
HAL Id: hal-02455632
https://hal.science/hal-02455632v3

Preprint submitted on 9 Nov 2020 (v3), last revised 26 Nov 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost of null controllability for parabolic equations with
vanishing diffusivity and a transport term

Jon Asier Bárcena-Petisco

To cite this version:
Jon Asier Bárcena-Petisco. Cost of null controllability for parabolic equations with vanishing diffu-
sivity and a transport term. 2020. �hal-02455632v3�

https://hal.science/hal-02455632v3
https://hal.archives-ouvertes.fr


Cost of null controllability for parabolic equations with vanishing

diffusivity and a transport term
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0 Abstract and basic information

In this paper we consider the heat equation with Neumann, Robin and mixed boundary conditions (with

coefficients on the boundary which depend on the space variable). The main results concern the behaviour of

the cost of the null controllability with respect to the diffusivity when the control acts in the interior. First,

we prove that if we almost have Dirichlet boundary conditions in the part of the boundary in which the flux of

the transport enters, the cost of the controllability decays for a time T sufficiently large. Next, we show some

examples of Neumann and mixed boundary conditions in which for any time T > 0 the cost explodes exponentially

as the diffusivity vanishes. Finally, we study the cost of the problem with Neumann boundary conditions when

the control is localized in the whole domain.
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1 Introduction

The transport-diffusion equation with vanishing diffusivity is used to describe the dynamics

of some physical and biological phenomena. In particular, this is the case of fluid dynamics, as

it is explained in [1, Chapter 3] and the reference therein. Similarly, it is also used to study

quantitative biomedical optics, as it is explained in [3, Chapter 9] and the reference therein.

In this paper we study the cost of null controllability for transport-diffusion equations with

Neumann, Robin and mixed boundary conditions.

Let Ω be a domain (a bounded connected open set of Rd), Γ ⊂ ∂Ω be a relative open subset

and Γ∗ := ∂Ω \ Γ. We consider in this paper a familly of functions (aε(x))ε∈(0,ε0) ⊂ L∞(Γ) for

some ε0 > 0. We study the control problem given by:

yt − ε∆y + ∂x1y = 1ωf, in Q,

∂ny + aεy = 0, on ΣN ,

y = 0, on ΣD,

y(0, ·) = y0, on Ω,

(1.1)

for ε ∈ (0, ε0), and in particular the cost of the control when ε → 0. As usual, n denotes the

outward normal vector on ∂Ω, Q := (0, T )× Ω, ω ⊂ Ω is an open subset, Qω := (0, T )× ω and

Σ := (0, T )× ∂Ω. In addition, we define ΣN := (0, T )× Γ and ΣD := (0, T )× Γ∗. The fact that

(1.1) is well-posed is a classical result, which follows from Galerkin approximations, integrations

by parts and Gronwell inequality (see [24] for a proof). The null controllability of (1.1) is already

proved in [15] for Γ = ∂Ω and a function a(x) ∈ L∞(∂Ω), though it can be adapted easily for

the general case (see Remark 3.6). However, those proofs do not provide accurate information

of the cost of the control when ε→ 0. Precising the bounds of the cost with respect to ε is the

main objective of this paper. In particular, we study the cost of the null controllability with the

usual norms; that is:

K(Ω, ω, T, ε) := sup
y0∈L2(Ω)\{0}

inf
f∈S(y0)

‖f‖L2(Qω)

‖y0‖L2(Ω)
,

for:

S(y0) := {f ∈ L2(Qω) : the solution of (1.1) satisfies y(T, ·) = 0}.

The cost also depends on aε and Γ, although we do not write it down explicitly.

When T is small the cost of the null controllability of (1.1) explodes exponentially if ε → 0,

which can be proved for instance as in [22] and [4]. Thus, in this paper we focus on large values
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of T . First, we prove that if we almost have Dirichlet boundary conditions in the part of the

boundary in which the flux of the transport enters, the cost of the controllability decays for

a sufficiently large time T . Next, we show some examples of Neumann and mixed boundary

conditions in which for any time T > 0 the cost explodes exponentially as the diffusion coefficient

ε vanishes. Finally, we study the cost of the problem when the control is localized in the whole

domain.

This paper follows a well-established research line which inquires about the cost of the null

controllability of systems with a small diffusion and a transport term. The first of such control

problems was the heat equation in dimension one with Dirichlet boundary conditions in [12].

Afterwards, the same problem but in any dimension and with a transport flow belonging to

W 1,∞(R+ × Ω) was studied in [22]. More recently, better approximations have been given for

the optimal time in which the cost of the control decays: the lower bound was improved first

in [31] through complex analysis and properties of the entire functions, and more recently in

[25] through semi-classical and spectral analysis; and the upper bound was improved in [18, 29]

(in the first one through complex analysis and, in the second one, by transforming the original

equation into the pure heat equation). As for similar results, several results have been obtained

for the KdV equation (see [20, 21, 5, 6]), the Burgers equation (see [19]), the Stokes system (see

[4]), an artificial advection-diffusion problem (see [9, 10]) and a fourth-order parabolic equation

(see [7, 32]). Finally, the current study of (1.1) is a contribution to the literature as it seeks to

understand the evolution of the cost of the null controllability of the transport-diffusion equation

with a large variety of boundary conditions when the diffusivity vanishes (and, in particular,

the case aε = 0 and Γ = ∅ was an open problem proposed in [22, Remark 3]).

2 Quantification of the main results

In this section we first introduce the adjoint system, then symmetrize it, and finally present

the controllability results. Most of those results are stated for ε small enough, which means that

there is some ε′0 ∈ (0, ε0) such that those results are true for all ε ∈ (0, ε′0). Indeed, as we are

interested in getting estimates on the cost of the control when ε vanishes, we can assume that

ε is small.
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2.1 The observability problem and the symmetrized system

As usual, we get the cost of the control by studying the observability of the adjoint system,

which is given by: 

−ϕt − ε∆ϕ− ∂x1ϕ = 0, in Q,

ε∂nϕ+ (εa+ n1)ϕ = 0, on ΣN ,

ϕ = 0, on ΣD,

ϕ(T, ·) = ϕT , on Ω,

(2.1)

for n1 the first component of the vector n. Indeed, we have the classical equality given by the

Hilbert Uniqueness Method (see, for instance, [33, 27]):

K(Ω, ω, T, ε) = sup
ϕT∈L2(Ω)\{0}

‖ϕ(0, ·)‖L2(Ω)

‖ϕ‖L2(Qω)
, (2.2)

where ϕ denotes the solution of (2.1).

As a novelty with respect to the literature in systems with small diffusion and a transport term,

we obtain some properties of (2.1) (and, in particular, the Carleman inequality) by studying the

solutions of a system whose elliptic operator is self-adjoint. Indeed, considering the map:

w 7→ e(2ε)−1x1w, (2.3)

we get the system: 

−φt − ε∆φ+ 1
4εφ = 0, in Q,

ε∂nφ+
(
εa+ n1

2

)
φ = 0, on ΣN ,

φ = 0, on ΣD,

φ(T, ·) = φT , on Ω.

(2.4)

The motivation for (2.3) is to have an elliptic operator without first order term, as it is a

necessary condition for an elliptic operator to be self-adjoint.

Remark 2.1. The map (2.3) is an homeomorphism from the solutions of (2.1) with initial value

in L2(Ω) to the solutions of (2.4) with initial value in L2(Ω). That homeomorphism is useful to

translate information about the solutions of (2.4) to information about the solutions of (2.1),

for instance about their regularity.

With the purpose of understanding the solutions of (2.1) we also study the spectral problem:
−ε∆u− ∂x1u = λu, in Ω,

ε∂nu+ (εa+ n1)u = 0, on Γ,

u = 0, on Γ∗.

(2.5)
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In that sense, with the purpose of understanding the solutions of (2.5) we study the spectral

problem: 
−∆v = λ̃v, in Ω,

ε∂nv +
(
εa+ n1

2

)
v = 0, on Γ,

v = 0, on Γ∗,

(2.6)

and we define:

Dε :=
{
w ∈ H1(Ω) : −∆w ∈ L2(Ω), ε∂nw +

(
εa+

n1

2

)
w = 0 on Γ, w = 0 on Γ∗

}
. (2.7)

We recall that −∆w ∈ L2(Ω) and w ∈ H1(Ω) imply that ∂nw is well-defined as an element of

H−1/2(∂Ω). We consider the first equation of (2.6) instead of −ε∆v + (4ε)−1v = λv in order to

isolate the “part” of the eigenvalue that is caused by the diffusion, which is the meaning of λ̃.

This is useful for instance in Lemmas 3.3 and 5.1 below.

Remark 2.2. We can relate the solutions of (2.5) and (2.6) with the map (2.3). Indeed, we have

that (v, λ̃) is a solution of (2.6) if and only if(
ve−(2ε)−1x1 , ελ̃+

1

4ε

)
is a solution of (2.5). Similarly, (u, λ) is a solution of (2.5) if and only if(

ue(2ε)−1x1 ,
λ

ε
− 1

4ε2

)
is a solution of (2.6).

