
Discrete event simulation of point processes: Computational complexity
analysis on sparse graphs

CYRILLE MASCART,Université Côte d’Azur

ALEXANDRE MUZY, Laboratoire I3S, Université Côte d’Azur, France and CNRS

PATRICIA REYNAUD-BOURET, Laboratoire Jean-Alexandre Dieudonné, Université Côte d’Azur, France

We derive new discrete event simulation algorithms for marked time point processes. The main idea is to couple a special structure,
namely the associated local independence graph, as defined by Didelez [10], with the activity tracking algorithm [18] for achieving
high performance asynchronous simulations. With respect to classical algorithm, this allows reducing drastically the computational
complexity, especially when the graph is sparse.

CCS Concepts: •Mathematics of computing → Discrete mathematics; Statistical software; Mathematical software performance;

Additional Key Words and Phrases: Point processes, discrete event simulation, Hawkes point processes, computational complexity,

local independent graphs

ACM Reference format:
Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret. 2020. Discrete event simulation of point processes: Computational
complexity analysis on sparse graphs. ACM Trans. Algor. 1, 1, Article 1 (January 2020), 28 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

Contents

Abstract 1
Contents 2
1 Introduction 3
2 Set-up 4
2.1 Mathematical framework 4
2.2 Simulation of univariate processes 6
2.3 Discrete event version of classical multivariate algorithm for point processes 7
3 Specific discrete event data structures and operations 8
4 Local graph algorithm for point processes 11
4.1 Local independence graph 11
4.2 Local-graph algorithm 12
5 Hawkes evaluation 13
5.1 Notations and data structures 13
5.2 Algorithm for the transformation method for piecewise constant intensities 14
5.3 Full scan and local graph algorithms 15
5.4 Complexities of both algorithms 16
6 Numerical experiments 19
6.1 Hardware and software 19
6.2 Statistical analysis 19
6.3 Performance 24
7 Conclusion 26
References 27

Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 3

1 INTRODUCTION

Point processes in time are stochastic objects that model efficiently event occurrences. The variety of applications is
huge: from medical data applications (time of death or illnesses) to social sciences (dates of crimes, weddings, etc), from
seismology (earthquake occurrences) to micro-finance (actions of selling or buying a certain assets), from genomics
(gene positions on the DNA strand) to reliability analysis (breakdowns of complex systems) (see e.g. [1, 7, 10, 19, 25, 27]).

Most of the time, point processes are multivariate, in the sense that either several processes are considered at the
same time, or in the sense that one process regroups together all the events of the different processes and marks them
by their type. A typical example consists in considering either two processes, one counting the wedding events of a
given person and one counting the children birth dates of the same person. One can see this as a marked process which
regroups all the possible dates of birth or weddings independently and on each event one marks it by its type, here
wedding or birth.

In the sequel, we denote the individual process Nj , the set of all events corresponding to type j, for j = 1, ...,M and
the joint process N = N1 ∪ .. ∪ Nm . In this multivariate or marked case, the individual processes are usually globally
dependent, the apparition of one event or point on a given type influencing the apparition of other points for the other
types and the simulation of the whole system cannot be easily parallelized.

This is especially true in neuroscience [24]. Let us detail a bit more this set up which is a benchmark example here.
Neurons are excitable electric cells that are linked together inside a huge network (1011 for humans [28], 108 for rats [15],
106 for coackroaches), each cell receives approximately informations from 103 to 104 presynaptic (upstream) neurons [22].
Depending on its excitation, the neuron might then produce an action potential also called spike, information which is
propagated to postsynaptic (downstream) neurons.

From a stochastic point of view, one might then see the spike trains emitted by a given neuron as an individual point
process which in fact is embedded in a multivariate point process with M , the total number of neurons as the total
number of types. The size of the network requires then very well adapted simulation schemes that may use the relative
sparseness of the network with respect to the global size of the network.

To do so, we use the mathematical notion of local independence graph for marked point processes due to Didelez
[10], which is detailed in Section 4 and which informally corresponds to the real neuronal network. In this sense, in
the sequel we call marks, processes and type the nodes of the graph. The only strong assumption that is used is the
time asynchrony hypothesis, (i.e. points or events of different mark or types, meanings points or events appearing
in different nodes, cannot occur at the exact same time) together with the fact that all processes have a conditional
intensity.

Simulation of point processes have a long history that dates back to Doob in the 40’s [11] for Markov processes.
In the 70’s, Gillespie [13] popularized the method for a particular application: chemical reactions. At the same time,
Lewis and Shedler [16] proposed a thinning algorithm for simulating univariate inhomogeneous Poisson processes (this
can also be viewed as a rejection method). Few years later, Ogata [20] produced a hybrid algorithm able to simulate
multivariate point processes in the general case even if they are not markovian, including both a choice of the next
point by thinning and a choice of the node to activate thanks to Gillespie principle. This method is still up to now the
benchmark for simulating such processes, and is for instance used in recent packages such as ppstat in R (2012). It has
been rediscovered many times in various cases, most of the time as a Generalized Gillespie method (see for instance [2]).

When the number of types or nodes is huge, this method can quickly become inefficient in terms of computational
times. Many people have found shortcuts, especially in Markovian settings. For instance, Peters and de With [23]

Manuscript submitted to ACM

4 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

proposed a new simulation scheme exploiting a network of interaction for particular physical applications. In [3],
the authors reformulated this algorithm in a more mathematical way for a particular case of Piecewise Deterministic
Markov Processes. People have even exploited very particular structures such as Hawkes processes, with exponential
interactions (special case which leads to Markovian intensities) [9], to be able to simulate huge networks, as in the
Python package tick (2017).

In the mean time, the technique of discrete event simulation first appeared in the mid-1950s [26] and was used to
simulate the components (machines) of a system changing state only at discrete “events”. This technique has then
been formalised in the mid-1970s [29]. In its principles, discrete event modelling and simulation seems very close to
point process models (dealing with events, directed graphs, continuous time, etc.). Against all expectations, as far as we
know, there is no direct use of any discrete event simulation algorithm for point processes. Maybe, the sophistication of
these algorithms being of the same order than the mathematical technicality of point processes, prevented any direct
application. Besides, the continuous nature of the conditional intensity associated to a point process with respect to
the discreteness of event-based simulations could make appear the two domains as separated whereas discrete event
theory is a computational specification of mathematical (continuous) systems theory [17] integrating more and more
formally stochastic simulation concepts [30]. We hope to show here that both domains can take advantage from each
other. Especially, whereas discrete event simulation algorithms have been developed considering independently the
components (nodes) of a system, a new algorithm for activity tracking simulation [18] have been proposed to track
activity (events from active nodes to children). The activity tracking algorithm was used here and proved to be the right
tool for both simplifying usual discrete event algorithms (which are difficult to relate to usual point process algorithms)
and efficiently simulate point processes.

Our aim is to derive a new simulation algorithm, which generalises the algorithm of [3] to general multivariate
point processes that are not necessarily Markovian, by exploiting the underlying network between the types, which
is here a local independence graph. In Section 2, the main mathematical background and notations are provided and
the classical multivariate algorithm due to Ogata [20] is explained. simplified version in discrete event terms and
called full scan algorithm is proposed. In Section 3, discrete event data structure and operations specific to point
processes are designed. In Section 4, after recalling what is a local independence graph [10], a new local graph algorithm
is presented. In Section 5, we evaluate the computational complexities of both algorithms on Hawkes processes
with piecewise constant interactions, which model easily neuronal spike trains [24]. We show that in this case, for
sparse graphs, new local graph algorithm clearly outperforms the classical Ogata’s algorithm in its discrete event version.

