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0 Abstract and basic information

In this paper we consider the heat equation with Neumann, Robin and mixed boundary

conditions (with coefficients on the boundary which depend on the space variable). The main

results concern the behaviour of the cost of null controllability with respect to the diffusion

coefficient when the control acts in the interior. First, we prove that if we almost have Dirichlet

boundary conditions in the part of the boundary in which the flux of the transport enters the cost

of the controllability decays. Next, we show some examples of Neumann and mixed boundary

conditions in which for any time T > 0 the cost explodes exponentially as the diffusion coefficient

vanishes. Finally, we study some systems in which the control is located on the whole domain.
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1 Introduction

1.1 Main results

Let Ω ⊂ Rd a domain (bounded connected open set), Γ ⊂ ∂Ω a relative open subset and

Γ∗ := ∂Ω \ Γ. We consider a mesurable function a(x, ε) defined in Γ × (0, ε0) for some ε0 > 0.

We study the control problem given by:

yt − ε∆y + ∂x1y = 1ωf, in Q,

∂ny + ay = 0, on ΣN ,

y = 0, on ΣD,

y(0, ·) = y0, on Ω,

(1.1)

for ε ∈ (0, ε0). As usual, n denotes the outward normal vector on ∂Ω, Q := (0, T ) × Ω, Qω :=

(0, T )×ω and Σ := (0, T )× ∂Ω. In addition, we define ΣN := (0, T )×Γ and ΣD := (0, T )×Γ∗.

The null controllability of (1.1) is already proved in [12] and [10] when a ∈ L∞(Γ); however, with

a gross estimation on how the cost of the controllability behaves when the diffusion coefficient

ε > 0 vanishes. In this paper we give more precise bounds with respect to ε about the cost. We

study the cost of the control with the usual norms; that is:

K(Ω, ω, T, ε) := sup
y0∈L2(Ω)\{0}

inf
f∈S(y0)

‖f‖L2(Qω)

‖y0‖L2(Ω)
,

for

S(y0) := {f ∈ L2(Qω) : the solution of (1.1) satisfies y(T, ·) = 0}.

The cost also depends on a and Γ, although we do not write it explicitly.

This paper follows a well-established research line which inquires about the cost of the con-

trollability of systems with a small diffusion and a transport term. The first of such control

problem to be analysed was the heat equation in dimension 1 with Dirichlet boundary condi-

tions in [8]. Afterwards, the same problem but in any dimension and with any speed belonging

to W 1,+∞(R+ × Ω) was studied in [18]. More recently, better approximations of the optimal

time in which the cost of the control decays have been given: the lower bound was improved

in [24] through complex analysis and properties of the entire functions and the upper bound

was improved in [13, 23] (in the first one through complex analysis and in the second one by

transforming the original equation into the pure heat equation). As for similar results, work has

been done in the KdV equation (see [15, 16, 2, 3]), in the Burgers equation (see [14]), in the

Stokes system (see [1]) and in an artificial advection-diffusion problem (see [5, 6]). Finally, the
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current study of (1.1) is a contribution to the literature (and in particular the case a = 0 and

Γ = ∅ is an open problem proposed in [18, Remark 3]).

As in the previously cited papers, we study the adjoint problem, which is given by:

−ϕt − ε∆ϕ− ∂x1ϕ = 0, in Q,

ε∂nϕ+ (εa+ n1)ϕ = 0, on ΣN ,

ϕ = 0, on ΣD,

ϕ(T, ·) = ϕT , on Ω.

(1.2)

Indeed, we have the classical equality given by the Hilbert Uniqueness Method (see, for instance,

[25, 21]):

K(Ω, ω, T, ε) = sup
ϕT∈L2(Ω)\{0}

‖ϕ(0, ·)‖L2(Ω)

‖ϕ‖L2(Qω)
, (1.3)

where ϕ denotes the solution of (1.2).

As a novelty with respect to the literature, we obtain some properties of (1.2) (and in particular

the Carleman inequality) by studying the solutions of:

−φt − ε∆φ+ 1
4εφ = 0, in Q,

ε∂nφ+
(
εa+ n1

2

)
φ = 0, on ΣN ,

φ = 0, on ΣD,

φ(T, ·) = φT , on Ω.

(1.4)

The advantage of studying the solutions of (1.4) is that its elliptic part is self-adjoint.

Remark 1.1. We have obtained system (1.4) by considering the functional:

w 7→ e(2ε)−1x1w, (1.5)

which is an homeomorphism from the solutions of (1.2) with initial value in L2(Ω) to the

solutions of (1.4) with initial value in L2(Ω). Furthermore, this functional is useful to translate

information about the solutions of (1.4) to information about the solutions of (1.2), for instance

about their regularity.

We now define the operator:

Aεu := −ε∆u− ∂x1u, (1.6)
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and the domain:

D(Aε) :=
{
w ∈ H1(Ω) : Aεw ∈ L2(Ω), ε∂nw + (εa+ n1)w = 0 on Γ, w = 0 on Γ∗

}
. (1.7)

We recall that −∆w ∈ L2(Ω) and w ∈ H1(Ω) implies that ∂nw is well-defined as an element

of H−1/2(Γ). With the purpose of understanding the solutions of (1.2) we study the spectral

problem: 
−ε∆u− ∂x1u = λu, in Ω,

ε∂nu+ (εa+ n1)u = 0, on Γ,

u = 0, on Γ∗.

(1.8)

In a similar way, with the purpose of understanding the solutions of (1.8) we study the spectral

problem: 
−∆v = λ̃v, in Ω,

ε∂nv +
(
εa+ n1

2

)
v = 0, on Γ,

v = 0, on Γ∗,

(1.9)

and we define:

D(∆) :=
{
w ∈ H1(Ω) : −∆w ∈ L2(Ω), ε∂nw +

(
εa+

n1

2

)
w = 0 on Γ, w = 0 on Γ∗

}
.

We can relate the solutions of (1.8) and (1.9) with the functional (1.5):

Remark 1.2. We have that (v, λ̃) is a solution of (1.9) if and only if:

(u, λ) :=

(
ve−(2ε)−1x1 , ελ̃+

1

4ε

)
,

is a solution of (1.8). Similarly, (u, λ) is a solution of (1.8) if and only if:(
ue(2ε)−1x1 ,

λ

ε
− 1

4ε2

)
is a solution of (1.9).

We consider (1.9)1 instead of −ε∆v+(4ε)−1v = λv in order to isolate the “part” of the eigenvalue

that is caused by the diffusion. This is useful for instance to prove Lemma 2.4 and 3.4 below.

From now on we need the following technical hypothesis:

Hypothesis 1.1. We suppose that for all ε ∈ (0, ε0) there is s > 3/2 such that D(∆) ⊂ Hs(Ω)

continuously.
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Remark 1.3. The hypothesis 1.1 include all the cases in which a ∈W 1/2,∞(Γ) and:

∂Γ ∩ ∂Γ∗ = ∅, (1.10)

which in particular includes segments. The reason is that if we have (1.10) next to each compo-

nent of ∂Ω we ave either Dirichlet boundary condition or Robin boundary conditions, so we can

use the well-known regularity results. In addition, there is no reason to believe that Hypothesis

1.1 is false if a ∈W 1/2,∞(Γ), but this is still an open problem.

