(T ))|C

T
.

We can now prove the that our estimator achieves the rates given in Theorems
1–2.
Proof [Proof of Theorem 1.] We write the usual bias-variance decomposition,

(3.11) E[(π̂T (x0, y0)− π(x0, y0))2] ≤

|E(π̂T (x0, y0))− π(x0, y0)|2 + Var(π̂T (x0, y0)).

Using the stationarity of the process, we can upper bound the bias term as

|E(π̂T (x0, y0))− π(x0, y0)|2

=

(∫
R2

ϕ(u)ϕ(v)[π(x0 + uh1(T ), y0 + vh2(T ))− π(x0, y0)]dudv

)
≤ C(h1(T )2k1 + h2(T )2k2),

where in the last line we used π ∈ Hk1,k2(R) with (3.1) (see e.g. [16], or Proposition
1 in [2] for details). We now use the results of Proposition 2 on the variance of the
estimator and choose the optimal bandwidths h1(T ), h2(T ).
• Case 1: k1 < k2/2.
Using Proposition 2

E[(π̂T (x0, y0)− π(x0, y0))2] ≤ C(h1(T )2k1 + h2(T )2k2)

+
C

Th2(T )
+ Cε(T, h1(T ), h2(T )).

We now choose to balance h2(T )2k2 with the main contribution of the variance term
and let the contribution of h1(T ) on the bias be smaller. It yields us to set

(3.12) h2(T ) = T−1/(2k2+1), h1(T ) = T−C1 , where C1 ≥
k2

k1(2k2 + 1)
.

With these choices and recalling (3.10), we get (3.6).
• Case 2: k1 ≥ k2/2.



RATE OF ESTIMATION FOR STOCHASTIC DAMPING HAMILTONIAN SYSTEMS 7

We use again Proposition 2:

E[(π̂T (x0, y0)− π(x0, y0))2] ≤ C(h1(T )2k1 + h2(T )2k2)

+
C

T
√
h1(T )

+ Cε(T, h1(T ), h2(T )).

Balancing the variance and bias terms yields to

(3.13) h1(T ) = T−1/(2k1+1/2), h2(T ) = T−C2 , where C2 ≥
k1

k2(2k1 + 1/2)
,

and (3.7) follows. �

Proof [Proof of Theorem 2] We use again the bias/variance decomposition (3.11)
and exploit now the results of Proposition 3.
• Case 1: k1 < k2/3.
We have that,

E[(π̂T (x0, y0)− π(x0, y0))2] ≤ C(h1(T )2k1 + h2(T )2k2)

+
C ln(T )

Th2(T )2
+ Cε(T, h1(T ), h2(T )).

We set

(3.14) h2(T ) = (
T

ln(T )
)−1/(2k2+2), h1(T ) = T−C1 , where C1 ≥

k2

k1(2k2 + 2)
,

and (3.8) follows.
• Case 2: k1 ≥ k2/3.
We have that,

E[(π̂T (x0, y0)− π(x0, y0))2] ≤ C(h1(T )2k1 + h2(T )2k2)

+
C

Th1(T )2/3
+ Cε(T, h1(T ), h2(T )).

The choice

(3.15) h1(T ) = T−1/(2k1+2/3), h2(T ) = T−C2 , where C2 ≥
k1

k2(2k1 + 2/3)

gives (3.9). �

Remark 2. • The optimal choices for the bandwidths are given in (3.12),
(3.13), (3.14) and (3.15). In all the situations, we see that one of the two
bandwidths h1(T ) or h2(T ) can be chosen “arbitrarily small” (as the con-
stants C1 and C2 in (3.12), (3.13), (3.14), (3.15) can be arbitrarily large).
In means that the bias induced by the variation of π along one of the two
variables x or y can be arbitrarily reduced by the choice of a very thin band-
width. It explains why the expression of the rate of estimation depends only
on one index of smoothness k1 or k2.
• The fact that one of the two bandwidths can be chosen arbitrarily small is

reminiscent to the situation of the estimation of the stationary measure π(z)
for a one dimensional diffusion process (Zt)t∈[0,T ] observed continuously. In
that case, the efficient estimator is based on the local time of the process
(see [10]) and the rate is

√
T independently of the smoothness of π. The
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use of local time is a way to give a rigorous analysis of the quantity π̃T (z) =
1
T

∫ T
0
δ{z}(Zs)ds, where δ{z} is the Dirac mass located at z. We see that π̃T

is essentially a kernel estimator with bandwidth h = 0, for which the bias
is reduced to 0.

4. Variance of the kernel estimator

In this section we prove the crucial upper bounds given in Propositions 2–3. We
first need to state two lemmas related to the behaviour of density and semi group
of the process, and whose proofs are postponed to Section 6.

Lemma 1 (Corollary 2.12 in [1]). Assume HReg. Then, the process admits a
transition density (pt)t>0 which satisfies the following upper bound. For all K
compact subset of R2, ∀(x, y, x′, y′) ∈ K ×K, ∀t ∈ (0, 1)

(4.1) pt((x, y); (x′, y′)) ≤ pGt ((x, y); (x′, y′)) + pUt ((x, y); (x′, y′))

where

(4.2) pGt ((x, y); (x′, y′)) =
CG
t2

exp

(
− 1

CG

[
(y − y′)2

t
+

(x′ − x− y+y′

2 t)2

t3

])
,

for some CG > 0 and pU is a measurable non negative function such that for any
compact K ⊂ R2 and (x, y) ∈ K we have for all t ∈ (0, 1),

(4.3)

∫
R2

pUt ((x, y); (x′, y′))dx′dy′ ≤ CU exp(−t−1C−1
U ),

for CU > 0. The two constants CG and CU are independent of t ∈ [0, 1], but depend
on the compact set K.

The Lemma 1 gives us a control on the short time behaviour of the transition
density. For the sequel, we need a control valid for any time. This is the purpose
of the following lemma about the semi group of the process.

Lemma 2. Assume HReg, and let K be a compact subset of R2. Then, there

exists a constant C̃K such that for all 0 < D < 1, t ≥ D, ∀z ∈ R2, and any f
measurable bounded function with support on K,

(4.4) |Pt(f)(z)| ≤ C̃K

[
‖f‖L1(R2)

D2
+ ‖f‖∞e

−1/(C̃KD)

]
.

4.1. Proof or Proposition 2. Throughout the proof we suppress in the notation
the dependence upon T of h1(T ) and h2(T ). The constant C may change from line
to line and is independent of T . In the proof, we will use repeatedly Lemmas 1–2.
To this end, we consider a compact set K that contains a ball of radius

√
2 centered

at (x0, y0), and as a result the support of (x, y) 7→ ϕ(x− x0, y − y0) is included in
this compact.

To prove the proposition, it is sufficient to prove that the following inequalities
holds both, for T large enough,

Var(π̂T (x0, y0)) ≤ C 1

Th2
+ Cε(T, h1(T ), h2(T )),(4.5)

Var(π̂T (x0, y0)) ≤ C 1

T
√
h1

+ Cε(T, h1(T ), h2(T )).(4.6)
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First step: we prove (4.5).
From (3.2), and the stationarity of the process we get that

(4.7) Var (π̂T (x0, y0)) =
1

T 2

∫ T

0

∫ T

0

κ(t− s)dtds,

where

κ(u) = Cov (ϕh1,h2
(X0 − x0, Y0 − y0), ϕh1,h2

(Xu − x0, Yu − y0)) .

We deduce that

(4.8) Var (π̂T (x0, y0)) ≤ 1

T

∫ T

0

|κ(s)|ds.

We will find an upper bound for the integral on the right-hand side of the latter
expression by splitting the time interval [0, T ] into 4 pieces [0, T ] = [0, δ)∪ [δ,D1)∪
[D1, D2) ∪ [D2, T ], where δ, D1, D2, will be chosen latter.
• For s ∈ [0, δ), we write from (4.7) and using Cauchy-Schwarz inequality and

the stationarity of the process,

|κ(s)| ≤ Var(ϕh1,h2
(X0 − x0, Y0 − y0))1/2 Var(ϕh1,h2

(Xs − x0, Ys − y0))1/2

= Var(ϕh1,h2(X0 − x0, Y0 − y0)).

This variance is smaller than∫
R2

ϕh1,h2
(x− x0, y − y0)2π(x, y)dxdy

and using that π is bounded and (3.3), we deduce

(4.9) |κs| ≤
C

h1h2
.

In turn, we have

(4.10)

∫ δ

0

|κ(s)|ds ≤ C δ

h1h2
.

• For s ∈ [δ,D1), where δ < D1 ≤ 1. We write

|κ(s)| ≤ E [|ϕh1,h2
(X0 − x0, Y0 − y0)||ϕh1,h2

(Xu − x0, Yu − y0)|] +

E [|ϕh1,h2
(X0 − x0, Y0 − y0)|]E [|ϕh1,h2

(Xs − x0, Ys − y0)|]

Using that (Xt, Yt)t is stationary with marginal law having a bounded density we
deduce that E [|ϕh1,h2(Xs − x0, Ys − y0)|] ≤ C

∫
R2 |ϕh1,h2(x− x0, y − y0)|dxdy ≤

C from (3.3). This gives,

(4.11) |κ(s)| ≤
∫
R2

|ϕh1,h2
(x− x0, y − y0)|∫

R2

|ϕh1,h2(x′ − x0, y
′ − y0)|ps(x, y;x′, y′)dx′dy′π(x, y)dxdy + C.

Using now equation (4.1) in Lemma 1, we get that

(4.12) |κ(s)| ≤ κ1(s) + κ2(s) + C
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with

(4.13) κ1(s) :=

∫
R2

|ϕh1,h2(x− x0, y − y0)|∫
R2

|ϕh1,h2
(x′ − x0, y

′ − y0)|pGs (x, y;x′, y′)dx′dy′π(x, y)dxdy,

κ2(s) :=

∫
R2

|ϕh1,h2
(x− x0, y − y0)|∫
R2

|ϕh1,h2(x′ − x0, y
′ − y0)|pUs (x, y;x, y)dx′dy′π(x, y)dxdy.