2 SET-UP

2.1 Mathematical framework

A (univariate) point process N in R+ is a random countable set of points of R+. For any set A, N (A) is the number of
points that lie in A. It is often associated to a corresponding counting process (Nt)t ∈R+ .

As real random variables might be defined by their density with respect to Lebesgue measure, if it exists, a point
process is characterised by its conditional intensity with respect to a given filtration or history (Ft)t ≥0. For the
mathematical details, we refer the reader to [4]. Informally, the filtration or history at time t−, Ft−, contains all the
information that is needed to simulate the next point of N , when one is just before time t . It usually includes as
generators, all the points T ∈ N such that T < t in particular. The (conditional) intensity of the point process N is then

Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 5

informally defined by

λ(t) = lim
dt→0

1
dt
P

(
there is a point of N in [t , t + dt]

���Ft−) ,
for infinitesimal dt . This is a random process which, at time t , may depend in particular on all the past occurrences of
the process itself, that is the T < t .

A multivariate point process can be seen as a collection ofM different point processes Nj . With the time asynchrony
hypothesis, one can also consider equivalently the univariate joint point process N = N1∪ ...∪NM and for each tk ∈ N ,
there exists in fact only one j = jk such that tk ∈ Nj . This is the mark jk associated to the k-th point of N . We are given
the set of intensities of each of the Nj , λj (t) with respect to a common filtration (Ft)t ≥0. Note that Ft− includes as
generators, all the points T ∈ N , the joint process such that T < t as well as their respective marks.

Examples. Let us give just few basic examples

• Homogeneous Poisson processeswith rates (νi)i=1, ...,M . In this case, all λi are constant and not even random
and for all i ,

λi (t) = νi .

We see in this expression, that the intensities do not depend on time, or on the previous occurrences. This is
why one often refer to such dynamics as “memory loss”. Since these processes do not interact, one can of course
simulate each Ni in parallel if need be. In this case, for each of them, it is sufficient to simulate the time elapsed
until the next point, by an exponential variable of parameter νi , independently from anything else. To unify
frameworks, this exponential variable might also be seen as − log(U)/νi , withU a uniform variable on [0, 1].
• Inhomogeneous Poisson processes with time-dependent rates (fi)i=1, ...,M . In this case, the λi ’s are not
necessarily constant and but they are still non random and for all i ,

λi (t) = fi (t).

Once again parallelization is possible, and for each individual process Ni and given point t ik , one finds the next
point t ik+1 by solving ∫ t ik+1

t ik
fj (s) ds = − log(U)

• Linear multivariate Hawkes process with spontaneous parameter (νj)j=1, ...,M and non negative interaction
functions (hj→i)i, j=1, ...,M on R+. This process has intensity

λi (t) = νi +
M∑
j=1

∑
T ∈Nj ,T <t

hj→i (t −T). (1)

This process is used for many excitatory systems, especially the ones modelling the spiking activity of neurons
[24]. It can be interpreted in this sense, informally: to a homogeneous Poisson process of rate νi , which models
the spontaneous activity of the neuron i , one adds extra-points coming from the interactions. Typically a pointT
of mark (neuron) j adds a term hj→i (δ), after delay δ to the intensity of Ni making the apparition of a new point
at time t = T + δ more likely. In this sense there is an excitation of j on i . Here we see a prototypical example
of global dependence between the marks. Each new point for each mark depends on all the points that have
appeared before, with all the possible marks, preventing a brute force parallelization of the simulation. Except

Manuscript submitted to ACM

6 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

when the hj→i ’s are exponentially decreasing [9], this process is clearly not Markovian. It is for this kind of
general process that one needs efficient simulation algorithms.

2.2 Simulation of univariate processes

The time-rescaling theorem (see [5] or [4] for more mathematical insight) states that if a point process N has a
conditional intensity λ(t), and if

∀t ,Λ(t) =
∫ t

0
λ(s) ds,

then N = {Λ(T),T ∈ N } is a Poisson process of rate 1. This is why, even for general point processes, it is always
possible to find, by iteration the next point of N by solving recursively, for all k ∈ N∗,∫ tk+1

tk
λ(s) ds = − log(U) (2)

initializing the method with t0 = 0.
Of course, to be able to mathematically solve this easily, one needs to be able at time tk to compute λ(t) on (tk ,+∞)

if no other point occurs. This in particular happens if the filtration Ft is reduced to the filtration generated by the
points themselves and this is what we will assume here. Of course all algorithms discussed here, can easily be adapted
to richer filtrations, as long as the computation of λ(t) on (tk ,+∞) if no other point occurs is doable.

In this situation, two cases might happen, each of them leading to a different algorithm:

Transformation method: The function λ(t) on (tk ,+∞) (and if no other point occurs) has an easily computable
primitive function with inverse Λ−1(t). Then (2) reduces to

tk+1 = Λ−1(− log(U) + Λ(tk)).

Thinning method: It applies if the previous computation is not possible or easy but one can still compute
λ∗(t) ≥ λ(t) such that λ∗(t) has all the desired properties of the transformation method (typically λ∗(t) is
constant, with constant that might depend on the tℓ for ℓ ≤ k). Then the algorithm does as follows to compute a
possible next point (cf. Algorithm 1). If thinning for Poisson processes is due to [16], it has been generalized to
general processes by Ogata [20]. One can find a complete proof in [8].

Algorithm 1 Thinning algorithm

1: initialize t∗0 ← tk

2: repeat
3: Generate next point t∗ after t∗0 of a point process with intensity λ∗ by the Transformation method.
4: GenerateU ∼ U[0, 1]
5: if U > λ(t∗)/λ∗(t∗) then # Rejection
6: t∗0 ← t∗

7: untilU ≤ λ(t∗)/λ∗(t∗)
8: return tk+1 ← t∗

Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 7

2.3 Discrete event version of classical multivariate algorithm for point processes

To simulate multivariate processes, Ogata’s algorithm [20] is usually used but only applies to thinning procedures
and constant intensities for λ∗. Based on a discrete event scheduling strategy, this algorithm can be generalised and
simplified as proposed in Algorithm 2. This algorithm is called full scan because the intensities of every node of the
graph need to be scanned and updated at each time stamp tk . The main steps of this new algorithm are presented in
Figure 1 for a visual representation of the method). More details about the algorithm steps are provided through the
Hawkes application in Section 5.

Algorithm 2 Full scan multivariate algorithm
1: t0 ← 0
2: while tk < T do
3: Compute intensity sums

∑i
j=1 λj (t) = λi (t), for i ∈ {1, ...,M} on t ∈ (tk ,+∞)

4: Get by simulation tk+1 as the next point of a univariate point process of intensity λM (t)

5: Select the associated node ik+1 such that λi−1(tk+1)
λM (tk+1)

< V ≤ λi (tk+1)
λM (tk+1)

, with V ∼ U[0, 1] and λ0 = 0
6: Update intensities λj on (tk+1,+∞),∀j ∈ {1, ...,M}
7: k ← k + 1
8: return points (t1, ..., tk−1) and associated nodes (i1, ..., ik−1)

Step a/
Step b/
Step c/
Step d/

1 - INTENSITY SUM

2 NEXT POINT 3 NODE SELECTION

By thinning or
transformation method

Selected node

4 UPDATE

Fig. 1. Steps of the full scan algorithm for point processes. The intensities are piecewise constant (cf. Section 5).

