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ABSTRACT
The lack of information provided by line arts makes user guided-
colorization a challenging task for computer vision. Recent contri-
butions from the deep learning community based on Generative
Adversarial Network (GAN) have shown incredible results com-
pared to previous techniques. These methods employ user input
color hints as a way to condition the network. The current state of
the art has shown the ability to generalize and generate realistic
and precise colorization by introducing a custom dataset and a new
model with its training pipeline. Nevertheless, their approach relies
on randomly sampled pixels as color hints for training. Thus, in
this contribution, we introduce a stroke simulation based approach
for hint generation, making the model more robust to messy inputs.
We also propose a new cleaner dataset, and explore the use of a
double generator GAN to improve visual fidelity.

CCS CONCEPTS
• Computing methodologies → Reconstruction; Image pro-
cessing; •Applied computing→Media arts; •Human-centered
computing → User studies.

KEYWORDS
deep learning, neural networks, generative adversarial network,
user-guided colorization, datasets
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Figure 1: PaintsTorch guided colorization on line art.
PaintsTorch takes two inputs: a grayscale lineart and a color
hint. It outputs a colored illustration following the color
hints and prior knowledge learned from a custom illustra-
tion dataset.

DISCLAIMER
The illustrations shown in this paper belong to their respective
owners and are used purely for academic and research purposes.
Some content may hurt the sensibility of the reader, but the images
shown are representative of the dataset and communities they
originate from.

1 INTRODUCTION
Line Art colorization plays a critical part in the artists, illustrators
and animators work. The task is labor intensive, redundant, and
exhaustive, especially in the animation industry, where artists have
to colorize every frame of the animated product. The process is
often executed by hand for traditional animation or via the use of
image editing software such as Photoshop, PaintMan, PaintToolSai,
ClipStudio, and Krita. Therefore, one can see automatic colorization
pipelines as a way to improve the artist’s workflow, and such a
system has recently been implemented into ClipStudio.
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Automatic user-guided colorization is a challenging task for com-
puter vision as black and white line arts does not provide enough
semantic information. As colorization represents an essential part
of the artist process, and directly influences the final art piece, au-
tomatic approaches require to produce aesthetically pleasing and
consistent results while conserving enough texture and shading
material.

Previous contributions from the deep learning community have
explored image colorization [4, 6, 7, 11, 20, 22, 25, 30, 31]. While
first works focused on user-guided gray scale images colorization
[7, 11, 31] and could not handle sparse inputs, others explored color
strokes colorization [6, 20, 25]. Nevertheless, none of these methods
yield suitable generalization on unseen images nor generate pleas-
ing enough images. More recent works addressed these issues and
enabled for the first time the use of such pipelines in production
environments, providing qualitative results [4, 22]. The current
state of the art [4] introduced a new model and its training pipeline.
The authors also stated that, based on a previous paper, randomly
sampled pixels to generate color hints for training is enough to
enable user strokes input for inference. One issue is that this state-
ment is based on gray scale images colorization [31], a task close
yet far enough from the one of line art colorization.

Our contributions include:

• The use of stroke simulation as a substitute for random pixel
sampling to provide color hints during training.

• The introduction of a cleaner and more visually pleasing
dataset containing high-quality anime illustration filtered
by hand.

• The exploration of a double generator GAN for this task pre-
viously studied by contributions for multi-domain training.

The name "PaintsTorch" has been chosen to refer to this work.
"Paints" stands for painting and "Torch" for the Pytorch deep learn-
ing framework. The name analogous by the "PaintsChainer" tool
[22], where "Chainer" refers to the Chainer deep learning library.

2 RELATEDWORK
As previous works in the literature has exhaustively described
none deep learning based approaches, these are not explained in
this paper. Nowadays, deep learning approaches to the line art
colorization problem have shown to be the trend and outperform
previous methods.

2.1 Synthetic Colorization
Previous works have studied gray scale mapping [7, 11, 31]. It usu-
ally consists of trying to map gray scale images to colored ones
using a Convolutional Neural Network (CNN) or a generative model
such as GAN [8]. By using high-level and low-level semantic infor-
mation, such models generate photo-realistic and visually pleasing
outputs. Moreover, previous works also explored direct mapping
between human sketches and realistic images while providing a
way to generate multiple outputs out of one sketch.

