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GENERALIZED PUNCTUAL HILBERT SCHEMES AND g-COMPLEX STRUCTURES

In this paper we dene and analyze a generalization of the punctual Hilbert scheme of the plane which is associated to a simple complex Lie algebra g. Using this generalized punctual Hilbert scheme, we construct a new geometric structure on a surface, called a g-complex structure, generalizing complex structures and higher complex structures from [FT19]. We investigate the geometry of the g-complex structure and dene a moduli space which conjecturally is isomorphic to Hitchin's component of the character variety for the real split group

Introduction

The main motivation for this paper is to get a geometric approach to Hitchin components. These components were constructed by Nigel Hitchin in his famous paper [START_REF] Hitchin | Lie Groups and Teichmüller Space[END_REF] using analytic methods (Higgs bundles). Hitchin components are connected components of the character variety Hom(π 1 (Σ), G) G where Σ is a smooth surface, closed and without boundary and G is a adjoint group of a split real form of a complex simple Lie group.

For the group G = P SL 2 (R), we obtain Teichmüller space which is also the moduli space of complex structures on Σ. For G = P SL n (R), Vladimir Fock and the author dened in [START_REF] Fock | Higher complex structures[END_REF] a new geometric structure, called higher complex structure, whose moduli space is conjecturally isomorphic to Hitchin's component. The main ingredient to construct the higher complex structure is the punctual Hilbert scheme of the plane and its zero-ber.

In this article, we pursue these ideas by dening a g-complex structure, for a complex simple Lie algebra g, using a generalization of the punctual Hilbert scheme, which we call g-Hilbert scheme.

Our strategy to dene these new objects is twofold: on the one hand we use the various descriptions of the punctual Hilbert scheme, especially the matrix viewpoint, in order to generalize to an arbitrary g. On the other, we got inspiration from Hitchin's original paper [START_REF] Hitchin | Lie Groups and Teichmüller Space[END_REF] (section 5) where he starts with a principal nilpotent element and deforms it into an element of a principal slice, a generalized companion matrix.

We signal to the reader that our denition of the g-Hilbert scheme might get changed in the future, since as it is dened now, it is a non-Hausdor space. There should be a way to get a nice topological space, without loosing any of its properties. This possible modication will not aect the g-complex structure since only the regular part of the g-Hilbert scheme plays a role in its construction.

The outline of the paper is the following: In the rst section 1, we dene the generalized punctual Hilbert scheme, and some interesting subsets, for example the zero-ber, the regular and the cyclic part. We analyze the relations between these parts and dene a generalized Chow map. For classical g we also dene a map to a space of ideals and we analyze in detail the regular part of the g-Hilbert scheme. Finally, we study the topology of the g-Hilbert scheme and formulate some conjectures. In section 2, we construct the g-complex structure and show how it induces in a natural way a complex structure. We give an equivalent construction using ideals for classical g. In section 3, for g of classical type, we dene the notion of higher dieomorphism of type g, which gives a denition of a moduli space of g-complex structures. We then explore its properties which show its similarity to Hitchin's component. In particular we dene a spectral curve in the complexied cotangent bundle T * C Σ. In the nal part 4 we give a larger conjectural picture which would give the link to Hitchin components. We include two appendices: In appendix A, we review the main properties of the punctual Hilbert scheme of the plane. In the second appendix B, we gather all properties we need in the paper of regular elements in semisimple Lie algebras and give precise references.

Notations. Throughout the paper, Σ denotes a smooth surface, closed, without

The condition on the dimension of the common centralizer does not come from nowhere: Proposition B.9 of Appendix B shows that rk g is the minimal possible dimension for the centralizer of a commuting pair. Dene the commuting variety by Comm(g) = {(A, B) ∈ g 2 [A, B] = 0}. The g-Hilbert scheme is the set of all regular points of Comm(g) modulo G.

Remark. Ginzburg has dened the notion of a principal nilpotent pair in [START_REF] Ginzburg | Principal Nilpotent pairs in a semisimple Lie algebras I[END_REF],

which is more restrictive than ours. He calls "nil-pairs" elements of our g-Hilbert scheme, but he does not investigate them.

Let us give two examples of elements in the g-Hilbert scheme:

Example 1.2. Let A ∈ g be a regular element. Then by a theorem of Kostant (see B.6), its centralizer Z(A) is abelian. So for any B ∈ Z(A), we have Z(A) ⊂ Z(B), thus Z(A, B) = Z(A) ∩ Z(B) = Z(A) is of dimension rk g. Therefore [(A, B)] ∈

Hilb(g).

If A is principal nilpotent, then B ∈ Z(A) is also nilpotent. So [(A, B)] ∈ Hilb 0 (g), the zero-ber dened below.

If B = 0 then [(A, 0)] is in Hilb(g) i A is regular.

Example 1.3. Let (A, B) be a commuting pair of matrices in sl n admitting a cyclic vector, i.e. an element of the reduced Hilbert scheme. One way to get such a pair is the following construction: take a Young diagram (our convention is to put the origin in the upper left corner as for matrices) with n boxes (see gure 1). Associate to each box a vector of a basis of C n . Dene A to be the matrix which translates to the left, i.e. sends a vector to the vector in the box to the left or to 0 if there is none. Let B be the matrix which translates to the bottom. Then A and B clearly commute and are nilpotent. In proposition 1.5 below, we show that Z(A, B) is of minimal dimension in that case. Guided by these examples, we dene several subsets of the g-Hilbert scheme and explore their relations. First, we dene the zero-ber and the regular part which will both play a mayor role in the denition of a g-complex structure. We also dene the cyclic part, which is not intrinsically dened since it uses a representation of g. The cyclic part will be used to dene a map to a space of ideals, getting a generalization of the original description of the punctual Hilbert scheme.

Denition 1.4. The zero-ber of the g-Hilbert scheme is dened by Hilb 0 (g) = {[(A, B)] ∈ Hilb(g) A and B nilpotent}.

We dene the regular part of the g-Hilbert scheme, denoted by Hilb reg (g), to be those conjugacy classes [(A, B)] in which A or B is a regular element of g.

Finally for classical g, let ρ denote the natural representation of g (i.e. sl n ⊂ gl n , so n ⊂ gl n and sp 2n ⊂ gl 2n ). Dene the cyclic part of the g-Hilbert scheme by

Hilb cycl (g) = {(A, B) ∈ g 2 [A, B] = 0, (ρ(A), ρ(B)) admits a cyclic vector} G.

Remark. In the denition of the cyclic part, it would be more natural to consider the adjoint representation, but even in the case of sl 2 , this would give a map to a space of ideals, which is not the one of Hilb 2 red (C 2 ).

Instead of the standard representation, one could also use a non-trivial representation of minimal dimension, which for classical g is always the standard representation, apart from type D 3 and D 4 . For D 3 , the two spin representations are of minimal dimension, and they give an isomorphism between so 6 and sl 4 . For type D 4 , there are three representations of minimal dimension, the standard one and the two spin representations. All of them are linked by outer automorphisms coming from the symmetry of the Dynkin diagram. Thus the cyclic part of the g-Hilbert scheme is the same for all three representations.

Taking the representation of minimal dimension has the additional advantage to be well-dened for all g. We have not computed any example of an exceptional Lie algebra, so we do not know whether the use of the representation of minimal dimension is of interest.

The rst relation between the various Hilbert schemes is the inclusion of the cyclic part in the g-Hilbert scheme, which justies the name "cyclic part": Proposition 1.5. For g of classical type, we have Hilb cycl (g) ⊂ Hilb(g).

Proof. Recall ρ the natural representation of g on C m . For simplicity, we write A instead of ρ(A) here.

Let (A, B) ∈ g 2 admitting a cyclic vector v. Let C ∈ Z(A, B). Then C is a polynomial in A and B. Indeed, there is P ∈ C[x, y] such that Cv = P (A, B)v. Since C commutes with A and B, we then get for any polynomial

Q that CQ(A, B)v = Q(A, B)Cv = Q(A, B)P (A, B)v = P (A, B)Q(A, B)v, so C = P (A, B).
Therefore the common centralizer of (A, B) in gl m is C[A, B] I where I = {P ∈ C[x, y] P (A, B) = 0}. We know from Appendix A that I is of codimension m since (A, B) admits a cyclic vector. We have Z(A, B) = Z gl m (A, B) ∩ g. One can easily check that for g of type A n , a polynomial P (A, B) is in g i its constant term has a specic form, given by the other coecients (to ensure trace zero). For type B n , C n and D n , P (A, B) is in g i P is odd. One checks in each case that the dimension of Z(A, B) equals the rank of g.

In general, the inclusion of the cyclic Hilbert scheme is strict as shows the following example:

Example 1.6. Consider A = 0 1 0 0 0 0 0 0 0 and B = 0 0 1 0 0 0 0 0 0 in sl 3 . One easily checks that the pair (A, B) does not admit any cyclic vector, but that their common centralizer is of dimension 2. So [(A, B)] ∈ Hilb(sl 3 ) Hilb cycl (sl 3 ). This example will be used in subsection 1.9 to show that Hilb(g) is not Hausdor. In general, there is no link between regular and cyclic part. Example 1.3 shows that cyclic elements are not always regular and the following example shows that regular element are not always cyclic:

Example 1.7. For g of type D n , let f be a principal nilpotent element. Then one checks that [(f, 0)] ∈ Hilb(so 2n ) is regular but not cyclic (see also subsection 1.8).

Let us turn to the regular part. It turns out that if one xes a principal slice f +Z(e) in g (see Appendix B), there is a preferred representative for regular classes: Proposition 1.8. Any class [(A, B)] ∈ Hilb reg (g) where A is regular can uniquely be conjugated to (A ∈ f + Z(e), B ∈ Z(A)).

Proof. By the property of the principal slice, there is a unique conjugate of A which is in the principal slice f + Z(e). Denote still by A and B these conjugates. The only thing to show is that B is unique which is done in the next lemma.

Lemma 1.9.

If A ∈ g is regular, g ∈ G such that Ad g (A) = A and B ∈ Z(A), then Ad g (B) = B.
Proof. By Kostant's theorem B.6, we know that Z(A) is abelian. So the innitesimal version of the lemma is true. We conclude by the connectedness of the stabilizer of A, given by the next lemma.

Lemma 1.10. For a regular element A ∈ g, its stabilizer

Stab(A) = {g ∈ G Ad g (A) = A} in the adjoint group G is connected. Proof. Decompose A into Jordan form: A = A s +A n with A s semisimple, A n nilpotent and [A s , A n ] = 0. So A n ∈ Z(A s ).
The structure of the centralizer Z(A s ) is wellknown: it is a direct sum of a Cartan h containing A s with all root spaces g α where α is a root such that α(A s ) = 0. It is also known that Z(A s ) is reductive, so a direct sum Z(A s ) = c ⊕ g s where c is the center and g s is the semisimple part of Z(A s ). In particular the center c is included in h. So A n ∈ g s since A n is nilpotent. Denote by G s the Lie group with trivial center with Lie algebra g s .