Manuscript submitted to ACM

8 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

Original Ogata’s algorithm was using thinning at step 4 of Algorithm 2. However the complexity of a thinning step
is difficult to evaluate because it depends on both the complexity of the upper-bounding function λ∗ and how far this
function is from λ, which influences how much time the thinning algorithm rejects. Therefore for a clear evaluation of
the complexity, we focused on simulations where the transformation method is doable, typically when the intensities
are piecewise constant.

3 SPECIFIC DISCRETE EVENT DATA STRUCTURES AND OPERATIONS

Before introducing our new algorithm, we present a particular structure, which is very important for discrete events
algorithm : the scheduler.

A scheduler Q is an ordered set of events, evi = (ti ,vi), where ti is the event time and vi is the event value. The
events in the scheduler are increasingly ordered in time, i.e., evi , evj ∈ Q , evi < evj ⇐⇒ ti < tj . The length of the
scheduler is noted |Q |. As shown in Figure 2,

Fig. 2. Example of events in scheduler Q . For an event evi in the scheduler, the value is accessed by Q [i].value and the time is
accessed by Q [i].t ime , with i = 0 the first event index.

In both full scan and local graph algorithms schedulers are used. They are implemented using a self-balancing
binary tree. The operation costs of self-balancing binary trees is bounded by the logarithm (log2) of the number of
elements in the set. Any element of the scheduler can be accessed linearly. Depending on the programming language
used it may not be the case. However, this is the case when using C++ programming language, which is the one used here.

Basic scheduler operations consist of:

Insert operation of an event (cf. Figure 3): Q ⊕ (t ,v), which has complexity O(loд2(|Q |)) to find the place of the
event.

time

values

t1 t2 t

v

t1 < t∗ < t2

or t = t∗

v∗

⊕ =
time

values

t1< t∗ <t2 t = t∗

v +v∗

Fig. 3. A graphical example of the insertion of a new event (t∗, v∗) inside a scheduler. There are two cases: if the event time is
unmatched in the set of event times already present in the scheduler (case t1 < t∗ < t2), the event is just inserted in the right
place; otherwise (case t = t∗) the event in the scheduler with the same time has its value increased by the value v∗ of the new
event.

Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 9

Remove operation of an event (cf. Figure 4): Q ⊖ (t ,v), which has complexity O(loд2(|Q |)) to find the event.

time

values

t1 t2 t

⊖t =

time

values

t1 t2

Fig. 4. A graphical example of the removal of an event given its time t .
Remove first operation over the schedulerQ∗, which removes the first event ev1 = (Q[0].time,Q[0].value) from

the scheduler, the second event becoming the first. Operation Q∗ has complexity O(1).
Prune operation of the schedulerQt (cf. Figure 5): The operationQt has complexity O(loд2(|Q |)) (no suppression

cost).

time

values

t

Qt =

timet

values

Fig. 5. A graphical example of the prune operation : Here all the points with a time less or equal to t (actually the first two points of
this scheduler) are removed.

Upper and lower bound operations (cf. Figure 6): Upper bound operation: ⌈t⌉Q and lower bound operation
⌊t⌋Q , which have complexity O(loд2(|Q |)).

time

values

ti tj tk tℓ

Fig. 6. Upper/lower bound operations on an example of schedulerQ . For tk < t < tℓ the upper bound operation consists of ⌈t ⌉Q = ℓ.
The lower bound operation consists of ⌊t ⌋Q = k .

Shift operation of the scheduler Q→t (cf. Figure 7): The operation Q→t has complexity O(|Q |)

 Fig. 7. The shift operation Q→t .

Manuscript submitted to ACM

10 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

A scheduler can encode piecewise constant functions on [t ,+∞) by having its first event.time at t with value the
value of the piecewise constant function h at t, the other event.time tk corresponds to the other breaks of h and the
other event.value at time tk correspond to h(tk+1) − h(tk).

Fig. 8. Optimized encoding of a piecewise constant function h (left) as a list of breakpoints (right).

Note in particular that with this encoding of a piecewise constant function, the union of two schedulers correspond
to the addition of two piecewise constant functions.

Union operation over two schedulersQ∪Q ′ (cf. Figure 9): The operationQ∪Q ′ has complexityO(min(|Q |, |Q ′ |)loд2(max(|Q |, |Q ′ |))).
Schedi

Schedj

∪ =

Schedk

Fig. 9. A graphical example of the union of two schedulers. The events of Schedi are represented as dotted, while the events of Schedj
are dashed. In the merged scheduler Schedk , the values of events at the same time in both schedulers i and j are summed and the
resulting event is represented with a continuous line.

Piece-wise prune operation of the schedulerQt
pcw (cf. Figure 10): The operationQt

pcw has complexityO(loд2(|Q |)+
⌈t⌉Q).The piecewise prune operation is the prune operation Qt but in addition at time t, there is an event with
value, the sum of all the event values up to time t.

Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 11

 Fig. 10. Piece-wise shift operation Q t
pcw .

4 LOCAL GRAPH ALGORITHM FOR POINT PROCESSES

4.1 Local independence graph

Local independence graphs are fully presented in a sound mathematical form in [10]. For a given multivariate point
process (Nj), j = 1, ...,M , the corresponding local independence graph is a directed graph between the nodes j = 1, ...,M
(see for instance Figure 11). We assume for sake of simplicity that the filtration is reduced to the internal history, that is
Ft is generated only by the T < t in N = N1 ∪ ... ∪ NM and their associated mark or node.

To explain more fully what a local independence graph means, we need to define rougher filtration. For a subset
I ⊂ {1, ...,M}, F I

t is the filtration generated by the T < t in ∪i ∈INi and their associated node.
In a local independence graph, the absence of edge j → i means that the apparition of a point at time t on i is

independent from F {j }t− conditionally to F {j }
c

t− , where {j}c = {1, ...,M} \ {j}.
So this means that for every time t , the intensity λi (t) of Ni with respect to (Ft)t ≥0 does not depend directly on the

positions of the points of Nj strictly before t .
This extends directly to the notion of parents and children in the graph. For a given node i , one defines

pa(i) = {j, j → i is in the graph} and ch(i) = {j, i → j is in the graph}.

Therefore it means that the intensity λi (t) at time t of Ni with respect to (Ft)t ≥0 in fact only depends on the points
of Nj for j ∈ pa(i) strictly before t .

Conversely, a point on Ni directly impacts the occurrence of points for Nj for j ∈ ch(i). Note that in any case, it also
impacts the next point of Ni because even for a Poisson process without memory one needs by the transformation
method to know tk for finding tk+1. However, it will not have any direct impact on the future points of Nj for
j < ch(i) ∪ {i}.

Manuscript submitted to ACM

12 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

1

4

5 7

2 3

6

Fig. 11. Example of local independence graph. With this graph, ch(2) = {3, 6} and pa(2) = {1, 5}. As indicated by the difference of
colour, a point with mark 2 shall impact the point generation only for {2} ∪ {3, 6}.

4.2 Local-graph algorithm

The children of each node is stored in a simple one-dimension array, whose indexes are the node indexes and elements
are a vector of the children indexes of the node. So accessing a node simply costs O(1).

Because of the interpretation of I = ch(i) ∪ {i} of a given node i given above in the local independence graph, it
means that in fact, after having simulated tk with mark/node ik in the joint process, we know that only the next points
of Nj for j ∈ I have to be modified.

At simulation level, discrete events are used to track activity nodes associated to selected points (time stamps) to
their children. Discrete events are stored into a scheduler Q of events evi = (t inext , i), where t

i
next is the possible next

point associated to node i .
The local graph algorithm for point processes is described in Algorithm 3. A visual representation is presented

in Figure 12. More details about the algorithm steps are provided in Section 5, which presents the application of the
algorithm to the Hawkes case.

