
Solving a general mixed-integer quadratic problem through convex
reformulation : a computational study

Billionnet Alain, Elloumi Sourour, Lambert Amélie

Abstract. Let (QP ) be a mixed integer quadratic program that consists of minimizing a qua-
dratic function subject to linear constraints. In this paper, we present a convex reformulation of
(QP ), i.e. we reformulate (QP ) into an equivalent program, with a convex objective function.
Such a reformulation can be solved by a standard solver that uses a branch and bound algorithm.
This reformulation, that we call MIQCR (Mixed Integer Quadratic Convex Reformulation), is
the best one within a convex reformulation scheme, from the continuous relaxation point of
view. It is based on the solution of an SDP relaxation of (QP ). Computational experiences were
carried out with instances of (QP ) with one equality constraint. The results show that most of
the considered instances, with up to 60 variables, can be solved within 1 hour of CPU time by
a standard solver.

1. Introduction

Consider the following linearly-constrained mixed-integer quadratic program:

(QP )



Min f(x)

s.t.

N∑
i=1

arixi = br r = {1, . . . , m} (1.1)

N∑
i=1

dsixi ≤ es s = {1, . . . , p} (1.2)

0 ≤ xi ≤ ui i ∈ I (1.3)
0 ≤ xi ≤ ui i ∈ J (1.4)
xi ∈ N i ∈ I (1.5)
xi ∈ R i ∈ J (1.6)

where I = {1, . . . , n} is the sub-set of integer variable indices, J = {n + 1, . . . , N} is the sub-set
of real variable indices,

f(x) = xT Qx + cT x =
∑

(i,j)∈I2

qijxixj +
∑

(i,j)∈I×J

2qijxixj +
∑

(i,j)∈J2

qijxixj +
∑

i∈I∪J

cixi

and Q ∈ SN (space of symmetric matrices of order N), c ∈ RN , A ∈ Mm,N (space of m × N
matrices), b ∈ Rm, D ∈ Mp,N , e ∈ Rp, u ∈ NN .

We suppose that the sub-function of the products of real variables of h(x):
∑

(i,j)∈J2

qijxixj is

convex.
(QP ) belongs to the class of NP-hard problems [3]. Standard solvers [6, 2] can efficiently solve

Mixed Integer Quadratic Programs (MIQP), but only in the specific case where f(x) is convex.
Thus, to solve (QP ) by use of a standard solver, we choose to reformulate it into another program
with a convex objective function. By convex reformulation, we mean to design a program, that is
equivalent to (QP ), and that has a convex objective function. In concrete terms, that will consist
of perturbing the Q matrix of f(x) in order to obtain a positive semidefinite matrix.

In this work, we first define a convex reformulation scheme, and then we compute, within this
scheme, the optimal convex reformulation in terms of continuous relaxation bound. To do it, we
introduce new variables yij , and new linear constraints to enforce the equality yij = xixj . These
new variables will allow the perturbation of each term of matrix Q. In a sense, our approach mixes
ideas of linearization and convexification.

In the rest of the paper, we present our approach, that we denote by MIQCR (Mixed Integer
Quadratic Convex Reformulation). In Section 2, we propose a reformulation scheme of (QP )
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into an equivalent mixed-integer quadratic program (QPα,β) depending on a scalar parameter α,
and on a matrix parameter β. In Section 3, we show how to compute α∗ and β∗, the values of α
and β that maximize the optimal value of the continuous relaxation of (QPα,β). We show that α∗

and β∗ can be deduced from the solution of a semidefinite relaxation of (QP ). Finally, in Section
4, we evaluate MIQCR from the computational point of view. Our experiments are carried out on
instances of (QP ) with one equality constraint. Section 5 is a conclusion.

2. A convex reformulation scheme for mixed-integer quadratic programs

In this section, we rewrite (QP ) into an equivalent mixed-integer quadratic program (QPα,β) with
a convex objective function. The idea is to add to the initial objective function f(x) the following
functions that vanish on the feasible domain of (QP ) under the assumption that yij = xixj ,
∀(i, j) ∈ P , where P = {(i, j) ∈ (I × I) ∪ (I × J) ∪ (J × I)}

• α

m∑
r=1

(
∑

i∈I∪J

arixi − br)
2 where α ∈ R.

