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Introduction

Consider the following linearly-constrained mixed-integer quadratic program: 

(QP )                              M in f (x) s.t.
0 ≤ xi ≤ ui i ∈ I (1.3) 0 ≤ xi ≤ ui i ∈ J (1.4) xi ∈ N i ∈ I (1.5) xi ∈ R i ∈ J (1.6) (1.2) 
where I = {1, . . . , n} is the sub-set of integer variable indices, J = {n + 1, . . . , N } is the sub-set of real variable indices, We suppose that the sub-function of the products of real variables of h(x):

f (x) = x T Qx + c T x = (i,
(i,j)∈J 2 qijxixj is convex.

(QP ) belongs to the class of N P-hard problems [START_REF] Garey | Computers and intractability: A guide to the theory of np-completness[END_REF]. Standard solvers [START_REF] Bonami | An algorithmic framework for convex mixed integer nonlinear programming[END_REF]2] can efficiently solve Mixed Integer Quadratic Programs (MIQP), but only in the specific case where f (x) is convex. Thus, to solve (QP ) by use of a standard solver, we choose to reformulate it into another program with a convex objective function. By convex reformulation, we mean to design a program, that is equivalent to (QP ), and that has a convex objective function. In concrete terms, that will consist of perturbing the Q matrix of f (x) in order to obtain a positive semidefinite matrix.

In this work, we first define a convex reformulation scheme, and then we compute, within this scheme, the optimal convex reformulation in terms of continuous relaxation bound. To do it, we introduce new variables y ij , and new linear constraints to enforce the equality y ij = x i x j . These new variables will allow the perturbation of each term of matrix Q. In a sense, our approach mixes ideas of linearization and convexification.

In the rest of the paper, we present our approach, that we denote by MIQCR (Mixed Integer Quadratic Convex Reformulation). In Section 2, we propose a reformulation scheme of (QP ) into an equivalent mixed-integer quadratic program (QP α,β ) depending on a scalar parameter α, and on a matrix parameter β. In Section 3, we show how to compute α * and β * , the values of α and β that maximize the optimal value of the continuous relaxation of (QP α,β ). We show that α * and β * can be deduced from the solution of a semidefinite relaxation of (QP ). Finally, in Section 4, we evaluate MIQCR from the computational point of view. Our experiments are carried out on instances of (QP ) with one equality constraint. Section 5 is a conclusion.

A convex reformulation scheme for mixed-integer quadratic programs

In this section, we rewrite (QP ) into an equivalent mixed-integer quadratic program (QP α,β ) with a convex objective function. The idea is to add to the initial objective function f (x) the following functions that vanish on the feasible domain of (QP ) under the assumption that y ij = x i x j , ∀(i, j) ∈ P , where 2 where α ∈ R.

P = {(i, j) ∈ (I × I) ∪ (I × J) ∪ (J × I)} • α m r=1 ( i∈I∪J arixi -br)
• (i,j)∈P βij(xixj -yij)
, where β ij ∈ R and β ij = β ji ∀(i, j) ∈ P , or equivalently, we consider

β ∈ S N with β ij = 0 ∀(i, j) ∈ J 2 .
We obtain the following program (QP α,β ):

(QP α,β ) M in f α,β (x, y) s.t. (1.1)(1.2) x, y, z, t ∈ Pxyzt where f α,β (x, y) = f (x) + (i,j)∈P βij(xixj -yij) + α m r=1 ( i∈I∪J arixi -br) 2
and P xyzt is the following set:

Pxyzt                                               
x, y, z, t :

(1.3)(1.4) xi = log(u i ) k=0 2 k t ik i ∈ I (2.1)
z ijk ≤ ujt ik (i, k) ∈ E, j ∈ I ∪ J (2.2) z ijk ≤ xj (i, k) ∈ E, j ∈ I ∪ J (2.3) z ijk ≥ xj -uj(1 -t ik ) (i, k) ∈ E, j ∈ I ∪ J (2.4) z ijk ≥ 0 (i, k) ∈ E, j ∈ I ∪ J (2.5) yij = log(u i ) k=0 2 k z ijk (i, j) ∈ I × I ∪ J (2.6) t ik ∈ {0, 1} (i, k) ∈ E (2.7) yij = yji (i, j) ∈ P (2.8) yij ≥ xiuj + xjui -uiuj (i, j) ∈ P (2.9) yii ≥ xi i ∈ I (2.10) yij ≤ uixj (i, j) ∈ I × J (2.11) with E = {(i, k) : i = 1, . . . , n, k = 0, . . . log(ui) }.
It is proven in [START_REF] Billionnet | Solution of general mixed-integer quadratic programs through convex reformulation[END_REF] that (QP α,β ) is equivalent to (QP ).