Algorithm 3 Local graph algorithm for the simulation of point processes: Application of the simulation activity tracking
algorithm [18].

1: t0 ← 0
2: I ← {1, ...,M}
3: while tk < T do
4: Compute the next possible points t inext for each i ∈ I based on intensity λi on (tk ,+∞)
5: Update P with each next possible point t inext for each i ∈ I
6: Get next selected point tk+1 ←min{t inext } and i the associated node, updating Q ← Q∗

7: Find corresponding children and update I ← ch(i) ∪ {i}

8: Update intensities λj (t) for each node j ∈ I on (tk+1,+∞)
9: k ← k + 1
10: return (t1, ..., tk−1) points and associated nodes (i1, ..., ik−1)

Step a/
Step b/
Step c/
Step d/
Step e/

Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 13

UPDATE SCHEDULER

UPDATE NEW POSSIBLE NEXT POINTS

2

1 4

3

UPDATE INTENSITIES

By thinning or
transformation
method

FIND CHILDREN

insert new

remove old

Fig. 12. Steps of the local graph algorithm for the simulation of point processes. As for figure 1, the intensities are piecewise constant.

5 HAWKES EVALUATION

We want to evaluate the complexity of the previous algorithms, but this of course depends on the computational
complexity of the conditional intensities associated to each point process. Previous general algorithms for simulating
point processes are applied here to non explosive Hawkes processes with piecewise constant interactions with finite
support (see Equation (1)). In this situation, note that the λi ’s become piecewise constant, so that the complexity for
calculating such intensities or updating them will be linked to the number of breakpoints of the corresponding piecewise
constant function. Moreover with piecewise constant intensities, one can apply the transformation method directly, so
we do not evaluate the complexity of the thinning /rejection step. The general algorithms are specified at data structure
level in order to detail the computational complexity of each algorithmic step.

5.1 Notations and data structures

Data structure oriented notations consist of:

• P : A scheduler of next point events evi = (t inext , i), where t
i
next is a possible next point associated to node i .

• L[i](↔ λi): is the scheduler of discrete event intensities corresponding to the piece-wise constant intensity of
node i , with intensity events evk = (tk ,δk), and δk = λi (tk) − λi (tk−1) the intensity difference at time tk (cf.
Figure 13). The length of the scheduler is Lit = lenдth(L[i]) when L[i][0].time = t .

Manuscript submitted to ACM

14 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

Fig. 13. Discrete event mapping of a piece-wise constant intensity trajectory.

• h[j][i](↔ hj→i): is the scheduler of discrete event interactions corresponding to the piece-wise constant inter-
action hj→i (with support included in [0, S]) from node j to node i and interaction events evk = (tk ,δk), with
δk = hj→i (tk) −hj→i (tk−1) the interaction difference at time tk (cf. Figure 14). The maximum number of events
in h[j][i] is noted A ≥ lenдth(h[j][i]).

Fig. 14. Discrete event mapping of a piece-wise constant interaction trajectory.

• L = L[1] ∪ ... ∪ L[M] (↔ L ↔ λ(t) =
∑M
i=1 λi (t)): is a scheduler storing the union of all intensity events of all

L[i], from node 1 to nodeM (cf. Figure 9). This is the sum of all piece-wise constant trajectories.
• L[i] = L[1] ∪ ... ∪ L[i] (↔ L[i] ↔ λi (t) =

∑i
j=1 λj (t)): is a scheduler storing the intermediate union of intensity

events of nodes 1 to node i . Obviously, L[M] = L.

5.2 Algorithm for the transformation method for piecewise constant intensities

Algorithm 4 presents the basic transformation method for piecewise constant intensities.

Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 15

Algorithm 4 Function getTnext(Q) with Q a scheduler storing the events corresponding to a piece-wise constant
intensity trajectory (cf. Figure 13).

1: function getTnext(Q)
2: V ∼ U[0, 1]
3: inteдral ← 0
4: tnext ← Q[0].time

5: k ← 0
6: val ← Q[0].value
7: repeat
8: val ← val +Q[k].value

9: inteдral ← inteдral + (Q[k + 1].time −Q[k].time) ×val

10: k ← k + 1
11: until (inteдral > −loд(V) or k = size(Q))
12: if inteдral ≤ −loд(V) then
13: val ← val +Q[k].value

return tnext = Q[k].time −
inteдral+loд(V)

val

The complexity of the getTnext(Q) operation is O(|Q |).

5.3 Full scan and local graph algorithms

Algorithm 5 is the application of Algorithm 2 to Hawkes processes. The mention to a, b c, d refers to Algo2. We splitted
step d to lower the complexity.

Manuscript submitted to ACM

16 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

Algorithm 5 Full scan algorithm for Hawkes processes
1: t0 ← 0
2: while tk < T do
3: L[1] ← L[1]
4: for all j ∈ {2, ...,M} do
5: L[j] ← L[j − 1] ∪ L[j]

6: tk+1 ← getTnext(L(M))
7: for all j ∈ {1, ...,M} do
8: L[j] ← L[j]

tk+1
pcw

9: compute ℓ[j] = λj (tk+1) by ℓ[1] ← L[1][0].value

10: ℓ[0] ← L[0][0].value
11: for all j ∈ {1, ...,M} do
12: ℓ[j] ← ℓ[j − 1] + L[j][0].value
13: Select the associated node ik+1 such that ℓ[j]

ℓ[M] < V ≤
ℓ[j−1]
ℓ[M] , with V ∼ U[0, 1]

14: for all j ∈ {1, ...,M} do
15: Update intensities L[j] ← L[j] ∪ h[ik+1][j]→tk+1

16: k ← k + 1
17: return points (t1, ..., tk−1) and associated nodes (i1, ..., ik−1)

Step a/

Step b/

Step d1/

Step c/

Step d2/

Algorithm 6 is the application of Algorithm 3 to Hawkes processes.

Algorithm 6 Local graph algorithm for Hawkes processes
1: I ← {1, ...,M}
2: while tk < T do
3: Compute the next point t inext ← getTnext(L[i]) of each i ∈ I
4: P ← P∗ ⊕ (t inext , i) of each i ∈ I
5: tk+1 = P[0].time

6: ik+1 = P[0].value
7: Find corresponding children and update I ← Ch(ik+1) ∪ {ik+1}

8: for all i ∈ Ch(ik+1) do
9: L[i] ← L[i]

tk+1
pcw ∪ h[ik+1][i]→tk+1

10: if i < Ch(ik+1) then
11: L[i] ← L[i]

tk+1
pcw ∪ h[ik+1][i]→tk+1

12: k ← k + 1
13: return (t1, ..., tk−1) points and associated nodes (i1, ..., ik−1)

Step a/
Step b/

Step c/

Step d/

Step e/

5.4 Complexities of both algorithms

If A (the number of breakpoints to describe the interaction functions hj→i) and S (the support of the hj→i ’s) are true
constants, assumed to be of order 1 in the sequel, the size of the different schedulers that are used in the previous
Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 17

algorithms are most of the time random and changing step after step. They depend in particular on the number of
points of node j appearing in the interaction range that is Nj ([t − S, t)). To evaluate further the order of such a random
quantity, we know that a stationary Hawkes process has a mean intensitym = (m1, ...,mM)

T (see [14]):

m = (IM − H)
−1ν , (3)

with ν = (ν1, ...,νM)T , IM the identity matrix of size M and H = (
∫ +∞
0 hj→i (x) dx)i, j=1, ...,M . Note that the non

explosivity of a linear Hawkes process is equivalent to a spectral radius of H strictly less than 1. In this case, the non
explosive Hawkes process, with no points before time 0, has always less points than the stationary version. Therefore,

E(Nj ([t − S, t))) ≤ mjS (4)

withmj given by Equation (3).
Moreover, the local independence graph for Hawkes process is completely equivalent to the graph with edge j → i if

and only if hj→i is non zero. The corresponding adjacency matrix is denoted R = (1∫
hj→i,0).