In order to upper bound κ1(s) we show that the Gaussian kernel (4.2) appearing
in the expression of κ1(s) takes small values for s ∈ [δ,D1) as soon as δ is well cho-
sen. Recall that y0 6= 0, and for simplicity assume that y0 > 0. Then, using that ϕ is
compactly supported on[−1, 1] we know that |ϕh1,h2

(x− x0, y − y0)ϕh1,h2
(x′ − x0, y

′ − y0)| 6=
0 implies that

(4.14) |x− x0| ≤ h1, |x′ − x0| ≤ h1, |y − y0| ≤ h2, |y′ − y0| ≤ h2.

Let us denote K(h1, h2) the rectangle of R4 defined by the conditions (4.14). Then,

(4.15) κ1(s) ≤ C
∫
K(h1,h2)

|ϕh1,h2(x− x0, y − y0)|

|ϕh1,h2
(x′ − x0, y

′ − y0)|pGs (x, y;x′, y′)dxdydx′dy′,

where we used that π is bounded. On K(h1, h2), we have y+y′

2 ≥ y0
2 > 0 if

h2 is small enough, and |x− x′| ≤ 2h1. Hence, if we assume that s ≥ 6h1

y0
we

have |x′ − x| ≤ sy0
3 . It entails, x′ − x − y+y′

2 s ≤ sy0
3 −

y0
2 s = − sy06 , and in turn

(x′−x− y+y
′

2 s)2

s3 ≥ y20
36

1
s . Plugging in (4.2) this yields to pGs (x, y;x′; y′) ≤ C

s2 exp(− 1
Cs )

for some constant C independent of s. Using (4.15), we deduce

κ1(s) ≤ C

s2
exp(− 1

Cs
)

∫
K(h1,h2)

|ϕh1,h2
(x− x0, y − y0)|

|ϕh1,h2(x′ − x0, y
′ − y0)|dxdydx′dy′

and hence

(4.16) κ1(s) ≤ C

s2
exp(− 1

Cs
).

To control κ2(s), we use (4.3) and ‖ϕh1,h2
(· − x0, · − y0)‖∞ ≤

C
h1h2

to get that for

all x, y in the compact K containing a ball of radius
√

2 centered at (x0, y0), we have

the upper bound
∫
R2 |ϕh1,h2

(x′ − x0, y
′ − y0)|pUs (x, y;x′, y′)dx′dy′ ≤ C

h1h2
e−

1
Cs . As

a consequence,

κ2(s) ≤ C
∫
R2

|ϕh1,h2
(x− x0, y − y0)| 1

h1h2
e−

1
Csπ(x, y)dxdy

≤ C

h1h2
e−

1
Cs ,(4.17)
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where we used again that π is bounded and that the support of ϕh1,h2
(·−x0, ·−y0)

is included in K. From (4.12), (4.16)–(4.17), we deduce that for 6h1

y0
≤ δ ≤ D1 ≤ 1,∫ D1

δ

|κ(s)|ds ≤
∫ D1

δ

[
C

s2
exp(− 1

Cs
) +

C

h1h2
exp(− 1

Cs
) + C]ds

≤
∫ D1

δ

[
C

s2
exp(− 1

Cs
) +

C

h1h2s2
exp(− 1

Cs
) + C]ds

≤ C exp(− 1

CD1
)[1 +

1

h1h2
] + CD1,(4.18)

where in the second line we used D1 ≤ 1.
• For s ∈ [D1, D2) with D1 ≤ 1 ≤ D2 < T , we start from the control (4.11) that

we write

|κ(s)| ≤
∫
R2

|ϕh1,h2
(x− x0, y − y0)|Ps(|ϕh1,h2

(· − x0, · − y0)|)(x, y)π(x, y)dxdy+C.

Since ϕh1,h2
(·−x0, ·−y0) vanishes outside the compact neighbourhood K of (x0, y0)

we can use Lemma 2 to upper bound the semi group term. Hence, we get for some
constant C > 0,

|κ(s)| ≤ C
∫
R2

|ϕh1,h2
(x− x0, y − y0)|×

[
‖ϕh1,h2

‖L1(R2)

D2
1

+
1

h1h2
e−1/(CD1)]π(x, y)dxdy + C,

and we deduce |κ(s)| ≤ C[ 1
D2

1
+ 1

h1h2
e−1/(CD1) + 1]. This yields,

(4.19)

∫ D2

D1

|κ(s)|ds ≤ C[
D2

D2
1

+
D2

h1h2
e−1/(CD1) +D2],

for some constant C > 0.
• For s ∈ [D2, T ], we use the covariance control (2.4), that allows us to write

|κ(s)| ≤ C‖ϕh1,h2
(· − x0, · − y0)‖2∞e

−ρs ≤ C
(

1
h1h2

)2

e−ρs, for C > 0 and ρ > 0. It

entails the upper bound,

(4.20)

∫ T

D2

|κ(s)|ds ≤ C e−ρD2

(h1h2)2
.

Collecting together (4.8), (4.10), (4.18), (4.19), (4.20) we deduce,

Var(π̂T (x0, y0)) ≤ C

T

[ δ

h1h2
+ exp(− 1

CD1
)[1 +

D2

h1h2
]+

D1 +D2 +
D2

D2
1

+
e−ρD2

(h1h2)2

]
,

for C > 0 some constant. We choose δ = 6h1

y0
, D1 = 1

C|log h1h2| , D2 =
|ln((h1h2)2)|

ρ .

By (3.4)–(3.5) we see that this choice is such that, 6h1

y0
= δ < D1 < 1 <D2 < T for

T large enough. And it yields,

Var(π̂T (x0, y0)) ≤ C

T

[ 6

y0

1

h2
+ h1h2 +D1 +D2 +

D2

D2
1

+ 1
]
.
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Since h1 → 0, h2 → 0, and as the value of C may change from line to line, we can
write that

Var(π̂T (x0, y0)) ≤ C

T

[
1

h2
+ |ln(h1h2)|C

]
and we have shown (4.5).

Second step: we prove (4.6).

We use the same decomposition of
∫ T

0
|κ(s)|ds in four terms as for the proof of

(4.5), but we treat in a different way the contribution of the short time correlations∫ δ
0
|κ(s)|ds.
• Let us find an upper bound for κ(s) for s ∈ (0, δ) with δ < 1. We recall that,

from Lemma 1, the decomposition (4.12) holds true where κ1(s) is given by (4.13)
and κ2(s) is upper bounded by (4.17). We now study κ1(s). To this end, we remark
that pGs (x, y;x′, y′) ≤ C√

s
qs(x

′ | x, y, y′) where

qs(x
′ | x, y, y′) =

C

s3/2
exp

(
−C−1 (x′ − x− y+y′

2 s)2

s3

)
.

Let us stress that

(4.21) sup
s∈(0,1)

sup
(x,y,y′)∈R3

∫
R
qs(x

′ | x, y, y′)dx′ ≤ C <∞.

Thus, using (4.13), we have

κ1(s) ≤ C√
s

∫
R2

|ϕh1,h2
(x− x0, y − y0)|π(x, y)(∫
R2

|ϕh1,h2
(x′ − x0, y

′ − y0)|qs(x′ | x, y, y′)dx′dy′
)

dxdy.

By (3.3), we have |ϕh1,h2
(x′ − x0, y

′ − y0)| ≤ C
h1

1
h2

∣∣∣ϕ(y
′−y0
h2

)
∣∣∣, and thus, using

(4.21), we get∫
R2

|ϕh1,h2(x′ − x0, y
′ − y0)|qs(x′ | x, y, y′)dx′dy′

≤ C

h1

∫
R

1

h2

∣∣∣∣ϕ(
y′ − y0

h2
)

∣∣∣∣ ∫
R
qs(x

′ | x, y, y′)dx′dy′

≤ C

h1

∫
R

1

h2

∣∣∣∣ϕ(
y′ − y0

h2
)

∣∣∣∣dy′ ≤ C

h1
.

We deduce that κ1(s) ≤ C√
sh1

∫
R2 |ϕh1,h2

(x− x0, y − y0)|π(x, y)dxdy ≤ C√
sh1

. Col-

lecting the latter equation with (4.12) and (4.17), it yields∫ δ

0

|κ(s)|ds ≤
∫ δ

0

[
C√
sh1

+ C
e−

1
Cs

h1h2
+ C]ds

≤
∫ δ

0

[
C√
sh1

+ C
1

s2

e−
1
Cs

h1h2
+ C]ds

≤ C[

√
δ

h1
+
e−

1
Cδ

h1h2
+ δ](4.22)

where we have used in the second line that δ < 1.
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We now gather (4.8), (4.18), (4.19), (4.20), (4.22), to derive,

Var(π̂T (x0, y0)) ≤ C

T

[√
δ

h1
+
e−

1
Cδ

h1h2
+ δ + exp(− 1

CD1
)[1 +

D2

h1h2
]+

D1 +D2 +
D1

D2
2

+
e−ρD2

(h1h2)2

]
.

We choose the same thresholds as in the first step, δ = 6h1

y0
, D1 = 1

C|log h1h2| ,

D2 =
|ln((h1h2)2)|

ρ . Recalling (3.4)–(3.5), we have e−(C6h1/y0)−1

= O(e−εlog(T )3) =

o(h1h2), with some ε > 0. We derive that

Var(π̂T (x0, y0)) ≤ C

T
[

1√
h1

+ |ln(h1h2)|C ],

for some C > 0. The second step of the proposition is proved. �

Remark 3. (1) The Proposition 2 consists actually in the two upper bounds
(4.5)–(4.6) for the variance of the estimator. We see that one of these two
bounds is smaller than the other, depending on the relative positions of h2

or
√
h1. It explains why the expression for the rate of convergence of the

estimator in Theorem 1 depends on the relative positions of k1 and k2/2,
which determines which one of the two bounds (4.5) or (4.6) is used in the
bias/variance decomposition of the estimation error (see proof of Theorem
1).

(2) The control of κ(s) = Cov (ϕh1,h2
(X0 − x0, Y0 − y0), ϕh1,h2

(Xs − x0, Ys − y0))
for s ∈ [δ,D1], with δ ≈ h1 and D1 ≤ 1 depends on the fine structure of the
main term (4.2) in the short time expansion of the transition density of the
process and on the fact that y0 6= 0. In the situation y0 6= 0, it is impossible
to get such a refined result on the covariance, and eventually the bound on
the variance of the estimator is larger (see Proposition 3).

