
HAL Id: hal-02455632
https://hal.science/hal-02455632v2

Preprint submitted on 27 Feb 2020 (v2), last revised 26 Nov 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of the cost of the controllability of second order
parabolic equations with a small diffusion and a

transport term
Jon Asier Bárcena-Petisco

To cite this version:
Jon Asier Bárcena-Petisco. Study of the cost of the controllability of second order parabolic equations
with a small diffusion and a transport term. 2020. �hal-02455632v2�

https://hal.science/hal-02455632v2
https://hal.archives-ouvertes.fr


Study of the cost of the controllability of second order parabolic

equations with a small diffusion and a transport term
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0 Abstract and basic information

In this paper we consider the heat equation with Neumann, Robin and mixed boundary

conditions (with coefficients on the boundary which depend on the space variable). The main

results concern the behaviour of the cost of the null controllability with respect to the diffusion

coefficient when the control acts in the interior. First, we prove that if we almost have Dirichlet

boundary conditions in the part of the boundary in which the flux of the transport enters, the

cost of the controllability decays for a time T sufficiently large. Next, we show some examples

of Neumann and mixed boundary conditions in which for any time T > 0 the cost explodes

exponentially as the diffusion coefficient vanishes. Finally, we study the cost of the problem

with Neumann boundary conditions when the control is localized in the whole domain.
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1 Introduction

Let Ω be a domain (a bounded connected open set of Rd), Γ ⊂ ∂Ω be a relative open subset

and Γ∗ := ∂Ω \ Γ. We consider in this paper a mesurable function a(x, ε) defined in Γ× (0, ε0)

for some ε0 > 0 such that a(·, ε) ∈ L∞(Ω) for all ε ∈ (0, ε0). We study the control problem given

by: 

yt − ε∆y + ∂x1y = 1ωf, in Q,

∂ny + ay = 0, on ΣN ,

y = 0, on ΣD,

y(0, ·) = y0, on Ω,

(1.1)

for ε ∈ (0, ε0). As usual, n denotes the outward normal vector on ∂Ω, Q := (0, T ) × Ω, Qω :=

(0, T )×ω and Σ := (0, T )× ∂Ω. In addition, we define ΣN := (0, T )×Γ and ΣD := (0, T )×Γ∗.

The null controllability of (1.1) is already proved in [14] and [12] (for Γ = ∂Ω and a function

a(t, x) ∈ L∞(Σ), though the proof can be easily adapted for proving the controllability of (1.1)).

However, following the proofs we get a gross estimate on how the cost of the controllability

behaves when the diffusion coefficient ε > 0 vanishes. Having more precise bounds with respect

to ε of the cost is thus an open question and in this paper we answer it in some important cases.

We study the cost of the null controllability with the usual norms; that is:

K(Ω, ω, T, ε) := sup
y0∈L2(Ω)\{0}

inf
f∈S(y0)

‖f‖L2(Qω)

‖y0‖L2(Ω)
,

for:

S(y0) := {f ∈ L2(Qω) : the solution of (1.1) satisfies y(T, ·) = 0}.

The cost also depends on a and Γ, although we do not expose it explicitly.

This paper follows a well-established research line which inquires about the cost of the null

controllability of systems with a small diffusion and a transport term. The first of such con-

trol problems to be analysed was the heat equation in dimension one with Dirichlet boundary

conditions in [10]. Afterwards, the same problem but in any dimension and with any speed

belonging to W 1,∞(R+ × Ω) was studied in [19]. More recently, better approximations of the

optimal time in which the cost of the control decays have been given: the lower bound was

improved in [26] through complex analysis and properties of the entire functions, and the upper

bound was improved in [15, 25] (in the first one through complex analysis and, in the second

one, by transforming the original equation into the pure heat equation). As for similar results,

several results have been obtained for the KdV equation (see [17, 18, 3, 4]), the Burgers equation

(see [16]), the Stokes system (see [2]), an artificial advection-diffusion problem (see [7, 8]) and a
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fourth-order parabolic equation (see [5, 27]). Finally, the current study of (1.1) is a contribution

to the literature as it seeks to understand the evolution of the cost of the null controllability of

the transport-diffusion equation with a large variety of boundary conditions when the diffusion

vanishes (and, in particular, the case a = 0 and Γ = ∅ was an open problem proposed in [19,

Remark 3]).

As in the previously cited papers, we study the adjoint problem, which is given by:

−ϕt − ε∆ϕ− ∂x1ϕ = 0, in Q,

ε∂nϕ+ (εa+ n1)ϕ = 0, on ΣN ,

ϕ = 0, on ΣD,

ϕ(T, ·) = ϕT , on Ω.

(1.2)

Indeed, we have the classical equality given by the Hilbert Uniqueness Method (see, for instance,

[28, 23]):

K(Ω, ω, T, ε) = sup
ϕT∈L2(Ω)\{0}

‖ϕ(0, ·)‖L2(Ω)

‖ϕ‖L2(Qω)
, (1.3)

where ϕ denotes the solution of (1.2).

As a novelty with respect to the literature, we obtain some properties of (1.2) (and, in par-

ticular, the Carleman inequality) by studying the solutions of a system whose elliptic operator

is self-adjoint. Indeed, considering the map:

w 7→ e(2ε)−1x1w, (1.4)

we get the system: 

−φt − ε∆φ+ 1
4εφ = 0, in Q,

ε∂nφ+
(
εa+ n1

2

)
φ = 0, on ΣN ,

φ = 0, on ΣD,

φ(T, ·) = φT , on Ω.

(1.5)

The motivation for (1.4) is to have no first-order term in the elliptic operator, as it is a necessary

condition for a elliptic operator to be self-adjoint.

Remark 1.1. The map (1.4) is an homeomorphism from the solutions of (1.2) with initial value

in L2(Ω) to the solutions of (1.5) with initial value in L2(Ω). That homeomorphism is useful to

translate information about the solutions of (1.5) to information about the solutions of (1.2),

for instance about their regularity.
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With the purpose of understanding the solutions of (1.2) we also study the spectral problem:
−ε∆u− ∂x1u = λu, in Ω,

ε∂nu+ (εa+ n1)u = 0, on Γ,

u = 0, on Γ∗.

(1.6)

In that sense, with the purpose of understanding the solutions of (1.6) we study the spectral

problem: 
−∆v = λ̃v, in Ω,

ε∂nv +
(
εa+ n1

2

)
v = 0, on Γ,

v = 0, on Γ∗,

(1.7)

and we define:

D(∆ε) :=
{
w ∈ H1(Ω) : −∆w ∈ L2(Ω), ε∂nw +

(
εa+

n1

2

)
w = 0 on Γ, w = 0 on Γ∗

}
.

We recall that −∆w ∈ L2(Ω) and w ∈ H1(Ω) imply that ∂nw is well-defined as an element of

H−1/2(∂Ω). We have considered (1.7)1 instead of −ε∆v + (4ε)−1v = λv in order to isolate the

“part” of the eigenvalue that is caused by the diffusion, which is the meaning of λ̃. This is useful

for instance in Lemmas 2.4 and 3.6 below.

Remark 1.2. We can relate the solutions of (1.6) and (1.7) with the map (1.4). Indeed, we have

that (v, λ̃) is a solution of (1.7) if and only if:(
ve−(2ε)−1x1 , ελ̃+

1

4ε

)
,

is a solution of (1.6). Similarly, (u, λ) is a solution of (1.6) if and only if:(
ue(2ε)−1x1 ,

λ

ε
− 1

4ε2

)
,

is a solution of (1.7).

Remark 1.3. It can be checked directly that the Laplacian is self-adjoint in D(∆ε) for any

Lipschitz domain Ω. Indeed, if w ∈ D(∆∗ε) we first see that −∆w ∈ L2(Ω) by considering

that D(Ω) ⊂ D(∆). Afterwards, we see that w is a solution by transposition in L2(Ω) of

−∆v = −∆w, (1.7)2 and (1.7)3, a solution which is unique and belongs to D(∆ε). Thereby,

L2(Ω) has a spectral decomposition (for each ε) by the solutions of (1.7).