Remark 2.3. It can be checked directly that the Laplacian is symmetric in Dε for any Lipschitz

domain Ω. In addition, for a constant C sufficiently large depending on ε we have that (−∆ +

C)−1 is compact. Thereby, L2(Ω) has a spectral decomposition for each ε by the solutions of

(2.6) (see, for instance, [14, Appendix D]). This implies, among other things, that (2.4) is a

well-posed system and consequently so is (2.1).

Remark 2.4. We can also study the problem with null initial force associated to (1.1). Indeed,

the map w 7→ e−(2ε)−1x1w transforms (1.1) into (2.4) but forward in time. Thus, the dynamics

and in particular the decay properties of the direct and adjoint systems are similar.

Definition 2.5. We denote by (λεm)m∈N the eigenvalues of (2.5) and by (λ̃εm)m∈N the eigenvalues

of (2.6) (counting multiplicities in both cases). In addition, for each eigenvalue of (2.6) an

eigenfunction vεm which satisfies ‖vεm‖L2(Ω) = 1 is fixed. Finally, we denote uεm := vεme
−(2ε)−1x1 .

Remark 2.6. Since span{vεm} = L2(Ω) (see Remark 2.3) we have that span{uεm} = L2(Ω).
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To determine if the solutions of (2.1) decay we focus on λ̃ε0. We recall that by Rayleigh

principle we have the equality:

λ̃ε0 = min

{∫
Ω
|∇v|2dx+

∫
Γ

(
aε +

n1

2ε

)
|v|2dx : v ∈ H1(Ω), ‖v‖L2(Ω) = 1, v = 0 on Γ∗

}
. (2.8)

From (2.8) we can distinguish two main cases depending on whether the following inequality is

satisfied for ε small enough:

(aε + (2ε)−1n1)1Γ ≥ 0. (2.9)

Indeed, if (2.9) is satisfied for ε small enough the cost of the controllability decays when ε→ 0,

whereas if (2.9) is not true the cost may explode for a sufficiently large time. The fact that the

behaviour and controllability properties of the solutions of (1.1) varies so much when changing

aε implies that we cannot expect a general result that works for any arbitrary familly (aε)ε∈(0,ε0)

unless it has some structure with respect to ε.

The idea of using a spectral decomposition is not new in Control Theory (see, for instance,

[11]). Indeed, for the heat equation alone, there are many papers which deal with eigenfunctions

of the elliptic operator for proving the existence of some control (see, for example, [26] for

Dirichlet boundary conditions and [2] for a coupled heat equation system with Robin boundary

conditions) and for estimating the cost of the control (see, for instance, [13]). Similarly, for the

Stokes system it has been used to prove the existence of a control (see, for example, [8]) and

for providing a negative answer to the existence of a control (see, for instance, [28]). As for a

system with a small diffusion and a transport term, a spectral decomposition indirectly appears

in [12, 31], when the authors get lower bounds for the optimal time T0 in which the cost of the

control decays exponentially with ε. More recently, it has been used in [25] to get estimates

about the optimal time in which the heat equation with a transport term decays when ε → 0.

In addition, a spectral decomposition has been used in [4] to get the dissipation estimate in a

transport-diffusion Stokes system. Indeed, in this paper we follow the philosophy of [4] of using

as much information as possible about the spectral decomposition, with the contribution that

now while proving the Carleman estimate we work directly in the symmetrized system; that is,

in (2.4).

The idea of transforming one system into another by using a family of isomorphism similar to

(2.3) is not new. In particular these or similar transformations have been used for instance in

[18], [29], [30] and [31] to get bounds of the optimal time in which the cost of the control decays

when ε → 0 in the transport-diffusion equation with Dirichlet boundary conditions. However,

to get those bounds the authors either work in a domain Ω ⊂ R or require the geometric control

condition for the wave equation.
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2.2 The regime in which the cost of the control decays exponentially

In this section we study the case in which (2.9) is satisfied for ε small enough. In particular,

we prove that:

Theorem 2.7. Let Ω be a C2 domain, ω ⊂ Ω be a subdomain and assume that (Γ, aε) satisfies

(2.9) for ε small enough. Then, there are T0, c, C > 0 depending only on ω and Ω such that for

ε small enough and all T ≥ T0 we have that:

K(Ω, ω, T, ε) ≤ Ce−cε−1
. (2.10)

The proof of Theorem 2.7 is given in Section 3. In particular, we first prove a dissipation estimate

for the solutions of (2.1) under the assumptions of Theorem 2.7, and then prove a Carleman

inequality.

There are several important examples that satisfy the hypotheses assumed in Theorem 2.7:

• Dirichlet boundary conditions (Γ = ∅). This controllability result is already proved in

[12, 22]. However, our proof is different since we prove the decay with the spectral decom-

position (instead of with a comparison theorem or an Agmon inequality) and we prove the

Carleman inequality for (2.4) rather than for (2.1).

• Segments in which we have Dirichlet boundary conditions on the left end and Neumann

boundary conditions on the right end.

• Any system in which aε ≥ 0 and n11Γ ≥ 0; that is, in which we have Dirichlet boundary

conditions on the part of the boundary in which the flux of the transport enters and either

Dirichlet or Robin with a positive coefficient on the other part of the boundary.

• Any system in which we almost have Dirichlet boundary conditions on the part of the

boundary in which the flux of the transport enters and either Dirichlet or Robin with a

coefficient whose negative part is not too large on the other part of the boundary.

2.3 The regime in which the cost of the control explodes exponentially

In this section we study the case in which (2.9) is not satisfied, and in particular some situations

in which:

measure|∂Ω

((
aε +

n1

2ε

)
1Γ > 0

)
> 0, (2.11)

for ε small enough. Of course, we refer to the Hausdorff measure. Under the hypothesis (2.11)

we might have eigenvalues of (2.5) close to 0, null or negative, so we may have no dissipation

making the cost of the control explode. The results of this section are proved in Section 4.
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First, we consider (1.1) with pure Neumann boundary conditions; that is, aε = 0 and Γ = ∂Ω.

We remark that under those boundary conditions (1.1) is given by:
yt − ε∆y + ∂x1y = 1ωf, in Q,

∂ny = 0, on Σ,

y(0, ·) = y0, on Ω.

(2.12)

The study of the cost of the null controllability of (2.12) is an open problem proposed in [22,

Remark 3]. Let us denote:

pl := inf π1(Ω), pr := supπ1(Ω), (2.13)

for π1(x) = x1, i.e. the projection on the first coordinate. We prove in this paper that the cost

of the control of (2.12) explodes exponentially:

Theorem 2.8. Let h > 0, Ω be a domain, and ω ⊂ Ω be an open subset such that:

π1(ω) ⊂ (pl + h, pr). (2.14)

Then, for all T > 0 there is c > 0 depending on h and T such that for all ε > 0:

K(Ω, ω, T, ε) ≥ cecε−1
, (2.15)

for K the cost of the null controllability of (2.12).

Theorem 2.8 is similar to the result presented in [4] for the Stokes equation in dimension 3.

The reason why Theorem 2.8 is true is that the cost of controlling π−1
1 (pl, inf π1(ω)) explodes

exponentially. Indeed, because of the Neumann boundary conditions the solution does not decay

by just switching off the control when the viscosity vanishes. In addition, due to the vanishing

viscosity and the direction of the transport flow, the effect of the control on π−1
1 (pl, inf π1(ω))

decays exponentially. In particular, the hypothesis (2.14) is necessary as the conclusion of

Theorem 2.8 is false for ω = Ω (see Proposition 2.16 below). The key point of the proof is

to study the spatial repartition of the steady solution of the adjoint system given by the first

eigenfunction.

Next, we consider a segment with Neumann boundary conditions on the left edge of the

segment and Dirichlet boundary conditions on its right edge; that is, Ω := (−L, 0), Γ := {−L}
and aε = 0. In this situation the control problem (1.1) is given by:

yt − ε∂xxy + ∂xy = f1ω, in Q,

∂xy(·,−L) = 0, on (0, T ),

y(·, 0) = 0, on (0, T ),

y(0, ·) = y0, on (−L, 0).

(2.16)
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The intuition may suggest that as ε vanishes the cost of the control decreases, as in the Dirichlet

case. However, it is just the opposite: the fact that there is a flux coming from the left dominates

and the cost of the control actually increases when the diffusivity vanishes. In particular, we

prove that:

Theorem 2.9. Let L, h > 0, Ω = (−L, 0) and ω ⊂ (−L + h, 0) be an open subset. Then, for

all T > 0 there is c > 0 depending on T , L and h such that for ε small enough we have the

estimate:

K(Ω, ω, T, ε) ≥ cecε−1
, (2.17)

for K the cost of the null controllability of (2.16).

As in Theorem 2.8, the reason why Theorem 2.9 is true is that the cost of controlling (−L, inf ω)

explodes exponentially and the key point of the proof is to look at the first eigenfunction. In

addition, the hypothesis of ω ⊂ (−L+h, 0) is necessary as the conclusion of Theorem 2.9 is false

for ω = Ω (see Proposition 2.16 below).