We know that A is regular is equivalent to A n being regular nilpotent in g s (see [START_REF] Kostant | Lie group representations on polynomial rings[END_REF], proposition 0.4). We also know that the G-equivariant fundamental group of the orbit of A (which is the space of connected components of Stab(A)) is the same as the Stab(A s )-equivariant fundamental group of the Stab(A s )-orbit of A n (see Proposition 6.1.8. of [START_REF] Collingwood | Nilpotent Orbits in Semisimple Lie Algebras[END_REF] adapted to the adjoint group). In other words, the connected components of Stab G (A) are the same as the connected components of Stab Gs (A n ) since the Stab(A s )-orbit of A n is equal to the G s -orbit of A n .

So we are reduced to the principal nilpotent case. Using the classication of simple Lie algebras, one can check explicitly in Collingwood-McGovern's book [START_REF] Collingwood | Nilpotent Orbits in Semisimple Lie Algebras[END_REF] the tables 6.1.6. for classical g and the tables at the end of chapter 8 for exceptional g that the stabilizer of a principal nilpotent element is always connected.

Remark. It is surprising that the last lemma has never been stated (at least not to our knowledge). It would be interesting to nd a direct argument, without using the classication of simple Lie algebras.

Corollary 1.11. The regular zero-ber Hilb reg 0 (g) = Hilb reg (g)∩Hilb 0 (g) is an ane variety of dimension rk g.

Proof. This follows directly from the previous proposition using the fact that A ∈ f + Z(e) is nilpotent i A = f . So Hilb reg 0 (g) is described by Z(f ) which is a vector space of dimension rk g.

We know that both the regular and the cyclic part are in general strictly included in the g-Hilbert scheme. But they are dense subspaces: Proposition 1.12. The regular part Hilb reg (g) is dense in Hilb(g). For classical g, the cyclic part is also dense in Hilb(g).

Proof. By a theorem of Richardson (see B.8), the set of semisimple commuting pairs is dense in the commuting variety Comm(g). So the set of semisimple regular elements is also dense in Comm(g). Passing to the quotient by G, we get that the classes of semisimple regular pairs are dense in Hilb(g) since Hilb(g) ⊂ Comm(g) G and all semisimple regular pairs are in Hilb(g). Since the semisimple regular pairs are in the regular part, we get the density of Hilb reg (g) in Hilb(g).

For classical g, we have the same argument for the cyclic part since semisimple regular pairs are cyclic.

To end the section, we state an analogue of Kostant's theorem about abelian subalgebras of centralizers: Proposition 1.13. For any commuting pair (A, B) ∈ Comm(g), there is an abelian subspace of dimension rk g in the common centralizer Z(A, B).

Proof. The proof is completely analogous to Kostant's proof for theorem B.6: we use a limit argument. Let (A n , B n ) be a sequence of regular semisimple pairs converging to (A, B) (exists since regular semisimple pairs are dense). We know that Z(A n , B n ) is a rk g-dimensional abelian subspace of g. Since the Grassmannian Gr(rk g, dim g) is compact, there is a subsequence of Z(A n , B n ) which converges. It is easy to prove that the limit is included in Z(A, B) and is commutative.

Corollary 1.14. For [(A, B)] ∈ Hilb(g), the common centralizer Z(A, B) is abelian. Remark. For classical g, the corollary is easy for the cyclic part since

Z(A, B) = C[x, y] I ∩ g which is abelian since C[x, y] is.
In the following sections, we generalize as far as possible the other viewpoints of the usual Hilbert scheme (resolution of conguration space and idealic viewpoint) to our setting. 1.2. Chow map. We want to generalize the Chow map, which goes from Hilb n (C 2 ) to the conguration space (see A.2).

Fix a Cartan subalgebra h in g. Recall the Jordan decomposition in a semisimple Lie algebra: for x ∈ g, there is a unique pair (x s , x n ) with x = x s + x n , x s semisimple, x n nilpotent and [x s , x n ] = 0. For a semisimple element x, denote by x * a conjugate in the Cartan h (unique up to W -action).

The Chow map

ch ∶ Hilb(g) → h 2 W is dened by ch([(A, B)]) = [(A * s , B * s )]
where the brackets [.] always denotes the equivalence class. For semisimple regular pairs, this map corresponds to a simultaneous diagonalization.

Proposition 1.15. The Chow map ch is well-dened and continuous.

Proof. Since [A, B] = 0, we also have [A s , B s ] = 0 by a simultaneous Jordan decomposition in a faithful representation. Hence there is a conjugate of the pair (A s , B s ) which lies in h 2 . Since the adjoint action of G on g restricts to the W -action on h, the map ch is well-dened. The map x ↦ x * s is continuous which simply follows from the continuity of eigenvalues. Hence the Chow map is continuous as well.

Remark. The Jordan decomposition x ↦ (x s , x n ) is not continuous at all, since semisimple elements are dense in g for which we have x n = 0 andt for all nonsemisimple elements we have x n ≠ 0. But the map x ↦ x s is continuous.

This map permits to think of a generic element of Hilb(g) as a point in h 2 W , or via a representation of g on C m , as a set of m points in C 2 with a certain symmetry. For g = sl n for example, these are n points with barycenter 0.

Since Hilb(g) is even not Hausdor (see subsection 1.9), it cannot be a nonsingular variety. Nevertheless we conjecture the following: Conjecture 1.16. There is a modied version of Hilb(g), identifying some points, which is a smooth projective variety such that the Chow morphism is a resolution of singularities.

1.3. Idealic map. For g of classical type, we can associate to any regular element of the g-Hilbert scheme an ideal, which we call idealic map. In this subsection, g is a classical Lie algebra. Recall the natural representation ρ of g on C m (see denition 1.4). We will write A instead of ρ(A).

We wish to dene a map like in A.2: (1.1)

[(A, B)] ↦ I(A, B) = {P ∈ C[x, y] P (A, B) = 0}. If [(A, B)] ∈ Hilb cycl (g) is cyclic, this ideal is of codimension m.
But if the pair is not cyclic, there is no reason why the codimension should be m. In fact, there are examples for g of type D n where the codimension is smaller.

We wish the idealic map to be continuous, so I has to be of constant codimension. A strategy would be to dene the idealic map I on the cyclic part Hilb cycl (g) (which is dense by proposition 1.12) and to extend it by continuity. Unfortunately, the map can not be extended in a continuous way as shown in the following example:

Example 1.17. Take g of type D n . Denote by f a principal nilpotent element.

The pair [(f, 0)] ∈ Hilb(so 2n ) is not cyclic (seen in example 1.7). Using the matrix S dened in equation (1.4), we can approach (f, 0) by (f, tS) or by (f + tS T , 0) for t ∈ C × going to 0. These pairs are all cyclic. In the rst case, the ideal is I = ⟨x 2n-1 , xy, y 2 = t 2 x 2n-2 ⟩ which converges as t goes to 0 to ⟨x 2n-1 , xy, y 2 ⟩. In the second case, the ideal is I = ⟨x 2n + t 2 , y⟩ converging to ⟨x 2n , y⟩.

Because of this diculty, our strategy is to dene a space of ideals I g (C 2 ), then a map Hilb cycl (g) → I g (C 2 ) and to extent it over the regular part Hilb reg (g) (in a non-continuous way). The last step is only necessary for g of type D n since for the other classical types the regular part is included in the cyclic part as we will see in the sequel. The extension for D n will be dened ad hoc in subsection 1.8.

The previous section taught us to think of a generic element of Hilb(g) as a mtuple of points in C 2 invariant under the Weyl group W . For type A n this means that the barycenter of the points is the origin. For the other classical types, this means that the set of points is symmetric with respect to the origin. Thus the dening ideal of these points is also invariant under the action of W . Hence the following denition.

Denition 1.18. We dene the space of ideals of type g, denoted by I g (C 2 ), to be the set of ideals in C[x, y] which are of codimension m and W -invariant. For type B n , C n and D n this means that I is invariant under (x, y) ↦ (-x, -y).

The map I ∶ Hilb cycl (g) → I g (C 2 ) given by equation (1.1) above is well-dened. Indeed, the codimension is m by cyclicity and the ideal is W -invariant since this is a closed condition and it is true on the dense subset of regular semisimple pairs. Notice that I g (C 2 ) is the same for g of type C n or D n . But we will see that the idealic map I has not the same image in the two cases. We will also see that for g of type A n , B n or C n the idealic map is injective. But for type D n it is not (it is generically 2 to 1). This comes from the fact that the Weyl group acting on the generic 2n points, coming in n pairs (P i , P i+1 = -P i ), cannot exchange P 1 and P 2 while leaving all other points xed.

As for the usual Hilbert scheme, there is a direct link between the idealic map and the Chow morphism:

Proposition 1.19. The Chow map ch is the composition of the idealic map with the map which associates to an ideal its support, seen as an element of h 2 W :

ch([(A, B)]) = supp I(A, B).
Proof. The statement is true on regular semisimple pairs which is a dense subset.

For g of type A n , B n and C n , it follows by continuity of both the Chow map and the idealic map. For D n , our denition of the idealic map is to pick one of the various possible limits. In particular, the support of the ideal is still given by the Chow map.

1.4. Morphisms. In this subsection, we analyze the functorial behavior of the g-Hilbert scheme. In particular we construct two maps linked to the zero-ber of the Hilbert scheme of sl 2 which will lead in the construction of the moduli space Tg Σ of g-complex structures to maps from and to Teichmüller space.

Let ψ ∶ g 1 → g 2 be a morphism of Lie algebras. For [(A, B)] ∈ Hilb(g 1 ), we can associate [(ψ(A), ψ(B))] which is a well-dened map to Comm(g 2 ) G 2 . But there is no reason why dim Z(ψ(A), ψ(B)) should be minimal.

If we accept conjecture 1.16, that there is a modied version of the g-Hilbert scheme which is a resolution of h 2 W , we have a functorial behavior: Proposition 1.20. Assuming conjecture 1.16, there is an induced map Hilb(g 1 ) → Hilb(g 2 ).

Proof. Choose Cartan subalgebras h 1 and h

2 such that ψ(h 1 ) = h 2 . Consider the composition h 2 1 → h 2 2 → h 2
2 W 2 using ψ for the rst arrow. Since ψ induces a homomorphism between the Weyl groups, we can factor the composition to get a map

h 2 1 W 1 → h 2 2 W 2 . Finally, consider the composition Hilb(g 1 ) → h 2 1 W 1 → h 2 2 W 2
where the rst arrow comes from the minimal resolution. This is a continuous map and by the universal property of a minimal resolution, the map lifts to Hilb(g 1 ) →

Hilb(g 2 ).

Let us study this induced map in the case of the reduced Hilbert scheme

Hilb n red (C 2 ),
which is a minimal resolution (see appendix A). Take ψ ∶ sl m → sl n inducing a map Hilb m red (C 2 ) → Hilb n red (C 2 ). In the matrix viewpoint, this map is not given by [(ψ(A), ψ(B))]. Consider for example the map ψ ∶ sl 2 → sl 4 given on the standard generators (e, f, h) of sl 2 by

ψ(e) = 0 1 0 0 0 , ψ(f ) = 0 0 0 1 0 and ψ(h) = 1 0 0 -1 .
The element [(h, 0)] ∈ Hilb 2 red (C 2 ) corresponds to the ideal I = ⟨x 2 -1, y⟩ which through ψ goes to ⟨x 4x 2 , y⟩ which in turn gives the matrices [(M, 0)] where

M = 1 0 1 0 0 -1 . This is not [(ψ(h), ψ(0))].
It would be interesting to describe the induced map in the matrix viewpoint.

