Enhanced multiplex binary PIR localization using the Transferable Belief Model
A. Henni, R Ben Bachouch, Ouafae Bennis, Nacim Ramdani

To cite this version:

HAL Id: hal-02455402
https://hal.science/hal-02455402
Submitted on 26 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Enhanced multiplex binary PIR localization using the Transferable Belief Model

A. HADJ HENNI, R. BEN BACHOUCH, O. BENNIS and N. RAMDANI

Abstract—Pyro-electric Infra Red (PIR) sensors have been widely used in different indoor localization applications during the last decade. These sensors are cheap, non-intrusive and non-wearable, nevertheless, the binary PIR sensor detects only the presence of a human motion in its field of view without any other information about the actual location. Therefore, to localize a person in different zones of interest, the use of several PIR sensors with overlapping field of view is necessary. To reduce the number of sensors used, we use multiplex masks with the binary PIR sensors to obtain a compressed overlapping structure. Such a structure induces ambiguity during transitions between zones. In this paper, we show how to circumvent this issue by using a novel localization algorithm based on the transferable belief model TBM. Besides, we show how to tune efficiently the parameters of our algorithm, by choosing an appropriate discounting factor within (TBM). Experiments using standard commercialized sensors equipped with the multiplex masks, emphasize the performance of our novel method.

Index Terms—Indoor localization, binary PIR sensing, transferable belief model, sensors data fusion, smart homes.

I. INTRODUCTION

NOWADAYS, the human indoor location-tracking using sensor networks has become a necessity for several smart home applications such as anti-intrusion security systems, comfort and energy optimization, and elderly monitoring. A large range of indoor localization systems has been investigated during the last decade, and different sensing technologies were used depending on the considered smart home application. These systems can be mainly divided into two types, the wearable and the non-wearable device systems as shown in a recent survey [1].

In this paper, we are interested in an elderly monitoring application which rather requires non-wearable devices since they are more convenient and more comfortable for the elderly. Among the non-wearable devices, the Pyro Infra-Red PIR sensors are often used alone or with other sensing modalities in smart home applications. In fact, E.Alhvar et al [1] have analyzed some non-wearable localization systems w.r.t their technical and technological features, and discussed their advantages and inconveniences. Relying on this analysis, we note that cheap and reliable non-wearable systems often involve PIR sensors. The latter are inexpensive compared to other technologies, are non-intrusive and have low energy consumption. A PIR sensor detects thermal variations occurring in its FOV (Field of View) and translates the variations as an electrical signal known as analog output. The latter can be processed either to provide information such as angle and direction of movement, speed and distance from sensor [2][3], or for zoning the moving target as in [4]. Nevertheless, analog outputs are not widely used for indoor location-tracking applications due to the processing time and the intensive computing resources they require, and also to the saturation of the communication network they induce. Therefore, the analog output is often converted into a binary output to provide only binary data such as presence/absence of a human motion. Related works that use binary PIR outputs for indoor localization can be divided into two categories depending on the sensor network structure.

The first category uses PIR sensor networks without overlapping FOV e.g. each room is covered only by one sensor as in [5]. However, in some elderly monitoring applications, several activities can be done within the same room which requires covering each zone of interest with its own sensor to discern the different activities within a same room as in [6]. Unfortunately, covering each zone with its own PIR sensor is not always easy due to sensor placement constraints as induced by the presence of different obstacles [7] or constraints related to the smart home architecture. For instance, when several activity zones (i.e. zones of interest) are close to each other within the room, the FOV of the sensors of two neighboring zones may overlap other zone(s) of interest, hence, the FOV’s overlapping structure cannot be avoided.

The second category of systems uses binary PIR sensor networks with overlapping FOVs. Such structure suffers from invalid intersections caused by the interference between different PIR FOVs even when tracking a single target. To cope with this issue, Bo.Yang et al proposed several methods in recent years either using classifiers, which require a training phase as in [8], or without classifiers as in [9]. These methods use specific sensor-nodes with 6 PIRs per node, however, such sensor nodes may increase the data throughput due to the important number of sensors used. Also, designing such sensor nodes is not always easy in practice since it requires deep technical skills and technological knowledge. Moreover, Bo.yang et al works deal with target position coordinates as in [10]. To reduce the number of PIR sensors used in an indoor localization application, a compressive binary PIR structure was proposed in [11][12] by adding so-called multiplex masks to the PIR sensors. Nevertheless, the application in these studies [11][12] relies on some geometric information in order to enhance the location resolution which is similar to the case of study in [13]. In our case, we are not interested in the precise coordinates of the user’s position nor in enhancing the location resolution, we rather aim at estimating the probability of presence over some predefined zones of interest.

This work was funded by the french CoCaPs project issued from FUI 20. All authors are with the Univ. Orleans, INSA-CVL, PRISME, EA 4229, F45072, Orleans, France. Corresponding author: A. HADJ HENNI (raouf.hadj.henni@gmail.com)
II. ASPECTS OF THE TRANSFERABLE BELIEF MODEL

This section presents some TBM theoretical aspects which are used next in our localization algorithm.

A. Main definitions:

TBM is a theoretical framework that uses belief functions to represent knowledge about given hypotheses, but also about sets of these hypotheses. It can be considered as an alternative to Dempster-Shafer theory DST [16] with some extensions and additional tools. Among the common aspects between TBM and DST, we have the mass function denoted \(m \) and the power set \(2^\Omega \). Let the set of hypotheses \(\Omega = \{ h_1, h_2, \ldots, h_n \} \) be the Frame of Discernment (FoD), and let \(2^\Omega = \{ \emptyset, \{h_1\}, \ldots, \{ h_1, h_2 \}, \ldots, \Omega \} \) be the power set of \(\Omega \). A mass function \(m(H) \) over a hypothesis \(i.e. \) when \(H = h_i \) or over a set of hypotheses \(i.e. \) when \(H = \{ h_1, \ldots, h_j \} \), takes values in the range \([0, 1]\). It is assigned to all elements \(H \) of the power set \(2^\Omega \) and satisfies:

\[
\sum_{H \in 2^\Omega} m(H) = 1.
\]

The elements \(H \) of \(2^\Omega \) that may have \(m(H) > 0 \) are called focal elements. The set of all focal elements is denoted \(\xi \). The power set \(2^\Omega \) allows us to represent the knowledge over a set of hypotheses which represents the uncertainty when we are not sure about a singleton \(i.e. \) a single element of \(\Omega \). This is the main advantage compared to frameworks based on the probability theory such as the Bayes framework.

Other common aspects between TBM and DST are the belief function \(Bel(\cdot) \) and the plausibility function \(Pl(\cdot) \) defined for all \(H_k \subseteq \Omega \) as:

\[
Bel(H_k) = \sum_{H_i | H_i \subseteq H_k} m(H_i),
\]

\[
Pl(H_k) = \sum_{H_i | H_i \cap H_k \neq \emptyset} m(H_i).
\]

The belief \(Bel(H_k) \) (resp the plausibility \(Pl(H_k) \)) represents the lower bound (resp the upper bound) of the probability of \(H_k \) \(i.e. \)

\[
Bel(H_k) \leq Prob(H_k) \leq Pl(H_k).
\]

B. Basic combination rules:

Several combination rules exist within the TBM framework, among them, there is the conjunctive rule and its normalized version which corresponds to the DS rule, and the disjunctive rule known as the prudent rule. Let \(A_i \in 2^\Omega \), and let \(m_1, m_2 \) be mass functions obtained from two independent knowledge sources. The conjunctive rule is then:

\[
\forall A \in 2^\Omega, m_{1\cap 2}(A) = \sum_{B,C \in 2^\Omega, B \cap C = A} m_1(C) \cdot m_2(B). \quad (1)
\]

Then, the normalized conjunctive rule, \(i.e. \) DS rule is:

\[
\forall A \in 2^\Omega \setminus \emptyset, m_{1\cap 2}(A) = \frac{1}{1 - m_{1\cap 2}(\emptyset)} \cdot m_{1\cap 2}(A), \quad (2)
\]
and $m_{1,2}(\phi) = 0$. Finally, the disjunctive combination rule is:

$$m_{1,2}(A) = m_1 \cup m_2(A) = \sum_{B \cup C = A \neq \phi} m_1(C) \cdot m_2(B). \quad (3)$$

Note that all these combination rules require that both mass functions are defined over the same frame of discernment and their sources must be independent sources of evidence.