4.2. Proof of Proposition 3. We need to prove that the following two inequalities
hold true, for T large enough:

Var(π̂T (x0, y0)) ≤ C 1

Th
2/3
1

+ Cε(T, h1(T ), h2(T )),(4.23)

Var(π̂T (x0, y0)) ≤ C ln(T )

Th2
2

+ Cε(T, h1(T ), h2(T )).(4.24)

Again we consider K a compact set of R2 that contains a ball of radius
√

2 centered
at (x0, y0).

First step : let us prove (4.23).
We recall the control (4.8) for the variance of π̂T (x0, y0) and split the integral

in (4.8) into four pieces corresponding to the partition [0, T ] = [0, δ) ∪ [δ,D1) ∪
[D1, D2) ∪ [D2, T ], where δ, D1, D2 will be specified latter. Let us stress that in
the proof of Proposition 2, only the control of |κ(s)| for s ∈ [δ,D1), uses the fact
that y0 6= 0.
• For s ∈ [0, δ) with δ < 1, we recall the result obtained in (4.22) which states∫ δ

0

|κ(s)|ds ≤ C[

√
δ

h1
+
e−

1
Cδ

h1h2
+ δ].
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• For s ∈ [δ,D1] with 0 < δ < D1 < 1, exactly with the same proof as in
Proposition 2, we have |κ(s)| ≤ κ1(s) + κ2(s) + C where κ1(s) is given by (4.13)
and κ2(s) is upper-bounded as in (4.17). We need to find a control on κ1(s) in the
situation y0 6= 0. Using, from (4.2), that pGs (x, y;x′, y) ≤ C

s2 , ∀(x, y, x′, y′) ∈ K2,
and the fact that π is bounded, we get

κ1(s) ≤ C

s2

∫
R4

|ϕh1,h2
(x− x0, y − y0)|

|ϕh1,h2
(x′ − x0, y

′ − y0)|dxdydx′dy′ ≤ C

s2
.

We deduce ∫ D1

δ

|κ(s)|ds ≤
∫ D1

δ

C[
1

s2
+
e−

1
Cs

h1h2
+ C]ds

≤ C[
1

δ
+ exp(− 1

CD1
)

1

h1h2
+D1]

≤ C[
1

δ
+ exp(− 1

CD1
)

1

h1h2
],(4.25)

where we used D1 ≤ 1.
• For s ∈ [D1, D2), with D1 < 1 < D2 < T , we use the control (4.19).
• For s ∈ [D2, T ], with D2 < T , we use the control (4.20).
Collecting the four previous controls, we deduce

Var(π̂T (x0, y0)) ≤ C

T

[√δ
h1

+
e−

1
Cδ

h1h2
+

1

δ
+

exp(− 1
CD1

)

h1h2
(1 +D2)+

D1 +D2 +
D2

D2
1

+
e−ρD2

(h1h2)2

]
where C > 0, ρ > 0. We choose δ that balances

√
δ/h1 with 1/δ, namely δ = h

2/3
1

which is smaller than 1 for T large enough, recalling (3.5). Next, we choose D2 =
|ln((h1h2)2)|

ρ , and D1 = C
|log h1h2| . We deduce

Var(π̂T (x0, y0)) ≤ C

T
[

1

h
2/3
1

+ |log(h1h2)|C ],

for some C > 0, and where we have used that, from (3.4)–(3.5), exp(−1/(Ch
2/3
1 )) =

O(exp(−εlog(T )2)) = o(h1h2), with some ε > 0. Hence (4.23) is proved.
Second step: we show (4.24).
Comparing with the first part of the proposition, we have to modify our upper

bound on
∫ δ

0
|κ(s)|ds with δ < 1. We split this integral into two parts,

∫ δ′
0
|κ(s)|ds+∫ δ

δ′
|κ(s)|ds. On the first part, we use the control (4.9) and get

(4.26)

∫ δ′

0

|κ(s)|ds ≤ C δ′

h1h2
.
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On the second part, we use (4.12), where κ2(s) is bounded in (4.17). We deduce,∫ δ

δ′
|κ(s)|ds ≤

∫ δ

δ′
C[

1

h1h2
e−

1
Cs + 1]ds+

∫ δ

δ′

∣∣κ1(s)
∣∣ds

≤ C[
1

h1h2
e−

1
Cδ + δ] +

∫ δ

δ′
κ1(s)ds.(4.27)

To upper bound κ1(s), we use (4.13) and (3.3), and obtain by Fubini’s Theorem,

(4.28) κ1(s) =

∫
R2

∣∣∣∣ 1

h1
ϕ(
x− x0

h1
)

1

h1
ϕ(
x′ − x0

h1
)

∣∣∣∣( ∫
R2

∣∣∣∣ 1

h2
ϕ(
y − y0

h2
)

1

h2
ϕ(
y′ − y0

h2
)

∣∣∣∣pGs (x, y;x′, y′)π(x, y)dydy′
)
dxdx′.

Since π is bounded, and using (4.2), we deduce that the inner integral is lower than

‖ϕ‖2∞
h2

2

∫
R2

C

s2
exp

(
− 1

C

[
(y − y′)2

s
+

(x′ − x− y+y′

2 s)2

s3

])
dydy′

=
‖ϕ‖2∞
2h2

2

∫
R2

C

s
exp

(
− 1

C

[
w2 + (

x′ − x
s3/2

− w′

2
)2

])
dwdw′

=
‖ϕ‖2∞
2h2

2

∫
R2

C

s
exp

(
− 1

C

[
w2 + (

w′

2
)2

])
dwdw′,

where we have made the change of variables w = y−y′√
s

, w′ = y+y′√
s

in the second

line, and used the invariance by translation of the Lebesgue measure in the last
one. We deduce that the inner integral in (4.28) is lower than C

h2
2s

where we stress

that C does not depend on (x, x′). In turn,

κ1(s) ≤ C

h2
2s

∫
R2

∣∣∣∣ 1

h1
ϕ(
x− x0

h1
)

1

h1
ϕ(
x′ − x0

h1
)

∣∣∣∣dxdx′ ≤ C

h2
2s
.

This yields, using (4.27) to

(4.29)

∫ δ

δ′
|κ(s)|ds ≤ C[

1

h1h2
e−

1
Cδ + δ +

1

h2
2

ln(
δ

δ′
)].

Collecting (4.26), (4.29), (4.25), (4.19), (4.20), we deduce, for 0 < δ′ < δ < D1 <
1 < D2 < T ,

Var(π̂T (x0, y0)) ≤ C

T

[ δ′

h1h2
+
e−

1
Cδ

h1h2
+

1

h2
2

ln(
δ

δ′
) +

1

δ
+

exp(− 1
CD1

)

h1h2
(1 +D2)+

D1 +D2 +
D1

D2
2

+
e−ρD2

(h1h2)2

]
.

Now we let δ = h2
2 and δ′ = T−C

′
δ where C ′δ > 0 is such that δ′ = o(h1h2) which is

possible from the at most polynomial decay of the bandwidths, resorting to (3.4).

As in the first step of the proposition, we set D1 = C
|ln(h1h2)| , D2 =

|ln((h1h2)2)|
ρ .

With these choices, we have for T large enough, 0 < δ′ < δ < D1 < 1 < D2 < T
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and

Var(π̂T (x0, y0)) ≤ C

T
[1 +

e
− 1

Ch22

h1h2
+

1

h2
2

ln(δ/T−Cδ′ ) + |ln(h1h2)|C ]

≤ C

T
[
ln(T )

h2
2

+ |ln(h1h2)|C ]

where we used again (3.4)–(3.5) in the last line. This proves (4.24). �

4.3. Numerical simulations. In this section, we explore numerically on an exam-
ple the behaviour of the variance of the estimator as h1 and h2 go to 0. Especially,
we wonder if the variance of the estimator asymptotically depends, in these simu-
lations, only on the minimum of two quantities related to h1 and h2 as suggested
by the upper bounds in Propositions 2–3. This is the crucial point in the upper
bound of the variance, that makes the choice of the optimal bandwidth very spe-
cific, allowing an arbitrary thin bandwidth on one component. We consider the
model (2.1)–(2.2) with β(x, y) = 0.5, V (x) = x2/2 and a(x, y) = 1. From a Monté–
Carlo experiment based on 500 replications, we evaluate the variance of π̂(x0, y0)
for (x0, y0) = (0, 1.5) and with different values of bandwidths h1 and h2. We have
chosen the simple kernel ϕ(u) = 1

21[−1,1](u) and T = 200. Results are given in
Figure 1, where each curve corresponds to a choice for the bandwidth h2, and these
curves plot the value of the variance as a function of h1, using log-scales. We see
that, as expected, the variance is increasing as h1 and h2 get smaller. Moreover,
it appears that when h2 gets smaller than some threshold depending on h1 the
variance ceases to strictly increase, as all the curves are flat on the left side of the
Figure 1. Symmetrically, we see that the right part of the curves for h2 = 10−1.8

and h2 = 10−2.4 coincides. It shows for instance that decreasing h2 below 10−1.8

does not increase anymore the variance when h1 ≥ 10−2. Hence, the numerical
results are consistent with the upper bound given for the variance, as a function
depending on min(1/h2, 1/

√
h1). This suggests that the upper bounds given in

Propositions 2–3 are fairly sharp.

5. Minimax lower bound

In this section, we show that it is impossible to construct any estimator with a
uniform rate better (up to a log term) than the rates obtained in Theorems 1–2.

5.1. Lower bounds. For the computation of lower bounds, we introduce the fam-
ily of S.D.E.

dXt = Ytdt(5.1)

dYt = 2σdBt − [σ2β(Xt, Yt)Yt + V ′(Xt)]dt,(5.2)

where σ > 0, β is a bounded C1 function lower bounded by a strictly positive
number and V is C2. As the model satisfies the conditions of HReg we know
that the S.D.E. admits a weak solution. We know that if V satisfies HErg then a
Lyapounov function exists and the process admits a unique stationary measure, that
we note πV,β . In Section 5.2, we make more explicit the connection between πV,β
and the coefficients V , β. Remark that we omit in the notations the dependence
on σ, as σ will be fixed in the sequel.