In both Theorems 2.8 and 2.9 the cost of the control problem explodes because of the inter-

action of the transport with the boundary conditions. Indeed, as a consequence of the following

proposition the solutions of (2.1) when aε ≥ 0 (which is satisfied in Theorems 2.8 and 2.9) do

not explode when T →∞:

Proposition 2.10. Let Ω be a Lipschitz domain and aε ≥ 0. Then, we have that:

λε0 ≥ 0. (2.18)

In addition, we have λε = 0 if and only if aε = 0 and Γ = ∂Ω, and in that case the associated

eigenfunction is uε = e−ε−1x1

‖e−ε−1x1/2‖L2(Ω)

.

Remark 2.11. The equality case in Proposition 2.10 corresponds to the control problem (2.12).

2.4 Controllability results for controls acting on the boundary

In this section we state the results when the control is on the boundary:

Theorem 2.12. Let Ω be a C2 domain, γ ⊂ Γ∗ be relatively open and assume that (Γ, aε)

satisfies (2.9) for ε small enough. Then, there are T0, c, C > 0 depending only on γ and Ω such

that for ε small enough and T ≥ T0 we have that:

K(Ω, γ, T, ε) ≤ Ce−cε−1
,
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for K the cost of the null controllability of:

yt − ε∆y + ∂x1y = 0, in Q,

∂ny + aεy = 0, on ΣN ,

y = f1γ , on ΣD,

y(0, ·) = y0, on Ω.

Theorem 2.13. Let h > 0, Ω be a domain, and γ ⊂ ∂Ω be a relatively open subset such that:

π1(γ) ⊂ (pl + h, pr].

Then, for all T > 0 there is c > 0 depending on h and T such that for all ε > 0:

K(Ω, γ, T, ε) ≥ cecε−1
,

for K the cost of the null controllability of:
yt − ε∆y + ∂x1y = 0, in Q,

∂ny = f1γ , on Σ,

y(0, ·) = y0, on Ω.

Theorem 2.14. Let L > 0, Ω = (−L, 0). Then, for all T > 0 there is c > 0 depending on T

and L such that for ε small enough we have the estimate:

K(Ω, T, ε) ≥ cecε−1
,

for K the cost of the the null controllability of:

yt − ε∂xxy + ∂xy = 0, in Q,

∂xy(·,−L) = 0, on (0, T ),

y(·, 0) = f, on (0, T ),

y(0, ·) = y0, on (−L, 0).

The proof of Theorem 2.12 is very similar to that of Theorem 2.7. In addition, the proofs of

Theorems 2.13 and 2.14 are analogous to those of Theorems 2.8 and 2.9. Thus, these proofs are

omitted.

2.5 Cost of the control when ω = Ω

In this section we get a lower bound of the cost of the null controllability when ω = Ω; that

is, in which the control domain is the whole domain. It is well-known that if we have a control
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in the whole domain the system will be controllable, even with a regular control (for that, it

suffices to let the system evolve freely in (0, t) and then considering the segment in H2(Ω) which

joins the state at time t and 0). However, what is not obvious and makes the following results

interesting is to determine how the cost of the control depends on ε and T . In addition, with

these results we show that (2.14) and ω ⊂ (−L + h, 0) are necessary hypotheses for Theorems

2.8 and 2.9. The results of this section are proved in Section 5.

We first get a lower bound for the cost of the control:

Proposition 2.15. Let Ω be a Lipschitz domain, T > 0 and (Γ, aε) satisfying:

lim
ε→0

λε0 = 0. (2.19)

Then, we have the bound:

lim inf
ε→0

K(Ω,Ω, T, ε) ≥ 1√
T
. (2.20)

The condition stated in Proposition 2.15 includes the control problems (2.12) and (2.16), as it

is implied by Proposition 2.10 and (4.16) below respectively. Proposition 2.15 is proved just by

an easy direct computation on the first frequency.

Next, we get an upper bound of the cost of the control. In particular if aε ≥ 0, which includes

Neumann boundary conditions, we prove that:

Proposition 2.16. Let Ω be a C2 domain and aε ≥ 0. Then, there is C > 0 dependent on Ω

such that for all ε > 0 and T > 0:

K(Ω,Ω, T, ε) ≤ C
(

1√
T

+
1√
ε

)
, (2.21)

for K the cost of the null controllability of (1.1).

The proof of Proposition 2.16 relies on trace and energy estimates. In addition, for Neumann

boundary conditions we prove in segments a more precise result:

Proposition 2.17. Let L > 0 and Ω = (−L, 0). We have for all T ≥ 4L:

lim sup
ε→0

K(Ω,Ω, T, ε) ≤ 4√
T
, (2.22)

for K the cost of the null controllability of (1.1) with aε = 0.

Proposition 2.17 is proved by explicit computations of the solutions and an splitting between

the first frequency, which remains constant, and the others, which dissipate exponentially.
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Remark 2.18. The difficulty when proving Propositions 2.16 and 2.17 is that the cost of the con-

trol with norms L2 must be bounded when ε→ 0. If we just look for controls in L2(0, T ;H−2(Ω)),

then it suffices to consider the affine trajectory joining y0 and 0. Similarly, we can get a control

f ∈ L2(Q) by setting f = 0 on (0, t) for t > 0 a small value, and then consider the affine function

which joins y(t, 0) and 0. However, this is not an optimal way to get a control.

The rest of the paper is organized as follows: in Section 3 we prove Theorem 2.7, in Section 4

we prove Proposition 2.10 and Theorems 2.8 and 2.9, in Section 5 we prove Propositions 2.15,

2.16 and 2.17 and, finally, in Section 6 we present some open problems.

Notation. In this paper we denote diamx1(Ω) := supπ1(Ω) − inf π1(Ω). The interest of this

notation is that x1 is the direction of the flow of the transport. Also, the operator | · | denotes the

volume of a domain. In addition D(Ω) := {u ∈ C∞(Ω) : supp(u) ⊂ Ω}. Finally, C > 0 denotes

a generic positive constant that may depend on some parameters as specified in the statement

of each result and that changes from line to line.

3 Some controllability problems in which the cost of the control

decays exponentially

In this section we prove Theorem 2.7. In particular, in Section 3.1 we prove the decay of the

solutions of (2.1), in Section 3.2 we prove a Carleman inequality for the solutions of (2.4), and

in Section 3.3 we end the proof of Theorem 2.7.

3.1 Dissipation of the solutions of (2.1) for a sufficiently large time

We denote by (λ̃0
m)m∈N the eigenvalues of the the Neumann Laplacian, which we recall are

nonnegative and satisfy Weyl’s law (see, for instance, [23]):

Lemma 3.1 (Weyl’s law). Let Ω be a Lipschitz domain and let N(γ) be the number of eigenvalues

(counting repetitions) of the Neumann Laplacian that belong to (−∞, γ]. We have:

lim
γ→∞

N(γ)

γd/2
=
|B(0, 1)||Ω|

(2π)d
,

for d the dimension of Ω. In particular, there is C > 0 depending on Ω such that for all γ ∈ R:

N(γ) ≤ C(1 + |γ|d/2). (3.1)

To continue with, we highlight the following result:
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Lemma 3.2. Let Ω be a Lipschitz domain, ε > 0 and assume that (Γ, aε) satisfies (2.9). Then,

for all m ∈ N we have the following estimate:

λ̃εm ≥ λ̃0
m.

Lemma 3.2 can be obtained by comparing λ̃εm (see Definition 2.5) with λ̃0
m by using the min-max

variational principle

Let us now study the solutions of (2.1):

Lemma 3.3. Let Ω be a Lipschitz domain, ε > 0 and assume that (Γ, aε) satisfies (2.9). Then,

for all ϕT ∈ L2(Ω) the solution of (2.1) satisfies in C0([0, T ];L2(Ω)):

ϕ(t, x) =
∑
m∈N

(∫
Ω
ϕT (z)e(2ε)−1z1vεm(z)dz

)
vεm(x)e−(2ε)−1x1 exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]
.

(3.2)

In particular, the series in the right-hand side of (3.2) is absolutely convergent in L2(Ω) for all

t < T . Moreover, for all T0 > 0 and δ > 0 there is C > 0 depending on Ω, δ and T0 such that

for all T ≥ T0, ϕT ∈ L2(Ω) and t ∈ [0, T − T0] we have the estimate:

‖ϕ(t, ·)‖L2(Ω) ≤ C‖ϕT ‖L2(Ω) exp

(
2 diamx1(Ω) + δ − (T − t)

4ε

)
. (3.3)

Proof. We can easily prove (3.2) for t = T using that vεm is an orthonormal basis in L2(Ω).

Indeed, if ϕT ∈ L2(Ω) we have that:

ϕT (x) = (ϕT (x)e(2ε)−1x1)e−(2ε)−1x1 =
∑
m∈N

(∫
Ω
ϕT (z)e(2ε)−1z1vεm(z)dz

)
vεm(x)e−(2ε)−1x1 .