Remark 1.4. We can also study the problem with null initial force associated to (1.1). Indeed,

the map w 7→ e−(2ε)−1x1w transforms (1.1) into a symmetric version of (1.5) (backwards in time

and with opposite transport). Thus, the direct and adjoint systems have similar nature and

decay properties.
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Definition 1.5. We denote by (λεm)m∈N the eigenvalues of (1.6) and by (λ̃εm)m∈N the eigenvalues

of (1.7). In addition, for each eigenvalue of (1.7) an eigenfunction vεm is fixed, to which we

impose that ‖vεm‖L2(Ω) = 1. Finally, we denote uεm := vεme
−(2ε)−1x1 .

Remark 1.6. Since span{vm} = L2(Ω) (see Remark 1.3) we have that span{um} = L2(Ω).

The idea of using a spectral decomposition is not new in Control Theory (see, for instance, [9]).

Indeed, for the heat equation alone, there are many documents which deal with eigenfunctions

of the elliptic operator for proving the existence of some control (see, for example, [22] for

Dirichlet boundary conditions and [1] for a coupled heat equation system with Robin boundary

conditions) and for estimating the cost of the control (see, for instance, [11]). Similarly, for

the Stokes system it has been used to prove the existence of a control (see, for example, [6])

and for providing a negative answer to the existence of a control (see, for instance, [24]). As

for a system with a small diffusion and a transport term, a spectral decomposition indirectly

appears in [10, 26], when the authors get lower bounds for the optimal time T0 in which the

cost of the control decays exponentially with ε. In addition, a spectral decomposition has been

used in [2] to get the dissipation estimate in a transport-diffusion Stokes system. Indeed, in this

paper we follow the philosophy of [2] of using as much information as possible about the spectral

decomposition, with the contribution that now while proving the Carleman we work directly in

the symmetrized system; that is, in (1.5).

Coming back to (1.2), what determines if the solutions of (1.2) decays is λ̃ε0. We recall that

by Rayleigh principle we have the equality:

λ̃ε0 = min

{∫
Ω
|∇v|2dx+

∫
Γ

(
a+

n1

2ε

)
|v|2dx : v ∈ H1(Ω), ‖v‖L2(Ω) = 1, v = 0 on Γ∗

}
. (1.8)

Looking at (1.8) we can do a division of cases depending on whether the following inequality is

satisfied:

(a+ (2ε)−1n1)1Γ ≥ 0. (1.9)

If (1.9) is satisfied, we have that λ̃ε0 ≥ 0, so the solutions of (1.2) decay exponentially on ε−1

(see Lemma 2.4 below). In addition, we have the following controllability result:

Theorem 1.7. Let Ω be a C2 domain, ω ⊂ Ω be a subdomain and assume that (Γ, a) satisfies

(1.9). Then, there are T0, c, C > 0 such that for all ε ∈ (0, ε0) and T ≥ T0 we have that:

K(Ω, ω, T, ε) ≤ Ce−cε−1
. (1.10)

The proof of Theorem 1.7 is given in Section 2.
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There are several important examples that satisfy the hypotheses of Theorem 1.7:

• Dirichlet boundary conditions (Γ = ∅). This controllability result is already proved in

[10, 19]. However, our proof is different since we prove the decay with the spectral decom-

position (instead of with a comparison theorem or an Agmon inequality) and we prove the

Carleman inequality for (1.5) instead of (1.2).

• Segments in which we have Dirichlet boundary conditions on the left edge and Neumann

conditions on the right edge. The physical meaning of those boundary conditions is that

the function is almost null near the left edge and almost constant near the right edge.

• Any system in which a ≥ 0 and n11Γ ≥ 0; that is, in which we have Dirichlet boundary

conditions on the part of the boundary in which the flux of the transport enters and either

Dirichlet or Robin with a positive coefficient on the other part of the boundary.

• Any system in which we almost have Dirichlet boundary conditions on the part of the

boundary in which the flux of the transport enters and either Dirichlet or Robin with a

coefficient whose negative part is not too large on the other part of the boundary.

The alternative to (1.9) is: (
a+

n1

2ε

)
1Γ 6≥ 0. (1.11)

The order relation in (1.11) is understood as elements of L∞(∂Ω), not as something that happens

at almost every point. Under the hypothesis (1.11) we might have eigenvalues close to 0, null

or negative for (1.6), so we may have no decay and the cost of the control might explode. In

particular, in this paper we study some subcases of (1.11):

• We consider (1.1) with pure Neumann boundary conditions; that is, a = 0 and Γ = ∂Ω.

We remark that under those boundary conditions (1.1) is given by:
yt − ε∆y + ∂x1y = 1ωf, in Q,

∂ny = 0, on Σ,

y(0, ·) = y0, on Ω.

(1.12)

The study of the cost of the null controllability of (1.12) is an open problem proposed in

[19, Remark 3], and it represents that the mass gets in and out only tangentially. Let us

denote:

π1(x) := x1, pl := inf π1(Ω), pr := supπ1(Ω). (1.13)

We prove in this paper that the cost of the control of (1.12) explodes exponentially:
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Theorem 1.8. Let h > 0, Ω be a domain, and ω ⊂ Ω be an open subset such that:

π1(ω) ⊂ (pl + h, pr). (1.14)

Then, for all T > 0 there is c > 0 such that for all ε > 0:

K(Ω, ω, T, ε) ≥ cecε−1
, (1.15)

for K the cost of the control problem (1.12).

• We consider a segment with Neumann boundary conditions on the left edge of the segment

and Dirichlet boundary conditions on its right edge; that is, Ω := (−L, 0), Γ := {−L} and

a = 0. In this situation the control problem (1.1) is given by:

yt − ε∂xxy + ∂xy = f1ω, in Q,

∂xy(·,−L) = 0, on (0, T ),

y(·, 0) = 0, on (0, T ),

y(0, ·) = y0, on (−L, 0).

(1.16)

The control problem (1.16) describes for instance a valley in which the density of animals

is constant near the left edge and it goes to 0 near the right one (for instance if there is a

cliff). The intuition may suggest that as ε gets smaller the cost of the control decreases,

as in the Dirichlet case. However, it is just the opposite, the fact that there is a flux

coming from the left dominates and the cost of the control to 0 actually increases when

the random movement’s coefficient vanishes. In particular, we prove that:

Theorem 1.9. Let L, h > 0, Ω = (−L, 0) and ω ⊂ (−L+ h, 0) be an open subset. Then,

for all T > 0 there are c, ε0 > 0 such that for all ε ∈ (0, ε0) we have the estimate:

K(Ω, ω, T, ε) ≥ cecε−1
, (1.17)

for K the cost of the control problem (1.16).

• We get a lower bound of the cost of the controllability when ω = Ω; that is, in which the

control domain is the whole domain. In particular, we prove that:

Theorem 1.10. Let Ω be a Lipschitz domain, T > 0 and (Γ, a) satisfying:

λε0 → 0. (1.18)

Then, we have the bound:

lim inf
ε→0

K(Ω,Ω, T, ε) ≥ 1√
T
. (1.19)

7



The condition stated in Theorem 1.10 includes the control problem (1.12) and (1.16) as it

is shown below in Remark 3.2 and (3.17) respectively.

• We study, assuming ω = Ω and (1.18), if the cost of the control is at least O(T−1/2) when

ε→ 0. In particular, for Neumann boundary conditions we prove that:

Theorem 1.11. Let Ω be a C2 domain. Then, there is C > 0 such that for all ε > 0 and

T > 0:

K(Ω,Ω, T, ε) ≤ C
(

1√
T

+
1√
ε

)
, (1.20)

for K the cost of the control problem (1.12).