Remark 1.4. It can be checked directly that the laplacian is self-adjoint in D(∆) if we have

Hypothesis 1.10 a ∈ W 1/2,∞(Γ). Indeed, if w ∈ D(∆∗) we see first that −∆w ∈ L2(Ω) by

considering that D(Ω) ⊂ D(∆). Afterwards, we see that w equals the solution of −∆v = −∆w,

(1.9)2 and (1.9)3. Thereby, L2(Ω) has a spectral decomposition (for each ε) by the solutions of

(1.9).

Remark 1.5. We can also study the problem with null initial force associated to (1.1). Indeed, the

functional w 7→ e−(2ε)−1x1w transforms (1.1) into a symmetric version of (1.4) (time backwards

and with opposite transport). Thus, the direct and adjoint systems have a similar nature and

similar decay properties.

Definition 1.6. We denote by (λ̃εm)m∈N the eigenvalues of (1.9) and by (λεm)m∈N the eigenvalues

of (1.8). In addition, for each eigenvalue of (1.9) an eigenfunction vεm is fixed, to which we

impose that ‖vεm‖L2(Ω) = 1. Finally, we denote uεm := vεme
−(2ε)−1x1 . The ε might be omitted to

avoid excessive redundancy if clear.

Remark 1.7. Since span{vm} = L2(Ω) (see Remark 1.4) we have that span{um} = L2(Ω).

The idea of using spectral decomposition is not new in Control Theory (see, for instance, [7]).

Indeed, for the heat and the Stokes context alone, there are many documents which deal with

eigenfunctions of the elliptic operator for proving the existence of some control (see, for example,

[20, 22, 4]), for estimating the cost of the control (see, for instance, [9]), and for giving negative

answer to the existence of a control (see, for example, [22]). As for a system with small diffusion

and a transport term, a spectral decomposition indirectly appears in [8, 24], when the authors

get lower bounds for the optimal time T0 in which the cost of the control decays exponentially

with ε. In addition, a spectral decomposition has been used in [1] to get the dissipation estimate

in a transport-diffusion Stokes system. Indeed, in this paper we follow the phylosophy of [1] of

using as much information as possible about the spectral decomposition, with the contribution

that now while proving the Carleman we work directly in the symmetrized system; that is, in

(1.4).
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Coming back to (1.2), what determines if the solutions of (1.2) decays is λ̃ε0. We recall that

by Rayleigh principle we have the equality:

λ̃ε0 = min

{∫
Ω
|∇v|2 +

∫
Γ

(
a+

n1

2ε

)
|v|2 : v ∈ H1(Ω), ‖v‖L2(Ω) = 1, v = 0 on Γ∗

}
. (1.11)

Looking at (1.11) we can do a division of cases depending on whether the following inequality

is satisfies: :

(a+ (2ε)−1n1)1Γ ≥ 0. (1.12)

If (1.12) is satisfied, we have that λ̃ε1 ≥ 0, which implies that the solutions of (1.2) decay

exponentially on ε−1 (see Lemma 2.4 below). In fact, we have the following theorem:

Theorem 1.8. Let Ω ⊂ Rd be a C2 domain, ω ⊂ Ω be a subdomain and ε0 > 0 be so that

(a, ε,Γ) satisfies that a ∈ L∞(Ω), (1.12) and Hypothesis 1.1. Then, there are T, c, C > 0 such

that for all ε ∈ (0, ε0) we have that:

K(Ω, ω, T, ε) ≤ Ce−cε−1
. (1.13)

There are several important examples that satisfy the hypotheses of Theorem 1.8:

• Dirichlet boundary conditions (Γ = ∅). This controllability result is already proved in

[8, 18]. However, the proof is different in the sense that on this paper we prove the decay

with the spectral decomposition (instead of with a comparison theorem or an Agmon

inequality) and the proof of the Carleman presents some differences.

• Segments in which we have boundary conditions on the left edge and Neumann conditions

on the right edge. The physical meaning of those boundary conditions is that the function

is almost null near the left edge and almost constant near the right edge.

• The following control problem:
yt − ε∆y + ∂x1y = 1ωf, in Q,

−ε∂ny + n1
2 y = 0, on Σ,

y(0, ·) = y0, on Ω.

(1.14)

This control problem is (1.1) with a = −n1
2ε and Γ = ∂Ω, so in a sense it is an edge

case among those which satisfy (1.12). It is symmetric with its adjoint system and it can

represent a physical situation in which we almost have Dirichlet boundary conditions.

• Any system satisfying (1.10) and a ≥ (2ε)−1n1; that is, in which we almost have Dirichlet

boundary conditions.
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The alternative situation to (1.12) is:(
a+

n1

2ε

)
1Γ 6≥ 0. (1.15)

Under the hypothesis 1.15 we might have negative eigenvalues for (1.9) and the cost of the

control might explode.

Let us get an estimate of the lower bound of λε0 when a ≥ 0; that is, when system (1.1) has

a mixed of Dirichlet and Robin boundary conditions with a positive value a.

Proposition 1.9. Let Ω ⊂ Rd a Lipschitz domain and a ≥ 0. Then, we have that:

λ̃ε0 ≥ −
1

4ε2
. (1.16)

Proof. Let v ∈ H1(Ω) such that ‖v‖L2(Ω) = 1 and such that v = 0 on Γ∗. We find from the

Green formula and an appropriate Cauchy-Schwarz inequality that:∫
Γ

n1

2ε
|v|2 =

∫
∂Ω

n1

2ε
|v|2 =

∫
Ω

v∂x1v

ε
≥ −

∫
Ω
|∂x1v|2 −

1

4ε2

∫
Ω
|v|2.

Thus, if we have a ≥ 0 and v ∈ H1(Ω) such that ‖v‖L2(Ω) = 1 and such that v = 0 on Γ∗, we

find that: ∫
Ω
|∇v|2 +

∫
Γ

(
a+

n1

2ε

)
|v|2 ≥

∫
Ω
|∇v|2 −

∫
Ω
|∂x1v|2 −

1

4ε2
≥ − 1

4ε2
. (1.17)

Finally, we get (1.16) from (1.11) and (1.17).

Remark 1.10. In order to have an equality in (1.16), if we follow the proof of Proposition 1.9,

we need that a = 0, that v just depends on x1 and that ∂x1v = −(2ε)−1v, i.e. we need that

v = e−(2ε)−1x1 (and so Γ = ∂Ω). This situation corresponds to the case of pure Neumann

boundary conditions, which is studied in Section 3.1. In any other situation in which a ≥ 0 the

inequality (1.16) is strict.

In this paper we study some subcases of (1.15):

• We consider (1.1) with pure Neumann boundary conditions; that is, a = 0 and Γ = ∂Ω.

We remark that under those boundary conditions (1.1) is given by:
yt − ε∆y + ∂x1y = 1ωf, in Q,

∂ny = 0, on Σ,

y(0, ·) = y0, on Ω.