We prove (3.2) and (3.3) simultaneously for all t ∈ [0, T ). We obtain from Remark 2.2 that

(3.2) is true in span{uεm}. Since the left-hand side of (3.2) belongs to C0([0, T ];L2(Ω)) (see

[15] and [24, Chapter III]) and since span{uεm}m∈N is dense in L2(Ω) (see Remark 2.6), it is

enough to prove that the right-hand side is an endomorphism on L2(Ω) viewed as a map of

pre-image ϕT and time t ∈ [0, T ) fixed. For that purpose, using the triangle inequality and that

‖vεm‖L2(Ω) = 1, we get the following:∥∥∥∥∥∑
m∈N

(∫
Ω
ϕT (z)e(2ε)−1z1vεm(z)dz

)
vεm(x)e−(2ε)−1x1 exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]∥∥∥∥∥
L2(Ω,dx)

≤ ‖ϕT ‖L2(Ω) exp

(
2 diamx1(Ω)− (T − t)

4ε

)∑
m∈N

e−ελ̃
ε
m(T−t). (3.4)
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Thus, the only thing left is to bound
∑

m∈N e
−ελ̃εm(T−t). We obtain from Lemmas 3.2 and 3.1

and from the non-negativity of the eigenvalues of the Neumann Laplacian the estimate:

∑
m∈N

e−ελ̃
ε
m(T−t) ≤

∑
m∈N

e−ελ̃
0
m(T−t) ≤

∑
m≥1

N(m)e−ε(m−1)(T−t)

≤ C

1 +
∑
m≥2

(1 +md/2)e−ε(m−1)(T−t)

 ≤ C (1 +

∫ +∞

0
(1 + (z + 2)d/2)e−εz(T−t)dz

)

≤ C
(

1 +

∫ +∞

0
(1 + zd/2)e−εz(T−t)dz

)
≤ C

(
1 +

1

ε(T − t)
+

1

ε(d+2)/2(T − t)(d+2)/2

)
. (3.5)

So, from (3.5), T − t ≥ T0, and z−k/2e−z
−1 ∈ L∞(R+) for all k ∈ R+, we obtain that:∑

m∈N
e−ελ̃

ε
m(T−t) ≤ Ceδε−1

. (3.6)

Consequently, we end the proof by combining (3.4) and (3.6).

Remark 3.4. Lemma 3.3 can be generalized to the case in which λ̃ε0 ≥ 0 and there are some

polynomial bound for |{i : λ̃εi ≤ m}| that depends on m and uniform for all ε ∈ (0, ε0).

3.2 A Carleman inequality for the solutions of (2.4)

We prove in this section a Carleman inequality for (2.4) when Ω is C2. First of all, we consider

η a C2(Ω) function satisfying:

η = 0 on ∂Ω, η ≥ 0 in Ω, ‖η‖∞ = 1, inf
Ω\ω0

|∇η| = δ > 0, (3.7)

for ω0 ⊂⊂ ω an open non-empty set. The existence of such a function if Ω is a C2 domain is

proved, for instance, in [17]. With that auxiliary function in mind, we define for some T̃ > 0

the following weights in Q̃ := (0, T̃ )× Ω:

α±(t, x) :=
e8τ − eτ(6±η(x))

t(T̃ − t)
, ξ±(t, x) :=

eτ(6±η(x))

t(T̃ − t)
. (3.8)

Weights of this kind first appeared in [17], but this version is borrowed from [16] with the

adaptations for equations in which we do not have Dirichlet boundary conditions proposed in

[15]. We remark that we have the usual bounds:

|∂xiα±| = |∂xiξ±| ≤ Cτξ±, |∂tα±|+ |∂tξ±| ≤ CT̃ξ2
±, |∂ttα±| ≤ Cξ2

±(1 + T̃ 2ξ±). (3.9)
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We prove in this section the following result:

Proposition 3.5. Let Ω be a C2 domain, ω ⊂ Ω be a subdomain, T̃ > 0, ε > 0 and assume

that (Γ, aε) satisfies (2.9). Then, there is C > 0 depending on ω and Ω such that if τ ≥ C,

s ≥ C(T̃ + T̃ 2)ε−1 and φT̃ ∈ L2(Ω) we have that:

s3τ4

∫∫
Q̃
e−2sα+ξ3

+|φ|2 + sτ2

∫∫
Q̃
e−2sα+ξ+|∇φ|2 + s2τ2

∫∫
Σ̃N

e−2sα+ξ2
+

(
aε +

n1

2ε

)
|φ|2

≤ Cs3τ4

∫∫
Q̃ω

e−2sα+ξ3
+|φ|2, (3.10)

for φ the solution of (2.4) with T̃ instead of T , Σ̃N := (0, T̃ )× Γ and Q̃ω := (0, T̃ )× ω.

In the statement of Proposition 3.5 and in its proof we omit the infinitesimals dt and dx as they

can be deduced by looking at the integration domain. In the proof of Proposition 3.5 we denote

by O(G(ε, s, τ, ψ)) a generic function for which there is C > 0 depending only on Ω, ω and ω0

and which satisfies:

|O(G(ε, s, τ, ψ))| ≤ CG(ε, s, τ, ψ),

if ε is small enough, τ ≥ C, s ≥ C(T̃ + T̃ 2)ε−1 and if ψ is a regular function. In that definition

G is a nonnegative operator.

For proving Proposition 3.5 we adapt the proofs of [22] and [15]. In particular, many of the

estimates here are inspired by [22, Proposition 1], though we use the technique proposed in [15]

to treat the boundary terms. However there are some differences. The main difference is on how

we deal with the transport term: indeed, in [22] the authors prove the Carleman for the solutions

of the adjoint system (i.e. (2.1)) instead of the symmetrized system (i.e. (2.4)). This difference

is important to get s2λ2
∫∫

Σ̃N
e−2sα+ξ2

+

(
aε + n1

2ε

)
|φ|2 in the left-hand side of (3.10) and not a

term like ε
∫∫

Σ ∂x1ψ
±∂nψ

± − ε
2

∫∫
Σ n1|∇ψ±|2, which is not easily treatable. In addition, unlike

in [22] and [15] the solutions of (2.4) may not belong to L2(0, T ;H2(Ω)) even if φT̃ ∈ D(Ω).

We first estimate a scalar product for any φ ∈ C∞(Q), which allows us to do some integrations

by parts involving the Laplacian, like in (3.19) below. Then, by using that C∞(Q) is dense in

H1(0, T ;Dε) (see (2.7)), we get an estimate for the solutions of (2.4) with φT̃ ∈ D(Ω). Next, we

use the boundary conditions of the solutions of (2.4) to deal with the trace term. Finally we

use the density of D(Ω) in L2(Ω) to get (3.10) for all solutions of (2.4) with φT̃ ∈ L2(Ω).

Proof. As in [15], we consider the following change of variables:

ψ± := e−sα±φ. (3.11)
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Since η = 0 on ∂Ω we have the following equalities on Σ̃ := (0, T̃ )× ∂Ω:

ξ+ = ξ−, α+ = α−, ψ+ = ψ−, ψ+
t = ψ−t , ∇tgψ

+ = ∇tgψ
−, (3.12)

for ∇tgψ := ∇ψ − (∂nψ)n. In particular, we can omit the sign when we are working on Σ̃ to

make the proof clearer.

Next, we consider the equality:

L±1 ψ
± + L±2 ψ

± = L±3 ψ
±, (3.13)

for: 
L±1 ψ

± := −2εsτ2|∇η|2ξ±ψ± ∓ 2εsτξ±∇η · ∇ψ± + ψ±t ,

L±2 ψ
± := εs2τ2|∇η|2ξ2

±ψ
± + ε∆ψ± + s∂t(α±)ψ± + 1

4εψ
±,

L±3 ψ
± := ±εsτ∆ηξ±ψ

± − εsτ2|∇η|2ξ±ψ±.

(3.14)

As usual, we denote (L±i ψ)j the j-th summand of L±i ψ. Moreover, we calculate the product

(L±1 ψ
±, L±2 ψ

±)L2(Q̃). To do so, we first compute it for generic functions φ ∈ C∞(Q) and then

use a density argument.