Despite this complication, there are two cases where a map between g-Hilbert schemes exists naturally.

The rst one is linked to the principal map ψ ∶ sl 2 → g which induces a map

(1.2)

Hilb(sl 2 ) → Hilb reg (g).
Indeed, any non-zero element of sl 2 is regular and cyclic. So if

[(A, B)] ∈ Hilb(sl 2 ) such that A is non-zero, there is by proposition 1.8 a unique representative (f +te, B ∈ Z(e + tf ))
where (e, f, h) denotes the standard generators of sl 2 and t ∈ C. So the image is

[(ψ(f ) + tψ(e), ψ(B))]. Since (ψ(e), ψ(f ), ψ(h))
is a principal sl 2 -triple (property of the principal map), we know that ψ(f ) + tψ(e) is in the principal slice, thus it is regular, so we land in Hilb reg (g).

The second one is a sort of inverse map to the rst one, but only on the level of the zero-ber. Given [(A, B)] ∈ Hilb reg 0 (g) where A is regular, there is a principal sl 2 -subalgebra S with A as nilpotent element. There is no reason why B should be in S but there is a "best approximation" in the following sens: Proposition 1.21. Let A be a principal nilpotent element and B ∈ Z(A). Then there is a unique µ 2 ∈ C such that Bµ 2 A is not regular.

Proof. The strategy of the proof is to use Proposition B.5 of the appendix which characterizes principal nilpotent elements x as those nilpotent elements whose values α(x) for all simple roots α are non-zero. So the proposition is equivalent to the statement that α 1 (B) = α 2 (B) for all simple roots α 1 and α 2 .

Let R be a root system in h * and denote by R + and R s the positive and respectively the simple roots. We can conjugate A to the element given by α(A) = 1 if α ∈ R s and α(A) = 0 otherwise.

For two simple roots α 1 and α 2 such that α 1 + α 2 ∈ R, using [A, B] = 0 we get:

0 = (α 1 + α 2 )([A, B]) = α 1 (A)α 2 (B) -α 2 (A)α 1 (B) = (α 2 -α 1 )(B).
Since g is simple, its Dynkin diagram is connected, so α 1 (B) = α 2 (B) for all simple roots. The common value µ 2 gives the unique complex number such that Bµ 2 A is not regular.

With this proposition, we can now dene a map

(1.3) µ ∶ Hilb reg 0 (g) → Hilb 0 (sl 2 )
given by µ([(A, B)]) = [(e, µ 2 e] or [(µ 2 e, e)] depending whether A or B is regular. An equivalent way to dene the map µ is the following: we can use the previous proposition 1.21 to show that the centralizer Z(A) of a principal nilpotent element is a direct product

Z(A) = Span(A) × Z(A) irreg
where Z(A) irreg denotes the irregular elements of Z(A). The map µ is nothing but the projection to the rst factor.

Remark. We can describe the regular part of the g-Hilbert scheme Hilb reg (g) as those classes [(A, B)] such that Span(A, B) intersects the regular part g reg nontrivially. This description is more symmetric since it does not prefer A or B. From proposition 1.21 we see that the intersection of Span(A, B) with g reg is the whole two-dimensional Span(A, B) from which we have to take out a line. Hence, the intersection has two components.

In the following subsections, we study the regular part Hilb reg (g) and its zero-ber case by case for classical g.

1.5. Case A n . Consider g = sl n (of type A n-1 ). We describe rst Hilb reg 0 (sl n ), its idealic map and then Hilb reg (sl n ) using proposition 1.8.

Fix the following principal nilpotent element (with 1 on the line just under the main diagonal):

f = ⎛ ⎜ ⎜ ⎜ ⎝ 1 ⋱ 1 ⎞ ⎟ ⎟ ⎟ ⎠ .
This element f is cyclic, so we know from 1.5 that the centralizer is given by polynomials:

Z(f ) = {µ 2 f + µ 3 f 2 + ... + µ n f n-1 }. So an element of Hilb reg 0 (sl n ) can be represented by (f, Q(f ))
where Q is a polynomial without constant term of degree at most n -1. The coecients µ i are called higher Beltrami coecients.

Since here we have Hilb reg 0 (sl n ) ⊂ Hilb cycl (sl n ) (already f is cyclic), the idealic map is given by

I(f, Q(f )) = {P ∈ C[x, y] P (f, Q(f )) = 0} = ⟨x n , -y + Q(x)⟩.
We recognize the big cell of the zero-ber of the punctual Hilbert scheme.

To describe the whole regular part Hilb reg (sl n ), we take the following principal slice given by companion matrices:

⎛ ⎜ ⎜ ⎜ ⎝ t n 1 ⋮ ⋱ t 2 1 ⎞ ⎟ ⎟ ⎟ ⎠ .
Let A be a matrix of companion type. Notice that the characteristic polynomial of a companion matrix is given by x n + t 2 x n-2 + ... + t n . Since A is still cyclic, its centralizer consists of polynomials in A with constant term determined by the other coecients (in order to ensure trace zero). Thus, a representative of Hilb reg (sl n ) is given by

(A, B = Q(A)).
The idealic map is thus given by

I(A, B) = ⟨x n + t 2 x n-2 + ... + t n , -y + µ 1 + µ 2 x + ... + µ n x n-1 ⟩
where µ 1 is given by µ 1 = ∑ n-1 k=2 k n t k µ k+1 . One recognizes the big cell of the reduced punctual Hilbert scheme. Notive that the idealic map is injective here. 1.6. Case B n . Consider g = so 2n+1 . Represent g on C 2n+1 using the metric given by g(e i , e j ) = δ i,n-j (where e i are standard vectors), i.e. g =

1 ⋰ 1 . A matrix A is in g i σ(A) = -A
where σ is the involution consisting in a reection along the anti-diagonal. In other words A ∈ g i A i,j = A n+1-j,n+1-i for all i, j.

We x the following principal nilpotent element:

f = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 ⋱ 1 -1 ⋱ -1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
This element is cyclic, so its centralizer by 1.5 consists of all odd polynomials:

Z(f ) = {µ 2 f + µ 4 f 3 + ... + µ 2n f 2n-1 }. A representative of Hilb reg 0 (g) is thus given by (f, Q(f ))
where Q is an odd polynomial of degree at most 2n -1. The coecients µ 2i are called the higher Beltrami coecients for B n .

A principal slice is given by

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ t 2n 1 ⋰ -t 2n ⋱ t 2 ⋰ 1 -t 2 -1 ⋱ -1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
Let A be a matrix of this type. Its characteristic polynomial is given by x 2n+1 -2t 2 x 2n-1 + 2t 4 x 2n-3 ± ... + (-1) n × 2t 2n x. So we can really think of the principal slice as a generalized companion matrix. Changing slightly t 2i we can get rid of signs and the factor 2 in the characteristic polynomial, which we will do in the sequel. The matrix A is still cyclic, so we have the inclusion Hilb reg (g) ⊂ Hilb cycl (g). A representative of Hilb reg (g) is given by (A, B = Q(A)) where Q is still an odd polynomial of degree at most 2n -1. The idealic map is then given by

I(A, B) = ⟨x 2n+1 + t 2 x 2n-1 + t 4 x 2n-3 + ... + t 2n x, -y + µ 2 x + µ 4 x 3 + ... + µ 2n x 2n-1 ⟩.
This ideal is invariant under the map (x, y) ↦ (-x, -y). This is not surprising since a generic element of the g-Hilbert scheme is a pair of two diagonal matrices which for so 2n+1 are of the form diag(x 1 , ..., x n , 0, -x n , ..., -x 1 ) and diag(y 1 , ..., y n , 0, -y n , ..., -y 1 ). So they can be thought of as 2n + 1 points in C 2 with one point being the origin and the other points being symmetric with respect to the origin. This set is invariant under the mapid, so is its dening ideal.

The 

f = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 ⋱ 1 -1 ⋱ -1 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
This element is cyclic, so its centralizer is given by odd polynomials:

Z(f ) = {µ 2 f + µ 4 f 3 + ... + µ 2n f 2n-1 }.
As for B n we call the µ 2i higher Beltrami coecients.

A principal slice is given by

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ t 2n 1 t 2n-2 ⋱ ⋱ 1 t 2 -1 ⋱ -1 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Let A be an element of this form. Its characteristic polynomial is given by x 2nt 2 x 2n-2 + t 4 x 2n-4 ± ... + (-1) n t 2n . By changing signs in the t 2i we can omit the minus signs in the characteristic polynomial.

The matrix A is still cyclic so a representative of Hilb reg (sp 2n ) is given by (A, B = Q(A)) where Q is an odd polynomial of degree at most 2n -1.

The idealic map is given by

I(A, B) = ⟨x 2n + t 2 x 2n-2 + t 4 x 2n-4 + ... + t 2n , -y + µ 2 x + µ 4 x 3 + ... + µ 2n x 2n-1 ⟩.
As for B n , this ideal is invariant underid which comes from the fact that two diagonal matrices in sp 2n give 2n points in C 2 which are symmetric with respect to the origin.

The last classical type, D n , has some surprises.

1.8. Case D n . Let g = so 2n . We use the same representation as for B n .

Fix the following principal nilpotent element:

f = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 ⋱ 1 1 0 -1 -1 ⋱ -1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
This elements is not cyclic, since f 2n-1 = 0. A direct computation shows that

Z(f ) = {µ 2 f + µ 4 f 3 + ... + µ 2n-2 f 2n-3 } ∪ {σ n S} where S is the matrix (1.4) S = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 -1 1 -1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
We can give an intrinsic denition of the matrix S: let R be a root system and v α be a root vector in g for the root α ∈ R. Choose a base α 1 , ..., α n of R (the simple roots) such that α n-1 and α n correspond to the two non-adjacent vertices in the Dynkin diagram of D n (see gure 2). We can choose f to be ∑ i v α i . The matrix S is then given by

S = v α 1 +...+α n-1 ± v α 1 +...+α n-2 +αn
where the sign depends on the choice of the root vectors. Let us compute the ideal in the cyclic case. One checks easily that f S = Sf and that S 2 = 2f 2n-2 . Hence for B = µ 2 f + ... + µ 2n-2 f 2n-2 + σ n S, we get AB = f B = µ 2 f 2 + ... + µ 2n-2 f 2n-2 and B 2 = (µ 2 f + ... + µ 2n-2 f 2n-3 ) 2 + 2σ 2 n f 2n-2 . Hence, the idealic map is given by

I(A, B) = ⟨x 2n-1 , xy = µ 2 x 2 + µ 4 x 4 + ... + µ 2n-2 x 2n-2 , y 2 = ν 2 x 2 + ν 4 x 4 + ... + ν 2n-2 x 2n-2 ⟩ where ν 2k = ∑ k i=1 µ 2i µ 2k+2-2i for k = 1, ..., n -2 and ν 2n-2 = 2σ 2 n + ∑ n-1 i=1 µ 2i µ 2n-2i . So we see that (µ 2 , µ 4 , ..., µ 2n-2 , ν 2n-2
) is a set of independent variables which we call higher Beltrami dierentials for D n . We will also call σ n a higher Beltrami dierential. If σ n = 0, we dene the idealic map to be the continuous extension of the above ideal which is still of the same form.