However, as explained before, semantic information for black
and white line art colorization is not conceivable, and these models
do not explore all the entire output space.

2.2 Generative Adversarial Network
GAN models [8] are responsible for successful contributions in
computer vision generation tasks such as super-resolution, high-
definition image synthesis, image inpainting, and image denoising
[14, 18, 19]. This architecture has often been described as one of
the most beautiful ideas of the deep learning field. It consists of
training two networks against each other, one being a discrimina-
tive model and the other a generative one. Hopefully, at some point,
the discriminator is fooled by the generator, and we consider the
model trained.

While being able to generate good quality results, the vanilla
implementation of GAN [8] suffers from mode collapse, vanishing
gradient issues, and others. Improvement of the former model has
been discussed in the literature introducing a gradient penalty [9]
and a new loss based on the Wasserstein-1 distance [2]. When
conditioned on external information such as class labels, the model
referred to cGAN [21] can generate higher quality output as well
as enabling natural controls on the generator.

The current state of the art for user-guided line art colorization
[4] used such a model referred to cWGAN-GP to obtain their results.
As well as introducing a deeper model compared to previous work,
they introduce the use of a local feature network described in Sec-
tion 3.3, thus providing semantic like information to the generator
and the discriminator models. Furthermore, Their method manage
to train a GAN with training data, illustrations, different from the
inference one, line arts.

2.3 Double Generator GAN
The task of cross-domain training has been studied by previous
works such as StarGAN [3] and DualGAN [27]. StarGAN translates
an image to another domain using one generator inspired by the
classical image-to-image GAN .[13] As their work handle discrete
labels as target domains, our work considers hint matrices and
features vector from a local feature network as continuous labels.
This capacity is essential to the artistic field.

DualGAN goes a step further and introduces a double Generator.
Their first Generator is used for translation and their second one
for reconstruction. The two generators share only a few parameters.
As this contribution allows better visually perceptive results, we
consider the approach interesting enough to be explored for the
task of line art colorization.

Table 1: The Table describes the dataset composition. The
Paper Line Arts and Paper Colored lines refer to the dataset
of the current state of the art while the Ours Colored refers
to our image dataset adding up to the Total.

Source Images

Paper Line Arts 2 780
Paper Colored 21 931
Ours Colored 21 930

Total Colored 43 861
Total 43 641
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Figure 2: The illustration describes the entire transformation pipeline of the model’s inputs. The pipeline outputs a lineart
and corresponding color hint image from an input illustration. The process can be applied to any given illustration dataset.

3 PROPOSED METHOD
All the models presented in the paper are trained following the next
instructions. In Section 3.1 we describe the dataset used for training
and evaluation, Section 3.2 the prepossessing pipeline, Section 3.3
the model architecture, Section 3.3 the loss used to train the models,
and Section 3.5 the training process.

3.1 Dataset
As stated by the current state of the art, datasets for colorization are
available on the web. However, if we consider two of the most
known and large datasets, Nico-opendata [7, 12, 16] and Dan-
booru2017 or Danbooru2018 [1], they both contain messy illus-
trations, and line arts are mixed with colored illustrations. In this
sense, Ci et al. [4] gathered their custom dataset containing 21 930
colored illustrations for training and 2 780 high-quality line arts for
evaluation.

Nevertheless, after investigation, we found images that cannot
be qualified as illustrations, and the quality of the paintings is not
consistent over the entire set of colored images. To this end, we
collected a custom training dataset composed of 21 930 consistent,
high-quality anime like illustrations. These illustrations have been
filtered by hand to ensure some subjective quality standards. On
the other hand, the line art set used for evaluation is not subject to
these critics. The exact composition of the dataset can be found in
Table 1.

3.2 Preprocessing
3.2.1 Synthetic Line Art. Illustrations do not often come with their
corresponding high-quality line arts. To counter this issue, previous
works use synthetics line arts to train their model. To generate
high-quality fake line arts out of colored illustrations, Extended
Difference of Gaussians (xDoG) [28] has proven to be one of the
best methods. xDoG produces realistic enough sketches as it can be
observed in Figure 3. In this work, we use the same set of parameters
as the previous state of the art:γ = 0.95,ϕ = 1e9,k = 4.5, ϵ = −1e−1,
σ ∈ {0.3; 0.4; 0.5}.