C. Operations over FODs:

This subsection presents only some operations over FODs which are used in this paper.

1) Refinement and vacuous extension: Let Ω be a frame of discernment and Ω' be a refinement of Ω, i.e., each hypothesis h_i of Ω has an image in one or in a set of hypotheses of Ω'. This means that hypotheses of Ω are more detailed in Ω' by splitting at least one hypothesis h_i of Ω into several hypotheses in Ω'. Refinement operations over FODs can be generalized to mass functions.

Let m^{Ω} be a mass function over Ω, and let $\rho()$ be the refinement function $i.e.$ $\Omega' = \rho(\Omega)$. The mass m^{Ω} can be transferred to Ω' through the vacuous extension $m^{\Omega \downarrow \Omega'}$ as follows:

$$m^{\Omega \downarrow \Omega'}(h') = \begin{cases} m^{\Omega}(h) & \text{if } h' = \rho(h) \\ 0 & \text{otherwise} \end{cases} \quad (4)$$

with $h \in \Omega$ and $h' \in \Omega'$.

2) Coarsening: Coarsening, the dual operation of refinement, reduces the size of a FoD by making it more coarse, i.e. if Ω' is a refinement of Ω ($\Omega' = \rho(\Omega)$) then Ω is a coarsening of Ω'. Nevertheless, the refinement is not always surjective i.e. some element(s) of $2^{\Omega'}$ may not have image(s) on 2^{Ω}. This issue leads to inner and outer reduction as pointed in DST [16, pp 117-118].

3) Inner and outer reduction: Inner reduction ω and outer reduction $\overline{\omega}$ are functions from 2^{Ω} to $2^{\Omega'}$ that satisfy:

$$\omega(A) = \{\omega \in \Omega \mid \rho(\omega) \subseteq A\} \quad (5)$$

$$\overline{\omega}(A) = \{\omega \in \Omega \mid \rho(\omega) \cap A \neq \phi\} \quad (6)$$

where $A \subseteq \Omega'$ and $\rho(\Omega)$. The inner (resp outer) reduction concept can be extended to mass functions as in (7) (resp in (8)):

$$m^{\Omega}(\omega) = \sum_{A \subseteq \Omega, \omega(A) = \omega} m^{\Omega}(A), \quad \forall \omega \subseteq \Omega \quad (7)$$

$$m^{\Omega}(\omega) = \sum_{A \subseteq \Omega, \overline{\omega}(A) = \omega} m^{\Omega}(A), \quad \forall \omega \subseteq \Omega \quad (8)$$

More details and examples about inner and outer reduction can be found in [17].

D. Pignistic transform

Within TBM, the pignistic probability $BetP$ can be used to transform the mass function m^{Ω} of a singleton into a probability by transferring the mass functions of an uncertainties as follows:

$$BetP^{\Omega}(C) = \frac{1}{1 - m^{\Omega}(\phi)} \sum_{A \subseteq \Omega, c \in A} \frac{m^{\Omega}(A)}{|A|} \quad (9)$$

where $|A|$ is the cardinal of A i.e. is the number of elements in A.

III. SENSORS DETAILS AND DEPLOYMENT

A. PIR sensors details

In our application, we use wall-mounted 180° PIR sensors commercialized by Legrand company and shown in Fig.2.a. Each sensor is provided along with the mask shown in Fig.2.b that can be used to cover one or several angles of view.

The provided mask is easy to cut with pliers, nevertheless, large errors on the FoV were obtained during experimental tests since the mask is not deep enough. For instance, if we cut a portion of 30° we will obtain a FoV of around 50° or more instead of 30°. To minimize such large error and obtain consistent angles w.r.t desired FoVs, we add a 3D printed shields Fig.2.c and paste them with the provided mask using standard glue gun to obtain our own multiplex masks as shown in Fig.2.d. Such a manipulation does not require deep technological knowledge nor high technical skills compared to the manipulations required for designing the specific sensor nodes as in [8]. Note that the shields used are effective, however, other shields can be investigated.

Since a PIR sensor detects human motions based on a thermal variation, it is also sensitive to any other thermal variation caused by non-human objects (e.g. heater, airflow, etc.) which may induce erroneous measurement known as false positive. In addition, such sensors may miss some human motions depending on the distance from the sensor and on the motion’s nature (large/small motion, radial/tangential motion w.r.t the sensor, etc.) which leads to false negative.

The sensors outputs are sent through a KNX communication network and are acquired using its associated ETS software.¹

B. The living lab and sensors deployment

Fig.1.a) illustrates the living lab GIS MADONAH² which is a nursing home equipped with different sensors and technologies to study senior’s behavior in order to improve his/her home support and nursing. For this purpose, and for subsequent decision making studies, we need to localize the person within some predefined zones of interest. The zoning of the living lab is shown in Fig.1.b) and obtained using seven PIR sensors along with multiplex masks with different FOVs. Each sensor has two FOVs except for purple and green sensors, and the uncovered FOVs are marked with discontinuous arcs. The living lab is divided then into thirteen different zones but note that some of these zones are not linked to activities (e.g. Zone3.a, Zone3.b and Zone6). Such zones are obtained due to the overlapping structure and can be considered as passage zones instead of activity zones. Also, very small zones are not considered due to their small size (e.g. zone between Zone6 and Zone9) since if the person moves inside them he/she will activate sensors of their large neighboring zones, hence,

¹http://www.legrandoc.com/048920
²http://www.bourges.univ-orleans.fr/madonah/index.php/experimentations
³Colors are used in order to easily distinguish the different sensors and the code of each zone.
they correspond rather to transitions. The BathRoom is not considered and the kitchen is partially considered in this paper. The bed zone is not considered since a bed rest sensor will be used subsequently.

To further investigate the impact of sensors deployment on our novel localization method, we have considered another deployment Deployment B (where Green, Purple, Yellow, and Black sensors have been moved to other walls) as shown in Fig. 1.c). Remember that we are interested in covering some specific zones of interest, hence, the DeploymentB should cover more or less the same zones as DeploymentA.

C. Zone validation:

The validation of each zone is obtained by performing several large motions inside the considered zone and by checking the activation of the sensors covering it. For example, to validate Zone10 we performed several walking motions within and around the sofa and checked that the Blue, Red and Purple sensors will activate. Note that a reasonable uncertainty on the sensor’s FOV is not really problematic as long as the zones of interest are still covered by the desired sensors. Indeed, since we are more interested next in the activities and not in the exact position coordinates, we just need to make sure that the person is inside the activity zone regardless of its size variation (e.g. ensure that the person is on the sofa regardless the shape of Zone10), consequently, the FOV’s variations are related rather to transitions.

Each of the thirteen zones has a color code corresponding to the sensor(s) covering it. With such a zoning, it is clear that false positive and false negative are critical issues. For example, if the person is moving inside Zone12 and if the red sensor is activated due to a false positive, we will receive a measurement (red + green activated) corresponding to Zone7 in Fig. 1.b). To the contrary, if the person is moving inside Zone7 and red sensor will not detect the motion due to a false negative (caused by a radial motion w.r.t red sensor) we will receive green alone as a measurement which corresponds to Zone12. Such false positive and false negative can be overcome through filtering (i.e. prediction/correction) techniques such as in our previous approach [14]. Nevertheless, the latter method cannot overcome the ambiguity issues induced by the transitions such as the one between Zone3.b and Zone3.a which sensors activation signature is the same as the signature of Zone4 in Fig. 1.b. This may easily lead to localization errors if we do not handle the transitions between zones.