Remark. We have seen in example 1.17 that inside Hilb cycl (g) there is no welldened continuous extension of the idealic map. But inside the zero-ber, the limit is unique.

The Hilbert scheme is covered by charts indexed by partitions (see [START_REF] Haiman | t, q-Catal numbers and the Hilbert scheme[END_REF]). The chart in which I is written corresponds to the partition 2n = (2n -1) + 1 which we write also [2n -1, 1]. In fact, this is the highest partition of 2n of type D n (see [START_REF] Collingwood | Nilpotent Orbits in Semisimple Lie Algebras[END_REF], chapter 5 for special types of partitions).

A principal slice is given by

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ τ n -τ n t 2n-2 1 ⋰ -t 2n-2 ⋱ t 2 t 2 ⋰ 1 -t 2 τ n 1 0 -t 2 -τ n -1 -1 ⋱ -1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
.

Notice that the matrix for τ n is S T . Let A be a matrix of this type. Its characteristic polynomial is given by

χ(A) = x 2n -4t 2 x 2n-2 + 4t 4 x 2n-4 ± ... + (-1) n-1 × 4t 2n-2 x 2 + (-1) n τ 2 n .
By changing signs and factors in t 2i and τ n , we can omit signs and the factor 4 in the characteristic polynomial.

One can compute that the minimal polynomial of A is equal to the characteristic polynomial i τ n ≠ 0. So A is cyclic i τ n ≠ 0 (by proposition B.3). In that case, the centralizer consists of all odd polynomials in A of degree at most 2n -1. If τ n = 0, the centralizer is given by

Z(A) = {µ 2 A + µ 4 A 3 + ... + µ 2n-2 A 2n-3 } ∪ {σ n S t }
where the matrix S t is given by S t = S + t 2n-2 S T . The minimal polynomial is given by χ(x) x (which is a polynomial since τ n = 0).

The pair (A, B) is cyclic i either τ n ≠ 0 or τ n = 0 and σ n ≠ 0. In the rst case, the idealic map is given by

I = ⟨x 2n + t 2 x 2n-2 + t 4 x 2n-4 + ... + t 2n-2 x 2 + τ 2 n , -y + µ 2 x + µ 4 x 3 + ... + µ 2n x 2n-1 ⟩.
In the second case, we need three generators for the ideal, like for the zero-ber. We can compute that

I(A, B) = ⟨x 2n-1 =u 2 x + u 4 x 3 + ... + u 2n-2 x 2n-3 + uy, xy = v 0 + v 2 x 2 + ... + v 2n-2 x 2n-2 , y 2 = w 0 + w 2 x 2 + ... + w 2n-2 x 2n-2 ⟩
where the coordinates can be chosen to be (u 2 , u 4 , ..., u 2n-2 , u, v 2 , ..., v 2n-2 , w 2n-2 ), i.e. all the other variables are functions of these. For a unied way to get coordinates in Hilbert schemes, see subsection 3.5 or directly Haiman's paper [START_REF] Haiman | t, q-Catal numbers and the Hilbert scheme[END_REF].

The second ideal is in the chart corresponding to the partition [2n -1, 1] whereas the rst corresponds to the trivial partition [2n]. If u ≠ 0 we can write the second ideal in the rst chart, i.e. perform a coordinate change in the Hilbert scheme. The link between the coordinates is given by

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ τ 2 n = uv 0 µ 2n = 1 u µ 2k = -u 2k u for 1 ≤ k < n t 2k = u 2n-2k + uv 2n-2k for 1 ≤ k ≤ n -1 A regular pair [(A, B)]
which is not cyclic has both τ n and σ n equal to 0. In that case, we dene the idealic map I(A, B) to be the limit of I(A, B + tS t ) for t ∈ C goes to 0. So we stay in a chart associated to the partition [2n -1, 1].

Notice that the map from Hilb reg (g) to the space of ideals I g (C 2 ) is not injective, since for τ n and -τ n we get the same ideal. Even in the zero-ber the map is not injective, since σ n and -σ n give the same ideal. In addition, the map is not surjective neither. Indeed the ideal I = ⟨x 5y, xy, y 2 ⟩ ∈ I g (C 2 ) is not in the image since with the notations above we have v 0 = 0 and u ≠ 0. Changing the chart, we can compute that τ 2 n = uv 0 = 0. But for a matrix in Hilb reg (g) with τ n = 0 we get u = 0.

Remark. In the usual Hilbert scheme, there is only one cell of maximal dimension.

Comparing type C n and type D n , we see that the zero-ber of {I ideal of C[x, y] codim I = 2n, I invariant under -id} has two components of maximal dimension, those corresponding to the zero-bers Hilb reg 0 (sp 2n ) and Hilb reg 0 (so 2n ).

Remark. We notice the following analogue to Higgs bundles: the pair [(f, 0)] ∈ Hilb(so 2n ) corresponds to the Higgs eld given by Φ = f on the bundle

V = K 2 ⊕ K ⊕ K 0 ⊕ K -2 ⊕ K -1 ⊕ K 0 .
This Higgs bundle (V, Φ) is not stable, only polystable. This could explain why the idealic map can not be continuously extended to [(f, 0)], but the link between Higgs bundles and higher complex structures remains unclear, see also the perspective given in section 4.

1.9. Topology of g-Hilbert schemes. It is clear that Hilb(g) is a topological space, as a quotient of a subset of g 2 . In this section, we explore this topology of Hilb(g), especially for g = sl n . We then formulate some conjectures on its general structure.

For g = sl 2 , every non-zero element A ∈ g is regular and cyclic. Since the centralizer of the pair (0, 0) is all of sl 2 , this pair is not in Hilb(sl 2 ). Thus we have Hilb(sl 2 ) = Hilb cycl (sl 2 ) = Hilb 2 red (C 2 ) which is a smooth projective variety. For g = sl 3 , a detailed analysis, putting A into Jordan normal form, shows that (A, B) has minimal centralizer and is not cyclic i it is conjugated to a pair P 1 (b) ∶=

0 1 0 0 0 0 0 0 0 , 0 b 1 0 0 0 0 0 0 . So Hilb(sl 3 ) = Hilb 3 red (C 2 ) ∪ {P 1 (b) b ∈ C}.
At rst sight, the topology seems to be a smooth variety (the reduced Hilbert scheme) and a complex line. But a closer look shows that each point of the extra line is innitesimally close to a point in the variety, meaning that these two points cannot be separated by open sets, infringing the Hausdor property. which lies in a neighborhood of the second pairP 2 (b). Since the idealic map is continuous and for sl n injective on the cyclic part, there cannot be another point of the cyclic part which is innitesimally close to the rst pair P 1 (b). Finally, two elements of the extra line can be separated by open sets. Hence, the space Hilb(sl 3 ) is obtained from a smooth variety by adding "double points" (here in the sens of innitesimally close points) along a complex line.

Since the idealic map is injective on the cyclic part Hilb cycl (sl n ), the same analysis holds for sl n , i.e. Hilb(sl n ) is obtained from a smooth variety (the reduced Hilbert scheme) by adding double points.

There should exist a procedure, like a GIT quotient, giving a modied g-Hilbert scheme which is a Hausdor space. The GIT quotient does not apply here since {(A, B) ∈ g 2 [A, B] = 0, dim Z(A, B) = rk g} is not a closed variety. In the language of GIT quotients, the pairs P 1 and P 2 above are both semistable, but there is no polystable element in their closure.

To give a feeling on what happens, consider the action of R >0 on R 2 {(0, 0)} given by λ.(x 1 , x 2 ) = (λx 1 , λ -1 x 2 ). The orbits are drawn in gure 3. The quotient space is a set of two lines In the gure, the dashed lines indicate innitesimally close points. From the GIT perspective, all points are semistable (take the constant function 1), the four halfaxis are semistable and all other orbits are stable. The orbits of the half-axis are closed in R 2 {(0, 0)} so they should be polystable, but in the quotient the points are still innitesimally close. Conjecture 1.22. There is a generalized GIT quotient procedure identifying innitesimally close points in Hilb(g), giving a modied g-Hilbert scheme which is Hausdor.

In particular one should nd the reduced Hilbert scheme for g = sl n . See also conjecture 1.16 for a modied g-Hilbert scheme as a resolution of h 2 W .

Assume a smooth version of the g-Hilbert scheme exists. In the sl n -case the reduced Hilbert scheme is covered by charts parametrized by partitions of n, which also parametrizes nilpotent orbits of sl n . For g of classical type, the nilpotent orbits are parametrized by special partitions (see [START_REF] Collingwood | Nilpotent Orbits in Semisimple Lie Algebras[END_REF], chapter 5). In general, we conjecture the following for the zero-ber of the g-Hilbert scheme:

Conjecture 1.23. The smooth version of Hilb 0 (g) is covered by charts parametrized by nilpotent orbits and all these charts are necessary to cover Hilb 0 (g). In particular for classical g, we conjecture that the modied version of Hilb 0 (g) is isomorphic to the space of ideals of C[x, y] which are of codimension m, W -invariant, supported at 0 and which lie in a chart associated to a partition of type g.

In particular, for every nilpotent A ∈ g, there has to be an element in Hilb(g) containing the conjugacy class of A. More precisely, we conjecture: Conjecture 1.24. Let g be of rank at least 3. For a nilpotent element A ∈ g, there is B ∈ Z(A) nilpotent such that dim Z(A, B) = rk g, i.e. [(A, B)] ∈ Hilb 0 (g). We conjecture that this should be true for a generic element B ∈ Z(A).

For sl n the conjecture is true: we can associate to a nilpotent element A a partition ν. To the transpose partition ν T (using the transpose of the Young diagram) correspond a nilpotent element B which satises the requirements since (A, B) is cyclic. An equivalent way is to use example 1.3 to produce B.

For g = sp 4 of type C 2 , there is the following counterexample. That is why we formulate the conjecture only for Lie algebras of rank at least 3. Take the nilpotent element

A = 0 id 0 0 .

Its centralizer is given by

Z(A) = ⎛ ⎜ ⎜ ⎜ ⎝ 0 b x y -b 0 y z 0 0 0 b 0 0 -b 0 ⎞ ⎟ ⎟ ⎟ ⎠ .
An element B of the centralizer is nilpotent i b = 0. In that case the common centralizer Z(A, B) is at least of dimension 3, so [(A, B)] is not in Hilb 0 (sp 4 ).