To begin with, we have that, for τ ≥ C, s ≥ CT̃ 2 (see (3.7) for the definition of δ):

((L±1 ψ
±)1 + (L±1 ψ

±)2, (L
±
2 ψ
±)1)L2(Q̃)

= ε2s3τ4

∫∫
Q̃
|∇η|4ξ3

±|ψ±|2 +O

(
ε2s2τ3

∫∫
Q̃
ξ3
±|ψ±|2

)
∓ ε2s3τ3

∫∫
Σ̃
|∇η|2ξ3∂nη|ψ|2

≥ 3δ4

4
ε2s3τ4

∫∫
Q̃
ξ3
±|ψ±|2 − δ4ε2s3τ4

∫∫
Q̃ω0

ξ3
±|ψ±|2 ∓ ε2s3τ3

∫∫
Σ̃
|∇η|2ξ3∂nη|ψ|2. (3.15)

As for the third term in L±1 ψ
±, we can integrate by parts in time and get, taking into account

the second equation of (3.9):

((L±1 ψ
±)3, (L

±
2 ψ
±)1)L2(Q̃) = O

(
εT̃ s2τ2

∫∫
Q̃
ξ3
±|ψ±|2

)
. (3.16)

Summing up, thanks to (3.15), (3.16) and (3.7), we obtain for τ ≥ C and s ≥ C(T̃ + T̃ 2)ε−1 the

estimate:∑
i∈{+,−}

(Li1ψ
i, (Li2ψ

i)1)L2(Q̃) ≥
∑

i∈{+,−}

δ4

2
ε2s3τ4

∫∫
Q̃
ξ3
i |ψi|2 − δ4ε2s3τ4

∫∫
Q̃ω0

ξ3
i |ψi|2. (3.17)
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To continue with we find, integrating by parts and with the Cauchy-Schwarz inequality, that:

((L±1 ψ
±)1, (L

±
2 ψ
±)2)L2(Q̃) = 2ε2sτ2

∫∫
Q̃
|∇η|2ξ±|∇ψ±|2 − 2ε2sτ2

∫∫
Σ̃
|∇η|2ξ(∂nψ±)ψ

+O

(
ε2s2τ4

∫∫
Q̃
ξ2
±|ψ±|2 + ε2τ2

∫∫
Q̃
|∇ψ±|2

)
. (3.18)

Next, considering that η = 0 on ∂Ω, we obtain integrating by parts that:

((L±1 ψ
±)2, (L

±
2 ψ
±)2)L2(Q̃) = ∓2ε2sτ

∫∫
Σ̃
∂nηξ|∂nψ±|2

+O

(
ε2sτ

∫∫
Q̃
ξ±|∇ψ±|2

)
+ 2ε2sτ2

∫∫
Q̃
ξ±|∇η · ∇ψ±|2 ± ε2sτ

∫∫
Q̃
ξ±∇η · ∇|∇ψ±|2

= ∓2ε2sτ

∫∫
Σ̃
∂nηξ|∂nψ±|2 +O

(
ε2sτ

∫∫
Q̃
ξ±|∇ψ±|2

)
+ 2ε2sτ2

∫∫
Q̃
ξ±|∇η · ∇ψ±|2

− ε2sτ2

∫∫
Q̃
|∇η|2ξ±|∇ψ±|2 +O

(
ε2sτ

∫∫
Q̃
ξ±|∇ψ±|2

)
± ε2sτ

∫∫
Σ̃
∂nηξ(|∇tgψ|2 + |∂nψ±|2).

(3.19)

Next, we have that:

((L±1 ψ
±)3, (L

±
2 ψ
±)2)L2(Q̃) = ε

∫∫
Σ̃
ψt∂nψ

±, (3.20)

as ψ(0, ·) = ψ(T̃ , ·) = 0.

Let us compute the boundary terms involving ∂nψ
± that appear in (3.18)-(3.20). On the one

hand, from (3.11) we find that:

− 2ε2sτ2

∫∫
Σ̃
|∇η|2ξ(∂nψ±)ψ = ∓2ε2s2τ3

∫∫
Σ̃
|∇η|2∂nηξ2|ψ|2

− 2ε2sτ2

∫ T

0
〈∂nφ, |∇η|2ξe−2sαφ〉H−1/2(∂Ω),H1/2(∂Ω). (3.21)

In addition, we obtain from η = 0 on ∂Ω that:

∓ ε2sτ

∫∫
Σ̃
∂nηξ|∂nψ±|2 = −2ε2s2τ2

∫ T

0
〈∂nφ, e−2sα|∇η|2ξ2φ〉H−1/2(∂Ω),H1/2(∂Ω)

∓ ε2s3τ3

∫∫
Σ̃

(∂nη)3ξ3|ψ|2 ∓ ε2sτ

∫∫
Σ̃
∂nηξe

−2sα|∂nφ|2. (3.22)

Finally, we have that:

ε

∫∫
Σ̃
ψt∂nψ

± = ±εsτ
∫∫

Σ̃
∂nηξψψt + ε

∫ T

0
〈∂nφ, e−sαψt〉H−1/2(∂Ω),H1/2(∂Ω). (3.23)
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Summing up, if we consider (3.18)-(3.23) we get that:

∑
i∈{+,−}

(Li1ψ
i, (Li2ψ

i)2)L2(Q̃) ≥
∑

i∈{+,−}

O

(
ε2s2τ4

∫∫
Q̃
ξ2
i |ψi|2

)

+
∑

i∈{+,−}

δ2

2
ε2sτ2

∫∫
Q̃
ξi|∇ψi|2 − δ2ε2sτ2

∫∫
Q̃ω0

ξi|∇ψi|2

−4ε2τ2

∫ T

0
〈∂nφ, e−2sα|∇η|2(sξ+s2ξ2)φ〉H−1/2(∂Ω),H1/2(∂Ω)+2ε

∫ T

0
〈∂nφ, e−sαψt〉H−1/2(∂Ω),H1/2(∂Ω).

(3.24)

Next, we obtain from the second equation of (3.9) that:

((L±1 ψ
±)1, (L

±
2 ψ
±)3)L2(Q̃) = O

(
εs2τ2T̃

∫∫
Q̃
ξ3
±|ψ±|2

)
. (3.25)

In addition, integrating by parts we get that:

((L±1 ψ
±)2, (L

±
2 ψ
±)3)L2(Q̃) = O

(
εs2τ2T̃

∫∫
Q̃
ξ3
±|ψ±|2

)
∓ εs2τ

∫∫
Σ̃
ξ∂tα∂nη|ψ|2. (3.26)

Finally, from the third equation of (3.9) we find that:

((L±1 ψ
±)3, (L

±
2 ψ
±)3)L2(Q̃) = −s

2

∫∫
Q̃
∂tt(α±)|ψ±|2 = O

(
s

∫∫
Q̃
ξ2
±(1 + T̃ 2ξ±)|ψ±|2

)
. (3.27)

Summing up, combining (3.25)-(3.27) we obtain that:∑
i∈{+,−}

(Li1ψ
i, (Li2ψ

i)3)L2(Q̃) = O

(
ε2s3τ2

∫∫
Q̃
ξ3
±|ψ±|2

)
. (3.28)

To continue with, we have that:

((L±1 ψ
±)1, (L

±
2 ψ
±)4)L2(Q̃) = O

(
sτ2

∫∫
Q̃
ξ±|ψ±|2

)
. (3.29)

Next, integrating by parts we obtain that:

((L±1 ψ
±)2, (L

±
2 ψ
±)4)L2(Q̃) = O

(
sτ2

∫∫
Q̃
ξ±|ψ±|2

)
± sτ

4

∫∫
Σ̃
ξ∂nη|ψ|2. (3.30)

Finally, we obtain from ψ±(0, ·) = ψ±(T, ·) = 0 that:

((L±1 ψ
±)3, (L

±
2 ψ
±)4)L2(Q̃) = 0. (3.31)

Summing up the results obtained in (3.29)-(3.31), we get that:∑
i∈{+,−}

(Li1ψ
i, (Li2ψ

i)4)L2(Q̃) = O

(
sτ2

∫∫
Q̃
ξ±|ψ±|2

)
. (3.32)

18



So, if we add (3.17), (3.24), (3.28) and (3.32), we get, after absorptions, for τ ≥ C and

s ≥ C(T̃ + T̃ 2)ε−1:

2
∑

i∈{+,−}

(Li1ψ
i, Li2ψ

i) + 2δ4ε2s3τ4

∫∫
Q̃ω0

ξ3
i |ψi|2 + 2δ2ε2sτ2

∫∫
Q̃ω0

ξi|∇ψi|2

≥
∑

i∈{+,−}

δ4

4
ε2s3τ4

∫∫
Q̃
ξ3
i |ψi|2 +

δ2

2
ε2sτ2

∫∫
Q̃
ξi|∇ψi|2

−4ε2τ2

∫ T

0
〈∂nφ, e−2sα|∇η|2(sξ+s2ξ2)φ〉H−1/2(∂Ω),H1/2(∂Ω)+2ε

∫ T

0
〈∂nφ, e−sαψt〉H−1/2(∂Ω),H1/2(∂Ω).

(3.33)

Using the density of C∞(Q) in H1(0, T ;Dε) we obtain that (3.33) is true for all solutions of

(2.4) such that φT̃ ∈ D(Ω). So, from now on φ denotes any solution of (2.4) with initial value

in D(Ω).