•
∑

(i,j)∈P

βij(xixj − yij) , where βij ∈ R and βij = βji ∀(i, j) ∈ P , or equivalently, we consider

β ∈ SN with βij = 0 ∀(i, j) ∈ J2.
We obtain the following program (QPα,β):

(QPα,β)

{
Min fα,β(x, y)
s.t. (1.1)(1.2)

x, y, z, t ∈ Pxyzt

where

fα,β(x, y) = f(x) +
∑

(i,j)∈P

βij(xixj − yij) + α

m∑
r=1

(
∑

i∈I∪J

arixi − br)
2

and Pxyzt is the following set:

Pxyzt



x, y, z, t :

(1.3)(1.4)

xi =

blog(ui)c∑
k=0

2ktik i ∈ I (2.1)

zijk ≤ ujtik (i, k) ∈ E, j ∈ I ∪ J (2.2)
zijk ≤ xj (i, k) ∈ E, j ∈ I ∪ J (2.3)
zijk ≥ xj − uj(1− tik) (i, k) ∈ E, j ∈ I ∪ J (2.4)
zijk ≥ 0 (i, k) ∈ E, j ∈ I ∪ J (2.5)

yij =

blog(ui)c∑
k=0

2kzijk (i, j) ∈ I × I ∪ J (2.6)

tik ∈ {0, 1} (i, k) ∈ E (2.7)
yij = yji (i, j) ∈ P (2.8)
yij ≥ xiuj + xjui − uiuj (i, j) ∈ P (2.9)
yii ≥ xi i ∈ I (2.10)
yij ≤ uixj (i, j) ∈ I × J (2.11)

with E = {(i, k) : i = 1, . . . , n, k = 0, . . . blog(ui)c}.
It is proven in [4] that (QPα,β) is equivalent to (QP ).

3. Computing the best convex reformulation : the MIQCR method

In this section, we show how to compute, by semidefinite programming, values of α∗ and β∗ that
make fα∗,β∗(x, y) convex, and that maximize the continuous relaxation value of (QPα∗,β∗), that is
to say we have to solve the following problem (CP ):

(CP ) : max
α∈R,β∈SN

βij=0, (i,j)∈J2

Qα,β�0

{v(QP α,β)}
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where (QPα,β) is the continuous relaxation of (QPα,β), v(QPα,β) is the optimal solution value of
(QPα,β) and Qα,β = Q + αAT A + β. Recall that βij = 0, ∀(i, j) ∈ J2.

Theorem 3.1. [4] Let (SDP ) be the following semidefinite program:

(SDP )



Min f(X, x) =

N∑
i=1

N∑
j=1

qijXij +

N∑
i=1

cixi

s.t. (1.1)(1.2)(1.4)
m∑

r=1

(

N∑
i=1

(

N∑
j=1

ariarjXij − 2aribrxi)) = −
m∑

r=1

b2
r (3.1)

Xij ≤ ujxi (i, j) ∈ P (3.2)
Xij ≤ uixj (i, j) ∈ P (3.3)
−Xij ≤ −ujxi − uixj + uiuj (i, j) ∈ P (3.4)
−Xij ≤ 0 (i, j) ∈ P (3.5)
−Xii ≤ xi i ∈ I (3.6)(

1 x
xT X

)
� 0 (3.7)

x ∈ RN X ∈ SN (3.8)

An optimal solution (α∗, β∗) of (CP ) can be deduced from the optimal values of the dual variables
of (SDP ). The optimal coefficient α∗ is the optimal value of the dual variable associated with
constraint (3.1). The optimal coefficients β∗

ij are computed as β∗
ij = β1∗

ij + β2∗
ij − β3∗

ij − β4∗
ij , for

(i, j) ∈ P, i 6= j, and β∗
ii = β1∗

ii + β2∗
ii − β3∗

ii − β4∗
ii − β5∗

ii , i ∈ I where β1∗
ij , β2∗

ij , β3∗
ij , β4∗

ij , and β5∗
ii ,

are the optimal values of the dual variables associated with constraints (3.2), (3.3), (3.4), (3.5),
and (3.6), respectively.

From Theorem 3.1, we design an exact solution algorithm for non-convex mixed-integer qua-
dratic programs (QP ) based on the MIQCR approach:

Solution algorithm to (QP ) based on MIQCR
1 Solve the semidefinite program (SDP )
2 Deduce α∗ and β∗ as in Theorem 3.1.
3 Solve the program (QPα∗,β∗), by a MIQP solver.

(Its continuous relaxation (QPα∗,β∗) is a convex program with an optimal
value equal to the optimal value of (SDP ))

To illustrate our approach, we consider the following example.

Example 3.1. Let (QPe) be an instance of (QP ) with 2 integer and 2 continuous variables:

(QPe)



Min f(x) = xT

 −7 3 −15 −4
3 −14 −7 −13

−15 −7 8 7
−4 −13 7 12

x +

 15
10
−7
−4


T

x

s.t 5x1 + x2 + 8x3 + 4x4 = 95
0 ≤ xi ≤ 10 i ∈ {1, . . . , 4}
x1, x2 ∈ N
x3, x4 ∈ R

Observe that the sub-matrix
(

8 7
7 12

)
is positive semidefinite.