(1.18)
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The study of (1.18) is an open problem proposed in [18, Remark 3] and it represents that

the mass gets in and out only tangentially. Let us denote:

π1(x) := x1, pl := inf π1(Ω), pr := supπ1(Ω). (1.19)

We prove in this paper the following result:

Theorem 1.11. Let h > 0, Ω ⊂ Rd be a Lipschitz domain, and ω ⊂ Ω be an open subset

such that:

π1(ω) ⊂ (pl + h, pr). (1.20)

Then, for all T > 0 there is c > 0 such that for all ε > 0 the cost of the control of problem

(1.18) explodes exponentially; that is, such that:

K(Ω, ω, T, ε) ≥ cecε−1
. (1.21)

• We consider the segment Ω := (−L, 0), a = 0 (Neumann boundary conditions) and Γ :=

{−L}. In this situation the control problem (1.1) is given by:

yt − ε∂xxy + ∂xy = f1ω, in Q,

∂xy(·,−L) = 0, on (0, T ),

y(·, 0) = 0, on (0, T ),

y(0, ·) = y0, on (−L, 0).

(1.22)

The control problem (1.22) describes for instance a valley in which the density of animals

is constant near the left edge and it goes to 0 near the right edge (for instance if there is a

cliff). The intuition may suggest that as ε gets smaller the cost of the control decreases, as

in the Dirichlet case. However, it is just the opposite, the fact that there is a flux coming

from the left dominates and the cost of the control actually increases when the random

movement vanishes. In particular, we prove that:

Theorem 1.12. Let L, h > 0, Ω := (−L, 0) and ω ⊂ (−L+h, 0) be an open subset. Then,

for all T > 0 there is c > 0 and ε0 > 0 such that for all ε ∈ (0, ε0) the cost the control of

(1.22) is bounded superiorly by:

K(Ω, ω, T, ε) ≥ cecε−1
. (1.23)

• We get a lower bound of the cost of the controllability when ω = Ω; that is, in which the

control domain is the whole domain. In particular, we prove that:
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Theorem 1.13. Let Ω be a Lipschitz domain, T > 0 and (Γ, a) be such that a ∈ L∞(Γ),

Hypothesis 1.1 is satisfies and:

λε0 → 0. (1.24)

Then, we have the bound:

lim inf
ε→0

K(Ω,Ω, T, ε) ≥ 1√
T
. (1.25)

The conditions stated in Theorem 1.13 include the control problem (1.18) (see Remark

1.10) and (1.22) (see (3.15)).

• We study if ω = Ω and if we have (1.24), the cost of the control is at least O(T−1/2) when

ε→ 0. In particular, for Neumann boundary conditions we prove that:

Theorem 1.14. Let Ω be a C2 domain. Then, there is C > 0 such that for all ε > 0 and

T > 0:

K(Ω,Ω, T, ε) ≤ C
(

1√
T

+
1√
ε

)
, (1.26)

for K the cost of the control problem (1.18).

In addition, if we are in a segment we prove that:

Theorem 1.15. Let L > 0 and Ω := (−L, 0). We have for all T ≥ 4L:

lim sup
ε→0

K(Ω,Ω, T, ε) ≤ 4√
T
, (1.27)

for K the cost of the control problem (1.18).

Remark 1.16. The difficulty when proving Theorem 1.14 and Theorem 1.15 is that f is required

to be in L2(Q). If we just need having f ∈ L2(0, T ;H−2(Ω)), then it suffices to consider the

affine function which joins y0 and 0.

As for the results stated for subcases of (1.15), Theorem 1.11 is similar to the result presented

in [1] for the Stokes equation in dimension 3. As for the others, the most surprising is Theorem

1.12 as one can think that having Dirichlet boundary conditions in the right-hand side is a

sufficient condition to have exponential decay on the cost of the control.

The rest of the paper is organized as follows: in Section 2 we prove Theorem 1.8, in Section 3

we study the case (1.15) and in Section 4 we do some remarks and present some open problems.
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2 Proof of Theorem 1.8

The section is split in three parts: in the first one we prove the decay of the solutions of (1.2),

in the second one we prove a Carleman inequality for the solutions of (1.4), and in the third one

we end the proof of Theorem 1.8. For this section we use the following definition:

Definition 2.1. Let Ω ⊂ Rd a non-empty set. We define:

diamx1(Ω) := sup
{
x1 :

(
{x1} × Rd−1

)
∩ Ω 6= ∅

}
− inf

{
x1 :

(
{x1} × Rd−1

)
∩ Ω 6= ∅

}
.

2.1 Decay of the solutions of (1.2) for a sufficiently large time

We denote by (λ̃0
m)m∈N the eigenvalues of the system:−∆v = λ̃0v in Ω,

∂nv = 0 on ∂Ω.
(2.1)

It is easy to prove that all eigenvalues of (2.1) are positive. In addition, we recall the Weyl

asymptotics law for the Neumann system (see, for instance, [19]):

Lemma 2.2 (Weyl asymptotic). Let Ω ⊂ Rd be a Lipschitz domain and let N(γ) be the number

of eigenvalues (counting repetitions) of (2.1) that belong to (−∞, γ]. We have:

lim
γ→∞

N(γ)

γd/2
=

Vol(B(0, 1)) Vol(Ω)

(2π)d
.

In particular, there is C > 0 such that, for all γ ∈ R:

N(γ) ≤ C(1 + |γ|d/2). (2.2)

In addition, we recall the following spectral result which follows from the min-max variational

principle:

Lemma 2.3. Let Ω ⊂ Rd be a Lipschitz domain and assume that (a,Γ) satisfies that a ∈ L∞(Γ)

and (1.12). Then, for all m ∈ N we have the following estimate:

λ̃εm ≥ λ̃0
m.

Let us now study the solutions of (1.2):

Lemma 2.4. Let Ω ⊂ Rd be a Lipschitz domain and assume that (a,Γ) satisfies that a ∈ L∞(Γ)

and (1.12). Then, for all ϕT ∈ L2(Ω) the solution of (1.2) satisfies for all t ∈ [0, T ]:

ϕ(t, x) =
∑
m∈N

∫
Ω
ϕT (z)e(2ε)−1z1vεm(z)dzvεm(x)e−(2ε)−1x1 exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]
. (2.3)
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In particular, the series in the right-hand side of (2.3) is absolutely convergent in L2(Ω) for all

t < T . Moreover, for all T0 > 0 and δ > 0 there is C > 0 such that for all T ≥ T0, ϕT ∈ L2(Ω)

and t ∈ [0, T − T0] we have the estimate:

‖ϕ(t, ·)‖L2(Ω) ≤ C‖ϕT ‖L2(Ω) exp

(
2 diamx1(Ω) + δ − (T − t)

4ε

)
. (2.4)

Proof. We can easily prove (2.3) for t = T using that vεm is an orthonormal basis in L2(Ω).

Indeed, if ϕT ∈ L2(Ω) we have that:

ϕT (x) = (ϕT (x)e(2ε)−1x1)e−(2ε)−1x1 =
∑
m∈N

∫
Ω
ϕT (z)e(2ε)−1z1vεm(z)dzvεm(x)e−(2ε)−1x1 .