3.2.2 Simulated Hint Strokes. As mentioned, the current state of
the art [4] stated that randomly sampled pixels hint during training
is enough to enable natural interaction using user strokes as input

Figure 3: xDoG fake line art on the left generated out of the
illustration on the right with parameters described in Sec-
tion 3.2.1 and σ = 0.4

for inference. Their assumption is based on Zhang et al. contribu-
tion [31] which deals with gray scale image colorization. As their
problem is not entirely the same, we explored the use of simulated
strokes as a substitute for hint generation.

We simulated human strokes using the PIL drawing library with
a round brush. To this end, we define four parameters: the number
of strokes nstrokes ∈ [0; 120], the brush thickness tbrush ∈ [1; 4],
the number of waypoints per stroke npoints ∈ [1; 5] and a square
of widthwranдe ∈ [0; 10] which defines the range of movement of
one brush stroke. By doing so, we aim to make the model robust
to messy user inputs. An example of a brush stroke simulation
generated from an illustration can be found in Figure 5.

3.2.3 Model Inputs Transformations. To be handled by the deep
learning model, all inputs are preprocessed and follow certain trans-
formations. First, the illustration input is randomly flipped to the
left or the right. Then, the image is scaled to match 512 pixels on
its smaller side before being randomly cropped to a 512 by 512
pixels image. The obtained resized and cropped illustration is then
used to generate the synthetic gray scale line art (512x512x1). The
same transformed illustration is then resized to a 128 by 128 pixels
and used to generate a stroke simulated hint and its corresponding
black and white mask to finally obtain the hint image used for
training (128x128x4). All pixel data except the one coming from

3
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Figure 4: The Figure shows the Generator and Discriminator Convolutional Neural Network architectures. Both are composed
of ResNet Xt Blocks (violet) and Pixel Shuffle Blocks (orange). The Generator uses residual connections in the form of a UNet.

Figure 5: Example of a simulated brush stroke hint on the
right generated from the left illustration left. The strokes
are supposed to represent a normal usage of the software.
Their density and thickness varies randomly to make the
model more robust int its usage.

the black and white mask is normalized with an [0.5,0.5,0.5] std
and mean, and the mask is normalized to map the [0;1] range. The
entire transformation pipeline can be observed in Figure 2.

3.3 Model
Regarding the model architecture, the GAN we used is similar to
the one used by Ci et al. [4]. This model is shown in the Figure 4
but a more detailed explanation of the model can be found in their
paper. The Generator G1 is a deep U-Net model [23] composed
of ResNetXt [10] blocks with dilated convolutions to increase the
receptive field of the network. LeakyReLU [29] is used as activation
with a 0.2 slope except for the last layer using a Tanh activation.
The Discriminator is inspired by the SRGAN one but upgraded with
the same kind of blocks as the generator without any dilation and
using more layers. They also introduced the use of a Local Feature
Network F1. This network is an Illustration2Vec [24] model able to
tag illustrations. These tags are passed through the Generator and

Figure 6: The illustration describes the overall model archi-
tecture from a higher perspective. Arrows describe the path
of the data through the models to the losses. The colors al-
low distinguishing between each path and each piece of the
architecture. Green arrows refer to connectionswith the loss
modules, plain blue ones for the inputmodules, red ones for
the generators, and violet for the discriminator.

the Discriminator along with the hint image as a way to condition
and give semantic information to the GAN.

Our contribution introduces the use of a second Generator G2
using the same architecture as G1. This second Generator is re-
sponsible for the generation of a synthetic line art out of the fake
illustration inferred by the first one. This kind of approach has been
used for cross-domain training [27]. By doing so, we aim for im-
proving the overall perceptive quality of the generated illustration
as well as giving G1 further insight and better training objective. A
schematic of the whole architecture can be found in Figure 6.

4
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3.4 Loss
As indicated in Ci et al. paper [4], the loss functions are a combina-
tion of all GAN’s improvements described earlier in the paper. We
want the second Generator to back propagate its signal to the first
one, so we add a new term to the Generator loss, which relies on a
simple MSE. In this Section, we describe each loss used to train the
model.

First, we define the global Generator loss as a combination of
three components: a content component, an adversarial one, and a
reconstruction one.