In addition, if we are in a segment we prove that:

Theorem 1.12. Let L > 0 and Ω = (−L, 0). We have for all T ≥ 4L:

lim sup
ε→0

K(Ω,Ω, T, ε) ≤ 4√
T
, (1.21)

for K the cost of the control problem (1.12).

Remark 1.13. The difficulty when proving Theorems 1.11 and 1.12 is that f is required to be

in L2(Q). If we just look for controls in L2(0, T ;H−2(Ω)), then it suffices to consider f = 0 on

(0, t) for t > 0 a small value, and then consider the affine function which joins y(t, 0) and 0.

Remark 1.14. All the previously mentioned subcases have in common that a ≥ 0. Consequently,

as proved in the introduction of Section 3, the solutions of (1.2) do not explode. Thus, those

properties of the control problems are caused by the transport term interacting with those

specific boundary conditions.

As for the results stated for subcases of (1.11), Theorem 1.8 is similar to the result presented

in [2] for the Stokes equation in dimension 3. As for the other results, the most surprising one

is Theorem 1.9, as Dirichlet boundary conditions on the right edge may mislead us in believing

that we have exponential decay on the cost of the control.

The rest of the paper is organized as follows: in Section 2 we prove Theorem 1.7, in Section 3

we study the case (1.11) and in Section 4 we do some remarks and present some open problems.

2 Proof of Theorem 1.7

In this section we prove Theorem 1.7. In particular, in Section 2.1 we prove the decay of the

solutions of (1.2), in Section 2.2 we prove a Carleman inequality for the solutions of (1.5), and

in Section 2.3 we end the proof of Theorem 1.7. For this section we use the following notation:
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Definition 2.1. Let Ω ⊂ Rd a non-empty set. We define:

diamx1(Ω) := sup
{
x1 :

(
{x1} × Rd−1

)
∩ Ω 6= ∅

}
− inf

{
x1 :

(
{x1} × Rd−1

)
∩ Ω 6= ∅

}
.

2.1 Decay of the solutions of (1.2) for a sufficiently large time

We denote (λ̃0
m)m∈N the eigenvalues of the system:−∆v = λ̃0v, in Ω,

∂nv = 0, on ∂Ω.
(2.1)

It is easy to prove that all eigenvalues of (2.1) are positive. In addition, we recall the Weyl

asymptotics law for the Neumann system (see, for instance, [20]):

Lemma 2.2 (Weyl asymptotic). Let Ω be a Lipschitz domain and let N(γ) be the number of

eigenvalues (counting repetitions) of (2.1) that belong to (−∞, γ]. We have:

lim
γ→∞

N(γ)

γd/2
=

Vol(B(0, 1)) Vol(Ω)

(2π)d
,

for d the dimension of Ω. In particular, there is C > 0 such that for all γ ∈ R:

N(γ) ≤ C(1 + |γ|d/2). (2.2)

To continue with, we can compare λ̃εm (see Definition 1.5) with λ̃0
m by using the min-max

variational principle and obtain the following result:

Lemma 2.3. Let Ω be a Lipschitz domain, ε > 0 and assume that (Γ, a) satisfies (1.9). Then,

for all m ∈ N we have the following estimate:

λ̃εm ≥ λ̃0
m.

Let us now study the solutions of (1.2):

Lemma 2.4. Let Ω be a Lipschitz domain, ε > 0 and assume that (Γ, a) satisfies (1.9). Then,

for all ϕT ∈ L2(Ω) the solution of (1.2) satisfies in C0([0, T ];L2(Ω)):

ϕ(t, x) =
∑
m∈N

∫
Ω
ϕT (z)e(2ε)−1z1vεm(z)dzvεm(x)e−(2ε)−1x1 exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]
. (2.3)

In particular, the series in the right-hand side of (2.3) is absolutely convergent in L2(Ω) for all

t < T . Moreover, for all T0 > 0 and δ > 0 there is C > 0 which does not depend on Γ, a nor ε

such that for all T ≥ T0, ϕT ∈ L2(Ω) and t ∈ [0, T − T0] we have the estimate:

‖ϕ(t, ·)‖L2(Ω) ≤ C‖ϕT ‖L2(Ω) exp

(
2 diamx1(Ω) + δ − (T − t)

4ε

)
. (2.4)

9



Proof. We can easily prove (2.3) for t = T using that vεm is an orthonormal basis in L2(Ω).

Indeed, if ϕT ∈ L2(Ω) we have that:

ϕT (x) = (ϕT (x)e(2ε)−1x1)e−(2ε)−1x1 =
∑
m∈N

∫
Ω
ϕT (z)e(2ε)−1z1vεm(z)dzvεm(x)e−(2ε)−1x1 .

We prove (2.3) and (2.4) simultaneously for all t ∈ [0, T ). We obtain from Remark 1.2 that

(2.3) is true in span{um}. Since the left hand side of (2.3) belongs to C0([0, T ];L2(Ω)) (see

[12] and [21, Chapter III]) and since span{um}m∈N is dense in L2(Ω) (see Remark 1.6), it is

enough to prove that the right-hand side is an endomorphism on L2(Ω) viewed as a map of

pre-image ϕT and time t ∈ [0, T ) fixed. For that purpose, using the triangle inequality and that

‖vm‖L2(Ω) = 1, we get the following:∥∥∥∥∥∑
m∈N

∫
Ω

(ϕT (z)e(2ε)−1z1)vεm(z)dzvεm(x)e−(2ε)−1x1 exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]∥∥∥∥∥
L2(Ω,dx)

≤ ‖ϕT ‖L2(Ω) exp

(
2 diamx1(Ω)− (T − t)

4ε

)∑
m∈N

e−ελ̃
ε
m(T−t). (2.5)

Thus, the only thing left is to bound
∑

m∈N e
−ελ̃εm(T−t). We obtain from Lemmas 2.3 and 2.2

and the positivity of the eigenvalues of (2.1) the estimate:

∑
m∈N

e−ελ̃
ε
m(T−t) ≤

∑
m∈N

e−ελ̃
0
m(T−t) ≤

∑
m≥1

N(m)e−ε(m−1)(T−t)

≤ C

1 +
∑
m≥2

(1 +md/2)e−ε(m−1)(T−t)

 ≤ C (1 +

∫ +∞

0
(1 + (z + 2)d/2)e−εz(T−t)dz

)

≤ C
(

1 +

∫ +∞

0
(1 + zd/2)e−εz(T−t)dz

)
≤ C

(
1 +

1

ε(T − t)
+

1

ε(d+2)/2(T − t)(d+2)/2

)
. (2.6)

So, from (2.6), T − t ≥ T0, and z−k/2e−z
−1 ∈ L∞(R+) for all k ∈ R+, we obtain that:∑

m∈N
e−ελ̃

ε
m(T−t) ≤ Ceδε−1

. (2.7)

Consequently, we end the proof by combining (2.5) and (2.7).