We prove (2.3) and (2.4) simultaneously for t ∈ [0, T ). We obtain from Remark 1.2 that

(2.3) is true in span{um}. Since the left hand side of (2.3) belongs to C0([0, T ];L2(Ω)) (see

[10]) and since span{um}m∈N is dense in L2(Ω) (see Remark 1.7), it is enough to prove that the

right-hand side is an endomorphism on L2(Ω). For that purpose using the triangle inequality

and that ‖vm‖L2(Ω) = 1 we get that:∥∥∥∥∥∑
m∈N

∫
Ω

(ϕT (z)e(2ε)−1z1)vεm(z)dzvεm(x)e−(2ε)−1x1 exp

[
−
(
ελ̃εm +

1

4ε

)
(T − t)

]∥∥∥∥∥
L2(Ω,dx)

≤ ‖ϕT ‖L2(Ω) exp

(
2 diamx1(Ω)− (T − t)

4ε

)∑
m∈N

e−ελ̃
ε
m(T−t). (2.5)

Thus, the only thing left is to bound
∑

m e
−ελ̃εm(T−t). We obtain from Lemma 2.3, Lemma

2.2 and the positivity of the eigenvalues of (2.1) the estimate:∑
m∈N

e−ελ̃
ε
m(T−t) ≤

∑
m∈N

e−ελ̃
0
m(T−t) ≤

∑
m≥1

N(m)e−ε(m−1)(T−t)

≤ C

1 +
∑
m≥2

(1 +md/2)e−ε(m−1)(T−t)

 ≤ C (1 +

∫ +∞

0
(1 + (z + 2)d/2)e−εz(T−t)dz

)

≤ C
(

1 +

∫ +∞

0
(1 + zd/2)e−εz(T−t)dz

)
= C

(
1 +

1

ε(T − t)
+

1

ε(d+2)/2(T − t)(d+2)/2

)
. (2.6)

So, from (2.6), T − t ≥ T0, and z−k/2e−z
−1 ∈ L∞(R+) for all k ∈ R+, we obtain that:∑

m∈N
e−ελ̃

ε
m(T−t) ≤ Ceδε−1

. (2.7)

Consequently, we end the proof by combining (2.5) and (2.7).

Remark 2.5. Lemma 2.4 can be generalized to the case in which λ̃ε0 ≥ 0 and in which we have

some polynomial bound for |{i : λ̃εi ≤ m}| that depends on m and uniform for all ε ∈ (0, ε0).
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2.2 A Carleman inequality for the solutions of (1.4)

We consider the usual Fursikov-Imanuvilov weights. First of all, we consider η a C2(Ω)

function satisfying:

η = 0 on ∂Ω, η ≥ 0 on Ω, ‖η‖∞ = 1, inf
Ω\ω0

|∇η| = δ > 0, (2.8)

for ω0 ⊂⊂ ω an open non-empty set. The existence of such a function if Ω is a C2 domain is

proved for instance in [12]. With that auxiliary function in mind, we define, for some T̃ > 0,

the following weights in Q̃ := (0, T̃ )× Ω:

α±(t, x) :=
e8λ − eλ(±η(x)+6)

t(T̃ − t)
, ξ±(t, x) :=

eλ(±η(x)+6)

t(T̃ − t)
,

α∗±(t) = max
x∈Ω

α±(t, x), ξ∗±(t) = min
x∈Ω

ξ±(t, x).

(2.9)

Weights of this kind first appeared in [12], but this version is borrowed from [11] with the

adaptations for non-Dirichlet situations proposed in [10]. We remark that we have the usual

bounds:

|∂xiα±| = |∂xiξ±| ≤ Cλξ±, |∂tα±| ≤ CT̃ξ2
±, |∂2

t2α±| ≤ Cξ
2
±(1 + T̃ 2ξ±). (2.10)

We prove in this section the following result:

Proposition 2.6. Let Ω ⊂ Rd be a C2 domain, ω ⊂ Ω be a subdomain and ε0 > 0 be so that

(a, ε,Γ) satisfies a ∈ L∞(Γ), (1.12) and Hypothesis 1.1. Then, there is C > 0 such that if λ ≥ C,

τ ≥ (T̃ + T̃ 2)ε−1 and φT ∈ L2(Ω) we have that:

τ3λ4

∫∫
Q̃
e−2sαξ3|φ|2 + τλ2

∫∫
Q̃
e−2sαξ3|∇φ|2 + τ2λ2

∫∫
Σ̃N

e−2ταξ2
(
a+

n1

2ε

)
|φ|2

≤ Cτ3λ4

∫∫
Q̃ω

e−2sαξ3|φ|2 (2.11)

for φ the solution of (1.4) with T̃ instead of T , and Σ̃N := (0, T̃ )× Γ.

In the statement of Proposition 2.6 and in its proof we omit the infinitesimals dt and dx as they

can deduced by looking at the integration domain.

For proving Proposition 2.6 we adapt the proofs of [18] and [10]. In the proof of Proposition

2.6 we denote by O(g(ε, τ, λ, φ)) a generic function for which there is C > 0 depending only on

Ω, ω and ω0 and which satisfies:

|O(g(ε, τ, λ, φ))| ≤ Cg(ε, τ, λ, φ).

if λ ≥ C, and τ ≥ (T̃ + T̃ 2)ε−1. In that definition g is a positive function.
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Proof. By density arguments it suffices to prove (2.35) for φ0 ∈ D(Ω). Thus, we can suppose

that φ ∈ H1(0, T ;D(∆)). As in [10], we now consider the following change of variables:

ψ± := e−τα±φ. (2.12)

We remark that, ψ± have Dirichlet boundary conditions on Σ̃D := (0, T̃ )× Γ∗. In addition,

since η = 0 on Σ̃ := (0, T̃ )× ∂Ω we have the following equalities on Σ̃:

ξ+ = ξ−, α+ = α−, ψ+ = ψ−, ψ+
t = ψ−t , ∂tgψ

+ = ∂tgψ
−. (2.13)

In particular, we might omit the sign when we are working on Σ to avoid this redundancy. In

that sense, we have that:

∂nψ
± = ±τλξ∂nηψ −

(
a+

n1

2ε

)
ψ, on Σ̃N . (2.14)

We next consider the equalities:

L±1 ψ
± + L±2 ψ

± = L±3 ψ
±, (2.15)

for: 
L±1 ψ

± := −2ετλ2|∇η|2ξ±ψ± ∓ 2ετλξ±∇η · ∇ψ± + ψ±t ,

L±2 ψ
± := ετ2λ2|∇η|2ξ2

±ψ
± + ε∆ψ± + τ∂t(α±)ψ± + 1

4εψ
±,

L±3 ψ
± := ±ετ∆η±ξ±ψ

± − ετλ2|∇η|2ξ±ψ±.

(2.16)

As usual, we denote (L±i ψ)j the j term of L±i ψ. Moreover, we are going to calculate the

product (L±1 ψ
±, L±2 ψ

±)L2(Q̃). The operations here are inspired in [18, Proposition 1], though

we use the technique proposed in [10] to treat the boundary terms.