In general, we cannot hope to nd B ∈ Z(A) such that (A, B) is cyclic. For example take g = sp 16 and A a nilpotent element corresponding to the partition [7, 5, 3, 1] of 16. If there is B ∈ Z(A) nilpotent and such that (A, B) is cyclic, there would be an ideal I of codimension 16 whose associated matrices are A and B (see example 1.3). Using A, we see that I has to be of the form

I = ⟨x 4 , x 3 y, x 2 y 3 , xy 5 , y 7 = Q(x, y)⟩
where Q is a polynomial with monomial terms in the Young diagram D. A partition of type C n has all odd parts with even multiplicity and one can check that for all choices of the polynomial Q, the ideal I is never in a chart with all odd parts with even multiplicity.

g-complex structures

Using the g-Hilbert scheme we are able to construct a new geometric structure on a smooth surface, generalizing complex structures and higher complex structures. The construction and methods are inspired by those used for higher complex structures in [START_REF] Fock | Higher complex structures[END_REF]. We recall the ideas of constructing higher complex structures before dening the g-complex structure.

2.1. Complex and higher complex structures. A complex structure on a surface Σ is completely encoded in the Beltrami dierential.

This goes as follows: For surfaces, a complex structure is equivalent to an almost complex structure, i.e. an endomorphism J(z) in T * z Σ such that J 2 =id and varying smoothly with z ∈ Σ (J imitates the multiplication by i). We can diagonalize J by complexifying the cotangent bundle. We get a decomposition into eigenspaces T * C Σ = T * (1,0) Σ⊕T * (0,1) Σ. In addition T * (1,0) Σ is the complex conjugate of T * (0,1) Σ, so one determines the other. Hence, the complex structure is completely encoded in a direction in each complexied cotangent space, i.e. in a section s of P(T * C Σ) which is nowhere real (meaning s and s are linear independent). The projectivization can also be obtained by the zero-ber of the punctual Hilbert scheme of length 2: Hilb 2 0 (C 2 ) ≅ P(C 2 ). In coordinates, we can write T * (0,1) z Σ = Span(pµ 2 (z)p) where p and p are linear coordinates on T * C Σ. The coecient µ 2 (z) is the Beltrami dierential. The condition that the section s is nowhere real translates to µ 2 (z)μ 2 (z) ≠ 1 for all z ∈ Σ.

Generalizing this idea, we dened in [START_REF] Fock | Higher complex structures[END_REF] the higher complex structure as a section I of Hilb n 0 (T * C Σ) satisfying I(z) ⊕ Ī(z) = ⟨p, p⟩ at every point z ∈ Σ. Here p and p are linear coordinates on T * C Σ. The condition on I generalizes the condition above of a nowhere real section. We call it the reality constraint.

We use exclusively the idealic viewpoint of the punctual Hilbert scheme in this denition. Since the g-Hilbert scheme uses the matrix viewpoint, we have to rewrite the denition of higher complex structure in that picture. So we replace the ideal I(z) by a conjugacy class of commuting matrices A(z) and B(z). We can put them together in a gauge class of a sl n -valued 1-form Φ(z) = A(a)dz + B(z)dz. The commutativity of A and B translates to the fact that Φ satises Φ ∧ Φ = 0.

It is not surprising to use 1-forms since a generic point of the Hilbert scheme gives n distinct points in each ber T * C z Σ which can be put together to n sections of T * C Σ, i.e. a n-tuple of complex 1-forms. Going to the zero-ber of the Hilbert scheme means that all these 1-forms are collapsed to the zero-section Σ ⊂ T * C Σ.

2.2. Denition. We are now ready to give the denition of a g-complex structure, but one diculty stays: we have to incorporate the reality constraint in the matrix viewpoint. Recall from 1.4 equation (1.3) the map

µ 2 ∶ Hilb reg 0 (g) → C associating to [(A, B)] the unique µ 2 ∈ C such that B -µ 2 A is irregular.
Denition 2.1. A g-complex structure is a gauge class of elements

A(z)dz + B(z)dz ∈ Ω 1 (Σ, g) = Ω 1 (Σ, C) ⊗ g such that [(A(z), B(z))] ∈ Hilb reg 0 (g)
and µ 2 (z)μ 2 (z) ≠ 1 for all z ∈ Σ.

Notice that for complex structures, the map µ 2 (z) is nothing but the Beltrami dierential. So our reality constraint coincides with the one for complex structures. In particular, for g = sl 2 , we get a usual complex structure. In the general case, we have the following: Proposition 2.2. A g-complex structure induces a complex structure on Σ.

Proof. Recall from 1.4 equation (1.3) the map µ ∶ Hilb reg 0 (g) → Hilb 0 (sl 2 ) given by µ([(A, B)]) = [(e, µ 2 e)] or [(µ 2 e, e)] depending on whether A or B is regular. Since a sl 2 -complex structure is a complex structure, the map µ induces a map from g-complex structures to complex structures. Remark. To dene the map µ in 1.4, we really need g to be simple. Thus, we only get a unique complex structure out of a g-complex structure for g simple.

In the denition of a higher complex structure in [START_REF] Fock | Higher complex structures[END_REF], we use the zero-ber Hilb n 0 (C 2 ), without imposing to be in the regular part. The fact that we actually are in the regular part follows from the reality constraint I ⊕ Ī = ⟨p, p⟩. The same can be obtained for g of classical type, where we can reformulate the denition of g-complex structures in a nicer way using the idealic map.

Idealic viewpoint.

Recall the space of ideals I g (C 2 ) constructed in 1.3. Denote by I g,0 (C 2 ) the set of those ideals of I g (C 2 ) which are supported on the origin (the zero-ber). We can rewrite the denition of a g-complex structure in the following way: Denition 2.3. For classical g, a g-complex structure is a section I of I g,0 (T * C Σ) such that

I(z) ⊕ Ī(z) = ⟨p, p⟩ if g of type A n , B n , C n ⟨p, p⟩ 2 if g of type D n .
Notice that the condition on the ideals does not depend on coordinates since ⟨p, p⟩ is the maximal ideal associated to the origin.

We prove the equivalence of both denitions. For that recall that to an ideal I one can associate a class of commuting matrices [(A, B)] (see A.2).

Proposition 2.4. For classical g, the condition on I ⊕ Ī given in denition 2.3 is equivalent to [(A(z), B(z))] being in the regular part Hilb reg 0 (g) and having µ 2 μ2 ≠ 1, i.e. the condition in denition 2.1. Proof. The backwards direction is a direct computation using the preferred representatives for Hilb reg 0 (g) from proposition 1.8. So we concentrate on the direct implication.

Case A n . The case g of type A n has been treated in [START_REF] Fock | Higher complex structures[END_REF], appendix 5.1. The idea of the proof is similar to the case D n below.

Case B n . For g of type B n the standard representation gives so 2n+1 ↪ sl 2n+1 . By virtue of the case A n , we know that I ⊕ Ī = ⟨p, p⟩ implies µ 2 μ2 ≠ 1 and (A, B) regular for sl 2n+1 , i.e. I(A, B) = ⟨p 2n+1 , -p + µ 2 p + µ 3 p 2 + ... + µ 2n p 2n ⟩.

Since we know that in case B n , the ideal I is invariant under the mapid, we get µ 2k+1 = 0 for all k = 1, ..., n -1. So I corresponds to a pair (f, Q(f )) for Q an odd polynomial of degree at most 2n -1, which is precisely a representative of Hilb reg 0 (so 2n+1 ) (see subsection 1.6). Case C n . This case is exactly analogous to B n via the injection sp 2n ↪ sl 2n . Case D n . We imitate the strategy of the proof for case A n in [FT19] appendix 5.1 with only dierence that we have to go further in the analysis, needing some computations. The main argument is an iteration process which always ends since p k pl = 0 mod I for k + l ≥ 2n.

Put I 1 = (I mod ⟨p, p⟩ 2 ), i.e. the set of all terms of degree at most 1 appearing in I. If I 1 is of dimension 2, then I = ⟨p, p⟩ since both p and p can be expressed by higher terms which by iteration become 0. If I 1 is of dimension 1, then we have a relation of the form p = µ 2 p + p 2 R(p, p) where R is a polynomial, which gives p as a polynomial in p by iteration. We can then explicitly check that I ⊕ Ī is either ⟨p, p⟩ or ⟨p = p, pp, p 2 ⟩. Hence I 1 = {0}.

Put I 2 = (I mod ⟨p, p⟩ 3 ). We have I 2 ⊕ Ī2 = (I ⊕ Ī) 2 = ⟨p 2 , pp, p2 ⟩ by assumption on I. If I 2 is of dimension 3, then all of p 2 , pp and p2 can be expressed by higher terms. By iteration, we get

I = ⟨p 2 , pp, p2 ⟩ which is not of type D n . If dim I 2 ≤ 1, then we also have dim Ī2 ≤ 1, so 2 ≥ dim I 2 + dim Ī2 = dim⟨p 2 , pp, p2 ⟩ 2 = 3, a contradiction. Hence dim I 2 = 2.
There is a term containing pp in I 2 since if not, no such term would neither exist in Ī2 , so neither in I 2 ⊕ Ī2 = ⟨p 2 , pp, p2 ⟩, a contradiction. Without loss of generality, we can assume that there is another term containing p2 (if not change the role of I and Ī).

So there exist α, β, γ, δ ∈ C such that

p2 = αp 2 + βpp mod I 2 pp = γp 2 + δ p2 mod I 2
If βγ ≠ 1, we can simplify by substitution one into the other to

p2 = α ′ p 2 mod I 2 pp = γ ′ p 2 mod I 2
If βγ = 1, we have p 2 ∈ I 2 , so pp = δ p2 mod I 2 , so changing I to Ī we are in the previous situation.

Iterating the substitution process we get that p2 and pp are polynomials in p. Using the invariance of I underid, we see that these are polynomials in p 2 , i.e. even polynomials. So the most generic ideal is given by

I = ⟨p 2n-1 , pp = µ 2 p 2 + µ 4 p 4 + ... + µ 2n-2 p 2n-2 , p2 = ν 2 p 2 + ν 4 p 4 + ... + ν 2n-2 p 2n-2 ⟩
which corresponds to a regular element of Hilb reg 0 (so 2n ). One checks that I ⊕ Ī with I of the form above equals ⟨p, p⟩ 2 i µ 2 μ2 ≠ 1.

To end this section, we determine the geometric nature of the various higher Beltrami coecients. Since p and p are linear coordinates on T * C Σ, we can identify

p = ∂ ∂z = ∂ and p = ∂ ∂ z = ∂.
Denote by K the canonical bundle, i.e. K = T * (1,0) Σ, and by Γ(B) the space of sections of a bundle B.

Analyzing the behavior under a coordinate change z ↦ w(z, z) analogous to the computation in [START_REF] Fock | Higher complex structures[END_REF] section 3.1., we get (2.1)

µ i ∈ Γ(K 1-i ⊗ K) and ν 2i ∈ Γ(K -2i ⊗ K2 ). Since σ 2
n has the same nature as ν 2n-2 , we get σ n ∈ Γ(K 1-n ⊗ K).

Moduli space

In this section, we dene the moduli space of g-complex structures and explore its properties. In the whole section g is of classical type. We rst have to dene an equivalence relation on g-complex structures, which is accomplished by the notion of higher dieomorphisms.

3.1. Higher dieomorphisms. In order to get a nite-dimensional moduli space, it is not sucient to quotient by the dieomorphisms of Σ isotopic to the identity, as for Teichmüller space. The reason is that the g-complex structure is non-linear in the cotangent spaces T * C z Σ. Dieomorphisms act linearly on the cotangent space, so it cannot act much on g-complex structures.