IV. OUR NOVEL LOCALIZATION APPROACH

A. Problem formulation

The localization problem is formulated as a state estimation problem and solved using a prediction-correction filtering algorithm. Prediction is obtained using the past location estimates and a human motion model. Correction exploits the binary outputs provided by the PIR sensor networks. Since we will combine the prediction with the measurements data within TBM, the first step is to define the Frame of Discernment (FoD) of each source.

Let Ω_{pre} (resp Ω_{obs}) be the prediction’s FoD (resp the observation’s FoD). These two FoDs are defined for each Zone(i) as follows:

$$\Omega_{\text{pre}} = \{\text{Inside, Inside}\}, \quad (10)$$
$$\Omega_{\text{obs}} = \{\text{Inside, Neigh, Far}\}. \quad (11)$$
where \(\text{Neigh} \cup \text{Far} = \text{Inside} \). The power sets are

\[
2^{\Omega_{\text{pre}}} = \{ \phi, \text{Inside} \cup \Omega_{\text{pre}} \},
\]

\[
2^{\Omega_{\text{obs}}} = \{ \phi, \text{Inside} \cup \text{Neigh} \cup \text{Far} \}.
\]

Therefore, it is clear that \(\Omega_{\text{obs}} \) is a refinement of \(\Omega_{\text{pre}} \).

\(\Omega_{\text{pre}} \) contains two hypotheses which state that a person is either inside or outside a considered \(\text{Zone}(i) \). In fact, for each \(\text{Zone}(i) \) we only predict if the person will be inside or outside the zone, because of the motion model used as detailed further in Sect.IV-B. However, \(\Omega_{\text{obs}} \) contains more details since by considering the sensor network data instead of a single sensor data we can distinguish when the person is inside the zone, transiting to a neighbor zone \(i.e. \{ \text{Inside} \cup \text{Neigh} \} \), or outside the zone \(i.e. \{ \text{Neigh} \cup \text{Far} \} \). Because of the transition \(\{ \text{Inside} \cup \text{Neigh} \} \), \(\Omega_{\text{obs}} \) is more detailed than \(\Omega_{\text{pre}} \).

The set of focal elements for the observation is then

\[
\xi_{\Omega_{\text{obs}}} = \{ \text{Inside} \cup \text{Neigh} \cup \text{Far}, \Omega_{\text{obs}} \}.
\]

One can say that a single binary PIR output can discern only \(\text{Inside} \) and \(\text{Inside} \). However, note that we rather deal with a sensor network, hence, several binary outputs can be received within a time window that may refer to either a zone and/or a transition between zones. In fact, since the prediction requires a motion model which is defined \text{w.r.t} a time window, the measurement data will be harvested within the same time window. This can easily lead to receiving several binary PIR outputs from different zones within the same time window. Note that taking \(\Omega = \{ \text{Zone}(1), \ldots, \text{Zone}(n) \} \) as a common FoD is not consistent in our case since the prediction must be computed only for each zone separately, \text{i.e.} prediction cannot \text{d}irectly discern all zones. Moreover, the cardinal of such FoD increases with the number of zones and may lead to computational issues since the computational cost during the combinations depends on the cardinality of the FoD [18].

B. Mass functions construction

1) Prediction mass functions: The prediction step relies on the human motion model along with the \text{past} location probability results at \(t-1 \) to predict the probability of presence in each zone for the \text{current} time \(t \). The set of focal elements of \(\Omega_{\text{pre}} \) is \(\xi_{\Omega_{\text{pre}}} = \{ \text{Inside} \cup \text{Inside} \} \). The mass function \(m_{\text{pre}}^{\text{Inside}} \) of these focal elements, which is then a Bayesian mass function, is modeled for each \(\text{Zone}(i) \) as follow:

\[
m_{\text{pre}}^{\text{Inside}}(\text{Inside}, i) = (P_{i,t-1} \cdot \gamma_{\text{stay}} + \sum_{j=1}^{N_{\text{Act}}} \{(P_{j,t-1} \cdot \gamma_{\text{move}} \biggm/ \sum_{k=1}^{N_{\text{Act}}} (P_{k,t-1} \cdot \gamma_{\text{jump}})
\]

\[
m_{\text{pre}}^{\text{Inside}}(\text{Inside}, i) = (P_{i,t-1} \cdot \gamma_{\text{stay}} + \sum_{j=1}^{N_{\text{Act}}} \{(P_{j,t-1} \cdot \gamma_{\text{move}})
\]

\[
m_{\text{pre}}^{\text{Inside}}(\text{Inside}, i) = 1 - m_{\text{pre}}^{\text{Inside}}(\text{Inside}, i),
\]

where \(N_{\text{Act}}(\text{resp} N_{\text{Non-Act}}) \) is the number of Neighbor (resp. Non activated) zones of \(\text{Zone}(i) \). Besides, \((P_{i,t-1}) \) and \((P_{j,t-1}) \) are respectively the \text{past} probability of presence in \(\text{Zone}(i) \), in its neighbor zones \(\text{Zone}(j) \) and in its further zones \(\text{Zone}(k) \). \(\gamma_{\text{stay}} \), \(\gamma_{\text{move}} \) and \(\gamma_{\text{jump}} \) are the parameters of the motion model and represent respectively the probability of staying within the same zone, moving to a neighbor zone or jumping to a far zone. The probability \(\gamma_{\text{move}} \) should generally be smaller than \(\gamma_{\text{stay}} \) and the probability \(\gamma_{\text{jump}} \) should be far smaller but not null \text{i.e.} \(\gamma_{\text{stay}} > \gamma_{\text{move}} >> \gamma_{\text{jump}} \). This rule is inspired from the following reasoning: Firstly, the chances that a person jumps to a far zone within one second time window are null, however, \(\gamma_{\text{jump}} \) should be very small but not zero to allow to recover from a failure at next time windows as shown in [6]. Secondly, \(\gamma_{\text{move}} \) and \(\gamma_{\text{stay}} \) should be equal in theory since if a person is inside a \(\text{Zone}(i) \) at \(t-1 \), then, he/she could either stay in the same zone or move to a neighbor zone at the next time \(t \). Nevertheless, even if the person decides to move into a neighbor zone, the person could be either \text{completely} inside the neighbor zone, or still transiting between the two zones due to the uncertainty on the FoV of the PIR sensors. Since a transition is regarded as being inside both zones, then, even if the person decides to move to a neighbor zone at next time, there is a chance that he/she will partially be inside the previous zone (\text{partially stay}). In other words, the possibility of transition is included in \(\gamma_{\text{stay}} \). Consequently, the probability \(\gamma_{\text{stay}} \) should be higher than \(\gamma_{\text{move}} \) in practice.

Note that no automatic way exists to estimate these parameters, nevertheless, changing the values of these parameters does not greatly impact the localization results as long as the rule \(\gamma_{\text{stay}} > \gamma_{\text{move}} >> \gamma_{\text{jump}} \) is satisfied as shown further in Sect. V-B. Besides, this model is also used in [6] and [14], therefore, it will be more consistent next to compare the results of the TBM localization algorithm \text{w.r.t} the ones of the previous algorithm [14].