To begin with, we have that, for λ ≥ C, τ ≥ CT̃ 2 (see (2.8) for the definition of δ):

((L±1 ψ
±)1 + (L±1 ψ

±)2, (L
±
2 ψ
±)1)L2(Q̃)

= ε2τ3λ4

∫∫
Q̃
|∇η|4ξ3

±|ψ±|2 +O

(
ε2s2λ3

∫∫
Q̃
ξ3
±|ψ±|2

)
∓ ε2τ3λ3

∫∫
Σ̃N

|∇η|2ξ3∂nη|ψ|2

≥ 3δ4

4
ε2τ3λ4

∫∫
Q̃
ξ3
±|ψ±|2 − δ4ε2τ3λ4

∫∫
Q̃ω0

ξ3
±|ψ±|2 ∓ ε2τ3λ3

∫∫
Σ̃N

|∇η|2ξ3∂nη|ψ|2. (2.17)

As for the third term in L±1 ψ
±, we can integrate by parts in time and get, taking into account

(2.10):

((L±1 ψ
±)3, (L

±
2 ψ
±)1)L2(Q̃) = O

(
εT̃ τ2λ2

∫∫
Q̃
ξ3
±|ψ±|2

)
. (2.18)
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Summing up, thanks to (2.17), (2.18), (2.8) and (2.13), we obtain for λ ≥ C and τ ≥ C(T̃ +

T̃ 2)ε−1 the estimate:∑
i∈{+,−}

(Li1ψ
i, (Li2ψ

i)1)L2(Q̃) ≥
∑

i∈{+,−}

δ4

2
ε2τ3λ4

∫∫
Q̃
ξ3
i |ψi|2 − δ4ε2τ3λ4

∫∫
Qω0

ξ3
i |ψi|2. (2.19)

To continue with, we have that, integrating by parts, with Cauchy-Schwarz inequality:

((L±1 ψ
±)1, (L

±
2 ψ
±)2)L2(Q̃) = 2ε2τλ2

∫∫
Q̃
|∇η|2ξ±|∇ψ±|2 − 2ε2τλ2

∫∫
Σ̃N

|∇η|2ξ(∂nψ±)ψ

+O

(
ε2τ2λ4

∫∫
Q̃
ξ2
±|ψ±|2 + ε2λ2

∫∫
Q̃
|∇ψ±|2

)
. (2.20)

Next, considering that η = 0 on ∂Ω, integrating by parts formally (assuming that ψ± ∈ C∞(Q)):

((L±1 ψ
±)2, (L

±
2 ψ
±)2)L2(Q̃) = ∓2ε2τλ

∫∫
Σ̃
∂nηξ|∂nψ±|2

+O

(
ε2τλ

∫∫
Q̃
ξ±|∇ψ±|2

)
+ 2ε2τλ2

∫∫
Q̃
ξ±|∇η · ∇ψ±|2 ± ε2τλ

∫∫
Q̃
ξ±∇η · ∇|∇ψ±|2

= ∓2ε2τλ

∫∫
Σ̃
∂nηξ|∂nψ±|2 +O

(
ε2τλ

∫∫
Q̃
ξ±|∇ψ±|2

)
+ 2ε2τλ2

∫∫
Q̃
ξ±|∇η · ∇ψ±|2

− ε2τλ2

∫∫
Q̃
|∇η|2ξ±|∇ψ±|2 +O

(
ε2τλ

∫∫
Q̃
ξ±|∇ψ±|2

)
± ε2τλ

∫∫
Σ̃
∂nηξ(|∂tgψ|2 + |∂nψ±|2).

(2.21)

Actually, for all ψ± ∈ L2(0, T ;D(A)) the left-hand side of (2.21) equals the right-hand side of

(2.21) because of Hypothesis 1.1 and because C∞(Q̃) is dense in L2(0, T ;D(A)). To continue

with, we find from (2.13)4 and (2.14) that:

((L±1 ψ
±)3, (L

±
2 ψ
±)2)L2(Q̃) = ε

∫∫
Σ̃N

ψ±t ∂nψ
±

= −ε
∫∫

Σ̃N

(
a+

n1

2ε

)
ψtψ ± ετλ

∫∫
Σ̃N

ξ∂nηψtψ = ±ετλ
∫∫

Σ̃N

ξ∂nηψtψ. (2.22)

We have used the assumption a is independent of the time variable and that ψ(0, ·) = ψ(T̃ , ·) = 0.

Let us compute the boundary terms involving ∂nψ
± that appear in (2.21). On the one hand,

we have that:

∓ ε2τλ

∫∫
Σ̃D

∂nηξ|∂nψ±|2 = ∓ε2τλ

∫∫
Σ̃D

∂nηξ|e−sα∂nφ|2. (2.23)

On the other hand, we obtain from (2.14) the equality:

∓ ε2τλ

∫∫
Σ̃N

∂nηξ|∂nψ±|2 = 2ε2τ2λ2

∫∫
Σ̃N

(∂nη)2ξ2
(
a+

n1

2ε

)
|ψ|2

∓ ε2τ3λ3

∫∫
Σ̃N

(∂nη)3ξ3|ψ|2 ∓ ε2τλ

∫∫
Σ̃
∂nηξ

(
a+

n1

2ε

)2
|ψ|2. (2.24)
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Summing up, if we consider (2.19)-(2.24) and (2.8)4 we get that:

∑
i∈{+,−}

(Li1ψ
i, (Li2ψ

i)2)L2(Q̃) ≥
∑

i∈{+,−}

O

(
ε2τ2λ4

∫∫
Q̃
ξ2
i |ψi|2

)

+
∑

i∈{+,−}

δ2

2
ε2τλ2

∫∫
Q̃
ξi|∇ψi|2 − δ2ε2τλ2

∫∫
Q̃ω0

ξi|∇ψi|2

+ 4ε2τ2λ2

∫∫
Σ̃N

(∂nη)2ξ2
(
a+

n1

2ε

)
|ψ|2. (2.25)

Next, we have that, because of (2.10):

((L±1 ψ
±)1, (L

±
2 ψ
±)3)L2(Q̃) = O

(
ετ2λ2T̃

∫∫
Q̃
ξ3
±|ψ±|2

)
. (2.26)

In addition, thanks to an integration by parts we have that:

((L±1 ψ
±)2, (L

±
2 ψ
±)3)L2(Q̃) = O

(
ετ2λ2T̃

∫∫
Q̃
ξ3
±|ψ±|2

)
∓ ετ2λ

∫∫
Σ̃N

ξ∂tα∂nηψ
2. (2.27)

Finally, from (2.10)3 we find that:

((L±1 ψ
±)3, (L

±
2 ψ
±)3)L2(Q̃) = −τ

2

∫∫
Q̃
∂2
t (α±)|ψ±|2 = O

(
τ

∫∫
Q̃
ξ2
±(1 + T̃ 2ξ±)|ψ±|2

)
. (2.28)

Summing up, considering that λ ≥ C and that τ ≥ C(T̃ + T̃ 2)ε−1, we obtain that:∑
i∈{+,−}

(Li1ψ
i, (Li2ψ

i)3)L2(Q̃) = O

(
ε2τ3λ2

∫∫
Q̃
ξ3
±|ψ±|2

)
. (2.29)

To continue with, we have that:

((L±1 ψ
±)1, (L

±
2 ψ
±)4)L2(Q̃) = O

(
τλ2

∫∫
Q̃
ξ±|ψ±|2

)
. (2.30)

Next, we have that, after integrating by parts:

((L±1 ψ
±)2, (L

±
2 ψ
±)4)L2(Q̃) = O

(
τλ2

∫∫
Q̃
ξ±|ψ±|2

)
∓ τλ

4

∫∫
Σ̃N

ξ∂nη|ψ|2. (2.31)

Finally, we obtain from ψ±(0, ·) = ψ±(T, ·) = 0 that:

((L±2 ψ
±)3, (L

±
2 ψ
±)4)L2(Q̃) = 0. (2.32)

