Semidefinite programming relaxations through quadratic reformulation for box-constrained polynomial optimization problems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Semidefinite programming relaxations through quadratic reformulation for box-constrained polynomial optimization problems

Résumé

In this paper we introduce new semidefinite programming relaxations to box-constrained polynomial optimization programs (P). For this, we first reformu-late (P) into a quadratic program. More precisely, we recursively reduce the degree of (P) to two by substituting the product of two variables by a new one. We obtain a quadratically constrained quadratic program. We build a first immediate SDP relaxation in the dimension of the total number of variables. We then strengthen the SDP relaxation by use of valid constraints that follow from the quadratization. We finally show the tightness of our relaxations through several experiments on box polynomial instances.
Fichier principal
Vignette du fichier
BLL2019_codit.pdf (177.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02455410 , version 1 (26-01-2020)

Identifiants

Citer

Sourour Elloumi, Amélie Lambert, Arnaud Lazare. Semidefinite programming relaxations through quadratic reformulation for box-constrained polynomial optimization problems. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Apr 2019, Paris, France. pp.1498-1503, ⟨10.1109/CoDIT.2019.8820690⟩. ⟨hal-02455410⟩
179 Consultations
367 Téléchargements

Altmetric

Partager

More