2) Observation mass functions: For each \(\text{Zone}(i) \), the masses \(m_{\text{obs}}^{\Omega_{\text{obs}}} \) of the focal elements are modeled over \(\Omega_{\text{obs}} \) as follow:

\[
m_{\text{obs}}^{\Omega_{\text{obs}}}(\text{Inside}, i) = \frac{N_{\text{Act}}(i) \cdot \mu(i)}{N_{\text{Cov}}(i) \cdot N_{\text{Tot akt}}}
\]

\[
m_{\text{obs}}^{\Omega_{\text{obs}}}(\text{Neigh} \cup \text{Far}, i) = \frac{N_{\text{Non-Act}}(i) \cdot \mu(i)}{N_{\text{Cov}}(i) \cdot N_{\text{Tot akt}}}
\]

where \(N_{\text{Act}}(i) \) and \(N_{\text{Non-Act}}(i) \) are the number of activated and non activated sensors in \(\text{Zone}(i) \). \(N_{\text{Tot akt}} \) is the total number of activated sensors of the whole sensor network at time \(t \). \(N_{\text{Cov}}(i) = N_{\text{Act}}(i) + N_{\text{Non-Act}}(i) \) is the number of sensor(s) covering \(\text{Zone}(i) \). In fact, the belief of being \(\text{Inside} \) \(\text{resp} \text{ Neigh} \cup \text{Far} = \text{Inside} \) a \(\text{Zone}(i) \) depends on the number of its activated \(N_{\text{Act}}(i) \) sensor(s) and non activated \(N_{\text{Non-Act}}(i) \) sensor(s) at time window \(t \), against both the number of sensor(s) covering \(\text{Zone}(i) \) \(\text{i.e.} N_{\text{Cov}}(i) \) and the total activated sensors in the whole networks \(N_{\text{Tot akt}} \) at time window \(t \). Nevertheless, to obtain appropriate mass functions, for
example, a unit mass \(m_{\text{obs}}^{\text{obs}}(\text{Inside}, i) \) in Zone(\(i \)) when all its covering sensor(s) are activated and when their number is equal to the number of total activated sensor(s) (i.e., \(m_{\text{obs}}^{\text{obs}}(\text{Inside}, i) = 1 \) when \(N_{\text{Act}}(i) = N_{\text{Tot_act}} \)), we add the normalization parameter \(\mu(i) \). The latter corresponds to \(N_{\text{Act}}(i) \) since it will be simplified with \(N_{\text{Tot_act}} \) in such example, and omitting it may lead to inconsistent mass functions generation.

Indeed, mass normalization is sometime necessary, for example, in [19] authors added a normalization factor during mass functions generation to obtain appropriate mass functions. Note that if the number of activated sensors is null in a Zone(\(i \)) and if the total number of activated sensors is not null, then the \(m_{\text{obs}}^{\text{obs}}(\text{Neigh} \cup \text{Far}, i) \) is set to one. Also, if there is no measurement at time \(t \), we do not compute observation mass functions since we will keep the previous location results.

- \(m_{\text{obs}}^{\text{obs}} \) for Inside \(\cup \) Neigh during a transition:
 Transition between zones can be seen as being Inside several zones. In fact, a transition between two zones \(\text{Inside}(i) \cup \text{Neigh}(i) \) can be seen as \(\text{Inside}(i) \cup \text{Inside}(j) \) with \(j \) related to Zone(\(j \)) which is the neighbor zone of Zone(\(i \)) involved in the transition. Therefore, constructing mass function for a transition \(\text{Inside} \cup \text{Neigh} \) is similar to constructing a mass for Inside for several zones. Consequently, the transition mass function depends on the number of activated sensor(s) in each involved zone, against both the number of sensor(s) covering each zone and the total activated number at the time window \(t \). This leads to (18), which shares similar parameters with (16), as follows:

\[
m_{\text{obs}}^{\text{obs}}(\text{Inside} \cup \text{Neigh} = \text{Transition}, i) = \frac{(N_{\text{Act}}(i) + N_{\text{Act}}(j)) \cdot \mu_{\text{transit}}(i \cup j)}{(N_{\text{Common}}(i) + N_{\text{Common}}(j)) \cdot N_{\text{Tot_act}}}
\]

(18)

where \(\mu_{\text{transit}}(i \cup j) \) is the normalization parameter for transitions defined as:

\[
\mu_{\text{transit}}(i \cup j) = (N_{\text{Act}}(i) + N_{\text{Act}}(j)) - N_{\text{Common}}
\]

\(N_{\text{Common}} \) is the number of common activated sensors between zones in the transition and we subtract it to have \(\mu_{\text{transit}}(i \cup j) \leq N_{\text{Tot_act}} \) (accordingly, to have \(m_{\text{obs}}^{\text{obs}}(\text{Inside} \cup \text{Neigh}, i) \leq 1 \)). The mass in (18) corresponds to a transition mass function involving two zones, nevertheless, it can be extended if there are additional zones involved.

Note that for the zones involved in a transition, their corresponding \(m_{\text{obs}}^{\text{obs}}(\text{Inside}) \) and \(m_{\text{obs}}^{\text{obs}}(\text{Neigh} \cup \text{Far}) \) are set to zero, since during a transition we cannot discern between Inside and Neigh \(\cup \) Far for involved zones.

- \(m_{\text{obs}}^{\text{obs}} \) over \(\Omega_{\text{obs}} \):
 In a non-transition case, we have \(m_{\text{obs}}^{\text{obs}}(\text{Inside}, i) + m_{\text{obs}}^{\text{obs}}(\text{Neigh} \cup \text{Far}, i) \leq 1 \). Also, during a transition case we have \(m_{\text{obs}}^{\text{obs}}(\text{Inside} \cup \text{Neigh}, i) \leq 1 \). Therefore, to get \(\sum_{H \in \Omega_{\text{obs}}} m_{\text{obs}}^{\text{obs}}(H) = 1 \) in both cases we define:

\[
m_{\text{obs}}^{\text{obs}}(\Omega_{\text{obs}}, i) = 1 - \left(m_{\text{obs}}^{\text{obs}}(\text{Inside} \cup \text{Neigh}, i) + m_{\text{obs}}^{\text{obs}}(\text{Neigh} \cup \text{Far}, i) + m_{\text{obs}}^{\text{obs}}(\text{Inside}, i) \right)
\]

(19)

C. Appropriate discounting factor and mass weighting

When fusing data from different sources, it is judicious to weight the provided data w.r.t to the confidence of its corresponding source. In our case, the observation source is less reliable than the prediction source, therefore, the observation mass functions \(m_{\text{obs}}^{\text{obs}} \) are weighted using the discounting defined by Shafer [16] as shown in (20).

\[
\begin{align*}
\alpha_{\text{obs}} m_{\text{obs}}^{\text{obs}}(C) &= (1 - \alpha_{\text{obs}}) \cdot m_{\text{obs}}^{\text{obs}}(C), \forall C \subseteq \Omega_{\text{obs}} \\
\alpha_{\text{obs}} m_{\text{obs}}^{\text{obs}}(\Omega_{\text{obs}}) &= (1 - \alpha_{\text{obs}}) \cdot m_{\text{obs}}^{\text{obs}}(\Omega_{\text{obs}}) + \alpha_{\text{obs}} m_{\text{obs}}^{\text{obs}}(\Omega_{\text{obs}}) + \alpha_{\text{obs}} m_{\text{obs}}^{\text{obs}}(\Omega_{\text{obs}})
\end{align*}
\]

(20)

where \(\alpha_{\text{obs}} m_{\text{obs}}^{\text{obs}} \) is the weighted mass. \(\alpha_{\text{obs}} \) is the discounting factor and \((1 - \alpha_{\text{obs}}) \) is the confidence in the observation.

Nevertheless, the choice of an appropriate value for the discounting factor is challenging. This value can be estimated \textit{a priori} through a learning phase e.g. [20] or evaluated \textit{a posteriori} after treating beliefs of the different sources based on distances [21] and conflict measure [22].