Summing up the results obtained in (2.30)-(2.32), we get that:∑
i∈{+,−}

(Li1ψ
i, (Li2ψ

i)4)L2(Q̃) = O

(
τλ2

∫∫
Q̃
ξ±|ψ±|2

)
. (2.33)
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So, if we add (2.20), (2.25), (2.29) and (2.33), we get, after absorptions, for λ ≥ C and

τ ≥ C(T̃ + T̃ 2)ε−1:

2
∑

i∈{+,−}

(Li1ψ
i, Li2ψ

i) + 2δ4ε2τ3λ4

∫∫
Q̃ω0

ξ3
i |ψi|2 + 2δ2ε2τλ2

∫∫
Q̃ω0

ξi|∇ψi|2

≥
∑

i∈{+,−}

δ4

2
ε2τ3λ4

∫∫
Q̃
ξ3
i |ψi|2 +

δ2

2
ε2τλ2

∫∫
Q̃
ξi|∇ψi|2

+ 4ε2τ2λ2

∫∫
Σ̃N

(∂nη)2ξ2
(
a+

n1

2ε

)
|ψ|2. (2.34)

If we have (1.12), it is classical to obtain (2.35) from (2.34) (see, for instance, [12] and [10])

2.3 End of the proof of Theorem 1.8

Let T ≥ 1. Considering Proposition 2.6 for T̃ = 1 and Remark 1.1 we obtain for all ϕT ∈
L2(Ω), λ ≥ C and τ ≥ Cε−1 the estimate:

τ3λ4

∫ 1

0

∫
Ω
e−2sα+ε−1x1ξ3|ϕ(T − 1 + t, x)|2dxdt

≤ Cτ3λ4

∫ 1

0

∫
Ω
e−2sα+ε−1x1ξ3|ϕ(T − 1 + t, x)|2dxdt, (2.35)

for ϕ the solution of (1.2). So, fixing λ large enough, and τ = τ0ε
−1 for τ0 large enough, we

have that (2.35) implies that:

‖ϕ‖L2((T−2/3,T−1/3)×Ω) ≤ CeCε
−1‖ϕ‖L2((T−1,T )×ω) ≤ CeCε

−1‖ϕ‖L2(Qω). (2.36)

Moreover, from Lemma 2.4 taking T0 = δ = 1 we find a constant C > 0 such that for all

t′ ∈ (T − 2/3, T − 1/3) we have that:

‖ϕ(0, ·)‖L2(Ω) ≤ C exp

[
2 diamx1(Ω) + 1− t′

4ε

]
‖ϕ(t′, ·)‖L2(Ω)

≤ C exp

[
C − T

4ε

]
‖ϕ(t′, ·)‖L2(Ω). (2.37)

So, combining (2.36) and (2.37), we get that, for any T ≥ 1:

‖ϕ(0, ·)‖L2(Ω) ≤ C exp

[
C − T

4ε

]
‖ϕ‖L2((T−2/3,T−1/3)×Ω) ≤ C exp

[
C − T

4ε

]
‖ϕ‖L2(Qω).

In particular, if T is sufficiently large, by (1.3) we obtain (1.13).

16



3 Some control problems in which we have (1.15)

In this section we study some subcases of (1.15). In particular, in Section 3.1 we prove

Theorem 1.11, in Section 3.2 we prove Theorem 1.12, and in Section 3.3 we prove Theorems

1.13, 1.14 and 1.15.

3.1 Proof of Theorem 1.11

In order to prove (1.21) we consider that the adjoint system of (1.18) is given by (see (1.2)):
−ϕt − ε∆ϕ− ∂x1ϕ = 0, in Q,

ε∂nϕ+ n1ϕ = 0, on Σ,

ϕ(T, ·) = ϕT , on Ω.

(3.1)

In particular, we use (1.3) for ϕ(x) := e−x1ε−1
, which is a (steady) solution of (3.1) (see Remarks

1.10 and 1.2). On the one hand, we remark that (see (1.19) for the notation):

‖ϕ(0, ·)‖L2(Ω) ≥ |π−1
1 (pl, pl + h/2) ∩ Ω|1/2 exp

(
−pl − h/2

ε

)
. (3.2)

Because Ω is an open set and because of (1.19) we have that:

|π−1
1 (pl, pl + h/2) ∩ Ω| > 0.

On the other hand, (1.20) implies the estimate:

‖ϕ‖L2(Qω) ≤ T 1/2|ω|1/2‖e−x1ε−1‖L∞(π−1
1 (pl+h,pr)∩ω) ≤ T

1/2|ω|1/2 exp

(
−pl − h

ε

)
. (3.3)

Consequently, combining (1.3), (3.2) and (3.3) we find that:

K(Ω, ω, T, ε) ≥
‖ϕ(0, ·)‖L2(Ω)

‖ϕ‖L2(Qω)
≥ |π

−1
1 (pl, pl + h/2) ∩ Ω|1/2

T 1/2|ω|1/2
exp

(
h

2ε

)
,

which implies (1.21).

3.2 Proof of Theorem 1.12

We first remark that the adjoint system of (1.22) is given by (see (1.2)):

−ϕt − ε∂xxϕ− ∂xϕ = 0, in Q,

ε∂xϕ(·,−L) + ϕ(·,−L) = 0, on (0, T ),

ϕ(·, 0) = 0, on (0, T ),

ϕ(T, ·) = ϕT , on (−L, 0).

(3.4)
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In addition, the spectral problem (1.9) can be written as:
−v′′ = λ̃v, in (−L, 0),

2εv′(−L) + v(−L) = 0,

v(0) = 0.

(3.5)

In order to prove Theorem 1.12, we first prove the following lemma:

Lemma 3.1. Let L > 0. Then, there is ε0 > 0 such that for all ε ∈ (0, ε0) there is a unique

rε > 0 such that there are non-null solutions of (3.5) for λ̃ = −r2
ε . In fact, we have:

rε ∈
(

0,
1

2ε

)
, (3.6)

and the non-null solutions are those proportional to sinh(−rεx). In addition, we have the limit:

1

2ε
− rε → 0. (3.7)

Remark 3.2. From Proposition 1.9 and Remark 1.10 we already know that all the eigenvalues

are strictly bigger than −(2ε)−2; thus, it is clear that rε must satisfy (3.6).

Proof of Lemma 3.1. The structure of the proof is the following: first we give an equivalent

condition for −r2
ε to be an eigenvalue, second we show that (3.5) has a unique strictly negative

eigenvalue, and finally we prove (3.7).

Step 1: an equivalent condition. First, we recall that when λ̃ = −r2 < 0 the solutions of (3.5)1

are given by:

Aerx +Be−rx : A,B ∈ R.

Moreover, the boundary conditions of (3.5) imply the system:
(
2εre−rL + e−rL

)
A+

(
−2εrerL + erL

)
B = 0,

A+B = 0.
(3.8)

Thus, (3.8) has a non-null solution if and only if:

e−rL + 2εre−rL = erL − 2εrerL;

that is, if and only if:
1 + 2εr

1− 2εr
= e2rL. (3.9)

In addition, from (3.8)2 we obtain that the associated eigenfunctions are those proportional to

sinh(−rεx). Finally, from (3.9) we have that all the possible positive roots are in (0, (2ε)−1), so

just have to prove existence and uniqueness in that interval.
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Step 2: (3.9) has a unique solution in (0, (2ε)−1). Let us denote:

g1(r) :=
1 + 2εr

1− 2εr
= −1 +

2

1− 2εr
, g2(r) := e2rL.