Computing the best convex reformulation : the MIQCR method

In this section, we show how to compute, by semidefinite programming, values of α * and β * that make f α * ,β * (x, y) convex, and that maximize the continuous relaxation value of (QP α * ,β * ), that is to say we have to solve the following problem (CP ):

(CP ) : max α∈R,β∈S N β ij =0, (i,j)∈J 2 Q α,β 0 {v(QP α,β )}
where (QP α,β ) is the continuous relaxation of (QP α,β ), v(QP α,β ) is the optimal solution value of (QP α,β ) and

Q α,β = Q + αA T A + β. Recall that β ij = 0, ∀(i, j) ∈ J 2 .
Theorem 3.1. [START_REF] Billionnet | Solution of general mixed-integer quadratic programs through convex reformulation[END_REF] Let (SDP ) be the following semidefinite program:

(SDP )                                              M in f (X, x) = N i=1 N j=1 qijXij + N i=1 cixi s.t. (1.1)(1.2)(1.4) m r=1 ( N i=1 ( N j=1 ariarjXij -2aribrxi)) = - m r=1 b 2 r (3.1) Xij ≤ ujxi (i, j) ∈ P (3.2) Xij ≤ uixj (i, j) ∈ P (3.3) -Xij ≤ -ujxi -uixj + uiuj (i, j) ∈ P (3.4) -Xij ≤ 0 (i, j) ∈ P (3.5) -Xii ≤ xi i ∈ I (3.6) 1 x x T X 0 (3.7) x ∈ R N X ∈ S N (3.8)
An optimal solution (α * , β * ) of (CP ) can be deduced from the optimal values of the dual variables of (SDP ). The optimal coefficient α * is the optimal value of the dual variable associated with constraint (3.1). The optimal coefficients β * ij are computed as (Its continuous relaxation (QP α * ,β * ) is a convex program with an optimal value equal to the optimal value of (SDP ))

β * ij = β 1 * ij + β 2 * ij -β 3 * ij -β 4 * ij , for (i, j) ∈ P, i = j, and β * ii = β 1 * ii + β 2 * ii -β 3 * ii -β 4 * ii -β 5 * ii , i ∈ I where β 1 * ij , β 2 * ij , β 3 * ij , β 4 * ij ,
To illustrate our approach, we consider the following example.

Example 3.1. Let (QP e ) be an instance of (QP ) with 2 integer and 2 continuous variables:

(QPe)                      M in f (x) = x T    -7 3 -15 -4 3 -14 -7 -13 -15 -7 8 7 -4 -13 7 12    x +    15 10 -7 -4    T x s.t 5x1 + x2 + 8x3 + 4x4 = 95 0 ≤ xi ≤ 10 i ∈ {1, . . . , 4} x1, x2 ∈ N x3, x4 ∈ R
Observe that the sub-matrix 8 7 7 12 is positive semidefinite.

The optimal solution of (QP e ) is x = (8, 10, 2.03, 7.19) and its value is -3434.27. We perturb the Q matrix as follows:

   -7 + β11 + 25α 3 + β12 + 5α -15 + β13 + 40α -4 + β14 + 20α 3 + β12 + 5α -14 + β22 + α -7 + β23 + 8α -13 + β24 + 4α -15 + β13 + 40α -7 + β23 + 8α 8 + 64α 7 + 32α -4 + β14 + 20α -13 + β24 + 4α 7 + 32α 12 + 16α   
where the optimal value of the α parameter is 291.49, and the optimal values of the β parameter are: β 11 = β 13 = β 14 = 0, β 12 = -8.73, β 22 = 18.22, β 23 = -0.005, and β 24 = 4.16.

For the reformulated problem, the optimal value of the continuous relaxation equals -3434.45. The integrality gap is hence of 0.005%.

Computational results

Our experiments concern instances of (QP ) that consists of minimizing a quadratic function subject to a linear equality constraint.

(M QP )                M in x T Qx + c T x s.t. N i=1 aixi = b 0 ≤ xi ≤ ui i ∈ I ∪ J xi ∈ N i ∈ I xi ∈ R i ∈ J
For this problem, we generate two classes of problems (M QP 1 ) and (M QP 2 ). For these two classes we randomly generate the coefficient u, Q, c, a and b in the same way, and we vary the number of integer variables. More precisely the coefficients of Q ∀ (i, j) ∈ P are integers uniformly distributed in the interval [-100, 100] ( for any i < j, a number ν is generated in [-100, 100], and then q ij = q ji = ν). To generate the coefficients of Q ∀ (i, j) ∈ J 2 , we generate a matrix M ∈ M N -n of integers uniformly distributed in the interval [-10, 10], and we compute ai and u i = 50, i ∈ I. Note that in these instances the solution x i = 20, for all i is feasible.