In our case, the observation source \(m_{\text{obs}}^{\text{obs}} \) is reliable but not at 100% (e.g due to delayed data within a time window, false positive/negative, ... etc.) let say \((1 - \alpha_{\text{obs}}) \in [0.7, 0.95]\) i.e. \(\alpha_{\text{obs}} \in [0.05, 0.3] \). Unfortunately, choosing an inappropriate value of \(\alpha_{\text{obs}} \) in this range can lead to counter-intuitive results during DS normalization over each zone, hence, leading to inconsistent location results as shown further in Example01 of Appendix B. Note that this counter-intuitive issue in our case is different from the famous Zadeh’s counter-intuitive issue [23]. Indeed, Zadeh’s issue can occur when a source has a so called dictatorial power as shown in [24], however, in our case the counter-intuitive issue may occur since the belief \(m_{\text{pre} \text{obs}}^{\text{obs}}(\text{Inside}, Z_i) \) of some zone(s) may increase significantly compared to the other zones during DS normalization since each zone has its own corresponding mass of empty set. Consequently, relying on a priori learning phase [20] or on a posteriori evaluation as in [21] [22] may not necessarily lead to the appropriate discounting, since in our case, this appropriateness does, not only depend on the reliability of the source, but it also depends on the behavior of the DS normalization function as illustrated in Appendix B. Therefore, the discounting factor(s) of information source(s) should satisfy the constraint (21) bellow (See Appendix B for demonstration).

\[
(1 - \alpha_1) \cdot \ldots \cdot (1 - \alpha_n) \leq \text{max}(m_{\phi})
\]

(21)

where: \(n \) is the number of sources to be discounted. \(\text{max}(m_{\phi}) \) is the maximum value that mass of empty set of each zone should not exceed to avoid counter-intuitive results.

As a special case, if the \(n \) sources are considered \textit{equally} reliable, this leads to \((1 - \alpha)^n \leq \text{max}(m_{\phi}) \) which means that they should be equally discounted with \(\alpha \geq 1 - \sqrt[3]{\text{max}(m_{\phi})} \) to ensure avoiding counter intuitive results. Finally, we show
in Appendix B that $\max(m_\phi) \approx 0.75$, and since we discount only the observation source i.e. $n = 1$, hence, the appropriate α_{obs} for observation should satisfy the following:

$$1 - \alpha_{obs} \leq \max(m_\phi) \approx 0.75 \Rightarrow \alpha_{obs} \geq 0.25 \quad (22)$$

We take $\alpha_{obs} = 0.25$ to maximize beliefs from observation.

D. Combination and state filtering

We should note that prediction and observation are independent sources of evidence since the construction of the prediction mass functions depends only on the human motion model and the past results at $t - 1$ whatever the state of the sensors (i.e. of the observation mass functions) at the current time t.

To combine prediction with observation, the mass functions must be defined over the same FoD. The challenge here is on which FoD should we combine. At first time, we combine prediction and observation masses over Ω_{obs} since otherwise we will loose the transition information. Consequently, the prediction and observation masses over t time sensors (model and the past results at t) prediction mass functions depends only on the human motion Δ_i.

We use DS combination rule to combine the prediction with the observation. Nevertheless, during a transition the DS normalization may cause a problem since the zones involved in the transition will have the null mass of the empty set (hence no DS normalization) in contrary to the rest of the zones, and this can further impact the location results. To cope with this issue, we switch to the disjunctive rule, known as the prudent rule, during a transition since the disjunctive rule does not induce the mass of the empty set during the combination. Therefore, all zones will be treated judiciously during a transition whether it is involved in the transition or not. The a posteriori combined mass is:

$$m_{\Omega_{obs}}(\text{Inside}, i) = m_{\Omega_{pre}}(\text{Inside}, i)$$

$$m_{\Omega_{obs}}(\text{Neigh} \cup \text{Far}, i) = m_{\Omega_{pre}}(\text{Inside}, i).$$

Projection in (24) is obtained using the inner reduction. In fact, during a transition, the a posteriori mass obtained using the disjunctive rule $m_{1,2}^{\Omega_{obs}}(\text{Inside} \cup \text{Neigh})$ can be allocated either to $m_{1,2}^{\Omega_{pre}}(\text{Inside})$ if using the inner reduction, or to $m_{1,2}^{\Omega_{pre}}(\text{Inside})$ if using the outer reduction. However, we have noticed previously in IV-B that a transition $\text{Inside} \cup \text{Neigh}$ corresponds rather to Inside in several zones, hence, for each zone it is rather judicious to allocate $m_{1,2}^{\Omega_{obs}}(\text{Inside} \cup \text{Neigh})$ to $m_{1,2}^{\Omega_{pre}}(\text{Inside})$ and not to $m_{1,2}^{\Omega_{pre}}(\text{Inside})$. Also, when there is no transition, inner reduction leads to the same mass as the outer reduction since only $m_{1,2}^{\Omega_{obs}}(\text{Neigh})$ can make a difference (it can be either allocated to $m_{1,2}^{\Omega_{pre}}(\text{Inside})$ if outer reduction, or to the empty set if inner reduction). Nevertheless, $m_{1,2}^{\Omega_{obs}}(\text{Neigh})$ is null when there is no transition because it is obtained by $m_{1,2}^{\Omega_{pre}}(\text{Neigh} \cup \text{Far}) \cdot m_{1,2}^{\Omega_{obs}}(\text{Inside} \cup \text{Neigh})$ and $m_{1,2}^{\Omega_{obs}}(\text{Inside} \cup \text{Neigh})$ is null in non-transition case.

The second operation transforms the projected mass functions into probabilities using the pignistic transform $\text{Bet}^{\Omega_{obs}}(\text{Inside})$ over each Zone(i) as follows:

$$P(\text{Inside}, i) = \text{Bet}^{\Omega_{pre}}(\text{Inside}, i) = \frac{1}{1 - m_{\Omega_{pre}}(\phi)} \cdot \left(m_{1,2}^{\Omega_{pre}}(\text{Inside}, i) + m_{1,2}^{\Omega_{pre}}(\text{Outside}, i) \right)$$

where $m_{\Omega_{pre}}(\phi)$ is the combined mass and $m_{\Omega_{pre}}(\phi)$ is the mass of the empty set after combination and projection.
Algorithm 1 Get the location probability distribution

Require: \(\Omega_{\text{pre}} = \{ \text{Inside, Inside} \} \)
\(\Omega_{\text{obs}} = \{ \text{Inside, Neigh, Far} \} \)
\(\xi_{\text{obs}} = \{ \text{Inside, Inside \cup Neigh, Neigh \cup Far, \Omega_{\text{obs}}} \} \)

for each time step \(t \) do
 for each Zone\((i)\) do
 1) Compute mass functions:
 get \(m_{\text{pre}}^{\Omega_{\text{pre}}} (H, i) \) \(\forall H \in \xi_{\text{pre}} \) using (13)-(14).
 get \(m_{\text{obs}}^{\Omega_{\text{obs}}} (C, i) \) \(\forall C \in \xi_{\text{obs}} \) using (15)-(18).
 2) Weight observation mass functions \(m_{\text{obs}}^{\Omega_{\text{obs}}} : \)
 get \(\alpha m_{\text{obs}}^{\Omega_{\text{obs}}} (C, i) \) \(\forall C \in \xi_{\text{obs}} \) using (19).
 3) State filtering:
 3.a) Redefine \(m_{\text{pre}}^{\Omega_{\text{pre}}} \) over \(\Omega_{\text{obs}} \) using vacuous extension:
 \[m_{\text{pre}}^{\Omega_{\text{pre}}+\Omega_{\text{obs}}} (C, i) = \begin{cases}
 m_{\text{pre}}^{\Omega_{\text{pre}}} (H, i) & \text{if } C = \rho (H) \\
 0 & \text{else}
 \end{cases} \]
 \(\forall C \in \xi_{\text{obs}}, \text{ } \forall H \in \xi_{\text{pre}} \)
 3.b) Combine \(m_{\text{pre}}^{\Omega_{\text{pre}}} \) with \(m_{\text{obs}}^{\Omega_{\text{obs}}} \) using (20):
 \(\text{if} \text{ Transition measurement case then} \)
 \(m_{1,2}^{\Omega_{\text{obs}}} (C, i) = m_{\text{pre}}^{\Omega_{\text{pre}}} \oplus m_{\text{obs}}^{\Omega_{\text{obs}}} (C, i) \)
 \(\text{else} \)
 \(m_{1,2}^{\Omega_{\text{obs}}} (C, i) = m_{\text{pre}}^{\Omega_{\text{pre}}} \oplus m_{\text{obs}}^{\Omega_{\text{obs}}} (C, i) \oplus \alpha m_{\text{obs}}^{\Omega_{\text{obs}}} (C, i) \)
 \(\text{end if} \)
 \(\forall C \in \xi_{\text{obs}} \)
 4) Location probability distribution:
 4.a) Redefine \(m_{1,2}^{\Omega_{\text{obs}}} \) over \(\Omega_{\text{pre}} \) using (22):
 \(m_{1,2}^{\Omega_{\text{obs}}} (H, i) = \sum_{C \in \xi_{\text{obs}}, \rho (H) \subseteq C} m_{1,2}^{\Omega_{\text{obs}}} (C, i) \)
 4.b) Presence probability for each Zone\((i)\) using (24):
 \(P(\text{Inside}, i) = \text{Bet} P(\Omega_{\text{pre}} (\text{Inside}, i) \)
 4.c) Normalize the probability distribution using (25):
 \(P_{\text{Norm}} (\text{Inside}, i) = \frac{\sum_{k=1}^{N} P(\text{Inside}, k)}{\sum_{k=1}^{N} P(\text{Inside}, k)} \)
 end for
end for