LG = Lcont︸ ︷︷ ︸
content loss

+ λ1 .Ladv︸     ︷︷     ︸
adv loss

+ Lr econ︸  ︷︷  ︸
recon loss︸                                     ︷︷                                     ︸

total loss

(1)

The adversarial part is computed thanks to the local feature
network F1 used as conditional input, and WGAN-GP [9] used
to distinguish fake examples from real ones. The component is
weighted by parameter λ1 = 1e−4

Ladv = −EG1(X ,H ,F1(X ))∼Pд [D(G1(X ,H , F1(X )), F1(X ))] (2)

A perceptual loss is used for the content loss, which relies on
an L2 difference between generated output and target CNN feature
map coming from the fourth convolution activation of a pretrained
VGG16 [26] on ImageNet [5].

Lcont =
1

chw
∥F2(G1(X ,H , F1(X ))), F2(X )∥22 (3)

The loss signal we call reconstruction loss describes the ability
of generator G2 to produce a fake line art out of the fake illustration
generated by G1 as close from the xDoG synthetic line art used for
training. As the output does not contain multi-channel information,
the difference is computed with a mean squared error.

Lr econ = MSE [G2(G1(X ,H , F1(X )),H , F1(X )), X ] (4)

Concerning the Discriminator loss, it is a combination of the
Wasserstein loss and the penalty loss.

LD = Lw︸︷︷︸
critic loss

+ Lp︸︷︷︸
penalty loss︸                    ︷︷                    ︸

total loss

(5)

The critic loss is described in the WGAN paper [2].

Lw = EG1(X ,H ,F1)∼Pд [D(G1(X ,H , F1(X ))), F1(X )]−

EY∼Pr )[D(Y , F1(X )))]
(6)

The penalty term, as described in the current state of the art
[4], is composed of two components, a penalty term and an extra
constraint from Karras et al [15] The two parts are weighted by
parameters λ2 = 10 and ϵdr if t = 1e−3.

Lp = λ2 . EŶ∼Pr [(
∇ŶD(Ŷ , F1(X )), F1(X )]

2 − 1)2]+

ϵdr if t . EŶ∼Pr
[D(Y , F1(X ))2]

(7)

Table 2: The Table compares the Frechet Inception Distance
(FID) of multiple models trained over 100 epochs. [Paper]
refers to the colored images used for training by Ci et al. [4],
[Custom] to the images dataset we collected, and [Custom
+ Paper] to the combination of both. Lower value is better.
STD stands for standard deviation to the mean.

Model and Options FID STD

(Paper) Random, Simple 104.07 0.016
(Paper) Strokes, Simple 68.28 0.048
(Paper) Strokes, Double 83.25 0.019

(Custom) Random, Simple 82.23 0.022
(Custom) Strokes, Simple 64.81 0.035
(Custom) Strokes, Double 65.15 0.006

(Custom + Paper) Strokes, Double 75.71 0.032

Table 3: The Table compares the FID of our model trained
over 100 epochs for different batch sizes: 4, 16, and 32. A
higher batch size returns lower FID values. Lower value is
better. STD stands for standard deviation to the mean.

Batch Sizes FID STD

4 74.53 0.003
16 64.35 0.061
32 65.15 0.006

3.5 Training
The models are trained on an Nvidia DGX station using four V100
GPUs with 32Go of dedicated RAM each. The ADAM optimizer
[17] is used with parameters: learning rate α = 1e−4 and betas
β1 = 0.5, β2 = 0.9. The same training pipeline as previous work
has been applied. One gradient descent step is first applied to train
the DiscriminatorD, then to train Generator G1 and finally G2. For
comparison, all models have been trained for 100 epochs. However,
the final one is trained on 300 epochs.

4 RESULTS
In our contribution, we trained and experimented different model
pipelines. To evaluate and compare these models, we realized mul-
tiple evaluations. In this Section, we describe our results.

4.1 FID Evaluation
Peak Signal-to-Noise Ratio (PSNR), as stated by Ci et al. [4], does
not assess joint statistics between targets and results. Moreover,
our dataset does not provide colored illustrations with their corre-
sponding line arts. In that sense, measuring similarities between the
two data distributions, synthetic colorized line arts, and authentic
line arts is more appropriate to evaluate the model’s performances.
The FID can measure intra-class dropping, diversity, and quality. A
small FID means that two distributions are similar. The FID evalua-
tion is performed the same way as Ci et al. [4] between the colored
illustrations train set and the line arts test set. It extracts features

5



669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

CVMP ’19, December 17–18, 2019, London, United Kingdom Yliess et al.