If the stationary measure exists and is unique, we denote PV,β the law of a sta-
tionary solution (Xt, Yt)t≥0 of (5.1)–(5.2). Here, PV,β is a measure on the space
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Figure 1. Variance of the estimator

of continuous function C([0,∞),R2), and we note by EV,β the corresponding ex-

pectation. When needed, we will note by P(T )
V,β the law of the stationary process

(Xt, Yt)t∈[0,T ] solution to the S.D.E. (5.1)–(5.2).

In the sequel, we note again (X,Y ) the canonical process on C([0,∞),R2) or
C([0, T ],R2).

In order to write down an expression for the minimax risk of estimation, we have
to consider a set of solutions to the S.D.E. (5.1)–(5.2), which are stationary and
whose stationary measure has a prescribed Hölder regularity. This leads us to the
following definition.

Definition 2. Let V : R → R be a C2 function satisfying HErg. We consider
k1 > 0, k2 > 0, R > 0, and R′ > 1 real numbers. We define Σk1,k2(V,R,R′) the
set of continuously differentiable functions β : R2 → R satisfying the following two
conditions :

(1) 1/R′ ≤ β(x, y) ≤ R′ for all (x, y) ∈ R2,
(2) the density πV,β of the stationary measure associated to the S.D.E. (5.1)–

(5.2) is such that πV,β ∈ Hk1,k2(R).

We introduce the minimax risk for the estimation at some point. Let (x0, y0) ∈
R2, and V , k1, k2, R, R

′ as in Definition 2. We let
(5.3)

RT (V, k1, k2, R,R
′) = inf

π̃T
sup

β∈Σk1,k2 (V,R,R′)

EV,β
[
(π̃T (x0, y0)− πV,β(x0, y0))2

]
,

where the infimum is taken on all possible estimators of πT (x0, y0), that is for
π̃T = π̃T (x0, y0) ranging in the set of all the measurable functions of (Xt, Yt)t∈[0,T ]

with values in R.
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Theorem 3. Let k1, k2, R > 0 and assume y0 6= 0 and max(k1, k2/2) > 1/2. Then,
there exists V satisfying HErg and R′ > 1 such that, for some constant C > 0, we
have :

(5.4) RT (V, k1, k2, R,R
′) ≥ CT−2v(k1,k2), ∀T > 1,

with

v(k1, k2) =

{
k2

2k2+1 , if k1 < k2/2,
k1

2k1+1/2 , if k1 ≥ k2/2.

Remark 4. (1) Theorem 3 tells us that it is impossible to find an estimator
with a rate of estimation, for the pointwise L2 risk, better than T−v(k1,k2)

on a the class of diffusions Z = (X,Y ) having a with Hk1,k2(R) stationary
measure. On the other hand the estimator introduced in Section 3 achieves
this rate, by Theorem 1, for each diffusion Z = (X,Y ) satisfying HReg
and HErg and with stationary measure in Hk1,k2(R).

(2) The upper bound given in Theorem 1 is not stated uniformly on the class
of all diffusions satisfying HReg and HErg and is not a minimax upper
bound. To get uniform upper bound, we would need that the mixing control
(2.4) holds uniformly on a class of diffusions whose coefficients satisfy uni-
form versions of the assumptions HReg, HErg. We are not aware of such
uniform mixing results, and hence, getting a uniform version of Theorem 1
is left for further research.

(3) The condition max(k1, k2/2) > 1/2 asserts that π is not too irregular with
respect to both variables x and y. Such assumption is weak, as the stationary
measure is typically smoother than the coefficients of the S.D.E. (see point
3 of Remark 5 below).

Theorem 4. Let k1, k2, R > 0 and assume y0 = 0 and max(k1, k2/3) > 2/3. Then,
there exists V satisfying HErg and R′ > 1 such that, for some constant C > 0, we
have :

(5.5) RT (V, k1, k2, R,R
′) ≥ CT−2v′(k1,k2), ∀T > 1,

with

v′(k1, k2) =

{
k2

2k2+2 , if k1 < k2/3,
k1

2k1+2/3 , if k1 ≥ k2/3.

Again, the previous result shows that the estimator introduced in Section 3 is
rate efficient, up to a log term, in the case where y0 = 0.

5.2. Explicit link between the drift and the stationary measure. Recall
that from Proposition 1, HReg and HErg are sufficient for the existence and
uniqueness of a stationary probability of the process solution of (5.1)–(5.2) (see
[17] also, or see Talay [15] for related conditions too). In this section, we will
characterize explicit relations between (V, β) and πV,β .

We need to introduce A?V,β the adjoint on L2(R2,dxdy) of the generator AV,β of

the process Z = (X,Y ) solution to (5.1)–(5.2).
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Assume that V is C2 and that (x, y) 7→ yβ(x, y) is of class C1. Then we define
for g : R2 → R any C2 function,

(5.6) A?V,βg(x, y) = 2σ2 ∂
2g

∂y2
(x, y)− y ∂g

∂x
(x, y)

+ [σ2yβ(x, y) + V ′(x)]
∂g

∂y
(x, y) + σ2 ∂(yβ)

∂y
(x, y)g(x, y).

It can be checked that (5.6) is the expression for the adjoint of the generator of the
process. If g : R2 → R is a probability density, of class C2, solution to A?V,βg = 0,
then it is an invariant density for the process. Hence, when the stationary distribu-
tion πV,β is unique, it can be computed as solution of the equation A?V,βπV,β = 0.

From the expression (5.6) it seems impossible to find explicit solutions g to the
equation A?V,βg = 0 for any V and β, as one need to solve explicitly some P.D.E.

Consequently, it seems impossible to write πV,β as an explicit expression of (V, β).
On the other hand, using (5.6) it can be seen that if one consider g and V as fixed

and β as the unknown variable in the equation A?V,βg = 0, then finding solution
in β is simpler as one has to deal with a P.D.E. involving only differentiation with
respect to y. As a consequence, it will be possible to express β as a function of the
stationary distribution π (for a fixed V ). This is the object of the next proposition.
We need to introduce some notations first.

For g ∈ C2 and g > 0, we define for all (x, y) ∈ R2,

(5.7) ξg(x, y) =
1

σ2g(x, y)

∫ y

0

[
z
∂g

∂x
(x, z)− V ′(x)

∂g

∂y
(x, z) + 2σ2 ∂

2g

∂y2
(x, z)

]
dz,

and

(5.8) βg(x, y) =



1

y
ξg(x, y), for y 6= 0,

lim
y→0

1

y
ξg(x, y) =

1

σ2g(x, 0)
[−V ′(x)

∂g

∂y
(x, 0) + 2σ2 ∂

2g

∂y2
(x, 0)], for y = 0.

Proposition 4. 1) Let V : R → R with regularity C2, g : R2 → R with
regularity C2 and g > 0.

Then, we have that (x, y) 7→ yβg(x, y) is a C1 function and

(5.9) A?V,βgg(x, y) = 0, ∀(x, y) ∈ R2.

Moreover, βg is the unique function solution to (5.9) such that (x, y) 7→
yβg(x, y) is C0,1.

2) Let V : R → R with regularity C2 and satisfying HErg and consider π :
R2 → R a probability density with regularity C2 and π > 0.

Assume that 1/R′ < βπ < R′ for some R′ > 1, where βπ is defined by
(5.8).

Then, π is the unique stationary probability of the S.D.E (5.1)–(5.2) with
damping coefficient β = βπ and potential V

Proof 1) For g : R2 → R with regularity C2 and g > 0 and β such that (x, y) 7→
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yβ(x, y) is of class C1, we can write the equation A?V,βg(x, y) = 0, recalling (5.6), as

(5.10)
∂(yβ)

∂y
(x, y) +

∂g
∂y (x, y)

g(x, y)
(yβ(x, y)) = ig(x, y)

with

ig(x, y) =
1

σ2g(x, y)

[
y
∂g

∂x
(x, y)− V ′(x)

∂g

∂y
(x, y)− 2σ2 ∂

2g

∂y2
(x, y)

]
.

Let us fix x ∈ R, we then interpret (5.10) as an ordinary differential equation
with differentiation variable y, where the unknown parameter is the function y 7→
ξ(x, y) := yβ(x, y) :

(5.11)
∂ξ

∂y
+

∂g
∂y

g
ξ = ig.

A solution of the homogeneous equation ∂ξ
∂y +

∂g
∂y

g ξ = 0 is ξ(x, y) = 1/g(x, y). Then,

by variation of the constant method, we deduce that the solution to (5.11), has the
expression,

ξ(x, y) =
1

g(x, y)

[
c(x) +

∫ y

0

g(x, z)ig(x, z)dz

]
,

where c(x) is an integration constant. As ξ(x, 0) = 0× β(x, 0) = 0, we deduce that
c(x) = 0, ∀x. Hence the solution ξ(x, y) = yβ(x, y) of (5.11) is given by (5.7) and
in turn, we deduce that β = βg given by (5.8) is the unique solution to (5.10) or
equivalently to (5.9).

2) Using Ito’s formula, one can check that any π solution to A?V,βπ = 0 is a

stationary measure for the process (X,Y ) given by (5.1)–(5.2). From the first part
of the proposition, π is solution to A?V,βππ = 0. By Proposition 1, the stationary
measure of the equation with damping coefficient βπ is unique, and is thus equal
to π. �

Remark 5. (1) Is is known that the S.D.E.

dXt = Ytdt

dYt = 2σdBt − [σ2εYt + V ′(Xt)]dt.

admits for the stationary measure π(x, y) = C exp
(
− ε2 [y

2

2 + V (x)]
)

(see

e.g. [5]). As expected, if we take π(x, y) = C exp
(
− ε2 [y

2

2 + V (x)]
)

and

compute βπ by the formula (5.8), we find βπ = ε.
(2) Proposition 4 shows how to compute the damping part of the drift in order

to get a diffusion with a prescribed stationary measure. However, it is not
clear that for a given π the corresponding βπ, computed with (5.7)–(5.8)
satisfies the sign condition βπ > 1/R′ insuring that the process is indeed
ergodic. This is why in part 2) of Proposition 4 we postulate βπ > 1/R′.
However, we will see in Section 5.3 that if π is a small deviation of π0 given

by π0(x, y) = C exp
(
− ε2 [y

2

2 + V (x)]
)

, then the corresponding β is a small

deviation of β0 = ε and thus is positive.
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(3) The equation (5.7) enables to relate the degree of smoothness of the drift co-
efficient and of the stationary measure, when the latter exists and is unique.
Indeed, from (5.7), we get that if π ∈ Ck1,k2 and V ∈ Ck1 , then the associ-
ated drift of the S.D.E. ξπ + V ′ is Ck1−1,k2−1.