M = M T M then q ij = m ij , ∀(i, j) ∈ J 2
For the class (M QP 1 ), we take 1/3 of integer variables, and 2/3 of continuous ones. For the class (M QP 2 ), we take 2/3 of integer variables, and 1/3 of continuous ones.

For each problem and for each N = 40, 50, or 60, we generate 5 instances obtaining a total of 30 instances.

Our experiments are carried out on a PC with an Intel core 2 duo processor 2.8 GHz and 2048 MB of RAM using a Linux operating system. We use the modeling language ampl and the solver Cplex version 11 [2] for solving mixed integer quadratic convex programs, and the solver CSDP [START_REF] Borchers | A c library for semidefinite programming[END_REF] for solving semidefinite programs.

Legends of the tables:

• Name: Problem i r nb, where i is the number of integer variables in (QP ), r is the number of real variables in (QP ) and nb is the instance number. • Optimum: best solution found within 1 hour of CPU time.

• Initial gap:

opt -l opt * 100 where l is the optimal value of the continuous relaxation at the root node. • CSDP time: CPU time (in seconds) required by the SDP solver to find the optimal solution of the semidefinite relaxation of the initial problem. • Cplex time: CPU time (in seconds) required by the branch-and-bound algorithm to solve the reformulated program. The time limit is fixed to 1 hour. • nodes: number of nodes visited by the branch-and-bound algorithm.

Tables 1 and2 present the results for the classes (M QP 1 ) and (M QP 2 ), respectively. For the class (M QP 1 ), that has less integer variables than real ones, every instance of size 40, 50 or 60 can be solved by the MIQP solver in less than 142 seconds. For these instances the average initial gap over the 15 instances is of 0.13% and hence the number of nodes visited during the Branch & Bound algorithm after reformulation is rather small, with an average of 13.5 nodes. Experiments on this class of problems give good first results.

To experiment the impact of the ratio of integer variables on the MIQCR approach, we generate a second class of instances, (M QP 2 ), in the same way that for (M QP 1 ), but we invert the ratio of integer variables versus the real one. The results reveal a similar trend. However, for this class of problems, MIQCR leads to a reformulated problem with bounds obtained by continuous relaxation a bit worst in comparison to the class (M QP 1 ). Indeed, the average initial gap increases from 0.13% for (M QP 1 ) to 2.79% for (M QP 2 ). Consequently, the number of nodes visited in the Branch & Bound algorithm is then increased, with an average of 900.8 nodes.

Finally, let us mention the preprocessing time associated with the optimal solution of the semidefinite programs. For the class (M QP 1 ) it takes 1323.8 seconds, 5010.2 seconds and 15552.4 seconds on average, for instances of size 40, 50, and 60, respectively. For the class (M QP 2 ), this time is larger, with an average of 4705.2 seconds, ac seconds and ac seconds, for instances of size 40, 50, and 60, respectively. Observe that, as every feasible dual of (SDP ) provides α, and β that make convex the objective function of the reformulated problem [START_REF] Billionnet | Solution of general mixed-integer quadratic programs through convex reformulation[END_REF], and because the SDP solvers often provide dual feasible solutions as they progress, the solution of semidefinite programs can be stopped after a fixed time. This possibility is interesting for large instances since SDP solvers generally find a good solution very quickly.

Conclusion

In this paper, we present a computational study of MIQCR, a convex reformulation of general mixed-integer programs. The approach has two phases: the first phase consists of building a convex reformulation of (QP ), and in the second phase the reformulated problem is submitted to a MIQP solver. Computational experiments on two types of problems show that after the reformulation by the MIQCR approach, most of the instances proposed can be solved within 1 hour of CPU time. However, the time to compute the parameters of the reformulation is still weighty, and an important future direction for research consists of trying to decrease the SDP solution time.
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  r = {1, . . . , m} (1.1) N i=1 dsixi ≤ es s = {1, . . . , p}

  S N (space of symmetric matrices of order N ), c ∈ R N , A ∈ M m,N (space of m × N matrices), b ∈ R m , D ∈ M p,N , e ∈ R p , u ∈ N N .

  and β 5 * ii , are the optimal values of the dual variables associated with constraints (3.2), (3.3), (3.4), (3.5), and (3.6), respectively. From Theorem 3.1, we design an exact solution algorithm for non-convex mixed-integer quadratic programs (QP ) based on the MIQCR approach: Solution algorithm to (QP ) based on MIQCR 1 Solve the semidefinite program (SDP ) 2 Deduce α * and β * as in Theorem 3.1. 3 Solve the program (QP α * ,β * ), by a MIQP solver.

  . The c coefficients are integers uniformly distributed in the interval [-100, 100]. The a i coefficients are integers uniformly distributed in the interval [1, 50], b = 20 * n i=1

Table 1 .

 1 Solution of M QP 1

	MIQCR

Table 2 .

 2 Solution of M QP 2