At time t , the scheduler L[i] describes the piecewise constant conditional intensity λi (.) on [t ,+∞) in absence of
new points after t . The number of breakpoints of L[i] is denoted Lit . But (1) can be rewritten as

λi (t) = νi +
∑

j ∈pa(i)

∑
T ∈Nj ,T ∈[t−S,t)

hj→i (t −T)

So we can first note that Lit and therefore its expectationLi = E(L
i
t) are always larger than 1 because the scheduler L[i] is

at least of size 1. Moreover this piecewise constant function has potential breakpoints at allT +a, forT ∈ Nj ,T ∈ [t−S, t),
and a breakpoints of hj→i .

Therefore we can compute the order of magnitude of Lit by

Lit = O
©«1 +A

∑
j ∈pa(i)

Nj ([t − S, t)
ª®¬

where O means that there exists an absolute positive constant C such that

Lit ≤ C
©«1 +A

∑
j ∈pa(i)

Nj ([t − S, t)
ª®¬ .

In expectation, this gives, thanks to (4) and since AS = O(1),

L = O (1 + Rm) = O
(
1 + R(IM − H)−1ν

)
(5)

with L = (Li)i=1, ...,M , the notation O being understood coordinate by coordinate.
Now we can evaluate the (mean) complexity of both algorithms, replacing Lit by Li thanks to the respective

complexities of each operation on the schedulers (see Section 3.

Full-Scan Algorithm. Step a/ has a complexity of

O
©«
M∑
j=1
Li log(

j∑
i=1
Li)

ª®¬ = O (|L|1 log |L|1)
Manuscript submitted to ACM

18 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

with |L|1 = L1 + ... + LM ≥ M Step b/ has complexity O (|L|1), as well as Step d1/. Step c/ has complexity O(M) ≤
O (|L|1). Step d2/ has complexity

O
©«
M∑
j=1
(A log(Li) +A)

ª®¬ = O (|L|1 log |L|1)
So globally one iteration of the full scan algorithm has a complexity of the order

O (|L|1 log |L|1) = O ((M + |Rm |1) log(M + |Rm |1)) .

Therefore since the mean total number of iterations of this algorithm is also the mean total number of points produced
on [0,T], that is T |m |1, the full-scan algorithm should have the following mean complexity

O (T |m |1(M + |Rm |1) log(M + |Rm |1)) . (6)

As expected, the complexity is linear with the duration T of the simulation. Moreover this complexity heavily depends
on the whole set of parameters (type of graph, strength of the interaction functions etc), because in particular these
parameters affect the number of points that have to be produced. So for very unbalanced networks where |m |1 = O(1)
(if for instance only one node in the whole network is clearly active and the others almost silent), the complexity seems
to be of order O(TM log(M)). But these very unbalanced networks are not the most usual. Let us look now at more
balanced networks. Let us assume that all themj ’s are roughly the same and are of order 1 (no really smallmj) and that
the number of parents of a given node is bounded by d , this give us a complexity of

O

(
TM2d log(dM)

)
.

So up to the log factor, if the network is sparse but balanced, the complexity is quadratic in the number of nodes of the
network. If the network is a full complete graph, the complexity is cubic inM .

Local graph algorithm. As before we need to evaluate first the complexity of one iteration of the algorithm. But
because I is chosen at step d/ and the size of I impacts the complexity of steps a/b/ and e/, we choose to evaluate the
complexity of an iteration which starts with e/ and then does a/b/ c/ and d/, so that that until d/ the set I is the same.
If the node ik+1 = j, then the complexity of step e/ is

O
©«Lj +

∑
i ∈ch(j)

(Li +A +A log(Li))
ª®¬ = O ©«Lj +

∑
i ∈ch(j)

(Li + log(Li))
ª®¬ .

The complexity of step a/ is

O
©«Lj +

∑
i ∈ch(j)

Li
ª®¬ .

The complexity of step b/ is

O
©«log(M) +

∑
i ∈ch(j)

log(M)ª®¬ .
Steps c/ and d/ have complexity O(1).

So for one iteration "e/a/b/c/d/" after a point on node j, the complexity is

O
(
Lj + log(M) + [R′(L + log(M)1)]j

)
,

Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 19

with R′ the transpose of R and 1 the vector of sizeM full of ones.
The main point is that node j is appearing in average only Tmj times during the simulation, which leads us to a

global complexity of

O
(
Tm′L +T log(M)|m |1 +Tm′R′[L + log(M)1]

)
= TO

(
m′Rm + log(M)|m |1 +m′R′Rm + log(M)|Rm |1

)
. (7)

As before this is linear in the duration of the simulation T and depends heavily on the parameters. But the complexity
is much lower. Indeed, for very unbalanced networks where only one node is really active, the complexity logarithmic
inM . For balanced networks where themj ’s are roughly the same and if the number of children of a given node, as
well as the number of parents is bounded by d , then we get a complexity of

O (TMd[d + log(M)]) ,

For sparse balanced graphs, we therefore get a complexity which is linear inM up to logarithmic factors. The gain is
clear with respect to the full scan algorithm. For complete graphs, we also get a cubic complexity in terms ofM , as the
full scan algortihm but without logarithmic factors.

So at least theoretically speaking, it seems that the local graph algorithm is always a better choice than the full-scan
algorithm, with a clear decrease of complexity from quadratic to linear in the number of nodes for balanced sparse
graphs.

6 NUMERICAL EXPERIMENTS

This section is devoted to two main problems: statistically proving that both algorithm (full scan and local graph) indeed
simulate a Hawkes process and asserting that the local graph algorithm clearly outperforms the full scan algorithm.

6.1 Hardware and software

Thanks to the efficiency of the proposed algorithms, the implementations were prototyped on a regular laptop with 4GB
of RAM and an Intel I3 processor as well as part of the statistical analyses. The main simulations have been performed
on 5 nodes of a Symmetric MultiProcessing (SMP), i.e., share memory, computer 1. Each of this computational nodes
has up to 20 physical cores (2*10), 25 MB of cache memory and 62.5 GB of RAM. The processors are Intel(R) Xeon(R)
CPU E5-2670 (v0 and v2) at 2.60 GHz. The statistical analysis required more RAM, so we used another type of node,
which has 770GB of RAM, 25MB of cache memory, 20 physical cores (2*10), each processor being an Intel(R) Xeon(R)
CPU E5-2687W v3 at 3.10GB.

The algorithms were implemented in C++ programming language (2011 version). We used the implementation of the
Mersenne-Twister random generator2. No other external libraries were used for the simulator, which is compiled using
gcc 2.7. The plots and statistical analyses were obtained using using R software (v3.6), part of it using the UnitEvent
package (v0.0.5)3.

6.2 Statistical analysis

We generated an Erdös-Renyii network of 100 nodes with connection probability p = 1/100, that is fixed for the rest of
the statistical analysis. When an edge j → i is in the graph, we associate it to an interaction function t 7→ hj→i (t) =

1The documentation can be found on https://hpc.isima.fr/doku.php.
2Accessed on 12/19/2019, on http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
3Source accessible at https://sourcesup.renater.fr/projects/uepackage. Last access on 12/19/2019.