We have the equality:

g1(0) = g2(0) = 1. (3.10)

In addition, the derivative of the functions are given by:

g′1(r) =
4ε

(1− 2εr)2
, g′2(r) := 2Le2rL. (3.11)

Consequently, combining (3.10) and (3.11) we obtain a constant c > 0 such that for ε small

enough g2 > g1 on (0, c). Moreover, since g1((2ε)−1) = +∞ and since g2((2ε)−1) < +∞, we

have at least one root of (3.9) in (0, (2ε)−1). In order to show the uniqueness of the root, we

define:

g3(r) :=
g′2(r)

g′1(r)
=

L

2ε
(1− 2εr)2e2rL.

Since in (0, (2ε)−1) the function g′3 has the same sign as 2L(1− 2εr)− 4ε, we have g′3(r) ≤ 0 if

and only if:

r ≥ 2L− 4ε

4Lε
=

1

2ε
− 1

L
.

So, since g3(0) = L
4ε , for ε small enough there is a unique:

rε ∈
(

1

2ε
− 1

L
,

1

2ε

)
such that g3(rε) = 1, g3 > 1 in [0, rε] and g3 is strictly decreasing in [rε, (2ε)

−1]. This implies

that g′2(r) > g′1(r) in [0, rε) and g′2(r) < g′1(r) in (rε, (2ε)
−1). Consequently, (3.9) has a unique

root in (0, (2ε)−1), which, to be more precise, belongs to [rε, (2ε)
−1] and which we denote from

now on by rε.

Step 3: the proof of (3.7). In order to prove (3.7), we first consider that for ε small enough:

rε ≥ rε ≥
1

2ε
− 1

L
≥ 1

4ε
. (3.12)

Moreover, from g1(rε) = g2(rε), we obtain that:

1/ε
1
2ε − rε

= e2rεL + 1,

which implies the equality:
1

2ε
− rε =

1

ε(e2rεL + 1)
.

Using (3.12), we get that for ε small enough:

1

2ε
− rε ≤

1

εeL(2ε)−1 . (3.13)

Consequently, we obtain (3.7) from (3.13) and (3.6).
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We now end the proof of Theorem 1.12. Remark 1.2 implies that:

(uε, λε0) :=

(
sinh(−rεx)e−(2ε)−1x,−εr2

ε +
1

4ε

)
(3.14)

is a solution of (1.8). Hence ϕ(t, x) = uε(x)eλ
ε
0(t−T ) is a solution of (3.4). Moreover,we obtain

from (3.6) and (3.7) (and from εrε < 1/2) the limit:

λε0 = ε

(
1

2ε
− rε

)(
1

2ε
+ rε

)
=

(
1

2ε
− rε

)(
1

2
+ εrε

)
→ 0. (3.15)

We prove (1.23) with the help of (1.3). On the one hand, for x ∈ (−L,−L+ h/2) and ε small

enough we have the bound:

sinh(−rεx)e−(2ε)−1x ≥ 1

4
e−(rε+(2ε)−1)x ≥ 1

4
e(rε+(2ε)−1)(L−h/2).

Moreover, using (3.15) we find for ε small enough that e−λ
ε
0T ≥ 1/2. So, we get the bound:

‖ϕ(0, ·)‖L2(−L,0) ≥ ‖ϕ(0, ·)‖L2(−L,−L+h/2) ≥
√

2h

16
e(rε+(2ε)−1)(L−h/2). (3.16)

On the other hand, from ω ⊂ (−L+ h, 0) we obtain the estimate:

‖ϕ‖L2(Qω) ≤
√
T (L− h)e(rε+(2ε)−1)(L−h). (3.17)

To prove (3.17) we have used that:

‖eλε0(t−T )‖L∞(0,T ) ≤ 1,

and that on (−L+ h, 0):

sinh(−rεx)e−(2ε)−1x ≤ e−(rε+(2ε)−1)x ≤ e(rε+(2ε)−1)(L−h).

Finally, combining (1.3), (3.16), (3.17) and that rε ≥ 0, we get (1.23).

Remark 3.3. The key idea of the proof is that λε0 → 0, but we also need to know how the

eigenfunctions are distributed on the whole domain.

3.3 Control results when the control domain is Ω

In this section we first prove Theorem 1.13, we then prove Theorem 1.14 and we finally prove

Theorem 1.15.
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Proof of Theorem 1.13. From Definition 1.6 we obtain that ϕε(t, x) := uε0e
λε0(T−t) is a solution

of (1.2) (see Definition 1.6 for the notation). Furthermore, (1.24) implies that:∫ T

0
e−2λε0(T−t) → T.

Consequently, we have the limit:

‖ϕε(0, ·)‖2L2(Ω)∫∫
Q |ϕε|2

=
‖uε0e−λ

ε
0T ‖2L2(Ω)∫∫

Q |u
ε
0e
−λε0(T−t)|2

=
e−2λε0T∫ T

0 e−2λε0(T−t)
→ 1

T
,

which together with (1.3) implies (1.25).

Proof of Theorem 1.14. Let ϕ be a solution of (3.1) and χ ≤ 1 be a regular positive cut-off

function whose value is 1 in [0, 1/3] and 0 in [2/3, 1]. Considering (3.1) we find that:

1

2

∫
Ω
|ϕ(0, ·)|2 = −1

2

∫∫
Q
∂t

(
χ
( ·
T

)
|ϕ|2

)
= − 1

2T

∫∫
Q
χ′
( ·
T

)
|ϕ|2 +

∫∫
Q

(ε∆ϕ+ ∂x1ϕ)ϕχ
( ·
T

)
= − 1

2T

∫∫
Q
χ′
( ·
T

)
|ϕ|2 − ε

∫∫
Q
|∇ϕ|2χ

( ·
T

)
−
∫∫

Σ

n1

2
ϕ2χ

( ·
T

)
≤ C

(
1

T
+

1

ε

)∫∫
Q
|ϕ|2. (3.18)

For the last inequality in (3.18) we have used classical estimates on the trace term. In particular,

we have used the following estimate:∣∣∣∣∫∫
Σ

n1

2
ϕ2

∣∣∣∣ ≤ ε∫∫
Q
|∇ϕ|2 +

C

ε

∫∫
Q
|ϕ|2.

Thus, we obtain (1.26) from (1.3) and (3.18).

We now prove Theorem 1.15 thanks to an explicit computation of the solutions of (3.1). For

that purpose, we recall that the spectral problem (1.9) is given by:−∆v = λ̃v, in (−L, 0),

2εv′ + v = 0, on {−L, 0}.
(3.19)

It can be proved easily that the only negative eigenvalue is λ̃0 = − 1
4ε2

and that the associated

eigenfunction is:

v0 =
e−(2ε)−1x∥∥e−(2ε)−1x

∥∥
L2(Ω)

.

21



In addition, it can be proved that the other eigenvalues are, for m ∈ N∗:

λ̃m =

(
2πm

L

)2

,

and their associated eigenfunctions are:

vm =
2ε
√
λ̃m cos

(√
λ̃mx

)
+ sin

(√
λ̃mx

)
∥∥∥2ε
√
λ̃m cos

(√
λ̃mx

)
+ sin

(√
λ̃mx

)∥∥∥
L2(Ω)

.