For higher complex structures, in [FT19] section 3.2 we dened higher dieomorphisms to be Hamiltonian dieomorphisms of T * Σ preserving the zero-section Σ ⊂ T * Σ. This gives the higher dieomorphisms for type A n . We generalize this idea to other classical g. Recall the standard representation of g on C m (i.e. sl n ⊂ gl n , so n ⊂ gl n and sp 2n ⊂ gl 2n ).

As stated several times, one should think of a g-complex structure as a m-tuple of 1-forms with some symmetry, which collapses all to the zero-section. The space of higher dieomorphisms which we are looking for has to preserve this symmetry. For example for sl n , we have n sections whose barycenter at every ber is the origin, i.e. their sum gives the zero-section. That is why we have to impose that the Hamiltonian dieomorphisms of T * Σ have to preserve the zero-section.

For g of type B n , C n or D n , the set of m points is symmetric with respect to the origin. Thus we dene: Denition 3.1. A higher dieomorphism of type B n , C n or D n is a Hamiltonian dieomorphism of T * Σ invariant under the map (z, p, p) ↦ (z, -p, -p). We denote by Symp(g, Σ) the space of higher dieomorphisms of type g.

In coordinates a Hamiltonian dieomorphism is generated by a function H(z, z, p, p) which can be Taylor developed to ∑ k,l w k,l (z, z)p k pl . The associated ow preserves the zero-section i w 0,0 = 0. It is invariant underid i it has only odd terms, i.e. w k,l = 0 for all k + l even.

3.2. Action on g-complex structures. We can now analyze how higher dieomorphisms act on g-complex structures.

Intuitively, Hamiltonian dieomorphisms of T * Σ act on the space of 1-forms, so also on m-tuples of them. The invariance condition implies that the symmetry of the m 1-forms is preserved. This action persists at the limit when the m-tuple of 1-forms is collapsed to the zero-section.

To compute the action, it is better to work in the idealic viewpoint. We imitate the steps from [FT19] section 3.2.

Let I be an ideal representing a g-complex structure. Write I with generators ⟨f 1 , ..., f r ⟩. Each f k can be considered as a function on T * C Σ, so its variation under a Hamiltonian H is given by the Poisson bracket {H, f k }. The tangent space at I in the space of all ideals of codimension m is the set of all ring homomorphisms from I to A I. Thus a Hamiltonian H changes I to ⟨f 1 + ε{H, f 1 } mod I, ..., f r + ε{H, f r } mod I⟩.

We restate a lemma from [START_REF] Fock | Higher complex structures[END_REF] (lemma 4) which allows to simplify H: Lemma 3.2. Let I = ⟨f 1 , ..., f r ⟩ be an ideal of C[z, z, p, p] such that {f i , f j } = 0 mod I for all i and j. Then for all polynomials H and all k ∈ {1, ..., r} we have

{H, f k } mod I = {H mod I, f k } mod I.
Proof. The only thing to show is that if we replace H by H +gf l for some polynomial g and some l ∈ {1, ..., r}, the expression does not change. Indeed, {H + gf l , f k } = {H, f k } + g{f l , f k } + {g, f k }f l = {H, f k } mod I using the assumption.

Proposition 3.3. The ideals of Hilb reg 0 (g) for g classical satisfy the condition of the previous lemma. Proof. For A n , we have I = ⟨p n , p = µ 2 p + ... + µ n p n-1 = Q(p)⟩. We compute {p n , -p + Q(p)} = np n-1 ∂Q = 0 mod I since there is no constant term in Q.

The same argument holds for B n and C n since their ideals are special cases of the ideal of type A n .

For D n , the ideal I is given by

⟨p 2n-1 , pp = µ 2 p 2 + µ 4 p 4 + ... + µ 2n-2 p 2n-2 = Q(p) + µ 2n-2 p 2n-2 , p2 = ν 2 p 2 + ν 4 p 4 + ... + ν 2n-2 p 2n-2 = R(p) + ν 2n-2 p 2n-2 ⟩.
As before the Poisson brackets with the rst generator p 2n-1 vanishes modulo I since Q and R have no constant terms. To compute the last Poisson bracket, dene Q = Q p. By the relations in I, we have R = Q2 + p 2n-2 R for some polynomial R (see subsection 1.8). Remark further that {a(z, z)p k pl , b(z, z)p k ′ pl ′ } = 0 mod I whenever k + l + k ′ + l ′ > n -1 since any term of degree n -1 in p and p is in I and the Poisson bracket lowers this degree by 1. With all this, we compute

{-pp + Q + µ 2n-2 p 2n-2 , -p 2 + R + ν 2n-2 p 2n-2 } = {-pp + p Q + µ 2n-2 p 2n-2 , -p 2 + Q2 + p 2n-2 ( R + ν 2n-2 )} = {-pp + p Q, -p 2 + Q2 } by degree argument = 2 ∂ Q(pp -p Q) -2 Q∂ Q(p -Q) = 2(pp -Q)( ∂ Q - Q p ∂ Q) = 2µ 2n-2 p 2n-2 ( ∂ Q - Q p ∂ Q) mod I = 0 mod I
where the last line comes from the fact that p divides the polynomial

∂ Q-Q p ∂ Q.
As a consequence, when computing the action of a Hamiltonian H on a g-complex structure, we can reduce it modulo I. In particular if H mod I = 0, the higher dieomorphism generated by H does not act at all. For g of type A n , B n or C n we can reduce H to a polynomial in p, and for D n we can reduce it to H = w -p + ∑ n-2 k=0 w 2k+1 p 2k+1 . 3.3. Local theory. Now, we can study the local theory of g-complex structures.

Let z 0 be a point on Σ and take a small chart around it which sends to the unit disk ∆ in the complex plane (with z 0 send to the origin).

Theorem 3.4. For g of type A n , B n or C n , the g-complex structure can be locally trivialized, i.e. there is a higher dieomorphism of type g which sends all higher Beltrami dierentials to 0 for all small z ∈ C.

For g of type D n , all g-complex structures with non-vanishing σ n on ∆ are equivalent under higher dieomorphisms. However, the zero locus of σ n on ∆ is an invariant. Proof. The proof for g of type A n was done in [START_REF] Fock | Higher complex structures[END_REF] appendix 5.2, using a method in the spirit of the proof of Darboux's theorem in symplectic geometry.

If g is of type B n or C n , the standard representations realizes the g-complex structure as a substructure of type A n . Since the last is trivializable, so is the g-complex structure in that case.

For g of type D n , we use the same method as for type A n by a Hamiltonian ow argument. We start with an ideal I determined by higher Beltrami dierentials (µ 2 , µ 4 , ..., µ 2n-2 , ν 2n-2 ). The action on µ 2i is the same as for g = sl 2n so we can trivialize them using a Hamiltonian H which is a polynomial in p. So we are left with

I = ⟨p 2n-1 , pp, -p 2 + ν 2n-2 p 2n-2 ⟩.
We have seen at the end of subsection 3.2 that in the case D n , any Hamiltonian can be reduced to H = w -p + ∑ n-2 k=0 w 2k+1 p 2k+1 . The only part of this Hamiltonian acting on ν 2n-2 is H = w -p, which also changes µ 2n-2 . So in order to assure that µ 2n-2 stays zero, we use

H = w -p + w 2n-3 p 2n-3 .
An idea in this direction is the following: the singularity of type g appears inside the Lie algebra g, more precisely inside the nilpotent variety along the subregular locus (see [START_REF] Steinberg | Conjugacy Classes in Algebraic Groups[END_REF]). A minimal resolution of this singularity is given by the Springer resolution. There should be a link between g-Hilbert schemes and the Springer resolution.

Since there are no local invariants for g-complex structures, only their global geometry is non-trivial.

3.4. Denition of the moduli space. To dene the moduli space of g-complex structures, there is one more subtlety: in order to get one component, we have to x an orientation on Σ. We then call a complex structure compatible if the induced orientation coincides with the given orientation on Σ. We call a g-complex structure compatible if the induced complex structure is.

Denition 3.5. The moduli space Tg Σ is the space of all compatible g-complex structures modulo the action of higher dieomorphisms of type g.

Notice that a g-complex structure is compatible i µ 2 (z)μ 2 (z) < 1. Reverting the orientation on Σ we get another copy of Tg Σ corresponding to those g-complex structures with µ 2 (z)μ 2 (z) > 1.

For g = sl 2 we get Teichmüller space since we can reduce any Hamiltonian to H = w(z, z)p which generates a linear dieomorphism of T * Σ, coming from a dieomorphism on Σ isotopic to the identity.

The moduli space has the following properties:

Theorem 3.6. For g of classical type, and a surface Σ of genus g ≥ 2 the moduli space Tg Σ is a contractible manifold of complex dimension (g -1) dim g. In addition, its cotangent space at any point I is given by

T * I Tg Σ = r ⊕ m=1 H 0 (Σ, K m i +1 )
where (m 1 , ..., m r ) are the exponents of g and r = rk g denotes the rank of g.

Notice that the dierentials in H 0 (Σ, K m i +1 ) are holomorphic with respect to the complex structure induced from the g-complex structure (see proposition 2.2). Proof. The case for A n has been treated in [START_REF] Fock | Higher complex structures[END_REF], theorem 2. The cases B n and C n are exactly analogous:

One shows that at every point, the cotangent space exists and is of the form stated in the theorem. From this follows that Tg Σ is a manifold. The only point to check is the appearance of the exponents of the Lie algebra. Since µ 2i is a section of K 1-2i ⊗ K (see equation (2.1)) its dual t 2i is a section of K 2i . Since the exponents for B n and C n are the same and equal to (1, 3, ..., 2n -1), we get the desired form stated in the theorem.

For g of type D n , suppose rst that the higher Beltrami dierential σ n vanishes nowhere 1 . By the local theory, we know that there is a coordinate system in which µ 2i = 0 for all i = 1, ..., n -1. In that case, we know that the variation of µ 2i under a higher dieomorphism generated by H = w -p + ∑ n-2 k=0 w 2k+1 p 2k+1 is given by δµ 2i = ∂w 2i-1 and equation (3.1) gives δσ n = ∂(w -σ n ). The variation of µ 2i is the same as in the case of type A n , so we know that these contribute to the cotangent bundle by a term H 0 (Σ, K 2i ). For the term σ n we use the pairing between dierential of type (1n, 1) and of type (n, 0) given by integration over the surface. We get

({δσ n } ∂(w -σ n )) * = {t n ∈ Γ(K n ) t n ∂(w -σ n ) = 0 ∀ w -∈ Γ( K)} = {t n ∈ Γ(K n ) ∂t n w -σ n = 0 ∀ w -∈ Γ( K)} = {t n ∈ Γ(K n ) ∂t n = 0} = H 0 (Σ, K n )
where we used that σ n vanishes nowhere.

Hence the cotangent bundle is given by

T * I Tg Σ = n-1 ⊕ m=1 H 0 (Σ, K 2m ) ⊕ H 0 (Σ, K n ).
The exponents of so 2n are precisely (1, 3, ..., 2n -3, n -1), so the cotangent bundle is of the form stated in the theorem. If σ n vanishes at some places, we can get σ n by a limit of non-vanishing σ t n such that for t → 0 we get σ n . Since holomorphicity is a closed condition, we still have the same result.