Considering the second and third equations of (2.4), that aε is independent of the time variable

and that ψ±(0, ·) = ψ±(T̃ , ·) = 0 we find that:

−4ε2τ2

∫ T

0
〈∂nφ, e−2sα|∇η|2(sξ+s2ξ2)φ〉H−1/2(∂Ω),H1/2(∂Ω)+2ε

∫ T

0
〈∂nφ, e−sαψt〉H−1/2(∂Ω),H1/2(∂Ω)

= 4ε2τ2

∫∫
Σ̃N

|∇η|2(sξ + s2ξ2)
(
aε +

n1

2ε

)
|ψ|2 + 2ε

∫∫
Σ̃N

(
aε +

n1

2ε

)
ψψt

= 4ε2τ2

∫∫
Σ̃N

|∇η|2(sξ + s2ξ2)
(
aε +

n1

2ε

)
|ψ|2. (3.34)

Consequently, from (3.33) and (3.34) we obtain for all solutions of (2.4) such that φT̃ ∈ D(Ω)

the estimate:

2
∑

i∈{+,−}

(Li1ψ
i, Li2ψ

i) + 2δ4ε2s3τ4

∫∫
Q̃ω0

ξ3
i |ψi|2 + 2δ2ε2sτ2

∫∫
Q̃ω0

ξi|∇ψi|2

≥
∑

i∈{+,−}

δ4

2
ε2s3τ4

∫∫
Q̃
ξ3
i |ψi|2 +

δ2

2
ε2sτ2

∫∫
Q̃
ξi|∇ψi|2

+ 4ε2τ2

∫∫
Σ̃N

|∇η|2(sξ + s2ξ2)
(
aε +

n1

2ε

)
|ψ|2. (3.35)

We recall that inf∂Ω |∇η| > 0 thanks to (3.7). Thus, using (2.9) it is classical to obtain (3.10)

from (3.35) (see, for instance, [17] and [15]) for all solutions of (2.4) such that φT̃ ∈ D(Ω).

Afterwards, we get (3.10) for all solutions of (2.4) such that φT̃ ∈ L2(Ω) by density.

Remark 3.6. The trace term in (3.10) can be absorbed by considering τ > C(ε−1 + ‖aε‖L∞(Γ)).

Indeed, in that case we have that:

s2τ2

∫∫
Σ̃N

e−2sα+ξ2
+

∣∣∣aε +
n1

2ε

∣∣∣ |φ|2 ≤ C (s3τ3

∫∫
Q̃
e−2sα+ξ3

+|φ|2 + sτ2

∫∫
Q̃
e−2sα+ξ+|∇φ|2

)
,
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a term which can be absorbed for τ > C. This allows to prove the null observability of (2.4),

which implies the null observability of (2.1) and consequently the null controllability of (1.1),

but with an estimate of the cost of the control of exp
(
eC(ε−1+‖aε‖L∞(Γ))

)
.

3.3 Conclusion of the proof of Theorem 2.7

Let T ≥ 1. Considering Proposition 3.5 for T̃ = 1 and Remark 2.1 we obtain for all ϕT ∈
L2(Ω), τ ≥ C and s ≥ Cε−1 the estimate:

s3τ4

∫ 1

0

∫
Ω
e−2sα+(t,x)−ε−1x1ξ3

+(t, x)|ϕ(T − 1 + t, x)|2dxdt

≤ Cs3τ4

∫ 1

0

∫
Ω
e−2sα+(t,x)−ε−1x1ξ3

+(t, x)|ϕ(T − 1 + t, x)|2dxdt, (3.36)

for ϕ the solution of (2.1). So, fixing τ large enough and s = s0ε
−1 for s0 large enough, we have

that (3.36) implies that:

‖ϕ‖L2((T−2/3,T−1/3)×Ω) ≤ CeCε
−1‖ϕ‖L2((T−1,T )×ω) ≤ CeCε

−1‖ϕ‖L2(Qω). (3.37)

Moreover, from Lemma 3.3 taking T0 = δ = 1 we find a constant C > 0 such that for all

t′ ∈ (T − 2/3, T − 1/3) we have that:

‖ϕ(0, ·)‖L2(Ω) ≤ C exp

[
2 diamx1(Ω) + 1− t′

4ε

]
‖ϕ(t′, ·)‖L2(Ω) ≤ C exp

[
C − T

4ε

]
‖ϕ(t′, ·)‖L2(Ω).

(3.38)

So, combining (3.37) and (3.38), we get that:

‖ϕ(0, ·)‖L2(Ω) ≤ C exp

[
C − T

4ε

]
‖ϕ‖L2((T−2/3,T−1/3)×Ω) ≤ C exp

[
C − T

4ε

]
‖ϕ‖L2(Qω). (3.39)

In particular, if T is sufficiently large, from (2.2) and (3.39) we obtain (2.10).

4 Some controllability problems in which the cost of the control

explodes exponentially

In this section we study some control problems in which (2.11) is satisfied. In particular, in

Section 4.1 we prove Proposition 2.10, in Section 4.2 we prove Theorem 2.8 and in Section 4.3

we prove Theorem 2.9.

20



4.1 Proof of Proposition 2.10

Let v ∈ H1(Ω) satisfying ‖v‖L2(Ω) = 1 and v|Γ∗ = 0. We find from the Green formula and a

weighted Cauchy-Schwarz inequality that:∫
Γ

n1

2ε
|v|2dx =

∫
∂Ω

n1

2ε
|v|2dx =

∫
Ω

v∂x1v

ε
dx ≥ −

∫
Ω
|∂x1v|2dx−

1

4ε2

∫
Ω
|v|2dx.

Thus, from aε ≥ 0, v ∈ H1(Ω), ‖v‖L2(Ω) = 1 and v|Γ∗ = 0 on Γ∗ we find that:∫
Ω
|∇v|2dx+

∫
Γ

(
aε +

n1

2ε

)
|v|2dx ≥

∫
Ω
|∇v|2dx−

∫
Ω
|∂x1v|2dx−

1

4ε2
≥ − 1

4ε2
. (4.1)

Finally, we get (2.18) from (2.8), (4.1) and Remark 2.2.

In order to have an equality in (4.1) we need that aεv = 0, that v just depends on x1 and that

∂x1v = −(2ε)−1v; i.e. we need that v = e−(2ε)−1x1

‖e−(2ε)−1x1‖L2(Ω)

and thus we also need Γ = ∂Ω, aε = 0

and uε = e−ε−1x1

‖e−(2ε)−1x1‖L2(Ω)

(this last one by Remark 2.2).

4.2 Proof of Theorem 2.8

In order to prove (2.15) we consider the adjoint system of (2.12) given by (see (2.1)):
−ϕt − ε∆ϕ− ∂x1ϕ = 0, in Q,

ε∂nϕ+ n1ϕ = 0, on Σ,

ϕ(T, ·) = ϕT , on Ω.

(4.2)

In particular, we use (2.2) for ϕ(x) = e−x1ε−1
, which is a (steady) solution of (4.2) by Proposition

2.10. On the one hand, we remark that (see (2.13) for the notation):

‖ϕ(0, ·)‖L2(Ω) ≥ |π−1
1 (pl, pl + h/2) ∩ Ω|1/2 exp

(
−pl − h/2

ε

)
. (4.3)

Because Ω is an open set and because of (2.13) we have that:

|π−1
1 (pl, pl + h/2) ∩ Ω| > 0.

On the other hand, (2.14) implies the estimate:

‖ϕ‖L2(Qω) ≤ T 1/2|ω|1/2‖e−x1ε−1‖L∞(π−1
1 (pl+h,pr)∩ω) ≤ T

1/2|ω|1/2 exp

(
−pl − h

ε

)
. (4.4)

Consequently, combining (2.2), (4.3) and (4.4) we find that:

K(Ω, ω, T, ε) ≥
‖ϕ(0, ·)‖L2(Ω)

‖ϕ‖L2(Qω)
≥ |π

−1
1 (pl, pl + h/2) ∩ Ω|1/2

T 1/2|ω|1/2
exp

(
h

2ε

)
,

which implies (2.15).
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4.3 Proof of Theorem 2.9

We first remark that the adjoint system of (2.16) is given by (see (2.1)):

−ϕt − ε∂xxϕ− ∂xϕ = 0, in Q,

ε∂xϕ(·,−L) + ϕ(·,−L) = 0, on (0, T ),

ϕ(·, 0) = 0, on (0, T ),

ϕ(T, ·) = ϕT , on (−L, 0).

(4.5)

In addition, the spectral problem (2.6) can be written as:
−v′′ = λ̃v, in (−L, 0),

2εv′(−L) + v(−L) = 0,

v(0) = 0.

(4.6)

In order to prove Theorem 2.9, we first prove the following lemma:

Lemma 4.1. Let L > 0. Then, for ε small enough there is a unique rε > 0 such that there are

non-trivial solutions of (4.6) for λ̃ε = −r2
ε . In fact, we have:

rε ∈
(

0,
1

2ε

)
, (4.7)

and the non-trivial solutions are those proportional to sinh(−rεx). In addition, we have the

limit:

lim
ε→0

1

2ε
− rε = 0. (4.8)

Remark 4.2. From Proposition 2.10 and Remark 2.2 we already know that all the eigenvalues

are strictly bigger than −(2ε)−2; thus, it is clear that rε must satisfy (4.7).

Proof of Lemma 4.1. The structure of the proof is the following: first we give an equivalent

condition for −r2
ε to be an eigenvalue of (4.6), second we show that (4.6) has a unique strictly

negative eigenvalue, and finally we prove (4.8).

Step 1: an equivalent condition. First, we recall that when λ̃ = −r2 < 0, the solutions of

(4.6)1 are given by:

Aerx +Be−rx : A,B ∈ R.