Note that when using DS combination, the mass of the empty set is set to zero after DS normalization in the credal level. Also, when using the disjunctive combination, this mass is also null since it cannot be obtained. Hence, at pignistic level, \(m_{\text{obs}}^{\Omega_{\text{obs}}} (\emptyset) = 0 \). Finally, \(m_{\text{pre}}^{\Omega_{\text{pre}}} (\emptyset) = m_{\text{obs}}^{\Omega_{\text{obs}}} (\emptyset) \) during the projection, therefore, \(m_{\text{pre}}^{\Omega_{\text{pre}}} (\emptyset) = 0 \) at pignistic level.

Location probability for each zone \(P(\text{Inside}, i) \) becomes:
\[
P(\text{Inside}, i) = \text{Bet} P(\Omega_{\text{pre}} (\text{Inside}, i) = \\
\left(m_{1,2}^{\Omega_{\text{obs}}} (\text{Inside}, i) + \frac{m_{\text{pre}}^{\Omega_{\text{pre}}} (\Omega_{\text{pre}}, i)}{2} \right) \] (26)

To compare the TBM based results with our previous work [14], we need a normalized location probability distribution which is obtained as follows for all zones \(i \)
\[
P_{\text{Norm}} (\text{Inside}, i) = \frac{P(\text{Inside}, i)}{\sum_{k=1}^{N} P(\text{Inside}, k)} \] (27)

where \(N \) is the total number of zones.

Finally, the different steps of the localization algorithm are summarized in the Algorithm 1.

V. EXPERIMENT RESULTS AND DISCUSSION

First of all, to show the interest of the transition handling, we have performed a simple scenario Scenario01 shown in Fig.4.a) with deploymentA. The results of this scenario, which are detailed in V-A, highlights the caution of the TBM method during transitions and shows its interest for subsequent decision-making study. Secondly, we have tested both localization methods for two scenarios with different deployments and configurations as shown in V-B.

The measurements are collected based on a one second time window so that the fusion of the observation with the prediction would be consistent, since if the time window is very large e.g. ten seconds, the person can move to any far zone in the next time window and the prediction defined in (14) will not be reasonable. Also, to have a fair comparison, the same initialization was taken as equi-probable for both methods. An example of a placed PIR sensor along with its multiplex mask is shown in Fig.3, and it corresponds to the Red sensor in Fig.1.b) and in Fig.1.c).

The proposed experiment scenarios are shown in Fig.4. In Scenario01, the person has left the bed to reach the table (e.g. to take a glass of water from the table) then went on his/her way to sit down on the chair in the bed room (e.g. to watch TV). To further test our novel method, we have added the Scenario02 which is more complete and solicits almost all the zones of interest.

A. Results highlighting the interest of transition handling

From Fig.5.a) we can see that the initialization is the same for both algorithms (each zone has a probability of 0.076 \(= 1/13 \)). The person started moving at \(t = 6s \) and reached zone3.b at \(t = 10s \) which corresponds to Fig.5.b). During the next time window \(t = 11s \), the person was transiting between zone3.b and zone6 and we can see from Fig.5.c) that our novel TBM algorithm results are more consistent compared to our previous algorithm results. In fact, the received measurement at \(t = 11s \) is Yellow, Orange and Green sensors are activated and such measurement can correspond either to a transition (zone3.b \(\cup \) zone6) or to a transition (zone3.b \(\cup \) zone3.a = zone4 with Green is in false positive). Hence, it is clear that there is some uncertainties over these

\begin{figure}[h]
\centering
\subfloat[Left side view]{
\includegraphics[width=0.4\textwidth]{left_side_view.png}}
\subfloat[Right side view]{
\includegraphics[width=0.4\textwidth]{right_side_view.png}}
\caption{A placed PIR sensor with our multiplex mask}
\end{figure}
zones and in this situation the TBM based algorithm is prudent since it did not really prefer a zone over the involved zones due to the disjunctive rule which is less informative. Nevertheless, the involved zones have higher probabilities than the non-involved zones and the maximum probability corresponds to zone3.b which is consistent w.r.t the ground truth. On the other hand, our previous Bayesian based algorithm did not handle the uncertainty induced during the transition since it has preferred zone4 (high difference of probability between zone4 and zone6) which is not consistent w.r.t. the ground truth since the person was rather transiting between zone3.b and zone6 and he was not inside zone4.

Our previous algorithm may recover from such transition errors depending on the next situations, for example, at $t = 22s$ we can see from Fig.5.d) that the previous algorithm has recovered from the transition error caused at $t = 11s$. Unfortunately, such recovering requires time and depends on the next motions and this might not be always good for subsequent decision making study. Indeed, after $t = 22s$ the person left zone9 to go to zone2 and at $t = 27s$ the person was transiting between zone3.a \cup zone2 to reach the chair. At this $t = 27s$ time window, we can see from Fig.5.e) that TBM results are consistent since zone3.a and zone2 have the highest probabilities in contrary to the previous algorithm results where the highest probabilities are in zone3.b and zone6. This error in our previous algorithm at $t = 27s$ has induced other errors at the next time window $t = 28s$ where the person has reached the chair in zone2. We can see from 5.f) that at $t = 28s$ the TBM algorithm results are consistent, however, the previous algorithm results are not consistent since probability in zone2 is not the highest yet. This is due to the erroneous results caused by the successive transitions from $t = 22s$ to $t = 27s$.

From $t = 28s$ to $t = 34s$ no sensor was activated since no sufficient motion has been performed, therefore, the same location results are kept without updating the location results i.e. the probabilities. At $t = 35s$ the person performed a sufficiently large motion in the chair and the Black sensor was activated, at this moment, the previous algorithm started recovering and we can see from 5.g) that zone2 has the highest probability in both algorithms. Nevertheless, the probability of zone2 for the previous algorithm is not significant yet w.r.t. zone3.a (small difference of probability between zone2 and zone3.a) and the previous algorithm has to wait for another motion to get more significant probabilities. Hence, for the time interval $t = 27s$ to $t = 35s$ we can say that the person was in zone2 relying on TBM algorithm results, however, we cannot conclude yet if we rely on the previous algorithm results. Consequently, if a decision has to be made within this time interval $[27–35]$, it can be easily made using TBM results since the person was in the same zone during this interval, however, the location results was not stable and inconsistent when using our previous algorithm for this same time interval. Note that for both algorithms, some location errors may occur (e.g. due to successive false positives, missing data during time window sampling, etc.), however, both can recover from such errors once the measurements at next time window(s) are correct.