Manuscript submitted to ACM

https://hpc.isima.fr/doku.php
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
https://sourcesup.renater.fr/projects/uepackage

20 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

5 · 1t ∈[0,0.02]. The spontaneous parameters νi are all fixed to 10. Out of this multivariate Hawkes process, we focus on
two nodes a and b. The node a is fully disconnected, meaning the corresponding process should be an homogeneous
Poisson process of rate 10. The node b is the one with the largest number of parents (4 parents).

Time transformation. In [21], Ogata derives methodological benchmarks to assess if the data are obeying a point
process with a given intensity, and in particular Hawkes processes. This is based on the time-rescaling theorem (see for
instance [6]), which says that if λs is the conditional intensity of the point process N and if Λ(t) =

∫ t
0 λsds , then the

points Ñ = {Λ(T),T ∈ N } form an homogeneous Poisson process of rate 1. Then Ogata advertised to perform as follow
to test that a given point process has intensity given by λs

• Apply the time-rescaling transformation. This leads to a point process Ñ .
• Test that the consecutive delays between points of Ñ obeys an exponential distribution of rate 1, for instance by
Kolmogorov-Smirnov test (Test 1)
• Test that the points of Ñ themselves are uniformly distributed, for instance by Kolmogorov-Smirnov test (Test
2).
• Test that the delays between points of Ñ are independent, for instance by checking that the autocorrelation
between delays with a certain lag are null (Tests 3). We performed them up to lag 9.

We simulated the multivariate Hawkes process on [0,T] with T = 150 and we applied the previous tests to node a and
node b.

Table 1. Table of the p-values of a Kolmogorov-Smirnov test (for uniformity) applied to the p-values obtained with tests 1, 2 and 3 for
1000 independent simulations of the same Hawkes point processes (with the same underlying graph).

full-scan local-graph
Node a Node b Node a Node b

Test 1 0.5384525 0.1491268 0.0594925 0.86789804
Test 2 0.6008973 0.2462138 0.1819709 0.99025263

Test 3 with lag 1 0.1602718 0.1781804 0.4385096 0.92162419
Test 3 with lag 2 0.7498109 0.9038829 0.6954876 0.90558993
Test 3 with lag 3 0.5604420 0.7220130 0.4144515 0.77140051
Test 3 with lag 4 0.7003987 0.1838913 0.4367523 0.83833821
Test 3 with lag 5 0.9960351 0.4009543 0.3740874 0.14749913
Test 3 with lag 6 0.1883506 0.1246654 0.4387684 0.12202262
Test 3 with lag 7 0.1259022 0.8588754 0.9114556 0.47030751
Test 3 with lag 8 0.8848928 0.9720601 0.5200698 0.03765871
Test 3 with lag 9 0.2278844 0.3880436 0.5042846 0.92768290

If we have simulated indeed the correct Hawkes processes for node a and b, the p-values should be uniform. So
we performed 1000 simulations of the same Hawkes process (with the same underlying graph) but with different
pseudorandom generator seeds for the simulation of the points themselves. We can visually check that they are indeed
uniform by seeing diagonals for their cumulative distribution functions (see Figures 15 and 16). In order to confirm this
qualitative result with a more quantitative one, the p-values for the three tests 1, 2 and 3 are independently tested for
uniformity with another Kolmogorov-Smirnov test. The resulting p-values are displayed in Table 1.
Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 21

Fig. 15. Cumulative distribution functions of the p-values of Test 1 and 2. In columns the test and node, in rows the algorithms (full
scan then local graph)

Manuscript submitted to ACM

22 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

Fig. 16. Cumulative distribution functions of the p-values of Test 3. In columns the node, in rows the algorithm (full scan then local
graph)

Martingale properties. Another very important property of the Hawkes process is that t 7→ Nt − Λt is a martingale
and this property remains true if we integrate with respect to a predictable process. So for each node a or b, we can
compute

Xk =

∫ T

0
ψk
t (dNt − dΛt),

forψ 1
t = 1 orψ 2j

t = Nj ([t − 0.02, t)] orψ
2j+1
t = Nj ([t − 0.04, t − 0.02)]. If the martingales properties are true, then the

variable Xk for each k should be centered around 0. We also expect eventually different behaviors, when k = 1, which
corresponds to the spontaneous part or when k = 2j or 2j + 1 for a node j which is connected to the node of interest or
Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 23

disconnected from the node of interest. We simulated the network 40 times on [0,T] with T = 20 and reported the Xk .
We see on Figure 17 and 18 that the variables Xk are indeed centered in both cases as expected. So we can conclude
that both algorithms indeed simulate the given Hawkes process.

●

−40

−20

0

20

40

Node b, spontaneous + connected nodes

D
iff

er
en

ce

●

● ● ●

●

●

●

●
●

● ●
●

●

● ●
●

●
● ●

●
● ● ●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

● ●
●

●

●

●
● ●

●

●
●

●
● ●● ●

●
●

● ●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
● ● ●

●

● ●

●

● ● ●

●

● ●
●

●
●

●

●
●

●
● ●

●

●
● ● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●
●

●
●

●
●

●

●

● ●
●

●
●

●

●
● ●

●

●

●

●

●

●

● ●

● ●

●
● ●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●

●

●

●
●

● ●

●

● ●

●

● ●
● ●

●

●

●

● ●

● ●

●

● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
● ●

●

●

●
●

● ●
● ● ●

●

●
●

●

●

●

●
●

●

● ●

●

●
● ●

●

●

●
● ●

●

● ● ●

● ●

●

●

●
●

●
●

●

●

●

●
●

● ●

●
●

●

●

● ●
●

●

●

● ●

● ●
●

●

●

● ●

● ● ●
●

●
●

●
●

●

●

●

●● ●

●

●

●

●

●
●

Spontaneous ● Parents Grand−parents Disconnected nodes

−40

−20

0

20

40

Node b, disconnected

D
iff

er
en

ce

−30
−20
−10

0
10
20
30
40

Node a, spontaneous + disconnected

D
iff

er
en

ce

Fig. 17. Full scan algorithm: verifying the Martingale property for Nodes a and b. The black points represent the X 1 (spontaneous),
then for the nodes connected to Node b, X 2j and X 2j+1 are displayed in red. In blue are the X k and X k+1 (still for Node b) from Node
b’s grand-parents to Node b’s parents. Finally the two green scatter plots show the Nodes not disconnected from b and a respectively.

Manuscript submitted to ACM

24 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

●

−20

0

20

40

Node b, spontaneous + connected nodes
D

iff
er

en
ce

●

● ●

●

●

● ●

●

●
●

●

● ●

●

●
●●

●

●

●
●

●

● ●
●

● ●

●

●
●

●

●●
●

●
●

●

● ● ●

●

●
●

● ●
●

●

●

●

●

● ●

●
●

●
●

● ●

●

●
●

●

● ●
● ●

●
●

●
●

●
●

●

●

● ● ● ●
●

●

●
●

●

●

●
●

● ●

●

● ●

●

● ●

● ●●

●

●
●

●

●

●
●●

● ●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
● ●

●
●

●

●

●

●● ●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●

● ●
● ●

●
●

● ● ●
●

●
●

● ●

● ● ●

●

●

●

●

●

● ●

●

● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●
●

● ●
●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

● ●

●

● ●
●

● ●

●

●

●

●

● ●●
●

●
● ● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

● ●
●

● ●
●

● ●
●

●

●
●

●

Spontaneous ● Parents Grand−parents Disconnected nodes

−20

0

20

40

Node b, disconnected

D
iff

er
en

ce

−20
−10

0
10
20
30

Node a, spontaneous + disconnected

D
iff

er
en

ce

Fig. 18. Local-graph algorithm: verifying the Martingale property for Nodes a and b. The black points represent the X 1 (spontaneous),
then for the nodes connected to Node b, X 2j and X 2j+1 are displayed in red. In blue are the X k and X k+1 (still for Node b) from Node
b’s grand-parents to Node b’s parents. Finally the two green scatter plots show the Nodes not disconnected from b and a respectively.