5.3. Proof of Theorem 3. The proof of the lower bound is made by a comparison
between the minmax risk (5.3) and some Bayesian risk where the Bayesian prior is
supported on a set of two elements.

5.3.1. Construction of the prior. Let k1, k2 > 0 and R > 0. We set V0(x) = |x|2
and define

(5.12) π0(x, y) = cη exp(−η
2

[
y2

2
+ x2]), β0(x, y) = η, ξ0(x, y) = ηy,

where η > 0 and where cη is the constant that makes π0 a probability measure.
The function π0 is C∞ and it is possible to choose 0 < η < 1/2 small enough such
that

π0 ∈ Hk1,k2(R/2).

We know from Section 5.2 that π0 is the unique stationary measure for (X(0), Y (0))
solution of

dX
(0)
t = Y

(0)
t dt(5.13)

dY
(0)
t = 2σdBt − [σ2ηY

(0)
t + V ′0(X

(0)
t )]dt.(5.14)

Now, if we set R′ = 2/η > 1, we have, using β0 = η and recalling Definition 2,

(5.15) β0 ∈ Σk1,k2(V,R/2, R′/2).

Let h : R→ R be a C∞ function with support on [−1, 1] and such that

(5.16) h(0) = 1,

∫ 1

−1

h(z)dz = 0,

∫ 1

−1

zh(z)dz = 0.

We set for T > 0,

(5.17) π̃T (x, y) = π0(x, y) +
1

MT
h(
x− x0

h1(T )
)h(

y − y0

h2(T )
),

where MT , h1(T ), h2(T ) will be calibrated later and satisfy

MT
T→∞−−−−→∞, h1(T )

T→∞−−−−→ 0, h2(T )
T→∞−−−−→ 0.

From (5.16), we see that
∫
R2 π̃T (x, y)dxdy =

∫
R2 π0(x, y)dxdy = 1, and using π0 >

0, 1/MT → 0 and that h is compactly supported, we see that π̃T > 0 for T large
enough. Hence π̃T is a smooth probability measure for T large enough. We define

β̃T (x, y) = βπ̃T (x, y), ξ̃T (x, y) = yβ̃T (x, y) = ξπ̃T (x, y),

where we used the definitions (5.7) and (5.8).
Before proving Theorem 3, we need to state two lemmas. The first lemma shows

that the two functions β0 and β̃T only differ on some vanishing neighbourhood of
(x0, y0).
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Lemma 3. 1) Let us define the compact set of R2

KT = [x0 − h1(T ), x0 + h1(T )]× [y0 − h2(T ), y0 + h2(T )].

Then, for T large enough, we have for all (x, y) /∈ KT :

β0(x, y) = β̃T (x, y), ξ0(x, y) = ξ̃T (x, y).

2) For (x, y) ∈ KT , we have the control∣∣∣β0(x, y)− β̃T (x, y)
∣∣∣ ≤ C

MT

[
h2(T )

h1(T )
+

1

h2(T )

]
,(5.18) ∣∣∣ξ0(x, y)− ξ̃T (x, y)

∣∣∣ ≤ C

MT

[
h2(T )

h1(T )
+

1

h2(T )

]
,(5.19)

where C is some constant independent of T , h1(T ), h2(T ), MT .
3) We have∫

R2

∣∣∣ξ̃T (x, y)− ξ0(x, y)
∣∣∣2dxdy ≤ C

M2
T

[
h2(T )3

h1(T )
+
h1(T )

h2(T )

]
.

Proof 1) We first prove the ξ̃T and ξ0 coincides on Kc
T . With the definition (5.7)

in mind, we set for g of class C1,2:

I[g](x, y) =
1

σ2

∫ y

0

[
z
∂g

∂x
(x, z)− V ′(x)

∂g

∂y
(x, z) + 2σ2 ∂

2g

∂y2
(x, z)

]
dz

= I1[g](x, y) + I2[g](x, y) + I3[g](x, y),

where

I1[g](x, y) =
1

σ2

∫ y

0

z
∂g

∂x
(x, z)dz,(5.20)

I2[g](x, y) = −V
′(x)

σ2
[g(x, y)− g(x, 0)],(5.21)

I3[g](x, y) = 2[
∂g

∂y
(x, y)− ∂g

∂y
(x, 0)].(5.22)

Using this notation, we have

(5.23) ξ̃T =
1

π̃T
I[π̃T ], ξ0 =

1

π0
I[π0].

Let us note

(5.24) dT = π̃T − π0

and by (5.17), we have

(5.25) dT (x, y) =
1

MT
h(
x− x0

h1(T )
)h(

y − y0

h2(T )
).

Since g 7→ I[g] is a linear operator we deduce that

(5.26) ξ̃T =
1

π̃T
I[π̃T ] =

1

π̃T
I[π0] +

1

π̃T
I[dT ].

If (x, y) /∈ KT we have from (5.24), (5.25) and the fact that the support of h is

included in [−1, 1] that π̃T (x, y) = π0(x, y). Thus ξ̃T (x, y) = 1
π0(x,y)I[π0](x, y) +
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1
π0(x,y)I[dT ](x, y) = ξ0(x, y) + 1

π0(x,y)I[dT ](x, y). It follows that the equality of ξ̃T
and ξ0on Kc

T will a consequence of the following fact:

(5.27) for (x, y) /∈ KT , we have, I[dT ](x, y) = 0.

Let us check that (5.27) holds true. To this end, it is enough that Ii[dT ](x, y) = 0
for i = 1, 2, 3 and (x, y) /∈ KT . Since h is a smooth function with compact support
on [−1, 1], the function dT and its derivatives vanishes outside of the compact set
KT by (5.25). Recalling y0 6= 0, for T large enough and for all x ∈ R, the point
(x, 0) does not belong to KT , thus we deduce from (5.21)–(5.22) that I2[dT ](x, y) =
I3[dT ](x, y) = 0 when (x, y) /∈ KT . It remains to see that I1[dT ](x, y) = 0 for
(x, y) /∈ KT . We have by (5.20) and (5.25),

(5.28) I1[dT ](x, y) =
h′((x− x0)/h1(T ))

σ2MTh1(T )

∫ y

0

zh(
z − y0

h2(T )
)dz.

For (x, y) /∈ KT , a first possibility is x /∈ [x0 − h1(T ), x0 + h1(T )] that leads
to I1[dT ](x, y) = 0 as h′ vanishes outside [−1, 1] and thus h′((x − x0)/h1(T )) =
0. Otherwise, we must have y /∈ [y0 − h2(T ), y0 + h2(T )]. For simplicity of the
presentation, assume that y0 > 0. Then,∫ y

0

zh(
z − y0

h2(T )
)dz =

∫ y

0

zh(
z − y0

h2(T )
)1[y0−h2(T ),y0+h2(T )](z)dz,

=


0, if y ≤ y0 − h2(T ),∫ y0+h2(T )

y0−h2(T )

zh(
z − y0

h2(T )
)dz, if y ≥ y0 + h2(T ).

But
∫ y0+h2(T )

y0−h2(T )
zh( z−y0h2(T ) )dz = h2(T )

∫ 1

−1
(y0 + h2(T )z)h(z)dz = 0 using (5.16). This

yields to I1[dT ](x, y) = 0 for (x, y) /∈ KT and (5.27) is proved. It follows that

ξ̃(x, y) = ξ0(x, y) for (x, y) /∈ KT .

The equality between β̃T and β0 outside KT is a consequence of β̃T (x, y) =

ξ̃(x, y)/y, β0(x, y) = ξ0(x, y)/y for y 6= 0.
2) We will prove (5.19) first. From (5.23) and (5.26), we have

(5.29) ξ̃T − ξ0 =
π0 − π̃T
π̃T

ξ0 +
1

π̃T
I[dT ].

On the set KT , we see that π̃T = π0 + dT is lower bounded away from 0 and that
ξ0 is bounded. Using ‖dT ‖∞ ≤ C/MT we deduce that

∀(x, y) ∈ KT ,
∣∣∣ξ̃T (x, y)− ξ0(x, y)

∣∣∣ ≤ C[ 1

MT
+ I[dT ](x, y)

]
.

Now, |I[dT ](x, y)| ≤
∣∣I1[dT ](x, y)

∣∣ +
∣∣I2[dT ](x, y)

∣∣ +
∣∣I3[dT ](x, y)

∣∣. From (5.21)

and (5.25),
∣∣I2[dT ](x, y)

∣∣ ≤ C‖dT ‖∞ ≤ C/MT and by (5.22),
∣∣I3[dT ](x, y)

∣∣ ≤
C
∥∥∥∂dT∂y ∥∥∥∞ ≤ C/(h2(T )MT ). Using (5.28), we have

∣∣I1[dT ](x, y)
∣∣ ≤ ‖h′‖∞

σ2MTh1(T )

∫ y0+h2(T )

y0−h2(T )

|z|ds‖h‖∞ ≤ C
h2(T )

MTh1(T )
.

We deduce that,

∀(x, y) ∈ KT ,
∣∣∣ξ̃T (x, y)− ξ0(x, y)

∣∣∣ ≤ C

MT

[h2(T )

h1(T )
+ 1 +

1

h2(T )

]
,
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which gives (5.19) as h2(T )→ 0.
Eventually, (5.18) follows from the fact that, for T large enough, KT does not

intersect the axis y = 0 since y0 6= 0 and the relation between β̃T (x, y) = ξ̃(x, y)/y,
β0(x, y) = ξ0(x, y)/y.

3) We have,∫
R2

∣∣∣ξ̃T (x, y)− ξ0(x, y)
∣∣∣2dxdy =

∫
KT

∣∣∣ξ̃T (x, y)− ξ0(x, y)
∣∣∣2dxdy

and the third point of the lemma follows from (5.19) with the fact that the Lebesgue
measure of KT is proportional to h1(T )h2(T ). �

Lemma 4. Let ε > 0 and assume that for all T large,

(5.30) M−1
T ≤ εh1(T )k1 , M−1

T ≤ εh2(T )k2 ,

and
h2(T )

h1(T )
+

1

h2(T )
= o(MT ) as T →∞.