Consequently, Remark 1.2 implies that the spectral decomposition of the adjoint system is given

by λ0 = 0 and λm = ελ̃m + (4ε)−1 and the associated eigenfunctions are those proportional to

u0 = e−(2ε)−1x

‖e−(2ε)−1x‖
L2(Ω)

and to um = vme
−(2ε)−1x. In addition, we have the following result:

Lemma 3.4. Let L > 0 and Ω := (−L, 0). Then, for all ϕT ∈ L2(Ω) the solution of (3.1)

satisfies for all t ∈ [0, T ]:

ϕ(t, x) =

∫
Ω ϕ

T (z)dz

‖e−(2ε)−1z‖2
L2(Ω)

e−ε
−1x

+
∑
m∈N∗

∫
Ω
ϕT (z)e(2ε)−1zvm(z)dzvm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]
. (3.20)

In particular, the series in the right-hand side of (3.20) is absolutely convergent in L2(Ω) for all

t < T . Moreover, for all T0 > 0 and δ > 0 there is C > 0 such that for all ϕT ∈ L2(Ω), T ≥ T0

and t ∈ [0, T − T0] we have the estimate:∥∥∥∥∥ ∑
m∈N∗

∫
Ω
ϕT (z)e(2ε)−1zvm(z)dzvm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]∥∥∥∥∥
L2(Ω,dx)

≤ C‖ϕT ‖L2(Ω) exp

(
2L+ δ − (T − t)

4ε

)
(3.21)

The proof of Lemma 3.4 is analogous to the proof of Lemma 2.4. In addition, we remark

that, for all m ∈ N and t ∈ (t, T ]:(∫
Ω
ϕT (z)e(2ε)−1zvm(z)dz

)
vm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]
=

(∫
Ω
ϕT (z)e(2ε)−1zvm(z)dz

)
exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]
vm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(t− t)

]
=

(∫
Ω

{∑
r∈N

(∫
Ω
ϕT (z)e(2ε)−1zvr(z)dz

)
vr(z̃)e

−(2ε)−1z̃ exp

[
−
(
ελ̃r +

1

4ε

)
(T − t)

]}

e(2ε)−1z̃vm(z̃)dz̃

)
vm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(t− t)

]
=

(∫
Ω
ϕ(t, z)e(2ε)−1zvm(z)dz

)
vm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(t− t)

]
. (3.22)
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We have used in the second equality of (3.22) that the eigenfunctions of (3.19) form an or-

thonormal set of functions and Fubini’s Theorem (it can be proved as in Lemma 2.4 that the

series is convergent in L2(Ω)). A consequence of (3.22) is the following:

Corollary 3.5. Let L > 0 and Ω := (−L, 0). Then, for all T0 > 0 and δ > 0 there is C > 0

such that for all ϕT ∈ L2(Ω), T ≥ T0, t ∈ [T0, T ] and t ∈ [0, t− T0] we have the estimate:∥∥∥∥∥ ∑
m∈N∗

∫
Ω
ϕT (z)e(2ε)−1zvm(z)dzvm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]∥∥∥∥∥
L2(Ω,dx)

≤ C‖ϕ(t, ·)‖L2(Ω,dx) exp

(
2L+ δ − (t− t)

4ε

)
(3.23)

In particular, we obtain that for all T0 > 0 and δ > 0 there is C > 0 such that for all ϕT ∈ L2(Ω),

T ≥ T0 and t ∈ [T0, T ):∥∥∥∥∥ ∑
m∈N∗

∫
Ω
ϕT (z)e(2ε)−1zvm(z)dzvm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]∥∥∥∥∥
L2(Ω,dx)

≤ C

T − t

∫ T

t
‖ϕ(s, ·)‖L2(Ω)ds exp

(
2L+ δ − (t− t)

4ε

)
. (3.24)

Proof of Theorem 1.15. In order to proof Theorem 1.15 we split the solutions of system (3.1)

into two parts with the help of Lemma 3.4. Indeed, we define:

ϕ1(x) :=

∫
Ω ϕ

T (z)dze−εx

‖e−(2ε)−1z‖2
L2(Ω)

and:

ϕ2(t, x) :=
∑
m∈N∗

∫
Ω
ϕT (z)e(2ε)−1zvm(z)dzvm(x)e−(2ε)−1x exp

[
−
(
ελ̃m +

1

4ε

)
(T − t)

]
.

We remark that:

ϕ(t, x) = ϕ1(x) + ϕ2(t, x), in Q.

In the following we estimate ϕ1 and ϕ2(0, ·) with respect to ‖ϕ‖L2(Q):

• If ϕ1 = 0 the estimate is trivial. Consequently, we suppose from now on that ϕ1 6= 0. We

denote:

N :=

{
t : ϕ2(t, ·) ∈ BL2(Ω)

(
−ϕ1,

‖ϕ1‖L2(Ω)

2

)}
,

for

BX(w, r) := {v ∈ X : ‖v − w‖X < r}.
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We have that:

|N | < 3L, (3.25)

as otherwise there are some t1 and t2 such that t2 − t1 ≥ 3L and:

ϕ2(t1, ·), ϕ2(t2, ·) ∈ BL2(Ω)

(
−ϕ1,

‖ϕ1‖L2(Ω)

2

)
,

but by (3.21) this is impossible. Indeed, the system is autonomous and if t2 ∈ N we have

the estimate:

‖ϕ(t2, ·)‖L2(Ω) ≤
‖ϕ1‖L2(Ω)

2
,

so t1 6∈ N for ε small enough. In addition, we remark that in [0, T ] \ N we have that:

‖ϕ(t, ·)‖L2(Ω) ≥
‖ϕ1‖L2(Ω)

2
. (3.26)

Thus, we obtain from (3.25) and (3.26) that for all ϕT ∈ L2(Ω) and T > 4L:

‖ϕ1‖L2(Ω)

‖ϕ‖L2(Q)
≤

‖ϕ1‖L2(Ω)

‖ϕ‖L2(((0,T )\N )×Ω)
≤ 2√

T − 3L
≤ 2√

T/4
=

4√
T
. (3.27)

• As a direct consequence of (3.24) for t = T − L, we have that, independently of ϕT :

‖ϕ2(0, ·)‖L2(Ω)

‖ϕ‖L2(Q)
≤
Ce−cε

−1‖ϕ‖L2((T−L,T )×Ω)

‖ϕ‖L2(Q)
≤ Ce−cε−1

. (3.28)

Thus, combining (3.27) and (3.28) we obtain (1.27) for ε small enough.

4 Further comments and open problems

We remark the following:

• We obtain similar results for the boundary controllability.

• Under the hypothesis (1.12) if T is small the cost of the null controllability of (1.1) goes

to 0, which can be proved for instance as in [18] and [1].

We now present some problems that remain open:

• Get precise estimates of the cost of the control problem (1.1) when a also depends on the

time variable.
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• Determine if Theorem 1.15 is still true for all Ω ⊂ Rd bounded domains.

• Under the hypothesis (1.15) to know when there is some y0 such that the norm of the

minimal norm control which takes y0 to 0 increases exponentially and when for all y0 and

for ε small enough the cost is bounded by a constant; (or, even better, when for all y0 the

associated control does not decay with ε and it is just a problem of uniformity).

• Study the cost of the controllability in the context of Section 3.3 when (−L,−L+ h) ⊂ ω.
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