B. Impact of durable sensors faults, deployment, and setting

To evaluate both methods over different setups and scenarios, we compute the localization error rate as follows:

$$\text{Error rate} = \frac{N_{\text{False}}}{N_{\text{all}}} \times 100$$

where N_{False} is the number of measurement time windows when the relatively highest probability is assigned to a wrong zone. N_{all} is the total number of time windows.

1) Impact of durable sensors faults: False positive and false negative are well known faults for PIR sensors. In our case, an additional aspect of these faults is pointed out which depends on the duration of the fault within the sensor network. This aspect concerns fleeting fault(s) and durable fault(s). A fleeting fault is a false positive/negative which lasts for one time window/ Such kind of faults could be overcome through filtering.

A durable fault is a false positive/negative which lasts for several successive time windows. For example, when a person enters Zone09 she will be localized properly as it was the case in Fig.5.d). However, if the person performs successive small motions that activate only Purple sensor, a durable fault will be induced and the probability will gradually decrease in Zone09 and increase in Zone05. Nevertheless, when the person performs a large motion, she will be localized again in Zone09.

We can see from Table I and II that the error rate of the TBM method is always smaller than the error rate of our previous method. Also, when omitting the errors caused by the durable faults, the error rate of the TBM method becomes much smaller (around 5% or less for almost all cases). This is not the case for the previous method since the error rate is still high because of the additional errors caused during transitions. Finally, the error rates of the TBM method are smaller than the sensors network fault rate4.

4Total sensor network faults rate is obtained by checking the consistency of the received measurements of each time window of the data set w.r.t ground truth.
Fig. 5: Comparison of the novel TBM algorithm results with the results of our previous algorithm [14]. Red square corresponds to the person’s position inside a zone while the red arrow corresponds to the transition.

2) Impact of sensors deployment: Depending on the case of study, PIR sensors deployment may reduce the sensors fault rate. For example, in [12] authors showed that an adequate sensors deployment can improve the tracking performance. In [25], authors showed that different sensor nodes orientations can lead to different tracking accuracy. Nevertheless, in both studies, the location accuracy concerned the error in position coordinates and not the probability of presence in some defined zones of interests. Also, their experiments did not have severe constraints on sensors placement (square areas are considered and no zone of interest constraints).

In our case of study, the sensors can be placed only in some specific places within the smart-home due to architectural constraints (windows, furniture, .. etc.) in one hand, and due to the zones of interest covering in the other hand. Therefore, an optimal sensors deployment is not always easy to implement. Moreover, location errors for a specific sensors deployment may increase or decrease depending on the considered scenario along with the durable sensors faults caused by the nature of human motion during the scenario. In fact, deploymentA shows less location errors compared to deploymentB in the case of scenario01 which is the opposite in the case of
Consequently, the location errors rate related to a sensors deployment depends also on the scenario and on the nature of the human motions, and these last should be considered when looking for optimal deployment.

3) Impact of parameters setting: In a first part, we will analyze the impact of the parameters setting within a same scenario to check the consistency of the rule $\gamma_{\text{stay}} > \gamma_{\text{move}} \gg \gamma_{\text{jump}}$. In the second part, we will analyze the impact of the parameters setting for different scenarios.

For the first part, we consider the results of the scenario01 shown in Table I. We can see from this table that location the error rates increased relatively when $\gamma_{\text{stay}} = \gamma_{\text{move}}$ and that they are still high even when omitting errors caused by durable faults. This is because when $\gamma_{\text{stay}} = \gamma_{\text{move}}$, the TBM method (and also our previous method) becomes less robust against fleeting faults. For this reason, and as explained in IV-B1, we take the rule $\gamma_{\text{stay}} > \gamma_{\text{move}} \gg \gamma_{\text{jump}}$ in practice.

Now, let us consider that this rule is satisfied (i.e. by considering only the two settings $\gamma_{\text{stay}} = 0.65$ and $\gamma_{\text{stay}} = 0.85$). We can see from Table I that the best location error rate is obtained with the setting $\gamma_{\text{stay}} = 0.85$ in the case of scenario01, however, the best error rate is rather obtained with $\gamma_{\text{stay}} = 0.65$ in the case of scenario02. From this analysis, one can say that the choice of the parameters values depends on the scenario, however, even for a same data set, the parameters setting may increase/decrease the location error rate caused by durable faults. For example, for the scenario02 with deployment B, the location errors caused by the durable faults was 10.5% for $\gamma_{\text{stay}} = 0.65$ and 9.2% for $\gamma_{\text{stay}} = 0.85$. In fact, we believe that the parameters values should change w.r.t. to the nature of the human motion during a scenario, for example, we should increase γ_{stay} when a small motion is detected, and decrease it when a large motion is detected. We believe that such switching may reduce location errors caused by durable sensor faults, if these faults are detected, which constitutes a track for our next research.

C. Discussion

In V-A, we have shown how the TBM method is prudent during transitions and how its location results could be more significant for subsequent decision-making studies compared to our previous localization algorithm [14]. Also, we have shown, with different scenarios and setups in V-B, that the error rates of our previous method are always higher than the error rates of the TBM method. This is caused by the additional errors induced during the transitions between zones that our previous algorithm cannot handle.

We have seen that the TBM algorithm can deal with fleeting sensors network faults, however, it is sensitive to durable sensors faults. Also, we have shown that the localization performance does not only depend on the sensors deployment, but also on the scenario and nature of the human motions during the scenario. Since appropriate sensors deployment cannot always be achieved in practice, one should rather detect and deal with durable faults to increase the location-tracking performances which is the aim of our future work. Finally, the impact of the motion model parameters setting also depends on the scenario along with the nature of the human motions, and we believe that changing the values of the parameters setting depending on the nature of the human motions constitutes the track to deal with durable faults in our future work.

In our long-term project, other sensing modalities will be added and a decision making study will use our data fusion results. Consequently, our long-term studies concerns a state filtering by combining uncertain data from different modalities for a subsequent decision-making study. The TBM seems to be the coherent theoretical framework for our case since it has already shown its advantages in combining uncertain data for both decision making applications such as medical diagnosis [26] or target identification [27], and also in state filtering [28].

Finally, note that for multiple persons localization, it is more challenging when using overlapping binary PIR structure since received measurements obtained when multiple persons are moving may easily increase location errors. Indeed, Bo Yang et al pointed out this issue in [25] and solved it using classifiers with a learning phase [8] or relying on clustering [9]. Since other sensing modalities will be further used in our long-term project, hence, we will exploit multi-modal data fusion approach to deal with the multiple person issue without learning phases or clustering requirement.
VI. CONCLUSION

In this paper, we have firstly enhanced our previous multiplex binary localization approach to overcome the ambiguity in the detection of transitions between zones, by using a filtering technique based on the transferable belief model (TBM) instead of the Bayesian framework. Secondly, we have presented a new way for choosing an appropriate discounting factor to weight an information source with the other source(s), relying on the analysis of the Dempster-Shafer normalization function. The desired zones of interest are covered with a reduced number of sensors thanks to the overlapping multiplex structure. Our novel method is robust against fleeting sensor faults thanks to filtering, and against reasonable uncertainty on sensor’s field of view (which is related to transition) thanks to the uncertainty handling using the TBM framework. Finally, experiments using commercialized single PIR sensors, with modified field of view, showed the advantages of the TBM method w.r.t our previous Bayesian method.

Our next work will consist in enhancing the location-tracking results by dealing with durable sensors faults, and addressing the location-tracking of multiple humans.