Remark 2.5. Lemma 2.4 can be generalized to the case in which λ̃ε0 ≥ 0 and in which we have

some polynomial bound for |{i : λ̃εi ≤ m}| that depends on m and uniform for all ε ∈ (0, ε0).
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2.2 A Carleman inequality for the solutions of (1.5)

We prove in this section a Carleman inequality for (1.5) when Ω is C2. First of all, we consider

η a C2(Ω) function satisfying:

η = 0 on ∂Ω, η ≥ 0 on Ω, ‖η‖∞ = 1, inf
Ω\ω0

|∇η| = δ > 0, (2.8)

for ω0 ⊂⊂ ω an open non-empty set. The existence of such a function if Ω is a C2 domain is

proved, for instance, in [14]. With that auxiliary function in mind, we define, for some T̃ > 0,

the following weights in Q̃ := (0, T̃ )× Ω:

α±(t, x) :=
e8λ − eλ(6±η(x))

t(T̃ − t)
, ξ±(t, x) :=

eλ(6±η(x))

t(T̃ − t)
, (2.9)

Weights of this kind first appeared in [14], but this version is borrowed from [13] with the

adaptations for equations in which we do not have Dirichlet boundary conditions proposed in

[12]. We remark that we have the usual bounds:

|∂xiα±| = |∂xiξ±| ≤ Cλξ±, |∂tα±|+ |∂tξ±| ≤ CT̃ξ2
±, |∂ttα±| ≤ Cξ2

±(1 + T̃ 2ξ±). (2.10)

We prove in this section the following result:

Proposition 2.6. Let Ω be a C2 domain, ω ⊂ Ω be a subdomain and assume that (Γ, a) satisfies

(1.9). Then, there is C > 0 such that if λ ≥ C, τ ≥ C(T̃ + T̃ 2)ε−1 and φT̃ ∈ L2(Ω) we have

that:

τ3λ4

∫∫
Q̃
e−2τα+ξ3

+|φ|2 + τλ2

∫∫
Q̃
e−2τα+ξ3

+|∇φ|2 + τ2λ2

∫∫
Σ̃N

e−2τα+ξ2
+

(
a+

n1

2ε

)
|φ|2

≤ Cτ3λ4

∫∫
Q̃ω

e−2τα+ξ3
+|φ|2 (2.11)

for φ the solution of (1.5) with T̃ instead of T , Σ̃N := (0, T̃ )× Γ and Q̃ω := (0, T̃ )× ω.

In the statement of Proposition 2.6 and in its proof we omit the infinitesimals dt and dx as they

can be deduced by looking at the integration domain. In the proof of Proposition 2.6 we denote

by O(G(ε, τ, λ, ψ)) a generic function for which there is C > 0 depending only on Ω, ω and ω0

and which satisfies:

|O(G(ε, τ, λ, ψ))| ≤ CG(ε, τ, λ, ψ),

if ε ∈ (0, ε0), λ ≥ C, τ ≥ C(T̃ + T̃ 2)ε−1 and if ψ is a regular function. In that definition G is a

positive operator.
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For proving Proposition 2.6 we adapt the proofs of [19] and [12]. In particular, many of

the operations here are inspired in [19, Proposition 1], though we use the technique pro-

posed in [12] to treat the boundary terms. One new difficulty that we have to face is that

the solutions of (1.5) may not belong to L2(0, T ;H2(Ω)) (indeed, we can just guarantee that

∂nφ = −
(
a(x, ε) + n1

2ε

)
φ ∈ L2(Σ̃N )), but as Ω is C2 we can handle it with a density argument.

Proof. As in [12], we consider the following change of variables:

ψ± := e−τα±φ. (2.12)

Since η = 0 on ∂Ω we have the following equalities on Σ̃ := (0, T̃ )× ∂Ω:

ξ+ = ξ−, α+ = α−, ψ+ = ψ−, ψ+
t = ψ−t , ∇tgψ

+ = ∇tgψ
−, (2.13)

for ∇tgψ := ∇ψ − (∂nψ)n. In particular, we can omit the sign when we are working on Σ̃ to

improve the clarity of the proof.

We next consider the equalities:

L±1 ψ
± + L±2 ψ

± = L±3 ψ
±, (2.14)

for: 
L±1 ψ

± := −2ετλ2|∇η|2ξ±ψ± ∓ 2ετλξ±∇η · ∇ψ± + ψ±t ,

L±2 ψ
± := ετ2λ2|∇η|2ξ2

±ψ
± + ε∆ψ± + τ∂t(α±)ψ± + 1

4εψ
±,

L±3 ψ
± := ±ετλ∆ηξ±ψ

± − ετλ2|∇η|2ξ±ψ±.

(2.15)

As usual, we denote (L±i ψ)j the j-th term of L±i ψ. Moreover, we are going to calculate the

product (L±1 ψ
±, L±2 ψ

±)L2(Q̃). To do so, we first compute it for generic functions φ ∈ C∞(Q), as

we then use a density argument.

To begin with, we have that, for λ ≥ C, τ ≥ CT̃ 2 (see (2.8) for the definition of δ):

((L±1 ψ
±)1 + (L±1 ψ

±)2, (L
±
2 ψ
±)1)L2(Q̃)

= ε2τ3λ4

∫∫
Q̃
|∇η|4ξ3

±|ψ±|2 +O

(
ε2τ2λ3

∫∫
Q̃
ξ3
±|ψ±|2

)
∓ ε2τ3λ3

∫∫
Σ̃
|∇η|2ξ3∂nη|ψ|2

≥ 3δ4

4
ε2τ3λ4

∫∫
Q̃
ξ3
±|ψ±|2 − δ4ε2τ3λ4

∫∫
Q̃ω0

ξ3
±|ψ±|2 ∓ ε2τ3λ3

∫∫
Σ̃
|∇η|2ξ3∂nη|ψ|2. (2.16)

As for the third term in L±1 ψ
±, we can integrate by parts in time and get, taking into account

(2.10)2:

((L±1 ψ
±)3, (L

±
2 ψ
±)1)L2(Q̃) = O

(
εT̃ τ2λ2

∫∫
Q̃
ξ3
±|ψ±|2

)
. (2.17)
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Summing up, thanks to (2.16), (2.17) and (2.8)4, we obtain for λ ≥ C and τ ≥ C(T̃ + T̃ 2)ε−1

the estimate:∑
i∈{+,−}

(Li1ψ
i, (Li2ψ

i)1)L2(Q̃) ≥
∑

i∈{+,−}

δ4

2
ε2τ3λ4

∫∫
Q̃
ξ3
i |ψi|2 − δ4ε2τ3λ4

∫∫
Q̃ω0

ξ3
i |ψi|2. (2.18)

To continue with we find, integrating by parts and with the Cauchy-Schwarz inequality, that:

((L±1 ψ
±)1, (L

±
2 ψ
±)2)L2(Q̃) = 2ε2τλ2

∫∫
Q̃
|∇η|2ξ±|∇ψ±|2 − 2ε2τλ2

∫∫
Σ̃
|∇η|2ξ(∂nψ±)ψ

+O

(
ε2τ2λ4

∫∫
Q̃
ξ2
±|ψ±|2 + ε2λ2

∫∫
Q̃
|∇ψ±|2

)
. (2.19)

Next, considering (2.8)1, we obtain integrating by parts that:

((L±1 ψ
±)2, (L

±
2 ψ
±)2)L2(Q̃) = ∓2ε2τλ

∫∫
Σ̃
∂nηξ|∂nψ±|2

+O

(
ε2τλ

∫∫
Q̃
ξ±|∇ψ±|2

)
+ 2ε2τλ2

∫∫
Q̃
ξ±|∇η · ∇ψ±|2 ± ε2τλ

∫∫
Q̃
ξ±∇η · ∇|∇ψ±|2

= ∓2ε2τλ

∫∫
Σ̃
∂nηξ|∂nψ±|2 +O

(
ε2τλ

∫∫
Q̃
ξ±|∇ψ±|2

)
+ 2ε2τλ2

∫∫
Q̃
ξ±|∇η · ∇ψ±|2

− ε2τλ2

∫∫
Q̃
|∇η|2ξ±|∇ψ±|2 +O

(
ε2τλ

∫∫
Q̃
ξ±|∇ψ±|2

)
± ε2τλ

∫∫
Σ̃
∂nηξ(|∇tgψ|2 + |∂nψ±|2).

(2.20)

To continue with, we have that:

((L±1 ψ
±)3, (L

±
2 ψ
±)2)L2(Q̃) = ε

∫∫
Σ̃
ψt∂nψ

±, (2.21)

as ψ(0, ·) = ψ(T̃ , ·) = 0.