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

Figure 7: The graph compares the FID on a logarithmic scale
of every model trained over 100 epochs.

Figure 8: The graph compares the FID on a logarithmic scale
for different batch size, 32, 16 and 4 over 100 epochs.

from intermediate layers of a pre-trained Inception Network to
model the data distribution using a Multivariate Gaussian Process.

Results of the FID evaluations can be found in Tables 2, 3 and
Figures 7, 8. This objective evaluation allows us to infer some insight
about the different model training pipelines we tried during our
experimentation. Stroke simulation, instead of randomly sampled
pixels for hint generation provides the most notable positive impact
on the FID value. The overall quality improvement of the training
illustrations also yields better results. Though, we cannot deduce if
the double generator visually improves the output with this kind of
evaluation as art is a completely subjective matter. Finally, greater
batch size does not have that much of an impact on the FID value,
but allows faster training.

Table 4: The Table describes the Mean Opinion Score (MOS)
for every model we compared in our study. PaperRS stands
for current state of the art illustration data with randomly
sampled pixels and one generator, CustomSS for our illus-
tration data with stroke simulation with one generator and
CustomSD for double generator. STD stands for StandardDe-
viation to the mean

Model MOS STD

PaperRS 1.60 0.85
CustomSS 2.95 0.92

CustomSD 3.10 1.02

Figure 9: The heatmap compares the MOS ratings for every
model we study. PaperRS stands for current state of the art
illustration data with randomly sampled pixels and one gen-
erator, CustomSS for our illustration data with stroke simu-
lation with one generator and CustomSD for double genera-
tor.

4.2 MOS Evaluation
It is generally challenging to evaluate art results as the artistic
perception is different for every person, and the FID is not good
at assessing the model’s quality in this context. Thus, as previous
works did, we also conducted a MOS evaluation of the different
model’s pipelines. This evaluation aims at quantifying the recon-
struction of perceptually convincing line art colorization. To do
so, we asked 16 users to score synthetic illustrations between one
and five corresponding to bad quality and excellent quality. The
evaluation is composed of 160 randomly selected line art from the
validation set. Corresponding hint images have been created by
hand by non-professional users and used to generate 160 corre-
sponding illustrations for each of the three models we compared.
Thus, the overall number of images to rate per user is 480. Examples
of the illustrations shown to the users are available in Figure 10.

Our results show in Table 4 and Figure 9 that our models are
perceptively better when compared to the previous state of the
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Figure 10: The illustrations shows examples generated from our contribution model using the line art on the left and the hint
in the middle.

Figure 11: The illustrations compare the previous state of
the art (top) to our results (bottom) in coloring a 3 simple
tasks: filling a circle without hint, filling a circle with on the
edge brush stokes, and performing gradients using messy
inputs.

art. We realized a unilateral Student test with a significance level
α = 0.001 to compare the MOS mean of our model to the current
state of the art with a sample size n = 16. We obtained a t value
of 4.525, approximately equivalent to a p −value inferior to 0.001.
Statistically, our study validates that our contributions improve
the model described by Ci et al. [4]. This evaluation score also
allows us to conclude on the use of a double generator. The dual
generator seems to slightly improve the illustration quality and
provides higher contrast with misplaced colors.

4.3 Visual Improvements
The differences in our approach results in visibly perceptive im-
provements. As it can be observed in Figure 11, training the models
using simulated strokes improves the general ability to fill the inner
part of forms as well as allowing the user’s inputs to be messier.
When the user’s strokes exceed the outer part of the area slightly,
the current state of the art fails at capturing the user’s will only to

Figure 12: The illustrations shows the differences between
PaintsChainer and our model when the brush strokes are
thin versus when the hint is made out of thicker strokes.

fill the inner part. As shown in Figure 11, color gradients are also
visually more pleasant using our contribution.

5 APPLICATION
In this Section, we discuss the possible use of this kind of application
and the web app we developed to ease the experiments.