Moreover, the boundary conditions of (4.6) are equivalent to (A,B) satisfying:
(
2εre−rL + e−rL

)
A+

(
−2εrerL + erL

)
B = 0,

A+B = 0.
(4.9)
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Thus, (4.9) has a non-trivial solution if and only if:

e−rL + 2εre−rL = erL − 2εrerL;

that is, if and only if:
1 + 2εr

1− 2εr
= e2rL. (4.10)

In addition, from the second equation of (4.9) we obtain that the associated eigenfunctions are

those proportional to sinh(−rεx). Finally, from (4.10) we have that all the possible positive

roots are in (0, (2ε)−1), so we just have to prove existence and uniqueness in that interval.

Step 2: proof of the fact that (4.10) has a unique solution in (0, (2ε)−1). Let us denote:

g1(r) :=
1 + 2εr

1− 2εr
= −1 +

2

1− 2εr
, g2(r) := e2rL.

We have the equality:

g1(0) = g2(0) = 1. (4.11)

In addition, the derivative of the functions are given by:

g′1(r) =
4ε

(1− 2εr)2
, g′2(r) := 2Le2rL. (4.12)

Consequently, combining (4.11) and (4.12) we obtain a constant c > 0 such that for ε small

enough, g2 > g1 in (0, c). Moreover, since limr↑(2ε)−1 g1(r) = +∞ and g2((2ε)−1) ∈ R, we have

at least one root of (4.10) in (0, (2ε)−1). In order to show the uniqueness of the root, we define:

g3(r) :=
g′2(r)

g′1(r)
=

L

2ε
(1− 2εr)2e2rL.

Since in (0, (2ε)−1) the function g′3 has the same sign as 2L(1− 2εr)− 4ε, we have g′3(r) ≤ 0 if

and only if:

r ≥ 2L− 4ε

4Lε
=

1

2ε
− 1

L
.

So, since g3(0) = L
4ε , for ε small enough there is a unique:

rε ∈
(

1

2ε
− 1

L
,

1

2ε

)
,

such that g3(rε) = 1, g3 > 1 in [0, rε] and g3 is strictly decreasing in [rε, (2ε)
−1]. This implies

that g′2(r) > g′1(r) in [0, rε) and g′2(r) < g′1(r) in (rε, (2ε)
−1). Consequently, (4.10) has a unique

root in (0, (2ε)−1) which, to be more precise, belongs to [rε, (2ε)
−1] and which we denote from

now on by rε.
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Step 3: proof of (4.8). In order to prove (4.8) we first consider that for ε small enough:

rε ≥ rε ≥
1

2ε
− 1

L
≥ 1

4ε
. (4.13)

Moreover, from g1(rε) = g2(rε) we obtain that:

1/ε
1
2ε − rε

= e2rεL + 1,

which implies the equality:
1

2ε
− rε =

1

ε(e2rεL + 1)
.

Using (4.13), we get for ε small enough that:

1

2ε
− rε ≤

1

εeL(2ε)−1 . (4.14)

Consequently, we obtain (4.8) from (4.14) and (4.7).

We now end the proof of Theorem 2.9. Remark 2.2 implies that:

(uε(x), λε0) :=

(
sinh(−rεx)e−(2ε)−1x,−εr2

ε +
1

4ε

)
, (4.15)

is a solution of (2.5). Hence ϕ̂(t, x) = uε(x)eλ
ε
0(t−T ) is a solution of (4.5). Moreover, we obtain

from εrε < 1/2 (see (4.7)) and (4.8) the limit:

lim
ε→0

λε0 = lim
ε→0

ε

(
1

2ε
− rε

)(
1

2ε
+ rε

)
= lim

ε→0

(
1

2ε
− rε

)(
1

2
+ εrε

)
= 0. (4.16)

We prove (2.17) with the help of (2.2). On the one hand, for x ∈ (−L,−L+ h/2) and ε small

enough we have the bound:

uε(x) = sinh(−rεx)e−(2ε)−1x ≥ 1

4
e−(rε+(2ε)−1)x ≥ 1

4
e(rε+(2ε)−1)(L−h/2).

Moreover, using (4.16) we find for ε small enough that e−λ
ε
0T ≥ 1/2. So we get the bound:

‖ϕ̂(0, ·)‖L2(−L,0) ≥ ‖ϕ̂(0, ·)‖L2(−L,−L+h/2) ≥
√

2h

16
e(rε+(2ε)−1)(L−h/2). (4.17)

On the other hand, from ω ⊂ (−L+ h, 0) we obtain the estimate:

‖ϕ̂‖L2(Qω) ≤
√
T (L− h)e(rε+(2ε)−1)(L−h). (4.18)

To prove (4.18) we have used that:

‖eλε0(t−T )‖L∞(0,T ) ≤ 1,

and that in (−L+ h, 0):

sinh(−rεx)e−(2ε)−1x ≤ e−(rε+(2ε)−1)x

2
≤ e(rε+(2ε)−1)(L−h)

2
.

Finally, combining (2.2), (4.17), (4.18) and that rε ≥ 0, we get (2.17).
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Remark 4.3. The key idea of the proof is that λε0 → 0, but we also need to know how the

eigenfunctions are distributed in Ω.

5 Cost of the control when ω = Ω

In this section we study some control problems in which the control domain is Ω. In particular,

in Section 5.1 we prove Proposition 2.15, in Section 5.2 we prove Proposition 2.16, and in Section

5.3 we prove Proposition 2.17.

5.1 Proof of Proposition 2.15

From Definition 2.5 we obtain that ϕε(t, x) = uε0(x)eλ
ε
0(T−t) is a solution of (2.1) (see Definition

2.5 for the notation). Furthermore, (2.19) implies that:

lim
ε→0

∫ T

0
e−2λε0(T−t)dt→ T.

Consequently, we have the limit:

lim
ε→0

‖ϕε(0, ·)‖2L2(Ω)∫∫
Q |ϕε|2dxdt

= lim
ε→0

‖uε0e−λ
ε
0T ‖2L2(Ω)∫∫

Q |u
ε
0e
−λε0(T−t)|2dxdt

= lim
ε→0

e−2λε0T∫ T
0 e−2λε0(T−t)dt

=
1

T
,

which together with (2.2) implies (2.20).

5.2 Proof of Proposition 2.16

Let ϕ be a solution of (4.2) and χ ≤ 1 be a regular positive cut-off function whose value is 1

in [0, 1/3] and 0 in [2/3, 1]. Recalling that the adjoint system of (2.12) is given by (4.2) we find

that:

1

2

∫
Ω
|ϕ(0, x)|2dx = −1

2

∫∫
Q
∂t

(
χ

(
t

T

)
|ϕ|2

)
dxdt

= − 1

2T

∫∫
Q
χ′
(
t

T

)
|ϕ|2dxdt+

∫∫
Q
χ

(
t

T

)
(ε∆ϕ+ ∂x1ϕ)ϕdxdt

= − 1

2T

∫∫
Q
χ′
(
t

T

)
|ϕ|2dxdt− ε

∫∫
Q
χ

(
t

T

)
|∇ϕ|2dxdt

−
∫∫

ΣN

χ

(
t

T

)
(aε + n1)|ϕ|2dxdt ≤ C

(
1

T
+

1

ε

)∫∫
Q
|ϕ|2dxdt. (5.1)

For the last inequality in (5.1) we use that aε ≥ 0 and the following classical estimate:∣∣∣∣∫∫
ΣN

χ

(
t

T

)
n1

2
|ϕ|2

∣∣∣∣ dxdt ≤ ε ∫∫
Q
χ

(
t

T

)
|∇ϕ|2dxdt+

C

ε

∫∫
Q
|ϕ|2dxdt.

Thereby, we obtain (2.21) from (2.2) and (5.1).

25



5.3 Proof of Proposition 2.17

We prove Proposition 2.17 thanks to an explicit computation of the eigenvalues of (4.2). For

that purpose, we remark that the spectral problem (2.6) when Γ = ∂Ω and aε = 0 is given by:−v′′ = λ̃v, in (−L, 0),

2εv′ + v = 0, on {−L, 0}.
(5.2)

It can be proved easily that the only negative eigenvalue is λ̃ε0 = − 1
4ε2

and that the associated

eigenfunction is:

vε0(x) =
e−(2ε)−1x∥∥e−(2ε)−1z

∥∥
L2(Ω,dz)

.

In addition, it can be proved for m ∈ N∗ that:

λ̃εm =

(
2πm

L

)2

,

and its associated eigenfunction is:

vεm(x) =
2ε
√
λ̃m cos

(√
λ̃mx

)
+ sin

(√
λ̃mx

)
∥∥∥2ε
√
λ̃m cos

(√
λ̃mz

)
+ sin

(√
λ̃mz

)∥∥∥
L2(Ω,dz)

.

Consequently, Remark 2.2 implies that the spectral decomposition by the elliptic operator asso-

ciated to the adjoint system is given by uεm(x) = vεm(x)e−(2ε)−1x, and their associated eigenvalues

are given by λεm = ελ̃m + (4ε)−1. In particular, we have that:

uε0(x) =
e−ε

−1x∥∥e−(2ε)−1z
∥∥
L2(Ω,dz)

, λε0 = 0.