Let us compute the boundary terms involving ∂nψ
± that appear in (2.19)-(2.21). On the one

hand, from (2.12) we find that:

− 2ε2τλ2

∫∫
Σ̃
|∇η|2ξ(∂nψ±)ψ = ∓2ε2τ2λ3

∫∫
Σ̃
|∇η|2∂nηξ2|ψ|2

− 2ε2τλ2

∫ T

0
〈∂nφ, |∇η|2ξe−2ταφ〉H−1/2(∂Ω),H1/2(∂Ω). (2.22)

In addition, we obtain from (2.8)1 that:

∓ ε2τλ

∫∫
Σ̃
∂nηξ|∂nψ±|2 = −2ε2τ2λ2

∫ T

0
〈∂nφ, e−2τα|∇η|2ξ2φ〉H−1/2(∂Ω),H1/2(∂Ω)

∓ ε2τ3λ3

∫∫
Σ̃

(∂nη)3ξ3|ψ|2 ∓ ε2τλ

∫∫
Σ̃
∂nηξe

−2τα|∂nφ|2. (2.23)
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Finally, we have that:

ε

∫∫
Σ̃
ψt∂nψ

± = ±ετλ
∫∫

Σ̃
∂nηξψψt + ε

∫ T

0
〈∂nφ, e−ταψt〉H−1/2(∂Ω),H1/2(∂Ω). (2.24)

Summing up, if we consider (2.19)-(2.24) we get that:

∑
i∈{+,−}

(Li1ψ
i, (Li2ψ

i)2)L2(Q̃) ≥
∑

i∈{+,−}

O

(
ε2τ2λ4

∫∫
Q̃
ξ2
i |ψi|2

)

+
∑

i∈{+,−}

δ2

2
ε2τλ2

∫∫
Q̃
ξi|∇ψi|2 − δ2ε2τλ2

∫∫
Q̃ω0

ξi|∇ψi|2

−4ε2λ2

∫ T

0
〈∂nφ, e−2τα|∇η|2(τξ+τ2ξ2)φ〉H−1/2(∂Ω),H1/2(∂Ω)+2ε

∫ T

0
〈∂nφ, e−ταψt〉H−1/2(∂Ω),H1/2(∂Ω).

(2.25)

Next, we obtain from (2.10)2 that:

((L±1 ψ
±)1, (L

±
2 ψ
±)3)L2(Q̃) = O

(
ετ2λ2T̃

∫∫
Q̃
ξ3
±|ψ±|2

)
. (2.26)

In addition, by integrating by parts we have that:

((L±1 ψ
±)2, (L

±
2 ψ
±)3)L2(Q̃) = O

(
ετ2λ2T̃

∫∫
Q̃
ξ3
±|ψ±|2

)
∓ ετ2λ

∫∫
Σ̃
ξ∂tα∂nη|ψ|2. (2.27)

Finally, from (2.10)3 we find that:

((L±1 ψ
±)3, (L

±
2 ψ
±)3)L2(Q̃) = −τ

2

∫∫
Q̃
∂tt(α±)|ψ±|2 = O

(
τ

∫∫
Q̃
ξ2
±(1 + T̃ 2ξ±)|ψ±|2

)
. (2.28)

Summing up, combining (2.26)-(2.28) we obtain that:∑
i∈{+,−}

(Li1ψ
i, (Li2ψ

i)3)L2(Q̃) = O

(
ε2τ3λ2

∫∫
Q̃
ξ3
±|ψ±|2

)
. (2.29)

To continue with, we have that:

((L±1 ψ
±)1, (L

±
2 ψ
±)4)L2(Q̃) = O

(
τλ2

∫∫
Q̃
ξ±|ψ±|2

)
. (2.30)

Next, we have that, after integrating by parts:

((L±1 ψ
±)2, (L

±
2 ψ
±)4)L2(Q̃) = O

(
τλ2

∫∫
Q̃
ξ±|ψ±|2

)
± τλ

4

∫∫
Σ̃
ξ∂nη|ψ|2. (2.31)
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Finally, we obtain from ψ±(0, ·) = ψ±(T, ·) = 0 that:

((L±2 ψ
±)3, (L

±
2 ψ
±)4)L2(Q̃) = 0. (2.32)

Summing up the results obtained in (2.30)-(2.32), we get that:∑
i∈{+,−}

(Li1ψ
i, (Li2ψ

i)4)L2(Q̃) = O

(
τλ2

∫∫
Q̃
ξ±|ψ±|2

)
. (2.33)

So, if we add (2.18), (2.25), (2.29) and (2.33), we get, after absorptions, for λ ≥ C and

τ ≥ C(T̃ + T̃ 2)ε−1:

2
∑

i∈{+,−}

(Li1ψ
i, Li2ψ

i) + 2δ4ε2τ3λ4

∫∫
Q̃ω0

ξ3
i |ψi|2 + 2δ2ε2τλ2

∫∫
Q̃ω0

ξi|∇ψi|2

≥
∑

i∈{+,−}

δ4

4
ε2τ3λ4

∫∫
Q̃
ξ3
i |ψi|2 +

δ2

2
ε2τλ2

∫∫
Q̃
ξi|∇ψi|2

−4ε2λ2

∫ T

0
〈∂nφ, e−2τα|∇η|2(τξ+τ2ξ2)φ〉H−1/2(∂Ω),H1/2(∂Ω)+2ε

∫ T

0
〈∂nφ, e−ταψt〉H−1/2(∂Ω),H1/2(∂Ω).

(2.34)

Using the density of C∞(Q) in H1(0, T ;D(∆)) we obtain that (2.34) is true for all solutions

of (1.5) such that φT̃ ∈ D(Ω). So, from now on φ denotes any solution of (1.5) such that

φT̃ ∈ D(Ω).

Considering (1.5)2, (1.5)3, that a is independent of the time variable and that ψ±(0, ·) =

ψ±(T̃ , ·) = 0 we find that:

−4ε2λ2

∫ T

0
〈∂nφ, e−2τα|∇η|2(τξ+τ2ξ2)φ〉H−1/2(∂Ω),H1/2(∂Ω)+2ε

∫ T

0
〈∂nφ, e−ταψt〉H−1/2(∂Ω),H1/2(∂Ω)

= 4ε2λ2

∫∫
Σ̃N

|∇η|2(τξ + τ2ξ2)
(
a+

n1

2ε

)
|ψ|2 + 2ε

∫∫
Σ̃N

(
a+

n1

2ε

)
ψψt

= 4ε2λ2

∫∫
Σ̃N

|∇η|2(τξ + τ2ξ2)
(
a+

n1

2ε

)
|ψ|2. (2.35)

Consequently, from (2.34) and (2.35) we obtain for all solutions of (1.5) such that φT̃ ∈ D(Ω)

the estimate:

2
∑

i∈{+,−}

(Li1ψ
i, Li2ψ

i) + 2δ4ε2τ3λ4

∫∫
Q̃ω0

ξ3
i |ψi|2 + 2δ2ε2τλ2

∫∫
Q̃ω0

ξi|∇ψi|2

≥
∑

i∈{+,−}

δ4

2
ε2τ3λ4

∫∫
Q̃
ξ3
i |ψi|2 +

δ2

2
ε2τλ2

∫∫
Q̃
ξi|∇ψi|2

+ 4ε2λ2

∫∫
Σ̃N

|∇η|2(τξ + τ2ξ2)
(
a+

n1

2ε

)
|ψ|2. (2.36)
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We recall that inf∂Ω |∇η| > 0 thanks to (2.8)4. Thus, using (1.9) it is classical to obtain (2.11)

from (2.36) (see, for instance, [14] and [12]) for all solutions of (1.5) such that φT̃ ∈ D(Ω).

Afterwards, we get (2.11) for all solutions of (1.5) such that φT̃ ∈ L2(Ω) by density.