The optimal solution of (QPe) is x = (8, 10, 2.03, 7.19) and its value is −3434.27.
We perturb the Q matrix as follows: −7 + β11 + 25α 3 + β12 + 5α −15 + β13 + 40α −4 + β14 + 20α

3 + β12 + 5α −14 + β22 + α −7 + β23 + 8α −13 + β24 + 4α
−15 + β13 + 40α −7 + β23 + 8α 8 + 64α 7 + 32α
−4 + β14 + 20α −13 + β24 + 4α 7 + 32α 12 + 16α


where the optimal value of the α parameter is 291.49, and the optimal values of the β parameter
are: β11 = β13 = β14 = 0, β12 = −8.73, β22 = 18.22, β23 = −0.005, and β24 = 4.16.
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For the reformulated problem, the optimal value of the continuous relaxation equals −3434.45.
The integrality gap is hence of 0.005%.

4. Computational results

Our experiments concern instances of (QP ) that consists of minimizing a quadratic function subject
to a linear equality constraint.

(MQP )



Min xT Qx + cT x

s.t.

N∑
i=1

aixi = b

0 ≤ xi ≤ ui i ∈ I ∪ J
xi ∈ N i ∈ I
xi ∈ R i ∈ J

For this problem, we generate two classes of problems (MQP1) and (MQP2). For these two
classes we randomly generate the coefficient u, Q, c, a and b in the same way, and we vary
the number of integer variables. More precisely the coefficients of Q ∀ (i, j) ∈ P are integers
uniformly distributed in the interval [−100, 100] ( for any i < j, a number ν is generated in
[−100, 100], and then qij = qji = ν). To generate the coefficients of Q ∀ (i, j) ∈ J2, we generate
a matrix M ∈ MN−n of integers uniformly distributed in the interval [−10, 10], and we compute
M ′ = MT M then qij = m′

ij , ∀(i, j) ∈ J2. The c coefficients are integers uniformly distributed in
the interval [−100, 100]. The ai coefficients are integers uniformly distributed in the interval [1, 50],

b = 20 ∗
n∑

i=1

ai and ui = 50, i ∈ I. Note that in these instances the solution xi = 20, for all i is

feasible.
For the class (MQP1), we take 1/3 of integer variables, and 2/3 of continuous ones. For the

class (MQP2), we take 2/3 of integer variables, and 1/3 of continuous ones.
For each problem and for each N = 40, 50, or 60, we generate 5 instances obtaining a total of

30 instances.
Our experiments are carried out on a PC with an Intel core 2 duo processor 2.8 GHz and 2048

MB of RAM using a Linux operating system. We use the modeling language ampl and the solver
Cplex version 11 [2] for solving mixed integer quadratic convex programs, and the solver CSDP [1]
for solving semidefinite programs.

Legends of the tables:

• Name: Problem i r nb, where i is the number of integer variables in (QP ), r is the number
of real variables in (QP ) and nb is the instance number.

• Optimum: best solution found within 1 hour of CPU time.

• Initial gap:
∣∣∣∣opt− l

opt

∣∣∣∣ ∗ 100 where l is the optimal value of the continuous relaxation at the

root node.
• CSDP time: CPU time (in seconds) required by the SDP solver to find the optimal solution

of the semidefinite relaxation of the initial problem.
• Cplex time: CPU time (in seconds) required by the branch-and-bound algorithm to solve

the reformulated program. The time limit is fixed to 1 hour.
• nodes: number of nodes visited by the branch-and-bound algorithm.

Tables 1 and 2 present the results for the classes (MQP1) and (MQP2), respectively.
For the class (MQP1), that has less integer variables than real ones, every instance of size 40, 50

or 60 can be solved by the MIQP solver in less than 142 seconds. For these instances the average
initial gap over the 15 instances is of 0.13% and hence the number of nodes visited during the
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MIQCR
Name Optimum initial gap CSDP time(s) Cplex time (s) nodes