Then, if ε > 0 is small enough, we have

β̃T ∈ Σk1,k2(V0, R,R
′),

for all T sufficiently large.

Proof From Lemma 3, we know that β̃T = β0 outside KT and thus is constant
equal to η > 0 outside KT . For (x, y) ∈ KT , we have by (5.18) in Lemma 3,

β̃T (x, y) = β0(x, y)+O
(

1
MT

[
h2(T )
h1(T ) + 1

h2(T )

])
= η+o(1). where C is some constant.

Thus for T sufficiently large we have

∀(x, y), 1/R′ = η/2 < β̃T (x, y) < 1 < R′

where we recall that R′ = 2/η > 1. As V0 is C1 and satisfy HErg, we can apply the
second point of Proposition 4 and deduce that π̃T is the unique stationary measure
associated to β̃T . Recalling Definition 2, the lemma will be shown as soon as we
have,

π̃T ∈ Hk1,k2(R).

Let us check the Hölder condition with respect to the variable x, as the condition
with respect to the variable y is similar. For all (x, y) ∈ R2 and z ∈ [−1, 1],∣∣∣∣∂bk1cπ̃T∂xbk1c

(x+ z, y)− ∂bk1cπ̃T
∂xbk1c

(x, y)

∣∣∣∣ ≤ ∣∣∣∣∂bk1cπ0

∂xbk1c
(x+ z, y)− ∂bk1cπ0

∂xbk1c
(x, y)

∣∣∣∣+∣∣∣∣∂bk1cdT∂xbk1c
(x+ z, y)− ∂bk1cdT

∂xbk1c
(x, y)

∣∣∣∣
≤ R

2
|z|k1−bk1c +

∣∣∣∣∂bk1cdT∂xbk1c
(x+ z, y)− ∂bk1cdT

∂xbk1c
(x, y)

∣∣∣∣
≤ R

2
|z|k1−bk1c +

‖h‖∞
MTh1(T )bk1c

∣∣∣∣h(bk1c)
(
x+ z − x0

h1(T )

)
− h(bk1c)

(
x− x0

h1(T )

)∣∣∣∣



RATE OF ESTIMATION FOR STOCHASTIC DAMPING HAMILTONIAN SYSTEMS 25

where we have successively used π̃T = π0 +dT , π0 ∈ Hk1,k2(R/2), and the definition
(5.25) of dT . We now write∣∣∣∣h(bk1c)

(
x+ z − x0

h1(T )

)
− h(bk1c)

(
x− x0

h1(T )

)∣∣∣∣ ≤∣∣∣∣h(bk1c)
(
x+ z − x0

h1(T )

)
− h(bk1c)

(
x− x0

h1(T )

)∣∣∣∣k1−bk1c ∗ (2
∥∥∥h(bk1c)

∥∥∥
∞

)1−(k1−bk1c)

which is smaller than
∥∥h(bk1c+1)

∥∥k1−bk1c
∞

∣∣∣ z
h1(T )

∣∣∣k1−bk1c ∗ (2
∥∥h(bk1c)

∥∥
∞)1−(k1−bk1c).

It implies that∣∣∣∣∂bk1cπ̃T∂xbk1c
(x+ z, y)− ∂(bk1c)π̃T

∂xbk1c
(x, y)

∣∣∣∣ ≤ |z|k1−bk1c [R2 +
ch

MTh1(T )k1

]
where ch = ‖h‖∞

∥∥h(bk1c+1)
∥∥k1−bk1c
∞ (2

∥∥h(bk1c)
∥∥
∞)1−(k1−bk1c). If one uses (5.30)

with any ε < R
2ch

, we deduce∣∣∣∣∂bk1cπ̃T∂xbk1c
(x+ z, y)− ∂bk1cπ̃T

∂xbk1c
(x, y)

∣∣∣∣ ≤ R|z|k1−bk1c.
This is the required Hölder control on the derivatives of π̃T with respect to x. The
lemma follows. �

5.3.2. Proof of the lower bound (5.4) on the minimax risk. Let us recall some no-
tations. We denote PV,β the law of the stationary solution to (5.1)–(5.2) on the
canonical space C([0,∞),R2) and EV,β the corresponding expectation. We denote

by P(T )
V,β (resp. E(T )

V,β) the restrictions of this probability (resp. expectation) on

C([0, T ],R2).
Let π̃T (x0, y0) be any measurable function from C([0, T ],R2) to R. We will

estimate by below, for T large,

R(π̃T (x0, y0)) := sup
β∈Σk1,k2 (V0,R,R′)

E(T )
V0,β

[
(π̃T (x0, y0)− πV0,β(x0, y0))2

]
.

Let us assume that the following conditions hold true,

M−1
T ≤ εh1(T )k1 , M−1

T ≤ εh2(T )k2 ,(5.31)

h2(T )

h1(T )
+

1

h2(T )
= o(MT ) as T →∞,(5.32)

where ε is sufficiently small to get the conclusion of Lemma 4. We deduce that for T
large enough β̃T ∈ Σk1,k2(V0, R,R

′). From (5.15), we have β0 ∈ Σk1,k2(V0, R/2, R
′/2) ⊂

Σk1,k2(V0, R,R
′). It follows

R(π̃T (x0, y0)) ≥ 1

2
E(T )

V0,β̃T

[
(π̃T (x0, y0)− πV0,β̃T

(x0, y0))2
]

+

1

2
E(T )
V0,β0

[
(π̃T (x0, y0)− πV0,β0

(x0, y0))2
]
.
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Using Lemma 5 below, we know that Z(T ) =
dP(T )

V0,β̃T

dP(T )
V0,β0

exists, and we can write

R(π̃T (x0, y0)) ≥ 1

2
E(T )
V0,β0

[
(π̃T (x0, y0)− πV0,β̃T

(x0, y0))2Z(T )
]

+

1

2
E(T )
V0,β0

[
(π̃T (x0, y0)− πV0,β0

(x0, y0))2
]

≥ 1

2λ
E(T )
V0,β0

[
(π̃T (x0, y0)− πV0,β̃T

(x0, y0))21{Z(T )≥ 1
λ}

]
+

1

2
E(T )
V0,β0

[
(π̃T (x0, y0)− πV0,β0

(x0, y0))21{Z(T )≥ 1
λ}

]
=

1

2λ
E(T )
V0,β0

[
[(π̃T (x0, y0)− πV0,β̃T

(x0, y0))2 + (π̃T (x0, y0)− πV0,β0
(x0, y0))2]1{Z(T )≥ 1

λ}

]
for all λ > 1. As (π̃T (x0, y0) − πV0,β̃T

(x0, y0))2 + (π̃T (x0, y0) − πV0,β0(x0, y0))2 ≥(
πV0,β̃T

(x0,y0)−πV0,β0 (x0,y0)

2

)2

we deduce,

R(π̃T (x0, y0)) ≥ 1

8λ
(πV0,β̃T

(x0, y0)− πV0,β0(x0, y0))2PTV0,β0

(
Z(T ) ≥ 1

λ

)
.

Since πV0,β̃T
= π̃T , πV0,β0

= π0 and recalling (5.24), (5.25) with h(0) = 1 we deduce

πV0,β̃T
(x0, y0)− πV0,β0

(x0, y0) = dT (x0, y0) = 1/MT , and it follows,

R(π̃T (x0, y0)) ≥ 1

8λ

1

M2
T

PTV0,β0

(
ZT ≥

1

λ

)
.

From Lemma 5 below we know that infT≥0 PTV0,β0

(
ZT ≥ 1

λ

)
> 0 for some λ = λ0

as soon as

sup
T≥0

T

∫
R2

∣∣∣ξ̃T (x, y)− ξ0(x, y)
∣∣∣2dxdy <∞.

Using the third point of Lemma 3, the latter condition is implied by,

(5.33) sup
T

T

M2
T

[
h2(T )3

h1(T )
+
h1(T )

h2(T )

]
<∞.

We deduce that

(5.34) R(π̃T (x0, y0)) ≥ C

M2
T

,

for C > 0, if the conditions (5.31), (5.32) and (5.33) are satisfied. It remains to
find the larger choice for 1/M2

T , subject to the conditions (5.31), (5.32) and (5.33).
The optimal choice depends on k1 and k2.

Case 1, k1 < k2/2 :

We set h1(T ) = h2(T )2, and h2(T ) =
(

1
εMT

)1/k2
. The choice for h2(T ) saturates

one the conditions in (5.31). Let us see that the other condition holds also true .
Indeed 1/MT = εh2(T )k2 = εh1(T )k2/2 ≤ εh1(T )k1 for T large, as k1 < k2/2 and
h1(T )→ 0. Thus (5.31) is satisfied.

Plugging the values of h1(T ) and h2(T ) in (5.33), we obtain the constraint

T
M2
T

(
1

εMT

)1/k2
≤ C for some C > 0, that leads us to the choice MT = T 1/(2+1/k2) =

T
k2

2k2+1 . Then, the condition (5.32) is satisfied as k2 > 1, indeed h2(T )/h1(T ) +

1/h2(T ) = 2/h2(T ) = 2 (εMT )
1/k2 = o(MT ).
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Eventually, we deduce from the application of (5.34),

(5.35) R(π̃T (x0, y0)) ≥ C/M2
T = CT−

2k2
2k2+1 .

Case 2, k1 ≥ k2/2 :

We set h1(T ) = h2(T )2, and h1(T ) =
(

1
εMT

)1/k1
. As 1/MT = εh1(T )k1 =

h2(T )2k1 ≤ h2(T )k2 , we see that (5.31) is satisfied. Plugging these choices of

bandwidths in (5.33), we obtain the constraint T
M2
T

(
1

εMT

)1/(2k1)

≤ C for some

C > 0, that leads us to the choice MT = T 1/(2+1/(2k1)) = T
k1

2k1+1/2 . Then, the
condition (5.32) is satisfied as k1 > 1/2, indeed h2(T )/h1(T )+1/h2(T ) = 2/h2(T ) =

2 (εMT )
1/(2k1)

= o(MT ).
Eventually, we deduce from the application of (5.34),

(5.36) R(π̃T (x0, y0)) ≥ C/M2
T = CT

− 2k1
2k1+1/2 .