2.3 Conclusion of the proof of Theorem 1.7

Let T ≥ 1. Considering Proposition 2.6 for T̃ = 1 and Remark 1.1 we obtain for all ϕT ∈
L2(Ω), λ ≥ C and τ ≥ Cε−1 the estimate:

τ3λ4

∫ 1

0

∫
Ω
e−2τα+(t,x)−ε−1x1ξ3

+(t, x)|ϕ(T − 1 + t, x)|2dxdt

≤ Cτ3λ4

∫ 1

0

∫
Ω
e−2τα+(t,x)−ε−1x1ξ3

+(t, x)|ϕ(T − 1 + t, x)|2dxdt, (2.37)

for ϕ the solution of (1.2). So, fixing λ large enough, and τ = τ0ε
−1 for τ0 large enough, we

have that (2.37) implies that:

‖ϕ‖L2((T−2/3,T−1/3)×Ω) ≤ CeCε
−1‖ϕ‖L2((T−1,T )×ω) ≤ CeCε

−1‖ϕ‖L2(Qω). (2.38)

Moreover, from Lemma 2.4 taking T0 = δ = 1 we find a constant C > 0 such that for all

t′ ∈ (T − 2/3, T − 1/3) we have that:

‖ϕ(0, ·)‖L2(Ω) ≤ C exp

[
2 diamx1(Ω) + 1− t′

4ε

]
‖ϕ(t′, ·)‖L2(Ω) ≤ C exp

[
C − T

4ε

]
‖ϕ(t′, ·)‖L2(Ω).

(2.39)

So, combining (2.38) and (2.39), we get that:

‖ϕ(0, ·)‖L2(Ω) ≤ C exp

[
C − T

4ε

]
‖ϕ‖L2((T−2/3,T−1/3)×Ω) ≤ C exp

[
C − T

4ε

]
‖ϕ‖L2(Qω). (2.40)

In particular, if T is sufficiently large, from (1.3) and (2.40) we obtain (1.10).

3 Some control problems in which we have (1.11)

In this section we study some subcases of (1.11). In particular, in Section 3.1 we prove

Theorem 1.8, in Section 3.2 we prove Theorem 1.9, and in Section 3.3 we prove Theorems 1.10,

1.11 and 1.12. We first prove, though, that as stated in Remark 1.14, if a ≥ 0 we have that

λε0 ≥ 0:

Proposition 3.1. Let Ω be a Lipschitz domain and a ≥ 0. Then, we have that:

λε0 ≥ 0. (3.1)
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Proof. Let v ∈ H1(Ω) such that ‖v‖L2(Ω) = 1 and such that v = 0 on Γ∗. We find from the

Green formula and an appropriate Cauchy-Schwarz inequality that:∫
Γ

n1

2ε
|v|2dx =

∫
∂Ω

n1

2ε
|v|2dx =

∫
Ω

v∂x1v

ε
dx ≥ −

∫
Ω
|∂x1v|2dx−

1

4ε2

∫
Ω
|v|2dx.

Thus, if we have a ≥ 0 and v ∈ H1(Ω) such that ‖v‖L2(Ω) = 1 and such that v = 0 on Γ∗, we

find that:∫
Ω
|∇v|2dx+

∫
Γ

(
a+

n1

2ε

)
|v|2dx ≥

∫
Ω
|∇v|2dx−

∫
Ω
|∂x1v|2dx−

1

4ε2
≥ − 1

4ε2
. (3.2)

Finally, we get (3.1) from (1.8), (3.2) and Remark 1.2.

Remark 3.2. In order to have an equality in (3.1), by a careful reading of Proposition 3.1 we

realize that we need that a = 0, that v just depends on x1 and that ∂x1v = −(2ε)−1v; i.e. we

need that v = e−(2ε)−1x1 (and thus Γ = ∂Ω). This situation corresponds to the case of pure

Neumann boundary conditions, which is studied in Section 3.1. In any other situation in which

a ≥ 0 the inequality (3.1) is strict.

3.1 Proof of Theorem 1.8

In order to prove (1.15) we consider that the adjoint system of (1.12) is given by (see (1.2)):
−ϕt − ε∆ϕ− ∂x1ϕ = 0, in Q,

ε∂nϕ+ n1ϕ = 0, on Σ,

ϕ(T, ·) = ϕT , on Ω.

(3.3)

In particular, we use (1.3) for ϕ(x) = e−x1ε
−1

, which is a (steady) solution of (3.3) (see Remarks

3.2 and 1.2). On the one hand, we remark that (see (1.13) for the notation):

‖ϕ(0, ·)‖L2(Ω) ≥ |π−1
1 (pl, pl + h/2) ∩ Ω|1/2 exp

(
−pl − h/2

ε

)
. (3.4)

Because Ω is an open set and because of (1.13) we have that:

|π−1
1 (pl, pl + h/2) ∩ Ω| > 0.

On the other hand, (1.14) implies the estimate:

‖ϕ‖L2(Qω) ≤ T 1/2|ω|1/2‖e−x1ε−1‖L∞(π−1
1 (pl+h,pr)∩ω) ≤ T

1/2|ω|1/2 exp

(
−pl − h

ε

)
. (3.5)

Consequently, combining (1.3), (3.4) and (3.5) we find that:

K(Ω, ω, T, ε) ≥
‖ϕ(0, ·)‖L2(Ω)

‖ϕ‖L2(Qω)
≥ |π

−1
1 (pl, pl + h/2) ∩ Ω|1/2

T 1/2|ω|1/2
exp

(
h

2ε

)
,

which implies (1.15).
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3.2 Proof of Theorem 1.9

We first remark that the adjoint system of (1.16) is given by (see (1.2)):

−ϕt − ε∂xxϕ− ∂xϕ = 0, in Q,

ε∂xϕ(·,−L) + ϕ(·,−L) = 0, on (0, T ),

ϕ(·, 0) = 0, on (0, T ),

ϕ(T, ·) = ϕT , on (−L, 0).

(3.6)

In addition, the spectral problem (1.7) can be written as:
−v′′ = λ̃v, in (−L, 0),

2εv′(−L) + v(−L) = 0,

v(0) = 0.

(3.7)

In order to prove Theorem 1.9, we first prove the following lemma:

Lemma 3.3. Let L > 0. Then, there is ε0 > 0 such that for all ε ∈ (0, ε0) there is a unique

rε > 0 such that there are non-trivial solutions of (3.7) for λ̃ = −r2
ε . In fact, we have:

rε ∈
(

0,
1

2ε

)
, (3.8)

and the non-trivial solutions are those proportional to sinh(−rεx). In addition, we have the

limit:
1

2ε
− rε → 0. (3.9)

Remark 3.4. From Proposition 3.1 and Remark 3.2 we already know that all the eigenvalues are

strictly bigger than −(2ε)−2; thus, it is clear that rε must satisfy (3.8).

Proof of Lemma 3.3. The structure of the proof is the following: first we give an equivalent

condition for −r2
ε to be an eigenvalue, second we show that (3.7) has a unique strictly negative

eigenvalue, and finally we prove (3.9).

Step 1: an equivalent condition. First, we recall that when λ̃ = −r2 < 0, the solutions of

(3.7)1 are given by:

Aerx +Be−rx : A,B ∈ R.

Moreover, the boundary conditions of (3.7) imply the system:
(
2εre−rL + e−rL

)
A+

(
−2εrerL + erL

)
B = 0,

A+B = 0.
(3.10)
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Thus, (3.10) has a non-trivial solution if and only if:

e−rL + 2εre−rL = erL − 2εrerL;

that is, if and only if:
1 + 2εr

1− 2εr
= e2rL. (3.11)

In addition, from (3.10)2 we obtain that the associated eigenfunctions are those proportional to

sinh(−rεx). Finally, from (3.11) we have that all the possible positive roots are in (0, (2ε)−1),

so we just have to prove existence and uniqueness in that interval.

Step 2: the proof of the fact that (3.11) has a unique solution in (0, (2ε)−1). Let us denote:

g1(r) :=
1 + 2εr

1− 2εr
= −1 +

2

1− 2εr
, g2(r) := e2rL.