MQP1 13 27 1 -1441722.34 0 1240 5 0
MQP1 13 27 2 -4001173.84 0 1252 3 0
MQP1 13 27 3 -4072930.12 0 1587 5 0
MQP1 13 27 4 -4303086.42 0 1294 4 0
MQP1 13 27 5 -5792796.84 0 1246 4 6

average 0 1323.8 4.2 1.2
MQP1 16 34 1 -6770822.01 0 6088 10 0
MQP1 16 34 2 -4281691.17 1.07 4746 57 58
MQP1 16 34 3 -12003888.62 0 4747 17 7
MQP1 16 34 4 -14917101.36 0 4726 11 0
MQP1 16 34 5 -8450308.13 0.15 4744 42 51

average 0.24 5010.2 27.4 23.2
MQP1 20 40 1 -11331739.74 0 14756 55 9
MQP1 20 40 2 -9541493.46 0.20 17959 142 52
MQP1 20 40 3 -11243727.11 0.37 14530 46 14
MQP1 20 40 4 -17871860.96 0 14682 38 0
MQP1 20 40 5 -11194683.38 0.15 15835 61 16

average 0.14 15552.4 68.4 16.2
Table 1. Solution of MQP1

MIQCR
Name Optimum Initial gap CSDP time(s) Cplex time (s) nodes

MQP2 27 13 1 -12764814.30 1.53 4698 331 632
MQP2 27 13 2 -13063090.09 0.73 4703 91 99
MQP2 27 13 3 -12210409.85 2.72 4720 234 390
MQP2 27 13 4 -15060832.30 0.80 4691 131 268
MQP2 27 13 5 -11550064.15 0.83 4714 91 91

average 1.32 4705.2 175.6 296
MQP2 34 16 1 -15746064.71 0.80 19164 1626 3088
MQP2 34 16 2 -21504640.72 0.83 19100 104 0
MQP2 34 16 3 -16337803.32 2.36 19245 1541 1349
MQP2 34 16 4 -17942418.38 2.05 19174 1637 3973
MQP2 34 16 5 -21394688.60 0.49 20327 646 210

average 1.31 19402 1180.8 1724
MQP2 40 20 1 -34437235.29 0.08 54539 838 38
MQP2 40 20 2 -26342341.28 2.29 54701 - 829
MQP2 40 20 3 -25124557.73 6.61 54656 - 635
MQP2 40 20 4 -27395752.85 11.02 54826 - 873
MQP2 40 20 5 -22573097.16 8.69 54817 - 1038

average 5.73 54707.8 838 (1) 682.6
Table 2. Solution of MQP2

Branch & Bound algorithm after reformulation is rather small, with an average of 13.5 nodes.
Experiments on this class of problems give good first results.

To experiment the impact of the ratio of integer variables on the MIQCR approach, we generate
a second class of instances, (MQP2), in the same way that for (MQP1), but we invert the ratio of
integer variables versus the real one. The results reveal a similar trend. However, for this class of
problems, MIQCR leads to a reformulated problem with bounds obtained by continuous relaxation a
bit worst in comparison to the class (MQP1). Indeed, the average initial gap increases from 0.13%
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for (MQP1) to 2.79% for (MQP2). Consequently, the number of nodes visited in the Branch &
Bound algorithm is then increased, with an average of 900.8 nodes.

Finally, let us mention the preprocessing time associated with the optimal solution of the semi-
definite programs. For the class (MQP1) it takes 1323.8 seconds, 5010.2 seconds and 15552.4
seconds on average, for instances of size 40, 50, and 60, respectively. For the class (MQP2), this
time is larger, with an average of 4705.2 seconds, ac seconds and ac seconds, for instances of size
40, 50, and 60, respectively. Observe that, as every feasible dual of (SDP ) provides α, and β that
make convex the objective function of the reformulated problem [4], and because the SDP solvers
often provide dual feasible solutions as they progress, the solution of semidefinite programs can
be stopped after a fixed time. This possibility is interesting for large instances since SDP solvers
generally find a good solution very quickly.

5. Conclusion

In this paper, we present a computational study of MIQCR, a convex reformulation of general
mixed-integer programs. The approach has two phases: the first phase consists of building a convex
reformulation of (QP ), and in the second phase the reformulated problem is submitted to a MIQP
solver. Computational experiments on two types of problems show that after the reformulation
by the MIQCR approach, most of the instances proposed can be solved within 1 hour of CPU
time. However, the time to compute the parameters of the reformulation is still weighty, and an
important future direction for research consists of trying to decrease the SDP solution time.

Bibliography

[1] Borchers B. A c library for semidefinite programming. Optimization Methods and Software, 11(1):613–623, 1999.
[2] ILOG. Ilog cplex 11.0 reference manual. ILOG CPLEX Division, Gentilly, 2008.
[3] Garey M.R. Johnson, D.S. Computers and intractability: A guide to the theory of np-completness. W.H. Free-

man, San Francisco, 1979.
[4] Billionnet A. Elloumi S. Lambert, A. Solution of general mixed-integer quadratic programs through convex

reformulation. Mathematical Programming, accepted for publication.
[5] Billionnet A. Elloumi S. Lambert, A. Linear reformulations of integer quadratic programs. MCO 2008, september

8-10, pages 43–51, 2008.
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