Gathering (5.35) and (5.36), we have shown Theorem 3. �

Lemma 5. 1) The measure P(T )

V0,β̃T
is absolutely continuous with respect to P(T )

V0,β0
.

2) Denote Z(T ) =
dP(T )

V0,β̃T

dP(T )
V0,β0

and assume that,

(5.37) sup
T≥0

T

∫
R2

∣∣∣ξ̃T (x, y)− ξ0(x, y)
∣∣∣2dxdy <∞.

Then, there exist λ0, C > 0 such that,

P(T )
V0,β0

(
Z(T ) ≥ 1

λ0

)
≥ C

for all T large enough.

Proof 1) The absolute continuity P(T )

V0,β̃T
� P(T )

V0,β0
and expression for the ratio

Z(T ) =
dP(T )

V0,β̃T

dP(T )
V0,β0

is obtained by Girsanov formula, changing the drift of the compo-

nent Y 0 in (5.14) to the drift appearing in the component Y (T ) of the stationary
solution of the S.D.E.

dX
(T )
t = Y

(T )
t dt

dY
(T )
t = 2σdBt − [σ2β̃T (Y

(T )
t )Y

(T )
t + V ′0(X

(T )
t )]dt.

By classical computations (see Theorem 1.12 in [10]), we have

(5.38) Z(T ) =
dP(T )

V0,β̃T

dP(T )
V0,β0

((Xs, Ys)0≤s≤T )

=
π̃T (X0, Y0)

π0(X0, Y0)
exp

{
− 1

4

∫ T

0

∆T (Xs, Ys)dYs

− 1

8σ2

∫ T

0

[σ2ξ0(Xs, Ys)+σ
2∆T (Xs, Ys)+V

′
0(Xs, Ys)]

2−[σ2ξ0(Xs, Ys)+V
′
0(Xs, Ys)]

2ds

}
,
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where ∆T (x, y) = ξ̃T (x, y) − ξ0(x, y) = yβ̃T (x, y) − yβ0(x, y). Let us stress that

the ratio π̃T (X0,Y0)
π0(X0,Y0) in the expression of Z(T ) comes from the fact that the two

diffusions (X(0), X(0))t and (X(T ), X(T ))t have different initial laws, since they are
both stationary, with the different stationary laws.

2) Let us control by below P(T )
V0,β0

(Z(T ) ≥ 1
λ ) for λ > 0. Recalling the definition

of π0 and π̃T (see (5.12), (5.17))), we see that π̃T /π0 is equal to 1 outside some
compact set (that can be chosen independent of T ), and converges uniformly to
1 on this compact set. Hence it is bounded away from zero if T is large, and
π̃T (X0,Y0)
π0(X0,Y0) ≥ C > 0 almost surely.

Hence, we will focus on the exponential term in (5.38), that we note E(T ) =

Z(T ) π0(X0,Y0)
π̃T (X0,Y0) . We know that under P(T )

V0,β0
the canonical process (X,Y )t has the

same law as (X(0), Y (0))t defined in (5.13)–(5.14). Hence, the law of log(E(T )) is
the law of the random variable

− 1

4

∫ T

0

∆T (X(0)
s , Y (0)

s )dY (0)
s

− 1

8σ2

∫ T

0

[σ2ξ0(X(0)
s , Y (0)

s ) + σ2∆T (X(0)
s , Y (0)

s ) + V ′0(X(0)
s , Y (0)

s )]2

− [σ2ξ0(X(0)
s , Y (0)

s ) + V ′0(X(0)
s , Y (0)

s )]2ds.

This random variable is equal, using (5.14) and after some computations, to

− σ

2

∫ T

0

∆T (X(0)
s , Y (0)

s )dBs −
σ2

8

∫ T

0

∆T (X(0)
s , Y (0)

s )2ds

:=−MT − IT .

Using the previous considerations we can write that, for T large enough,

P(T )
V0,β0

(Z(T ) ≥ 1

λ
) ≥ P(T )

V0,β0
(E(T ) ≥ 1

Cλ
)

= P(T )
V0,β0

(
− log E(T ) ≤ log(Cλ)

)
= 1− P(T )

V0,β0

(
− log E(T ) > log(Cλ)

)
≥ 1− P(T )

V0,β0

(∣∣∣log E(T )
∣∣∣ > log(Cλ)

)
= 1− P (|MT + IT | > log(Cλ))

where in the last line we have used that the law of log E(T ) under P(T )
V0,β0

is the law

of −MT − IT . Assume now that λ > 1/C, then using Markov inequality, we can
write

P (|MT + IT | > log(Cλ)) ≤ P
(
|MT | >

1

2
log(Cλ)

)
+ P

(
|IT | >

1

2
log(Cλ)

)
≤ 4

log(Cλ)2
E(M2

T ) +
2

log(Cλ)
E(|IT |)

Since E(M2
T ) = 2E(IT ) by Ito’s isometry, we see that the condition

(5.39) sup
T≥0

E(IT ) <∞
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is sufficient to get that there exists λ0 such that for any T large enough we have,

P(T )
V0,β0

(Z(T ) ≥ 1

λ0
) ≥ 1/2.

It remains to check that (5.39) holds true. Recalling that IT = σ2

8

∫ T
0

∆T (X
(0)
s , Y

(0)
s )2ds

and using that the process (X
(0)
t , Y

(0)
t )t≥0 is stationary, with invariant law π0 we

have

E(IT ) = T
σ2

8
E
[
∆T (X

(0)
0 , Y

(0)
0 )2

]
= T

σ2

8

∫
R2

∆T (x, y)2π0(x, y)dxdy.

Since π0 is a bounded function by (5.12), we deduce

E(IT ) ≤ CT
∫
R2

∆T (x, y)2dxdy.

Recalling that by definition ∆T = ξ̃T − ξ0 and using the assumption (5.37) in the
statement of the lemma, we deduce that (5.39) holds true and the lemma follows.
�

5.4. Proof of Theorem 4. The scheme of the proof is similar to the proof of
Theorem 3. However, one needs some modifications taking into account that y0 = 0.

5.4.1. Constuction of the prior. The prior is the same as in the proof of Theorem
3 except that we need to modify slightly the functions V0 and h. Let us give more
details. Let k1, k2 and R > 0. We choose V0 : R → R a C∞ function such that
V0(x) = x2 for |x| large and V ′0(x) = 0 on a neighbourhood of x0, and we define

π0(x, y) = cη exp(−η
2

[
y2

2
+ V0(x)]), β0(x, y) = η, ξ0(x, y) = ηy,

where 0 < η < 1/2 and where cη is the constant that make π0 a probability measure.
The function π0 is C∞ and it is possible to choose η small enough such that

π0 ∈ Hk1,k2(R/2).

We know from Section 5.2 that π0 is the unique stationary measure of the process
(X(0), Y (0)) solution to the stochastic differential equation (5.13)–(5.14). If we set
R′ = 2/η, then recalling Definition 2 we have β0 ∈ Σk1,k2(V,R/2, R′/2).

Let h : R→ R be a C∞ function with support on [−1, 1] such that,

(5.40) h(0) = 1, h′(0) = 0,

∫ 1

−1

h(z)dz = 0,

∫ 1

0

zh(z)dz =

∫ 0

−1

zh(z)dz = 0.

For T > 0 we define the perturbation of π0, as in Section 5.3.1 by

π̃T (x, y) = π0(x, y) +
1

MT
h(
x− x0

h1(T )
)h(

y

h2(T )
),

where MT → ∞, h1(T ) → 0, h2(T ) → 0 will be calibrated latter. Again π̃T is a
smooth probability measure for T large enough and we define

β̃T (x, y) = βπ̃T (x, y), ξ̃T (x, y) = yβ̃T (x, y) = ξπ̃T (x, y),

where we used the definitions (5.7) and (5.8).

The following lemma gives an assessment of the difference between β0 and β̃T .
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Lemma 6. 1) Recall the definition of the following compact set of R2

KT = [x0 − h1(T ), x0 + h1(T )]× [−h2(T ), h2(T )].

Then, for T large enough, we have for all (x, y) /∈ KT :

β0(x, y) = β̃T (x, y), ξ0(x, y) = ξ̃T (x, y).

2) For (x, y) ∈ KT , we have the control,∣∣∣β0(x, y)− β̃T (x, y)
∣∣∣ ≤ C

MT

[
h2(T )

h1(T )
+

1

h2(T )2

]
,(5.41) ∣∣∣ξ0(x, y)− ξ̃T (x, y)

∣∣∣ ≤ C

MT

[
h2(T )2

h1(T )
+

1

h2(T )

]
,(5.42)

where C is some constant independent of T , h1(T ), h2(T ), MT .
3) We have∫

R2

∣∣∣ξ̃T (x, y)− ξ0(x, y)
∣∣∣2dxdy ≤ C

M2
T

[
h2(T )5

h1(T )
+
h1(T )

h2(T )

]
.

Proof 1) We first prove that ξ̃T and ξ0 coincides on Kc
T . Using the notations and

arguments of Lemma 3, we know that ξ̃T (x, y) = ξ0(x, y), for all (x, y) /∈ KT is a

consequence of I[dT ](x, y) = 0 for (x, y) /∈ KT . We recall that I =
∑3
i=1 Ii is given

by (5.20)–(5.22) and dT (x, y) = π̃T (x, y)− π0(x, y) is given by :

(5.43) dT (x, y) =
1

MT
h(
x− x0

h1(T )
)h(

y

h2(T )
).

If (x, y) /∈ KT , the first situation is |x− x0| > h1(T ), then dT (x, z) = ∂dT
∂x (x, z) =

∂dT
∂y (x, z) = 0 for all z ∈ R and we deduce that Ii[dT ](x, y) = 0 for i = 1, 2, 3. The

second situation is |y| > h2(T ) and |x− x0| ≤ h1(T ). In that case I2[dT ](x, y) = 0
for T large enough, by using that from assumption on V0, V ′0(x) = 0 for x in some
neighbourhood of x0. From (5.22), we have I3[dT ](x, y) = 2

MTh2(T )h( x−x0

h1(T ) )[h′( y
h2(T ) )−

h′(0)] which is equal to 0 since |y| > h2(T ) and h′(0) = 0 by (5.40). In order to
check that I1[dT ](x, y) = 0, let us assume for simplicity that y > h2(T ), as the case
y < −h2(T ) is similar. Then,

I1[dT ](x, y) =
1

σ2h1(T )

∫ h2

0

zh(
z

h2(T )
)dzh′(

x− x0

h1(T )
)

=
h2(T )2

σ2h1(T )

∫ 1

0

zh(z)dzh′(
x− x0

h1(T )
) = 0

by (5.40). Eventually, this gives that I[dT ](x, y) = 0 for (x, y) /∈ KT , and thus

ξ̃T (x, y) = ξ0(x, y).