We have the equality:

g1(0) = g2(0) = 1. (3.12)

In addition, the derivative of the functions are given by:

g′1(r) =
4ε

(1− 2εr)2
, g′2(r) := 2Le2rL. (3.13)

Consequently, combining (3.12) and (3.13) we obtain a constant c > 0 such that for ε small

enough, g2 > g1 in (0, c). Moreover, since limr↑(2ε)−1 g1(r) = +∞ and g2((2ε)−1) ∈ R, we have

at least one root of (3.11) in (0, (2ε)−1). In order to show the uniqueness of the root, we define:

g3(r) :=
g′2(r)

g′1(r)
=

L

2ε
(1− 2εr)2e2rL.

Since in (0, (2ε)−1) the function g′3 has the same sign as 2L(1− 2εr)− 4ε, we have g′3(r) ≤ 0 if

and only if:

r ≥ 2L− 4ε

4Lε
=

1

2ε
− 1

L
.

So, since g3(0) = L
4ε , for ε small enough there is a unique:

rε ∈
(

1

2ε
− 1

L
,

1

2ε

)
such that g3(rε) = 1, g3 > 1 in [0, rε] and g3 is strictly decreasing in [rε, (2ε)

−1]. This implies

that g′2(r) > g′1(r) in [0, rε) and g′2(r) < g′1(r) in (rε, (2ε)
−1). Consequently, (3.11) has a unique

root in (0, (2ε)−1) which, to be more precise, belongs to [rε, (2ε)
−1] and which we denote from

now on by rε.
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Step 3: the proof of (3.9). In order to prove (3.9), we first consider that for ε small enough:

rε ≥ rε ≥
1

2ε
− 1

L
≥ 1

4ε
. (3.14)

Moreover, from g1(rε) = g2(rε), we obtain that:

1/ε
1
2ε − rε

= e2rεL + 1,

which implies the equality:
1

2ε
− rε =

1

ε(e2rεL + 1)
.

Using (3.14), we get for ε small enough that:

1

2ε
− rε ≤

1

εeL(2ε)−1 . (3.15)

Consequently, we obtain (3.9) from (3.15) and (3.8).

We now end the proof of Theorem 1.9. Remark 1.2 implies that:

(uε(x), λε0) :=

(
sinh(−rεx)e−(2ε)−1x,−εr2

ε +
1

4ε

)
(3.16)

is a solution of (1.6). Hence ϕ̂(t, x) = uε(x)eλ
ε
0(t−T ) is a solution of (3.6). Moreover, we obtain

from εrε < 1/2 (see (3.8)) and (3.9) the limit:

λε0 = ε

(
1

2ε
− rε

)(
1

2ε
+ rε

)
=

(
1

2ε
− rε

)(
1

2
+ εrε

)
→ 0. (3.17)

We prove (1.17) with the help of (1.3). On the one hand, for x ∈ (−L,−L+ h/2) and ε small

enough we have the bound:

uε(x) = sinh(−rεx)e−(2ε)−1x ≥ 1

4
e−(rε+(2ε)−1)x ≥ 1

4
e(rε+(2ε)−1)(L−h/2).

Moreover, using (3.17) we find for ε small enough that e−λ
ε
0T ≥ 1/2. So, we get the bound:

‖ϕ̂(0, ·)‖L2(−L,0) ≥ ‖ϕ̂(0, ·)‖L2(−L,−L+h/2) ≥
√

2h

16
e(rε+(2ε)−1)(L−h/2). (3.18)

On the other hand, from ω ⊂ (−L+ h, 0) we obtain the estimate:

‖ϕ̂‖L2(Qω) ≤
√
T (L− h)e(rε+(2ε)−1)(L−h). (3.19)

To prove (3.19) we have used that:

‖eλε0(t−T )‖L∞(0,T ) ≤ 1,

and that in (−L+ h, 0):

sinh(−rεx)e−(2ε)−1x ≤ e−(rε+(2ε)−1)x

2
≤ e(rε+(2ε)−1)(L−h)

2
.

Finally, combining (1.3), (3.18), (3.19) and that rε ≥ 0, we get (1.17).
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Remark 3.5. The key idea of the proof is that λε0 → 0, but we also need to know how the

eigenfunctions are distributed in Ω.

3.3 Control results when the control domain is Ω

In this section we first prove Theorem 1.10, we then prove Theorem 1.11 and we finally prove

Theorem 1.12.

Proof of Theorem 1.10. From Definition 1.5 we obtain that ϕε(t, x) = uε0(x)eλ
ε
0(T−t) is a solution

of (1.2) (see Definition 1.5 for the notation). Furthermore, (1.18) implies that:∫ T

0
e−2λε0(T−t)dt→ T.

Consequently, we have the limit:

‖ϕε(0, ·)‖2L2(Ω)∫∫
Q |ϕε|2dxdt

=
‖uε0e−λ

ε
0T ‖2L2(Ω)∫∫

Q |u
ε
0e
−λε0(T−t)|2dxdt

=
e−2λε0T∫ T

0 e−2λε0(T−t)dt
→ 1

T
,

which together with (1.3) implies (1.19).

Proof of Theorem 1.11. Let ϕ be a solution of (3.3) and χ ≤ 1 be a regular positive cut-off

function whose value is 1 in [0, 1/3] and 0 in [2/3, 1]. Recalling that the adjoint system of (1.12)

is given by (3.3) we find that:

1

2

∫
Ω
|ϕ(0, x)|2dx = −1

2

∫∫
Q
∂t

(
χ

(
t

T

)
|ϕ|2

)
dxdt

= − 1

2T

∫∫
Q
χ′
(
t

T

)
|ϕ|2dxdt+

∫∫
Q
χ

(
t

T

)
(ε∆ϕ+ ∂x1ϕ)ϕdxdt

= − 1

2T

∫∫
Q
χ′
(
t

T

)
|ϕ|2dxdt− ε

∫∫
Q
χ

(
t

T

)
|∇ϕ|2dxdt

−
∫∫

Σ
χ

(
t

T

)
n1

2
ϕ2dxdt ≤ C

(
1

T
+

1

ε

)∫∫
Q
|ϕ|2dxdt. (3.20)

For the last inequality in (3.20) we have used classical estimates on the trace term. In particular,

we have used the following estimate:∣∣∣∣∫∫
Σ
χ

(
t

T

)
n1

2
ϕ2

∣∣∣∣ dxdt ≤ ε∫∫
Q
χ

(
t

T

)
|∇ϕ|2dxdt+

C

ε

∫∫
Q
|ϕ|2dxdt.

Thus, we obtain (1.20) from (1.3) and (3.20).
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We now prove Theorem 1.12 thanks to an explicit computation of the solutions of (3.3). For

that purpose, we remark that the spectral problem (1.7) is given when Γ = ∂Ω and a = 0 by:−v′′ = λ̃v, in (−L, 0),

2εv′ + v = 0, on {−L, 0}.
(3.21)

It can be proved easily that the only negative eigenvalue is λ̃ε0 = − 1
4ε2

and that the associated

eigenfunction is:

vε0(x) =
e−(2ε)−1x∥∥e−(2ε)−1z

∥∥
L2(Ω,dz)

.

In addition, it can be proved for m ∈ N∗ that:

λ̃m =

(
2πm

L

)2

,

and its associated eigenfunction is:

vεm(x) =
2ε
√
λ̃m cos

(√
λ̃mx

)
+ sin

(√
λ̃mx

)
∥∥∥2ε
√
λ̃m cos

(√
λ̃mz

)
+ sin

(√
λ̃mz

)∥∥∥
L2(Ω,dz)

.

Consequently, Remark 1.2 implies that the spectral decomposition by the elliptic operator asso-

ciated to the adjoint system is given by uεm(x) = vεm(x)e−(2ε)−1x, and their associated eigenvalues

are given by λεm = ελ̃m + (4ε)−1. In particular, we have that:

uε0(x) =
e−ε

−1x∥∥e−(2ε)−1z
∥∥
L2(Ω,dz)

, λ0 = 0.