For the dimension of Tg Σ, we use dim H 0 (K m i +1 ) = (g -1)(2m i + 1) by Riemann-Roch (using g ≥ 2). We get dim Tg Σ = (g -1) r i=1 (2m i + 1) = (g -1) dim g using a well-known formula coming from the decomposition of g as sl 2 -module using the principal sl 2 -triple.

Contractibility in all cases is easy: given an equivalence class of a g-complex structure by its set S of higher Beltrami dierentials, we can retract it in a direct linear way tS to the structure where all Beltrami dierentials are 0. We use that if S and S ′ are equivalent under a higher dieomorphism, so are tS and tS ′ .

From the previous theorem, we see that our moduli space Tg Σ shares a lot of properties with Hitchin's component, in particular the dimension and contractibility. There is another common property to notice: Proposition 3.7. There is a map from Teichmüller space into the moduli space Tg Σ.

Proof. The proposition follows from the map ψ ∶ Hilb(sl 2 ) → Hilb reg (g) constructed in equation (1.2) in section 1.4. This map restricts to a map between the zero-bers and extends over the surface Σ. Finally the map descends to the quotient by higher dieomorphisms since for sl 2 we only quotient by dieomorphisms of Σ.

The same property holds for G-Hitchin components which can be dened as the deformation space of representations of the form π 1 (Σ) → P SL 2 (R) → G where the rst map is a Fuchsian representation and the second one is the principal map. So inside the G-Hitchin component sits a copy of Teichmüller space. The same situation holds in our case, and the map ψ is constructed using the principal map as well.

Of course, we conjecture the equivalence of Hitchin's component and the moduli space of g-complex structures: Conjecture 3.8. The moduli space Tg Σ is canonically isomorphic to Hitchin's component in the character variety Hom(π 1 (Σ), G) G where G is the real split Lie group associated to g.

3.5. Spectral curve. In this nal part, we construct a spectral curve in T * C Σ associated to a cotangent vector to Tg , i.e. a g-complex structure and a set of holomorphic dierentials. The case for g of type A n was treated in [START_REF] Fock | Higher complex structures[END_REF], section 4.

In loc. cit., we proved that the zero-ber Hilb n 0 (C 2 ) is Lagrangian in the reduced Hilbert scheme Hilb n red (C 2 ). This stays true for all classical g: Proposition 3.9. The regular zero-ber Hilb reg 0 (g) is a Lagrangian subspace of Hilb reg (g) for classical g.

Proof. Since we are in the regular part, proposition 1.8 gives a parametrization. For classical g, via the standard representation we can consider Hilb reg (g) as subset of Proof. The symplectic structure of the punctual Hilbert scheme comes from the canonical symplectic structure of C 2n given by ω = ∑ i dx i ∧ dy i . Consider the multiplication operators M x and M y in the quotient C[x, y] I where I is an element in the Hilbert scheme (idealic viewpoint). Diagonalizing these operators give diagonal matrices with entries (x 1 , ..., x n ) and (y 1 , ..., y n ). Changing to the base adapted to the Young diagram D (basis generated by monomials x i y j where (i, j) ∈ D), the matrix M x becomes a matrix N x with entries 1 on the line under the diagonal, apart from some columns where the linear combination associated to some B r+1 is written. Similarly, the matrix M y becomes a matrix N y with entries 1 on the line under the diagonal, apart from some columns where the linear combination associated to some As an application, we can use Haiman coordinates for the ideal with three generators for g of type D n in subsection 1.8. In particular, we see that the coordinates u and ν 2n-2 are canonically conjugated.

For a modied smooth version of the g-Hilbert scheme, we conjecture the following:

Conjecture 3.11. The modied smooth version of the g-Hilbert scheme is symplectic and the zero-ber is a Lagrangian subspace.

If we assume conjecture 1.16 true, stating that the modied version of the g-Hilbert scheme is a minimal resolution of h 2 W , we get a symplectic structure. Indeed h 2 = T * h has a canonical symplectic structure, which is invariant under the action of W . Hence it lifts to the minimal resolution. Now we construct the spectral curve. First, we look at g of type A n , B n or C n . We can write a cotangent vector in T * Tg as an equivalence class of higher Beltrami dierentials µ i and holomorphic dierentials t i . To write in a uniform way, set µ i or t i to 0 whenever it does not appear for g. For example for type B n or C n all variables with odd index are 0.

Associate polynomials P (p) = p m + ∑ i t i p m-i and Q(p, p) = -p + ∑ i µ i p i-1 (where m is the dimension of the standard representation of g). Put I = ⟨P, Q⟩. Dene the spectral curve Σ ⊂ T * C Σ by the zero set of P and Q. It is a ramied cover over Σ with m sheets.

For g of type D n , a generic point in the cotangent bundle T * Tg corresponds to the ideal I = ⟨p 2n + t 2 p 2n-2 + ... + t 2n-2 p 2 + τ 2 n , -p + µ 2 p + ... + µ 2n p 2n-1 ⟩ which can be seen as a special case of A n . Thus we can proceed as above. In the case where τ n = 0 we have seen in 1.8 that the ideal changes to an ideal with three generators. These generators still dene a spectral curve in T * C Σ.

Proposition 3.12. The spectral curve Σ is Lagrangian to order 1 in the holomorphic dierentials t.

This is the precise analogue of proposition 5 in [START_REF] Fock | Higher complex structures[END_REF]. Proof. In the case where the ideal has two generators P and Q this is equivalent to {P, Q} = 0 mod I mod t 2 for I ∈ T * Tg . For A n , the proof is given in loc. cit. For B n and C n it is completely analogous since the g-complex structure can be seen as a special case of A n .

For g of type D n , a generic ideal has still two generators, so we have a special case of A n . If the ideal has three generators, the spectral curve is still Lagrangian since it can be obtained as a limit of Lagrangian curves, and the property of being Lagrangian is closed.

Since the spectral curve is Lagrangian to order 1, the periods are well-dened up to this order. The ratios of these periods should give coordinates on T * Tg and also on Tg . For the trivial g-complex structure (where all higher Beltrami dierentials are 0) we recover Hitchin's spectral curve.

Finally, we can recover the same spectral data as Hitchin in his paper on stable bundles [START_REF] Hitchin | Stable Bundles and Integrable Systems[END_REF]. From a g-complex structure we get a bundle V over the surface Σ whose ber at a point z ∈ Σ is C[p, p] I(z) where we use the idealic viewpoint. We also get a line bundle L on Σ whose ber is the eigenspace of M p , the multiplication operator by p in the quotient C[p, p] I. This gives the spectral data for type A n .

For g of type C n , we get in addition an involution σ on the spectral curve Σ given by (p, p) ↦ (-p, -p). For g of type D n , the spectral curve is singular, having a double point. The spectral data is given by a desingularization of Σ, the involution σ as for C n and the line bundle L. For g of type B n , there is a canonical subbundle V 0 ⊂ V = C[p, p] I generated by the span of the image of 1 ∈ C[p, p] in the quotient C[p, p] I (since for B n , we have I ⊂ ⟨p, p⟩). Thus the vector bundle V is an extension

V 0 → V → V 1 .
The spectral data is given by (V 0 , V 1 , σ, L, Σ).

Perspectives

In addition to the various conjectures in this paper, we wish to give a conjectural larger picture which would imply the main conjecture 3.8 about the equivalence between Hitchin's component and our moduli space Tg .

Hitchin's original construction in [START_REF] Hitchin | Lie Groups and Teichmüller Space[END_REF] of components in character varieties uses Higgs bundles and the hyperkähler structure of its moduli space M H . In one complex structure, say I, M H has the complex structure from Higgs bundles. In all combinations of J and K, it is the moduli space of at G C -connections. The non-abelian Hodge correspondence is equivalent to the twistor description of this hyperkähler manifold. Hitchin constructs a bration of M H over a space of holomorphic dierentials, whose bers via the non-abelian Hodge correspondence give at connections with monodromy in the split real group G.

There is a similar conjectural picture for g-complex structures: a hyperkähler manifold M, which in complex structure I is the cotangent space to the moduli space of g-complex structures T * Tg Σ and in all combinations of J and K is the moduli space of at G C -connections. The analogue of Hitchin's bration is simply the projection π ∶ T * Tg Σ → Tg Σ. One has to prove an analogue of the non-abelian Hodge correspondence, i.e. a deformation of a pair (g-complex structure, set of holomorphic dierentials) to at connections, and that the monodromy of the bers of the projection π lies in the split real group G.

The conception behind this analogy is the following: In Hitchin's case, we have a xed complex structure on Σ and a holomorphic Higgs eld Φ ∈ H (1,0) (Σ, g) which gives a at connection A(λ) = λΦ + A + λ -1 Φ * . To get the Hitchin section, we choose a principal nilpotent element f in the Lie algebra g and deform it into the principal slice f + Z(e). To avoid xing a complex structure, we start with Φ = Φ 1 dz + Φ 2 dz. The atness of A(λ) gives that Φ 1 and Φ 2 commute. We further impose Φ 1 and Φ 2 to be nilpotent. More specically, we take Φ 1 to be the principal nilpotent element f and we choose Φ 2 ∈ Z(f ). Thus we have the same number of degrees of freedom
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 2 Figure 2. Dynkin diagram for D n

  The pair P 1 (b) is innitesimally close to P 2 (b) ∶=

  L 1 and L 2 with origins O 1 and O 2 together with two extra points O 3 and O 4 such that the pairs (O 1 , O 3 ), (O 1 , O 4 ), (O 2 , O 3 ) and (O 2 , O 4 ) are innitesimally close points (the four points O i correspond to the four half-axis).
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  Hilb m red (C 2 ) which remains symplectic and we can explicitly check that the zero-ber Hilb reg 0 (g) is Lagrangian. More generally, Haiman in his paper[START_REF] Haiman | t, q-Catal numbers and the Hilbert scheme[END_REF] described a way to nd coordinates of Hilb n (C 2 ) in the chart associated to a Young diagram D. For each box B x ∈ D consider the rightmost box B r ∈ D in the same row as B x and the bottommost box B b ∈ D in the same column as B x (see gure 4). The box B r+1 to the right of B r is not in D, so gives a linear combination of boxes in D. Denote by b x,r the coecient of B b in this linear combination. Similarly, denote by b x,b the coecient of B r in the linear combination associated to the box B b+1 at the bottom of B b . Haiman shows that the set {b x,r , b x,b } x∈D is a coordinate system. We have even more:
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 4 Figure 4. Haiman's coordinates
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  b+1 is written. Finally, we computeω = tr d x 1 ⋱ xn ∧ d y 1 ⋱ yn = tr dN x ∧ dN y = x∈D db x,r ∧ db x,b .

  next type, C n , is quite similar to B n . 1.7. Case C n . Let g = sp 2n . We use the symplectic structure ω = ∑ i e i ∧ e n+i of C 2n

	to represent g. So a matrix
	A B
	C D

is in g i D = -A T and B and C are symmetric matrices.