In order to use the models, we developed a web application to
allow real-time user interactions with our contribution with simple
tools such as a brush pen, an eyedropper, and an eraser with various
brush sizes. Visual of the app can be found in Figure 13. It has been
created using a dockerized flask rest API to serve the PyTorch mod-
els on the DGX station we used for training. The web application
performs API calls each time the user’s touch to the canvas end. To
ease the production of the Figures for this contribution, and allow
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Figure 13: The Figure is a screen-shot of the web app envi-
ronment created to use our model. On the left, there is a
tool bar with a color selector, an eyedropper, a pen, an eraser,
and sizes for the brush. On the right the tool bar allows to
import a line art, save the colored illustration and save the
hint canvas. The top right tool box is used to select a model
to use. These models are the one described in the study. The
left canvas is the one the user can draw onwhereas the right
one displays the illustration results.

Figure 14: The illustration shows the appearance of artifacts
on the output image of our model in the presence of highly
saturated colors or densely populated hint images.

users to share their creations, we also provide some tools to save
the illustration and the hint.

As shown in Figure 15, this kind of tool can be included in an
artist’s workflow saving time and providing new types of creativity.
While the contribution can be useful to professionals illustrators, it
can also leverage the power of digital colorization to the beginners
through natural interaction. As it can be used for finalized art pieces,
it is also a way to prototype quickly. The field of animation could

also benefit from this kind of application if the model can allow
temporally stable outputs.

6 LIMITATIONS
PaintsTorch enables natural interaction when painting illustrations.
Even though our solution provides visually pleasing colored illus-
trations, it sometimes fails to some extent.

When too many strokes are included in the hint image, or when
colors are highly saturated, the network tends to produce artifacts,
as Figure 14 shows. These artifacts can be the result of the dataset
color distribution. It could be resolved by introducing data augmen-
tation on the source and hint images such as changing the hue,
saturation, and contrast, but also by allowing more strokes per hint
map in the stoke simulation.

Moreover, in some cases, our network does not always apply the
exact same colors as the given ones. As it can be observed in Figure
15, it failed to capture the artist’s intent to make the eyes pinkish.

Finally, our pipeline does not use any layer system like painting
software such as Photoshop, Krita, and others do. Digital artists
usually work with multiple layers. Some are used for the sketch,
others for the lineart, and colors. PaintsTorch only delivers a final
illustration, including the lineart. The colors cannot be separated by
the artist afterward and force him to paint directly on the produced
colored illustration.

7 CONCLUSION
Guided line art colorization is a challenging task for the computer
vision domain. Previous works have shown that deep learning
yield better results than previous methods. In our contribution,
we propose three changes that can improve the current state of
the art’s results. Our first contribution is the introduction of stroke
simulations as a way to replace random pixels activation to generate
the hint used for training. Our second contribution is the use of a
custom, high resolution, and quality controlled dataset for training
illustrations. Our third contribution is the exploration for the use
of a second generator, which is in charge of generating synthetic
lines art based on the produced artificial illustrations. These three
contributions, as the study shows, allow for improved perceptive
results compared to previous works.

Our results allow to produce quality illustrations on unseen line
arts and the used of different input stroke sizes. However, the model
still suffers from small artifacts. Moreover, it does not always seem
to use the exact color information provided by the user’s hints. The
model could also provide increased robustness to thinner or thicker
line arts and color strokes by changing few training parameters.

One extension of this work could be studying the impact of
using a more massive and diversified dataset. We are also planning
to make the model stable temporally to be used for animation
purposes.
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Figure 15: The Figure is a representation of how an artist would naturally embed our contribution in his workflow.

REFERENCES
[1] Gwern Branwen Aaron Gokaslan Anonymous, the Danbooru community. 2019.

Danbooru2018: A Large-Scale Crowdsourced and Tagged Anime Illustration
Dataset. https://www.gwern.net/Danbooru2018. https://www.gwern.net/
Danbooru2018 Accessed: DATE.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Genera-
tive Adversarial Networks. In Proceedings of the 34th International Conference on
Machine Learning (Proceedings of Machine Learning Research), Doina Precup and
Yee Whye Teh (Eds.), Vol. 70. PMLR, International Convention Centre, Sydney,
Australia, 214–223. http://proceedings.mlr.press/v70/arjovsky17a.html

[3] Yunjey Choi, Min-Je Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim,
and Jaegul Choo. 2017. StarGAN: Unified Generative Adversarial Networks
for Multi-Domain Image-to-Image Translation. CoRR abs/1711.09020 (2017).
arXiv:1711.09020 http://arxiv.org/abs/1711.09020