The equality between the functions β̃T and β0 on Kc
T is a consequence of

β̃T (x, y) = ξ̃(x, y)/y, β0(x, y) = ξ0(x, y)/y for y 6= 0.
2) We first prove (5.42). Recalling (5.29), the fact that ‖π0 − π̃‖∞ = ‖dT ‖∞ ≤

C/MT , and that π̃T is lower bounded on KT as soon as T is large enough, we
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deduce

∀(x, y) ∈ KT ,
∣∣∣ξ̃T (x, y)− ξ0(x, y)

∣∣∣ ≤ C[ |ξ0(x, y)|
MT

+ I[dT ](x, y)
]

≤ C
[ |y|
MT

+ I[dT ](x, y)
]
.(5.44)

Now, we use |I[dT ](x, y)| ≤
∣∣I1[dT ](x, y)

∣∣ +
∣∣I2[dT ](x, y)

∣∣ +
∣∣I3[dT ](x, y)

∣∣. From

(5.20), we have
∣∣I1[dT ](x, y)

∣∣ ≤ C
∣∣∫ y

0
zdz
∣∣∥∥∂dT

∂x

∥∥
∞ ≤ C|y|h2(T ) C

MTh1(T ) , for all

(x, y) ∈ KT = [x0 − h1(T ), x0 + h1(T )]× [−h2(T ), h2(T )], and where we have used
the expression (5.43) for dT . As x 7→ V ′(x) vanishes on a neighbourhood of x0,
we get that for T large enough I2[dT ](x, y) = 0 for (x, y) ∈ KT . From (5.22),

we deduce
∣∣I3[dT ](x, y)

∣∣ ≤ C|y|
∥∥∥∂2dT
∂y2

∥∥∥
∞
≤ C |y|

MTh2(T )2 . Collecting the controls on

Ii[dT ](x, y) for i = 1, 2, 3, with (5.44) we get

∀(x, y) ∈ KT ,
∣∣∣ξ̃T (x, y)− ξ0(x, y)

∣∣∣ ≤ C |y|
MT

[
1 +

h2(T )

h1(T )
+

1

h2(T )2

]
.

Using that for (x, y) ∈ KT , we have |y| ≤ h2(T ) and the last equation implies

(5.42). Moreover, from the fact that ξ̃T (x, y)− ξ0(x, y) = y[β̃T (x, y)− β0(x, y)], it
implies (5.41).

3) The third point of the lemma in a consequence of the first two points and the
fact that the Lebesgue measure of KT is proportional to h1(T )h2(T ). �

We now state a result analogous to Lemma 4, but in the situation y0 = 0.

Lemma 7. Let ε > 0 and assume that for all T large,

M−1
T ≤ εh1(T )k1 , M−1

T ≤ εh2(T )k2 ,

and

h2(T )

h1(T )
+

1

h2(T )2
= o(MT ) as T →∞.

Then, if ε > 0 is small enough, we have

β̃T ∈ Σk1,k2(V0, R,R
′),

for all T sufficiently large.

We omit the proof of Lemma 7 as it is similar to the proof of Lemma 4 (except
that we use (5.41) instead of (5.18)).

5.4.2. Proof of the lower bound (5.5) on the minimax risk. We omit most of the
details of the proof as it is very similar to the proof given in Section 5.3.2. Indeed,
by repeating the arguments of the proof given in Section 5.3.2, relying on Lemmas
6–7 instead of Lemmas 3–4, we deduce that,

(5.45) R(π̃T (x0, 0)) ≥ C

M2
T

,
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as soon as we can find ε > 0, h1(T ) → 0, h2(T ) → 0 and MT → ∞ satisfying the
conditions

M−1
T ≤ εh1(T )k1 , M−1

T ≤ εh2(T )k2 ,(5.46)

h2(T )

h1(T )
+

1

h2(T )2
= o(MT ) as T →∞,(5.47)

sup
T

T

M2
T

[
h2(T )5

h1(T )
+
h1(T )

h2(T )

]
<∞.(5.48)

Let us maximise 1/M2
T under these three constraints.

Case 1, k1 < k2/3 : we set h1(T ) = h2(T )3 and h2(T ) =
(

1
εMT

)1/k2
and the

conditions (5.46) hold true, using k1 < k2/3. With these choices, the condition

(5.48) reduces to the boundedness of T
M2
T
M
−2/k2
T , which is implied if we set MT =

T−
k2

2+2k2 . Next (5.47) holds true as h2(T )
h1(T ) + 1

h2(T )2 = O( 1
h2(T )2 ) = O(M

2/k2
T ) =

o(MT ) as k2 > 2. Hence, we can use (5.45) with MT = T−
1

2+2k2 , yielding to (5.5)
in the case k1 < k2/3.

Case 2, k1 ≥ k2/3 : we set h1(T ) = h2(T )3 and h1(T ) =
(

1
εMT

)1/k1
and the

conditions (5.46) follows. Now, the condition (5.48) reduces to the boundedness of
T
M2
T
M
−2/(3k1)
T , which yields to the choice MT = T

− k1
2k1+2/3 . Next (5.47) holds true

as h2(T )
h1(T ) + 1

h2(T )2 = O( 1
h2(T )2 ) = O(M

2/(3k1)
T ) = o(MT ) as k1 > 2/3. Eventually,

we deduce (5.5) from (5.45).

6. Appendix

In this section we prove the technical Lemmas 1–2 on the semi group of the
process.

6.1. Proof of Lemma 1. This proof is exactly the same as the one of Corollary
2.12 in [1], after remarking that the results of Theorem 2.1. in [9] can be applied
to S.D.E. with C1 coefficients. �

6.2. Proof of Lemma 2. We first prove that (4.4) holds for t = D. Let us denote

K̃ = {z ∈ R2 | d(z,K) ≤ 1} the compact set of points at distance less than 1 of K.

Since D < 1, we can apply Lemma 1 with the choice of compact set K̃, to get that

if f has support on K ⊂ K̃, and z ∈ K̃

|PD(f)(z)| ≤
∫
R2

|f(z′)|pD(z; z′)dz′

≤
∫
R2

|f(z′)|pGD(z; z′)dz′ +

∫
R2

|f(z′)|pUD(z; z′)dz′

≤ CG
D2

∫
R2

|f(z′)|dz′ + CU‖f‖∞e
−1/(CUD).(6.1)

Hence, it proves (4.4) for t = D and z ∈ K̃.

If z /∈ K̃, we let TK̃ = inf{t ≥ 0 | Zt ∈ K̃} the entrance time in the compact

set K̃, which is a stopping time. As the support of f is included in K, we have by
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continuity of the process, PD(f)(z) = Ez[f(ZD)] = Ez[f(ZD)1{T
K̃
≤t}]. Using the

strong Markov property at the time TK̃ we deduce,

(6.2) PD(f)(z) = Ez[PD−T
K̃

(f)(ZT
K̃

)1{T
K̃
≤D}].

By the continuity of the process, we remark that d(ZT
K̃
,K) = 1 on the set TK̃ ≤ D,

and D−TK̃ in (0, D) as z /∈ K̃. This lead us to consider for z′ ∈ K̃ with d(z′,K) = 1
and s ∈ (0, D) ⊂ (0, 1), an upper bound for

|Ps(f)(z′)| ≤
∫
R2

|f(w)|pGs (z′;w)dw +

∫
R2

|f(w)|pUs (z′;w)dw

≤
∫
R2

|f(w)|dwC̃G + CU‖f‖∞e
−1/(CUs),(6.3)

where C̃G = sup{pGs (z′, w) | s ∈ (0, 1), w ∈ K, z′ ∈ K̃ with d(z′,K) = 1}, and

where we used again Lemma 1. We can see that C̃G is finite. Indeed, if z′ =
(x′, y′) is such that d(z′,K) = 1 and w = (w1, w2) ∈ K, we have pGs (z′, w) ≤
CG
s2 exp(− 1

CG
[ (w2−y′)2

s +
(w1−x′−w2+y′

2 s)2

s3 ]). Using the inequality A2 ≤ (A−B)2(1+

1/s) + B2(1 + s) for any A, B, that entails (A − B)2 ≥ A2 s
s+1 − B

2s, we deduce

(w2−y′)2
s +

(w1−x′−w2+y′
2 s)2

s3 ≥ (w2−y′)2
s + (w1−x′)2

s3
s
s+1 −

(w2+y′)2

2s s. Using that s < 1

and that |w2| and |y′| are bounded by some constant depending on the compact K,

we deduce (w2−y′)2
s +

(w1−x′−w2+y′
2 s)2

s3 ≥ d(z′, w)2/(2s)− C̃K for some constant C̃K

depending on the compact K only. It gives pGs (z′, w) ≤ CG
s2 exp(−d(z′,w)2

CG2s ) exp( C̃KCG ).

As w ∈ K and d(w′,K) = 1, we deduce that pGs (z′, w) ≤ CG
s2 exp(− 1

CG2s ) exp( C̃KCG )

and thus C̃G is finite. Joining (6.3) and (6.2), we deduce that, for z /∈ K̃

|PD(f)(z)| ≤ C̃G‖f‖L1(R2) + CU‖f‖∞Ez[e
−1/(CU (D−T

K̃
))1{T

K̃
≤D}]

≤ C̃G‖f‖L1(R2) + CU‖f‖∞e
−1/(CUD).(6.4)

The control (4.4) for t = D is now a consequence of (6.1) and (6.4). Eventually, we
prove that (4.4) for t = D is sufficient to deduce the lemma. Let 0 < D < 1 and
t > D, then for z ∈ R2, we write

|Pt(f)(z)| ≤
∫
R2

pt−D(z, z′)|PD(f)(z′)|dz′

and using the estimate (4.4) for |PD(f)(z′)| gives the result for |Pt(f)(z)|. �
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