Fix the principal nilpotent by

This exists since σ n is a smooth section of K 1-n ⊗ K which is of negative degree since n >

and g ≥ 2.

We compute the action of this Hamiltonian on the ideal I. For the second generator of I we get: {w -p + w 2n-3 p 2n-3 , -pp} = p 2n-2 ( ∂w 2n-3 + ∂w -ν 2n-2 ) mod I.

For the third generator of I we get {w -p + w 2n-3 p 2n-3 , -p 2 + ν 2n-2 p 2n-2 } = p 2n-2 (w -∂ν 2n-2 + 2 ∂w -ν 2n-2 ) mod I.

Denote by µ t

2-2 and ν t 2n-2 the image of µ 2n-2 and ν 2n-2 under the ow generated by H at time t. From the above computation we get

Instead of keeping ν 2n-2 , we work with the higher Beltrami dierential σ n . Since all the µ 2i are zero in I, we have ν 2n-2 = σ 2 n . Therefore we get from the second equation above

n ) which gives (3.1)

We wish to have d dt µ t 2n-2 = 0 to stay with µ 2n-2 = 0. For σ n , we show that we can deform it to the constant function 1 on the unit disk, assuming σ n vanishes nowhere on ∆. We choose the path σ t n = (1t)σ 0 n + t from the initial σ 0 n to the constant function 1. If σ t n = 0 for some t, we have to modify slightly the path. We get

We can solve equation (3.1) with T :

Putting this solution into the equation for d dt µ t 2n-2 , we can solve for w 2n-3 :

Finally, we multiply H by a bump function, a function on ∆ which is 1 in a neighborhood of the origin and 0 outside a bigger neighborhood of the origin, which ensures that the Hamiltonian vector eld is compactly supported, so it can be integrated to all times. In particular for t = 1 we get σ n (z) = 1 for all z near the origin.

The following argument shows that the zero locus of σ n can not be changed by a higher dieomorphism: The ideal ⟨p 2n-1 , pp, -p 2 + ν 2n-2 p 2n-2 ⟩ is the deformation ideal of the singularityν 2n-2 2n-1 p 2n-1 +pp 2 which is the Kleinian singularity of type D 2n if ν 2n-2 ≠ 0. In particular, this singularity is robust under dieomorphisms, so is its deformation ideal.

Remark. It is interesting to notice the appearance of Kleinian singularities, which have an ADE-classication. The fact that for g of type D n the singularity is of type D 2n is linked to the representation of so 2n on C 2n . There should be a more intrinsic way to link g-complex structures to singularities of type g. as in the Higgs bundle setting. A pair of commuting nilpotent matrices of this form is precisely a point in Hilb reg 0 (g) which we used to construct g-complex structures.

Appendix A. Punctual Hilbert schemes revisited In this appendix, we review the punctual Hilbert scheme of the plane with its various viewpoints. Main references are Nakajima's book [Na99] and Haiman's paper [START_REF] Haiman | t, q-Catal numbers and the Hilbert scheme[END_REF].

A.1. Denition. To start, consider n points in the plane C 2 as an algebraic variety, i.e. dened by some ideal I in C[x, y]. Its function space C[x, y] I is of dimension n, since a function on n points is dened by its n values. So the ideal I is of codimension n. The space of all such ideals, or in more algebraic language, the space of all zero-subschemes of the plane of given length, is the punctual Hilbert scheme:

Denition A.1. The punctual Hilbert scheme Hilb n (C 2 ) of length n of the plane is the set of ideals of C [x, y] of codimension n:

The subspace of Hilb n (C 2 ) consisting of all ideals supported at 0, i.e. whose associated algebraic variety is (0, 0), is called the zero-ber of the punctual Hilbert scheme and is denoted by

A theorem of Grothendieck and Fogarty asserts that Hilb n (C 2 ) is a smooth and irreducible variety of dimension 2n (see [START_REF] Fogarty | Algebraic families on an algebraic surface[END_REF]). The zero-ber Hilb n 0 (C 2 ) is an irreducible variety of dimension n -1, but it is in general not smooth.

A generic element of Hilb n (C 2 ), geometrically given by n distinct points, is given by

The second term can be seen as the Lagrange interpolation polynomial of the n points.

A generic element of the zero-ber is given by

A.2. Resolution of singularities. Given an ideal I of codimension n, we can associate its support, the algebraic variety dened by I, which is a collection of n points (counted with multiplicity). The order of the points does not matter, so there is a map, called the Chow map, from

the conguration space of n points (S n denotes the symmetric group). A theorem of Fogarty asserts that the punctual Hilbert scheme is a minimal resolution of the conguration space.

In order to get a feeling for a general Lie algebra, notice that n points of C 2 is the same as two points in the Cartan h of gl n , and that the symmetric group is the Weyl group W of gl n . So the conguration space equals h 2 W for g = gl n .

A.3. Matrix viewpoint. To an ideal I of codimension n, we can associate two matrices: the multiplication operators M x and M y , acting on the quotient C[x, y] I by multiplication by x and y respectively. To be more precise, we can associate a conjugacy class of the pair:

The two matrices M x and M y commute and they admit a cyclic vector, the image of 1 ∈ C[x, y] in the quotient (i.e. 1 under the action of both M x and M y generate the whole quotient).

Proposition A.2. There is a bijection between the Hilbert scheme and conjugacy classes of certain commuting matrices:

The inverse construction goes as follows: to a conjugacy class [(A, B)], associate the ideal I = {P ∈ C[x, y] P (A, B) = 0}, which is well-dened and of codimension n (using the fact that (A, B) admits a cyclic vector). For more details see [START_REF] Nakajima | Lectures on Hilbert Schemes of Points on Surfaces[END_REF].

It is this bijection which we use in the main text to generalize the punctual Hilbert scheme. Notice that the zero-ber of the Hilbert scheme corresponds to nilpotent commuting matrices.

A.4. Reduced Hilbert scheme. We wish to dene a subspace of Hilb n (C 2 ) corresponding to matrices in sl n in the matrix viewpoint. A generic point should be a pair of points in the Cartan h of sl n modulo order. This corresponds to n points in the plane with barycenter 0.

Denition A.3. The reduced Hilbert scheme Hilb n red (C 2 ) is the space of all elements of Hilb n (C 2 ) whose image under the Chow map (n points with multiplicity modulo order) has barycenter 0.

With this denition, we get Proposition A.4.

Finally, it can be proven that the reduced Hilbert scheme is symplectic and that the zero-ber Hilb n 0 (C 2 ) is a Lagrangian subspace of Hilb n red (C 2 ).

Appendix B. Regular elements in semisimple Lie algebras In this appendix, we gather all properties we need in the main text of regular elements in semisimple Lie algebras and we give precise references for these results. The main references are the books of Collingwood and McGovern [CM93], Steinberg [START_REF] Steinberg | Conjugacy Classes in Algebraic Groups[END_REF] and Humphreys [START_REF] Humphreys | Conjugacy Classes in Semisimple Algebraic Groups[END_REF], as well as the papers [START_REF] Kostant | The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group[END_REF] and [START_REF] Kostant | Lie group representations on polynomial rings[END_REF] by Kostant. Denition B.1. An element x ∈ g is called regular if the dimension of its centralizer Z(x) is equal to the rank of the Lie algebra rk(g). A regular nilpotent element is called principal nilpotent.

Remark. Notice that in older literature, regular elements are dened in another way, using the characteristic polynomial of the adjoint map. The "old" notion includes only semisimple regular (in the sens above) elements.

The condition that the dimension of the centralizer has to be equal to the rank, does not come from nowhere: in fact it is the minimal possible dimension. Proposition B.2. For any x ∈ g, we have dim Z(x) ≥ rk(g).

See for example lemma 2.1.15. in [START_REF] Collingwood | Nilpotent Orbits in Semisimple Lie Algebras[END_REF]. For the Lie algebras gl n and sl n , we have the following characterization of regular elements from Steinberg [St74], proposition 2 in section 3.5: Proposition B.3. For g = gl n or sl n and x ∈ g, we have the following equivalence:

x is regular ⇔ µ x = χ x ⇔ x admits a cyclic vector where µ x and χ x denote respectively the minimal and the characteristic polynomial of x, seen as a matrix.

Let us turn to the study of regular elements which are nilpotent.

Theorem B.4. There is a unique open dense orbit in the nilpotent variety consisting of principal nilpotent elements.

The original proof is due to Kostant, see corollary 5.5. in [START_REF] Kostant | The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group[END_REF]. See also theorem 4.1.6. in [START_REF] Collingwood | Nilpotent Orbits in Semisimple Lie Algebras[END_REF].

There is a useful characterization of principal nilpotent elements in coordinates. For this, x a root system R, x a direction giving positive roots R + . Denote by n the positive nilpotent elements (upper triangular for sl n ).

Proposition B.5. Let A ∈ n. Then A is principal nilpotent i α(A) ≠ 0 for all simple roots α.

The group version of this can be found in section 3.7. of [START_REF] Steinberg | Conjugacy Classes in Algebraic Groups[END_REF]. For a principal nilpotent element f , its centralizer Z(f ) has properties quite analogous to a Cartan, the centralizer of a regular semisimple element: Theorem B.6. For f a principal nilpotent element, its centralizer Z(f ) is abelian and nilpotent.

Kostant proves even more, using a limit argument: for any element x ∈ g, there is an abelian subalgebra of Z(x) of dimension rk g, see [START_REF] Kostant | The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group[END_REF], theorem 5.7. The nilpotency of Z(f ) can be found in [START_REF] Steinberg | Conjugacy Classes in Algebraic Groups[END_REF], corollary in section 3.7. The more precise structure of Z(x) for any nilpotent x is described in [START_REF] Collingwood | Nilpotent Orbits in Semisimple Lie Algebras[END_REF], section 3.4.

A principal nilpotent element permits to give a preferred representative of a conjugacy class of regular elements. Given f principal nilpotent, denote by e the other nilpotent element in a principal sl 2 -triple constructed from f (see Kostant [START_REF] Kostant | The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group[END_REF]). Then we get Proposition B.7. Any regular orbit intersects f + Z(e) in a unique point. So we

This follows from Lemma 10 of [START_REF] Kostant | Lie group representations on polynomial rings[END_REF]. The set f + Z(e) is called a principal slice of g (also Kostant section).

We are now going to "double" the previous setting. Dene the commuting variety to be Comm(g) ∶= {(A, B) ∈ g 2 [A, B] = 0}.

Theorem B.8 (Richardson). The set of commuting semisimple elements is dense in the commuting variety Comm(g).

See the paper of Richardson [START_REF] Richardson | Commuting varieties of semisimple Lie algebras and algebraic groups[END_REF] for a proof. As a consequence, Comm(g) is an irreducible variety, but highly singular.

With this, we can explore the minimal dimension of a centralizer of a commuting pair: Proposition B.9. For (A, B) ∈ Comm(g), we have dim Z(A, B) ≥ rk g.

Proof.

Consider the set M of elements with centralizer of minimal dimension. Since M = {(A, B) ∈ Comm(g) rk(ad A , ad B ) maximal} we see that M is Zariski-open. By the theorem of Richardson it intersects the space of semisimple pairs for which the common centralizer is a Cartan h, so of dimension rk g.