6.3 Performance

We want to assess the performances of both algorithm in the main interesting case: sparse balanced networks. To do so,
we took three different topologies of graphs:

• Erdös-Renyii: a topology model where each edge has a probability p of being present or absent, independently of
the other edges. We took p in {0, 1M ,

2
M , . . . ,

(ln(M)−1)
M } forM the number of nodes. These choices for p ensure a

sparse graph with roughly speaking d = pM parents and children for each node.
• Cascade: a topology model where each node has exactly one parent and one child (except for two nodes, start
and end, that have respectively no parent and one child, and one parent and zero child), and there are no cycles
in the network. There is only one graph per numberM .
• Stochastic-Block: it is an Erdös-Renyii by block. In our setting the nodes are parted in two blocks and the matrix
gives the probability of inter-block connection of intra-block conection (see Table 2).

Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 25

Table 2. The three bloc sizes vectors (first line) and the three probability matrices (second line) used for the simulations.

Block sizes
(
M
2

M
2

) (
M
2

M
2

) (
lnM M − lnM

)
Probability matrices

(
2
M ln M

2 0
0 2

M ln M
2

) (
0 2

M ln M
2

2
M ln M

2 0

) (
0 ln(⌈lnM ⌉)

⌈lnM ⌉
ln(M−⌈lnM ⌉)
(M−⌈lnM ⌉) 0

)

Each graph was generated using a different pseudorandom generator seed. Each existing edge j → i is associated
with an interaction function t 7→ hj→i (t) = 5 · 1t ∈[0,0.02]. We computed the largest eigen-value of the corresponding
matrix H . If it is larger than 1, this graph should be discarded. To force the balance of the network, we decided to
takem = (10, ..., 10) and compute the νi ’s by ν = (IM − H)m. It may happen that some of the νi ’s become negative.
These graphs should be also discarded. Because of the parameter values, especially the interaction functions, no
graph was discarded here. A total of 2890 = 1770 + 280 + 840 (Erdös-Renyii + Cascade + Stochastic-Bloc) graphs was
obtained withM = {10, 20, . . . , 100} ∪ {150, 200, . . . , 500} ∪ {600, 1100, . . . , 5100} for the local-graph algorithm, and
M = {10, 20, . . . , 100} ∪ {150, 200, . . . , 500} for the full-scan algorithm. Once the parameters of the Hawkes process are
fixed, we simulated 10 times each process on [0,T] with T = 10, each simulation with a different generator seed.

Figure19 shows that the theoretical complexities of both full scan and local graph algorithms are equivalent to their
actual execution times.

Fig. 19. Three topologies together: the execution time (vertical axis, log-scaled) and the theoretical complexity (horizontal axis,
log-scaled), for the full scan algorithm (red squares, left part) and the local-graph algorithm (blue circles, right part). A line of slope 1 is
displayed in black, on both scatter plots, showing the equivalence. The colour gradient represents similar values of the mean number
of connections per process. A particular value (mean of 4 children per process) is emphasised with a violet tone. The number of nodes
is M = {10, 20, . . . , 100} ∪ {150, 200, . . . , 500} for the full-scan algorithm and M = {10, 20, . . . , 100} ∪ {150, 200, . . . , 500} ∪
{600, 1100, . . . , 5100} for the local graph algorithm.

Figure 20 shows that the execution time is quadratic for the full scan algorithm and linear behaviour for the local
graph algorithm. For example, when the local graph algorithm is executed in less than 10s for more than 5000 nodes,
the execution of the full scan algorithm takes about 100s for 500 nodes. The local graph algorithm clearly outperforms
the full scan algorithm.

Manuscript submitted to ACM

26 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

Fig. 20. Three topologies together: the execution time (vertical axis, log-scaled) and the theoretical complexity (horizontal axis,
log-scaled), for the full scan algorithm (red squares, left part) and the local-graph algorithm (blue circles, right part). A line of slope 2
is displayed in black, on the scatter plot for the full scan algorithm, and a line of slope 1 for the local graph algorithm. The colour
gradient represents similar values of mean numbers of connections per process. A particular value (mean of 4 children per process) is
emphasised with a violet tone. The number of nodes is M = {10, 20, . . . , 100} ∪ {150, 200, . . . , 500} for the full-scan algorithm and
M = {10, 20, . . . , 100} ∪ {150, 200, . . . , 500} ∪ {600, 1100, . . . , 5100} for the local graph algorithm.

7 CONCLUSION

We presented two new discrete event simulations for point processes: one being already an optimization of usual
Ogata’s algorithm [20], called the full scan algorithm, another one, called the local graph algorithm, aiming at tracking
only the nodes changing state in the network, only updating their children (based on the local independence graph
hypothesis [10]). The computational complexity reduction of the local graph algorithm is fromM2 toM . Although there
was no simulation algorithm able to simulate large point process networks, the local graph algorithm now opens new
perspectives for simulating such networks. Especially, based on the local graph generation, an interesting perspective
concerns the memory reduction. Instead of statically storing the whole network topology in memory at the beginning
of the simulation, only the local graphs corresponding to the children of changing state nodes could be dynamically
generated during the simulations. Generating only local graphs with respect to the whole network graph should allow
simulating very large networks. The same complexity reduction order is expected. However, at execution time level,
the cost of re-generating the local graphs will have to be taken into account.

Manuscript submitted to ACM

Discrete event simulation algorithms for point processes 27

The network structure plays a central role in the arguments. While we assume that all processes in the population
are of the same type, the connectivity between the processes in the population is not homogeneous. Each process in the
population of N nodes receives input fromC randomly selected processes in the population. Sparse connectivity means
that the ratio δ = C

N ≪ 1 is a small number. One can ask if it is this realistic. In the context of the human brain, a typical
pyramidal neuron in the cortex receives several thousand synapses from presynaptic neurons while the total number of
neurons in the cortex is much higher [22]. Thus globally the cortical connectivity C

N is low. On the other hand, we may
concentrate on a single column in visual cortex and define, e.g., all excitatory neurons in that column as one population.
We estimate that the number N of neurons in one column is below ten thousand. Each neuron receives a large number
of synapses from neurons within the same column. In order to have a connectivity ratio of 0.1, each neuron should
have connections to about a thousand other neurons in the same column. [12]. In the brain, last estimations consist of
86 billions of neurons [28], each neuron having around 7′000 connections. Either for the overall brain or for a single
column of the visual cortex, the hypothesis of sparse connectivity of the network remains valid. This work thus allows
achieving grounded stochastic simulations of the neuronal functional interactions in parts of the human brain.

ACKNOWLEDGEMENT

For the SMP simulations we would like to deeply thank the LIMOS CNRS laboratory, from the University of Clermont-
Auvergne, which graciously provided access. In particular we would like to thank their current administrators, Hélène
Toussaint, William Guyot-Lénat and Boris Lonjon, for their valuable help.
This work was supported by the French government, through the UCAJedi and 3IA Côte d’Azur Investissements d’Avenir
managed by the National Research Agency (ANR-15- IDEX-01 and ANR-19-P3IA-0002) and by the interdisciplinary
Institute for Modeling in Neuroscience and Cognition (NeuroMod) of the Université Côte d’Azur.