In addition, we have the following result:

Lemma 5.1. Let L > 0 and Ω := (−L, 0). Then, for all ϕT ∈ L2(Ω) the solution of (4.2)

satisfies in C0([0, T ];L2(Ω)):

ϕ(t, x) =

∫
Ω ϕ

T (z)dz

‖e−(2ε)−1z‖L2(Ω,dz)

e−ε
−1x

+
∑
m∈N∗

(∫
Ω
ϕT (z)e(2ε)−1zvεm(z)dz

)
vεm(x)e−(2ε)−1x exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]
. (5.3)

In particular, the series in the right-hand side of (5.3) is absolutely convergent in L2(Ω) for all

t < T . Moreover, for all T0 > 0 and δ > 0 there is C > 0 such that for all ϕT ∈ L2(Ω), T ≥ T0
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and t ∈ [0, T − T0] we have the estimate:∥∥∥∥∥ ∑
m∈N∗

(∫
Ω
ϕT (z)e(2ε)−1zvεm(z)dz

)
vεm(x)e−(2ε)−1x exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]∥∥∥∥∥
L2(Ω,dx)

≤ C‖ϕT ‖L2(Ω) exp

(
2L+ δ − (T − t)

4ε

)
. (5.4)

The proof of Lemma 5.1 is analogous to that of Lemma 3.3 since the only negative eigenvalue

of (5.2) is λ̃ε0. In addition, we remark that, for all m ∈ N and t ∈ [t, T ]:(∫
Ω
ϕT (z)e(2ε)−1zvεm(z)dz

)
vεm(x)e−(2ε)−1x exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]
=

(∫
Ω
ϕT (z)e(2ε)−1zvεm(z)dz

)
exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]
vεm(x)e−(2ε)−1x exp

[
−
(
ελ̃εm +

1

4ε

)
(t− t)

]
=

(∫
Ω

{∑
r∈N

(∫
Ω
ϕT (z)e(2ε)−1zvεr(z)dz

)
vεr(z̃)e

−(2ε)−1z̃ exp

[
−
(
ελ̃εr +

1

4ε

)
(T − t)

]}

e(2ε)−1z̃vεm(z̃)dz̃

)
vεm(x)e−(2ε)−1x exp

[
−
(
ελ̃εm +

1

4ε

)
(t− t)

]
=

(∫
Ω
ϕ(t, z)e(2ε)−1zvεm(z)dz

)
vεm(x)e−(2ε)−1x exp

[
−
(
ελ̃εm +

1

4ε

)
(t− t)

]
. (5.5)

We have used in the second equality of (5.5) that the eigenfunctions of (5.2) form an orthonormal

set of functions and Fubini’s Theorem (it can be proved as in Lemma 3.3 that the series is

convergent in L2(Ω)). A consequence of (5.5) and Lemma 5.1 is the following:

Corollary 5.2. Let L > 0 and Ω := (−L, 0). Then, for all T0 > 0 and δ > 0 there is C > 0

such that for all ϕT ∈ L2(Ω), T ≥ T0, t ∈ [T0, T ] and t ∈ [0, t− T0] we have the estimate:∥∥∥∥∥ ∑
m∈N∗

(∫
Ω
ϕT (z)e(2ε)−1zvm(z)dz

)
vm(x)e−(2ε)−1x exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]∥∥∥∥∥
L2(Ω,dx)

≤ C‖ϕ(t, ·)‖L2(Ω,dx) exp

(
2L+ δ − (t− t)

4ε

)
. (5.6)

In particular, we obtain that for all T0 > 0 and δ > 0 there is C > 0 such that for all ϕT ∈ L2(Ω),

T ≥ T0 and t ∈ [T0, T ):∥∥∥∥∥ ∑
m∈N∗

(∫
Ω
ϕT (z)e(2ε)−1zvm(z)dz

)
vm(x)e−(2ε)−1x exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]∥∥∥∥∥
L2(Ω,dx)

≤ C

T − t

∫ T

t
‖ϕ(s, ·)‖L2(Ω)ds exp

(
2L+ δ − (t− t)

4ε

)
. (5.7)
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End of the proof of Proposition 2.17. In order to prove Proposition 2.17 we split the solutions

of system (4.2) into two parts with the help of Lemma 5.1. Indeed, we define:

ϕ1(x) :=

(∫
Ω ϕ

T (z)dz
)
e−εx

‖e−(2ε)−1z‖L2(Ω,dz)

,

and:

ϕ2(t, x) :=
∑
m∈N∗

(∫
Ω
ϕT (z)e(2ε)−1zvεm(z)dz

)
vεm(x)e−(2ε)−1x exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]
.

We remark that:

ϕ(t, x) = ϕ1(x) + ϕ2(t, x), in Q.

Next, we estimate ϕ1 and ϕ2(0, ·) with respect to ‖ϕ‖L2(Q):

Let us first estimate ϕ1. If ϕ1 = 0 the estimation is trivial. Consequently, we suppose from

now on that ϕ1 6= 0. We denote:

N :=

{
t : ϕ2(t, ·) ∈ BL2(Ω)

(
−ϕ1,

‖ϕ1‖L2(Ω)

2

)}
,

for:

BX(w, r) := {v ∈ X : ‖v − w‖X < r}.

We have that:

|N | < 3L, (5.8)

since otherwise there are some t1 and t2 such that t2 − t1 ≥ 3L and:

ϕ2(t1, ·), ϕ2(t2, ·) ∈ BL2(Ω)

(
−ϕ1,

‖ϕ1‖L2(Ω)

2

)
,

but by (5.4) this is impossible. Indeed, the system is autonomous and if t2 ∈ N we have the

estimate:

‖ϕ(t2, ·)‖L2(Ω) ≤
‖ϕ1‖L2(Ω)

2
,

so by (5.6) for t = t2 and δ = L/2 we have that t1 6∈ N for ε small enough. In addition, we

remark that in [0, T ] \ N we have that:

‖ϕ(t, ·)‖L2(Ω) ≥
‖ϕ1‖L2(Ω)

2
. (5.9)

Thus, we obtain from (5.8) and (5.9) that for all ϕT ∈ L2(Ω) and T > 4L:

‖ϕ1‖L2(Ω)

‖ϕ‖L2(Q)
≤

‖ϕ1‖L2(Ω)

‖ϕ‖L2(((0,T )\N )×Ω)
≤ 2√

T − 3L
≤ 2√

T/4
=

4√
T
. (5.10)

28



Let us now estimate ϕ2. We have that:

‖ϕ2(0, ·)‖L2(Ω)

‖ϕ‖L2(Q)
≤
Ce−cε

−1‖ϕ‖L2((T−L,T )×Ω)

‖ϕ‖L2(Q)
≤ Ce−cε−1

, (5.11)

which is a direct consequence of (5.7) for t = T − L.

Thus, combining (5.10) and (5.11) we obtain (2.22) for ε small enough.

6 Open problems

We now present some problems that remain open:

• Study the controllability properties of (1.1) but with a non-constant speed; i.e. of (1.1)

but with the first equation replaced by:

yt − ε∆y + θ(t, x) · ∇y = 1ωf,

for a function θ ∈ (L∞(Q))d. The fact that there is no easy transformation like (2.3) to

diagonalize the system, which we have used for both the decay property and the Carle-

man, prevents to study that problem just with the techniques proposed in this paper. In

addition, we cannot replicate the explicit computations of Section 4.

• Get precise estimates of the cost of the control problem (1.1) for vanishing diffusivity when

aε also depends on the time variable. Indeed, when aε depends on the time variable the

eigenfunctions of (2.6) also depend on the time variable, which makes cumbersome working

with the Fourier representation of the solutions.

• Determine if for all Ω, ω ⊂ Ω, T > 0 and aε ∈ L∞(Γ) such that supε∈(0,ε0) ‖aε‖L∞(Γ) <∞
there is a constant C > 0 depending on T , ω and Ω such that for ε small enough we have

that:

K(Ω, ω, T, ε) ≤ CeCε−1
. (6.1)

Indeed, considering the equation (2.4) and adapting the proof of Proposition 3.5 we can

easily obtain that:

K(Ω, ω, T, ε) ≤ CeCε−4/3
;

however, (6.1) would be more coherent with the literature (see [22]). The main difficulty

to prove a Carleman inequality is absorbing the boundary terms.
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• Determine for the control problems (2.12) and (2.16) and for all y0 ∈ L2(Ω) whether the

map ε 7→ f εy0 ∈ L2(Q) is bounded in a neighbourhood of 0, for f εy0 the optimal control (i.e.

the control of smallest norm in L2(Q)) such that y(T, ·) = 0.

• Study the cost of the controllability in the context of (2.16), and in particular to determine

if it explodes exponentially when ε→ 0. We know by Proposition 2.16 that this is false if

ω = (−L, 0), but the other cases are still open. The main difficulty is that we do not obtain

that the cost explodes just by computing the cost of observing the first eigenfunction.

A similar open problem is to determine the cost of the null controllability of (2.12) if

pl ∈ π1(ω) (see (2.13) for the notation).

• Determine if Proposition 2.17 is still true if Ω is any arbitrary domain instead of a segment.

The main new difficulty is that the exact value of λ̃εm is unknown.
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