In addition, we have the following result:

Lemma 3.6. Let L > 0 and Ω := (−L, 0). Then, for all ϕT ∈ L2(Ω) the solution of (3.3)

satisfies in C0([0, T ];L2(Ω)):

ϕ(t, x) =

∫
Ω ϕ

T (z)dz

‖e−(2ε)−1z‖2
L2(Ω,dz)

e−ε
−1x

+
∑
m∈N∗

∫
Ω
ϕT (z)e(2ε)−1zvεm(z)dzvεm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]
. (3.22)

In particular, the series in the right-hand side of (3.22) is absolutely convergent in L2(Ω) for all

t < T . Moreover, for all T0 > 0 and δ > 0 there is C > 0 such that for all ϕT ∈ L2(Ω), T ≥ T0

and t ∈ [0, T − T0] we have the estimate:∥∥∥∥∥ ∑
m∈N∗

∫
Ω
ϕT (z)e(2ε)−1zvεm(z)dzvεm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]∥∥∥∥∥
L2(Ω,dx)

≤ C‖ϕT ‖L2(Ω) exp

(
2L+ δ − (T − t)

4ε

)
. (3.23)
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The proof of Lemma 3.6 is analogous to that of Lemma 2.4. In addition, we remark that,

for all m ∈ N and t ∈ [t, T ]:(∫
Ω
ϕT (z)e(2ε)−1zvεm(z)dz

)
vεm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]
=

(∫
Ω
ϕT (z)e(2ε)−1zvεm(z)dz

)
exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]
vεm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(t− t)

]
=

(∫
Ω

{∑
r∈N

(∫
Ω
ϕT (z)e(2ε)−1zvεr(z)dz

)
vεr(z̃)e

−(2ε)−1z̃ exp

[
−
(
ελ̃r +

1

4ε

)
(T − t)

]}

e(2ε)−1z̃vεm(z̃)dz̃

)
vεm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(t− t)

]
=

(∫
Ω
ϕ(t, z)e(2ε)−1zvεm(z)dz

)
vεm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(t− t)

]
. (3.24)

We have used, in the second equality of (3.24), that the eigenfunctions of (3.21) form an or-

thonormal set of functions and Fubini’s Theorem (it can be proved as in Lemma 2.4 that the

series is convergent in L2(Ω)). A consequence of (3.24) and Lemma 3.6 is the following:

Corollary 3.7. Let L > 0 and Ω := (−L, 0). Then, for all T0 > 0 and δ > 0 there is C > 0

such that for all ϕT ∈ L2(Ω), T ≥ T0, t ∈ [T0, T ] and t ∈ [0, t− T0] we have the estimate:∥∥∥∥∥ ∑
m∈N∗

∫
Ω
ϕT (z)e(2ε)−1zvm(z)dzvm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]∥∥∥∥∥
L2(Ω,dx)

≤ C‖ϕ(t, ·)‖L2(Ω,dx) exp

(
2L+ δ − (t− t)

4ε

)
. (3.25)

In particular, we obtain that for all T0 > 0 and δ > 0 there is C > 0 such that for all ϕT ∈ L2(Ω),

T ≥ T0 and t ∈ [T0, T ):∥∥∥∥∥ ∑
m∈N∗

∫
Ω
ϕT (z)e(2ε)−1zvm(z)dzvm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]∥∥∥∥∥
L2(Ω,dx)

≤ C

T − t

∫ T

t
‖ϕ(s, ·)‖L2(Ω)ds exp

(
2L+ δ − (t− t)

4ε

)
. (3.26)

Proof of Theorem 1.12. In order to prove Theorem 1.12 we split the solutions of system (3.3)

into two parts with the help of Lemma 3.6. Indeed, we define:

ϕ1(x) :=

∫
Ω ϕ

T (z)dze−εx

‖e−(2ε)−1z‖2
L2(Ω,dz)

,

and:

ϕ2(t, x) :=
∑
m∈N∗

∫
Ω
ϕT (z)e(2ε)−1zvεm(z)dzvεm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]
.
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We remark that:

ϕ(t, x) = ϕ1(x) + ϕ2(t, x), in Q.

Next, we estimate ϕ1 and ϕ2(0, ·) with respect to ‖ϕ‖L2(Q):

• If ϕ1 = 0 the estimate is trivial. Consequently, we suppose from now on that ϕ1 6= 0. We

denote:

N :=

{
t : ϕ2(t, ·) ∈ BL2(Ω)

(
−ϕ1,

‖ϕ1‖L2(Ω)

2

)}
,

for:

BX(w, r) := {v ∈ X : ‖v − w‖X < r}.

We have that:

|N | < 3L, (3.27)

since otherwise there are some t1 and t2 such that t2 − t1 ≥ 3L and:

ϕ2(t1, ·), ϕ2(t2, ·) ∈ BL2(Ω)

(
−ϕ1,

‖ϕ1‖L2(Ω)

2

)
,

but by (3.23) this is impossible. Indeed, the system is autonomous and if t2 ∈ N we have

the estimate:

‖ϕ(t2, ·)‖L2(Ω) ≤
‖ϕ1‖L2(Ω)

2
,

so by (3.25) for t = t2 and δ = L/2 we have that t1 6∈ N for ε small enough. In addition,

we remark that in [0, T ] \ N we have that:

‖ϕ(t, ·)‖L2(Ω) ≥
‖ϕ1‖L2(Ω)

2
. (3.28)

Thus, we obtain from (3.27) and (3.28) that for all ϕT ∈ L2(Ω) and T > 4L:

‖ϕ1‖L2(Ω)

‖ϕ‖L2(Q)
≤

‖ϕ1‖L2(Ω)

‖ϕ‖L2(((0,T )\N )×Ω)
≤ 2√

T − 3L
≤ 2√

T/4
=

4√
T
. (3.29)

• As a direct consequence of (3.26) for t = T − L we have that, independently of ϕT :

‖ϕ2(0, ·)‖L2(Ω)

‖ϕ‖L2(Q)
≤
Ce−cε

−1‖ϕ‖L2((T−L,T )×Ω)

‖ϕ‖L2(Q)
≤ Ce−cε−1

. (3.30)

Thus, combining (3.29) and (3.30) we obtain (1.21) for ε small enough.
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4 Further comments and open problems

We remark the following:

• We obtain similar results for the boundary controllability.

• Under the hypothesis (1.9) if T is small the cost of the null controllability of (1.1) explodes

exponentially when ε goes to 0, which can be proved for instance as in [19] and [2].

We now present some problems that remain open:

• Get precise estimates of the cost of the control problem (1.1) for a large time and a small

diffusion coefficient when a also depends on the time variable.

• Determine if Theorem 1.12 is still true for all domains.

• Analyse under the hypothesis (1.11) when there is some y0 such that the norm of the

minimal norm control which takes y0 to 0 increases exponentially and when, for all y0 and

for ε small enough, the cost is bounded by a constant (or, even better, when for all y0 the

associated control does not decay with ε and it is just a problem of uniformity).

• Study the cost of the controllability in the context of Section 3.3 when (−L,−L+ h) ⊂ ω.

• Determine under the hypothesis (1.11) if for all domain Ω, subdomain ω ⊂ Ω, T > 0 and

a ∈ L∞(Γ× (0, ε0)) there is a constant C > 0 such that for all ε ∈ (0, ε0) we have that:

K(Ω, ω, T, ε) ≤ CeCε−1
. (4.1)

Indeed, following the techniques in [14] and considering the equation (1.5) we can easily

see that:

K(Ω, ω, T, ε) ≤ CeCε−4/3
;

however, (4.1) would be more coherent with the literature (see [19]).
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[21] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva. Linear and quasi-linear equa-

tions of parabolic type, volume 23. American Mathematical Soc., 1988.

[22] G. Lebeau and L. Robbiano. Contrôle exact de l’équation de la chaleur. Commun. Part.

Diff. Eq., 20(1-2):335–356, 1995.
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