APPENDIX A

ILLUSTRATIVE EXAMPLE WITH Deployment A

This example shows the inappropiate location results induced if we use the DS rule during a transition. Let’s consider the transition Z3.a ∩ Z3.b where the person left Z6 to go to Z2. In this case, we will logically have: $m_{pre}^{\Omega_{obs}} (Inside, Z3.b) = m_{pre}^{\Omega_{obs}} (Inside, Z3.a) > m_{pre}^{\Omega_{obs}} (Inside, Z4)$. Let’s say their values are: $m_{pre}^{\Omega_{obs}} (Inside, Z3.b) = 0.75$, $m_{pre}^{\Omega_{obs}} (Inside, Z3.a) = 0.6$, $m_{pre}^{\Omega_{obs}} (Inside, Z4) = 0.3$. Also, for the observation we assume that Orange and Yellow sensors are activated due to this transition, hence:

$m_{obs}^{\Omega_{obs}} (Inside, Z4) = m_{obs}^{\Omega_{obs}} (Inside ∪ Neigh, Z3.a) = m_{obs}^{\Omega_{obs}} (Inside ∪ Neigh, Z3.b) = 1$.

After observation and mass discounting, we obtain:

$\alpha m_{obs}^{\Omega_{obs}} (Inside, Z4) = \alpha m_{obs}^{\Omega_{obs}} (Inside ∪ Neigh Z3.a) = \alpha m_{obs}^{\Omega_{obs}} (Inside ∪ Neigh Z3.b) = 0.75$

$\alpha m_{obs}^{\Omega_{obs}} (\Omega_{obs}, Z4) = \alpha m_{obs}^{\Omega_{obs}} (\Omega_{obs}, Z3.a) = \alpha m_{obs}^{\Omega_{obs}} (\Omega_{obs}, Z3.b) = 0.25$

Conjunctive combination results are then:

$m_{1/2}^{\Omega_{obs}} (Inside, Z3.b) = 0.75 > m_{1/2}^{\Omega_{obs}} (Inside, Z3.a) = 0.6 > m_{1/2}^{\Omega_{obs}} (Inside, Z4) = 0.3$

With: $m_{1/2}^{\Omega_{obs}} (\phi, Z3.b) = 0 = m_{1/2}^{\Omega_{obs}} (\phi, Z3.a)$. However, $m_{1/2}^{\Omega_{obs}} (\phi, Z4) \neq 0 = 0.525$.

The conjunctive combination results are consistent with the proposed scenario. However, the DS normalization leads to:

$m_{1/2}^{\Omega_{obs}} (Inside, Z3.b) = 0.75$. But:

$m_{1/2}^{\Omega_{obs}} (Inside, Z3.a) = 0.6 < m_{1/2}^{\Omega_{obs}} (Inside, Z4) = 0.63$

which is not consistent w.r.t the scenario.

Now, if we use the disjunctive combination we obtain:

$m_{1/2}^{\Omega_{obs}} (Inside ∪ Neigh, Z4) = 0.3$

$m_{1/2}^{\Omega_{obs}} (Inside ∪ Neigh, Z3.a) = 0.42$

$m_{1/2}^{\Omega_{obs}} (Inside ∪ Neigh, Z3.b) = 0.6$

After inner reduction (24) we will get:

$m_{1/2}^{\Omega_{pre}} (Inside, Z3.b) = 0.6 > m_{1/2}^{\Omega_{pre}} (Inside, Z3.a) = 0.42 > m_{1/2}^{\Omega_{pre}} (Inside, Z4) = 0.3$

We can see that the disjunctive combination results are consistent w.r.t the scenario while considering the closed world property. For such a reason, we use the disjunctive combination instead of the DS combination during transitions.

APPENDIX B

APPROPRIATE DISCOUNTING FACTOR

As evoked in IV-C, the appropriate value of α_{obs} is chosen by analyzing the behavior of the DS normalization function. In fact, if we analyze this function ($DS_{norm}(m_{\phi}) = \frac{1}{1 + m_{\phi}}$) w.r.t the mass of the empty set m_{ϕ} as shown in Fig.6, we can see that $DS_{norm}(m_{\phi})$ can be divided into three lines with different slopes which intersect around 0.75 for line A and line B, and around 0.9 for line B and line C. Since each zone will have its own mass of empty set $m_{pre \cap obs}(\phi, Z_i)$ during the non-transition cases (in transition cases there is no $m_{pre \cap obs}(\phi, Z_i)$ because the disjunctive rule is used), hence, the combined mass $m_{pre \cap obs}(Inside, Z_i)$ of each zone obtained by the conjunctive rule will increase during the DS normalization. Unfortunately, the masses $m_{pre \cap obs}(Inside, Z_i)$ will increase differently depending on the $m_{pre \cap obs}(\phi, Z_i)$ obtained for each zone, especially, this difference becomes more important and problematic when the different $m_{pre \cap obs}(\phi, Z_i)$ do not belong to the same line A as shown further in the Example01.

To minimize this difference during DS normalization accordingly to increase the consistency of localization results, it is necessary to ensure that the mass of the empty set of all zones will belong to the same line A. The limit of this line with line B corresponds to $m_{\phi} \approx 0.75$, hence, if we choose $1 - \alpha_{obs} \leq 0.75$ (i.e. $\alpha_{obs} \geq 0.25$) we will be sure that m_{ϕ} of all zones will belong to the same line A. We choose only line A since its slope is very small, hence, the mass increasing during the DS normalization will not highly differ from a zone to another. Consequently, it will be unlikely then to obtain counter-intuitive results w.r.t the conjunctive combined masses after DS normalization.

Example01: This example shows the importance of having $m_{1/2}(\phi)$ of all zones belonging to the same line A. Let us consider the following scenario (with sensors Deployment A):

At time window $t-1$, the person is inside zone05. Accordingly, $m_{pre}(Inside, Z_8)$ at t is higher than $m_{pre}(Inside, Z_7)$ let’s say:

$m_{pre}(Inside, Z_8) = 0.3 > m_{pre}(Inside, Z_7) = 0.05$.

At time window t the person enters zone08 but only Green and Red sensors are activated (Purple sensor is in false negative). With such measurement we obtain:

$m_{obs}(Inside, Z_7) = 1$,

$m_{obs}(Neigh ∪ Far, Z_7) = 0 = m_{obs}(\Omega, Z_7)$

$m_{obs}(Inside, Z_8) = 0.66$,

$m_{obs}(Neigh ∪ Far, Z_8) = 0.33. m_{obs}(\Omega, Z_8) = 0$
Now, let us analyze DS combination results for two cases, when \(m_{\text{pre} \cap \text{obs}}(\phi, Z_7) \) and \(m_{\text{pre} \cap \text{obs}}(\phi, Z_8) \) belong to different lines (case with \(1 - \alpha_{\text{obs}} = 0.95 \)), and when they both belong to the same line A (case with \(1 - \alpha_{\text{obs}} = 0.75 \)).

- If \(\alpha_{\text{obs}} = 0.05 \) (i.e. \(1 - \alpha_{\text{obs}} = 0.95 \)):
 \[
 m_{\text{obs}}(\text{Inside}, Z_7) = 0.95.
 \]
 \[
 m_{\text{obs}}(\text{Inside}, Z_8) = 0.633.
 \]
 Hence, conjunctive results are:
 \[
 m_{\text{pre} \cap \text{obs}}(\text{Inside}, Z_7) = 0.05,
 \]
 \[
 m_{\text{pre} \cap \text{obs}}(\text{Inside}, Z_8) = 0.20.
 \]

With:
\[
\begin{align*}
\alpha_{\text{obs}} & = 0.95, \\
m_{\text{obs}}(\text{Inside}, Z_7) & = 0.95. \\
m_{\text{obs}}(\text{Inside}, Z_8) & = 0.633.
\end{align*}
\]

- If \(\alpha_{\text{obs}} = 0.25 \) (i.e. \(1 - \alpha_{\text{obs}} = 0.75 \)):
 \[
 m_{\text{obs}}(\text{Inside}, Z_7) = 0.75.
 \]
 \[
 m_{\text{obs}}(\text{Inside}, Z_8) = 0.5.
 \]
 Hence, conjunctive results are:
 \[
 m_{\text{pre} \cap \text{obs}}(\text{Inside}, Z_7) = 0.75,
 \]
 \[
 m_{\text{pre} \cap \text{obs}}(\text{Inside}, Z_8) = 0.25.
 \]

REFERENCES