REFERENCES
[1] P.K. Andersen, O. Borgan, R. Gill, and N. Keiding. 1996. Statistical Models Based on Counting Processes. Springer.
[2] M. Barrio, K. Burrage, A. Leier, and T. Tian. 2006. Oscillatory Regulation of hes1: Discrete Stochastic Delay Modelling and Simulation. PLoS

Computational Biology 2, 9 (2006), 1017.
[3] A. Bouchard-Côté, S. J. Vollmer, and A. Doucet. 2018. The Bouncy Particle Sampler: A Non-Reversible Rejection Free Markov chain Monte Carlo

Method. J. Amer. Statist. Assoc. 113 (2018), 855–867.
[4] P. Brémaud. 1981. Point Processes and queues: martingale dynamics. Springer.
[5] E.N. Brown, R. Barbieri, V. Ventura, R.E. Kass, and L.M. Frank. 2006. The Time-Rescaling Theorem and Its Application to Neural Spike Train Data

Analysis. Neural Computation 4, 2 (2006), 325–346.
[6] E. N. Brown, R. Barbieri, V. Ventura, R. E. Kass, and L.M. Frank. 2002. The Time-Rescaling Theorem and Its Application to Neural Spike Train Data

Analysis. Neural Computation 14, 2 (2002), 325–346.
[7] J.H. Cha and M. Finkelstein. 2018. Point Processes for Reliability Analysis. Springer.
[8] J. Chevallier, M.J. Cáceres, M. Doumic, and P. Reynaud-Bouret. 2015. Microscopic approach of a time elapsed neural model. Mathematical Models

and Methods in Applied Sciences 25, 14 (2015), 2669–2719.
[9] A. Dassios and H. Zhao. 2013. Exact simulation of Hawkes process with exponentially decaying intensity. Electronic Communications in Probability

18, 62 (2013).
[10] V. Didelez. 2008. Graphical models of markes point processes based on local independence. J.R. Statist. Soc. B 70, 1 (2008), 245–264.
[11] J.L. Doob. 1945. Markoff chains – Denumerable case. Trans. Amer. Math. Soc. 58, 3 (1945), 455–473.
[12] W. Gerstner and W.M. Kistler. 2002. Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press.
[13] D.T. Gillespie. 1977. Exact Stochastic Simulation of Coupled Chemical Reactions. he Journal of Physical Chemistry 81, 25 (1977), 2340–2361.
[14] A.G. Hawkes. 1971. Spectra of Some Self-Exciting and Mutually Exciting Point Processes. Biometrika 58, 1 (1971), 83–90. http://www.jstor.org/

stable/2334319
[15] S. Herculano-Houzel and R. Lent. 2005. Isotropic Fractionator: A Simple, Rapid Method for the Quantification of Total Cell and

Neuron Numbers in the Brain. Journal of Neuroscience 25, 10 (2005), 2518–2521. https://doi.org/10.1523/JNEUROSCI.4526-04.2005
arXiv:https://www.jneurosci.org/content/25/10/2518.full.pdf

Manuscript submitted to ACM

http://www.jstor.org/stable/2334319
http://www.jstor.org/stable/2334319
https://doi.org/10.1523/JNEUROSCI.4526-04.2005
http://arxiv.org/abs/https://www.jneurosci.org/content/25/10/2518.full.pdf

28 Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-Bouret

[16] P.A.W. Lewis and G.S. Shedler. 1978. Simulation of nonhomogeneous Poisson processes. Technical Report. Naval Postgraduate School, Monterey,
California.

[17] M.D. Mesarovic and Y. Takahara. 1975. General systems theory: mathematical foundations. Vol. 113. Academic press.
[18] A. Muzy. 2019. Exploiting Activity for the Modeling and Simulation of Dynamics and Learning Processes in Hierarchical (Neurocognitive) Systems.

Computing in Science Engineering 21, 1 (Jan 2019), 84–93. https://doi.org/10.1109/MCSE.2018.2889235
[19] J-F. Muzy, E. Bacry, S. Delattre, and Hoffmann M. 2013. Modelling microstructure noise with mutually exciting point processes. Quantitative

Finance 13, 1 (2013), 65–77.
[20] Y. Ogata. 1981. On Lewis’ simulation method for point processes. IEEE Transaction on Information Theory 27, 1 (1981), 23–31.
[21] Y. Ogata. 1985. Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes. J. Amer. Statist. Assoc. 83, 401 (1985), 9–27.
[22] B. Pakkenberg, D. Pelvig, L. Marner, M.J. Bundgaard, H.J.G. Gundersen, J.R. Nyengaard, and L. Regeur. 2003. Aging and the human neocortex.

Experimental Gerontology 38, 1 (2003), 95 – 99. https://doi.org/10.1016/S0531-5565(02)00151-1 Proceedings of the 6th International Symposium on
the Neurobiology and Neuroendocrinology of Aging.

[23] E.A.J.F. Peters and G. de With. 2012. Rejection-free MonteCarlo sampling for general potentials. Physical Review E 85, 026703 (2012).
[24] P. Reynaud-Bouret, V. Rivoirard, and C. Tuleau-Malot. 2013. Inference of functional connectivity in Neurosciences via Hawkes processes. 1st IEEE

Global Conference on Signal and Information Processing, Austin, Texas.
[25] P. Reynaud-Bouret and S. Schbath. 2010. Adaptive estimation for Hawkes processes; application to genome analysis. Annals of Statististics 38, 5

(2010), 2781–2822.
[26] K.D. Tocher. 1967. PLUS/GPS III Specification. Technical Report. United Steel Companies Ltd, Department of Operational Research, Sheffield.
[27] D. Vere-Jones and T. Ozaki. 1982. Some examples of statistical estimation applied to earthquake data. Ann. Inst. Statist. Math. 34, B (1982), 189–207.
[28] C.S. von Bartheld, J. Bahney, and S. Herculano-Houzel. 2016. The search for true numbers of neurons and glial cells in the human brain: A review of

150 years of cell counting. Journal of Comparative Neurology 524, 18 (2016), 3865–3895.
[29] B.P. Zeigler. 1976. Theory of Modelling and Simulation. John Wiley. https://books.google.fr/books?id=M-ZQAAAAMAAJ
[30] B.P. Zeigler, A. Muzy, and E Kofman. 2018. Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations.

Academic Press.

Manuscript submitted to ACM

https://doi.org/10.1109/MCSE.2018.2889235
https://doi.org/10.1016/S0531-5565(02)00151-1
https://books.google.fr/books?id=M-ZQAAAAMAAJ

	Abstract
	Contents
	1 Introduction
	2 Set-up
	2.1 Mathematical framework
	2.2 Simulation of univariate processes
	2.3 Discrete event version of classical multivariate algorithm for point processes

	3 Specific discrete event data structures and operations
	4 Local graph algorithm for point processes
	4.1 Local independence graph
	4.2 Local-graph algorithm

	5 Hawkes evaluation
	5.1 Notations and data structures
	5.2 Algorithm for the transformation method for piecewise constant intensities
	5.3 Full scan and local graph algorithms
	5.4 Complexities of both algorithms

	6 Numerical experiments
	6.1 Hardware and software
	6.2 Statistical analysis
	6.3 Performance

	7 Conclusion
	References