[4] Yuanzheng Ci, Xinzhu Ma, Zhihui Wang, Haojie Li, and Zhongxuan Luo. 2018.
User-Guided Deep Anime Line Art Colorization with Conditional Adversarial
Networks. CoRR abs/1808.03240 (2018). arXiv:1808.03240 http://arxiv.org/abs/
1808.03240

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

[6] Kevin Frans. 2017. Outline Colorization through Tandem Adversarial Networks.
CoRR abs/1704.08834 (2017). arXiv:1704.08834 http://arxiv.org/abs/1704.08834

[7] Chie Furusawa, Kazuyuki Hiroshiba, Keisuke Ogaki, and Yuri Odagiri. 2017.
Comicolorization : Semi-automatic Manga Colorization. CoRR abs/1706.06759
(2017). arXiv:1706.06759 http://arxiv.org/abs/1706.06759

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2 (NIPS’14). MIT Press, Cambridge, MA,
USA, 2672–2680. http://dl.acm.org/citation.cfm?id=2969033.2969125

[9] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. 2017. Improved Training of Wasserstein GANs. In Ad-
vances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran
Associates, Inc., 5767–5777. http://papers.nips.cc/paper/7159-improved-training-
of-wasserstein-gans.pdf

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. CoRR abs/1512.03385 (2015). arXiv:1512.03385
http://arxiv.org/abs/1512.03385

[11] Paulina Hensman and Kiyoharu Aizawa. 2017. cGAN-based Manga Colorization
Using a Single Training Image. CoRR abs/1706.06918 (2017). arXiv:1706.06918
http://arxiv.org/abs/1706.06918

[12] Hikaru Ikuta, Keisuke Ogaki, and Yuri Odagiri. 2016. Blending Texture Features
from Multiple Reference Images for Style Transfer. In SIGGRAPH ASIA 2016
Technical Briefs (SA ’16). ACM, New York, NY, USA, Article 15, 4 pages. https:
//doi.org/10.1145/3005358.3005388

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2016. Image-to-
Image Translation with Conditional Adversarial Networks. CoRR abs/1611.07004
(2016). arXiv:1611.07004 http://arxiv.org/abs/1611.07004

[14] Justin Johnson, Alexandre Alahi, and Fei-Fei Li. 2016. Perceptual Losses for
Real-Time Style Transfer and Super-Resolution. CoRR abs/1603.08155 (2016).
arXiv:1603.08155 http://arxiv.org/abs/1603.08155

[15] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progres-
sive Growing of GANs for Improved Quality, Stability, and Variation. CoRR
abs/1710.10196 (2017). arXiv:1710.10196 http://arxiv.org/abs/1710.10196

[16] Y. Kataoka, T. Matsubara, and K. Uehara. 2017. Automatic manga colorization
with color style by generative adversarial nets. In 2017 18th IEEE/ACIS Interna-
tional Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD). 495–499. https://doi.org/10.1109/SNPD.
2017.8022768

[17] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Op-
timization. http://arxiv.org/abs/1412.6980 cite arxiv:1412.6980Comment: Pub-
lished as a conference paper at the 3rd International Conference for Learning
Representations, San Diego, 2015.

[18] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiri
Matas. 2017. DeblurGAN: BlindMotionDeblurring Using Conditional Adversarial
Networks. CoRR abs/1711.07064 (2017). arXiv:1711.07064 http://arxiv.org/abs/
1711.07064

[19] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew P. Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. 2016. Photo-
Realistic Single Image Super-Resolution Using a Generative Adversarial Network.
CoRR abs/1609.04802 (2016). arXiv:1609.04802 http://arxiv.org/abs/1609.04802

[20] Yifan Liu, Zengchang Qin, Zhenbo Luo, and Hua Wang. 2017. Auto-painter:
Cartoon Image Generation from Sketch by Using Conditional Generative Ad-
versarial Networks. CoRR abs/1705.01908 (2017). arXiv:1705.01908 http:
//arxiv.org/abs/1705.01908

[21] Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial
Nets. CoRR abs/1411.1784 (2014). arXiv:1411.1784 http://arxiv.org/abs/1411.1784

[22] Preferred Networks. 2017. paintschainer. https://paintschainer.preferred.tech/.
[23] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional

Networks for Biomedical Image Segmentation. CoRR abs/1505.04597 (2015).
arXiv:1505.04597 http://arxiv.org/abs/1505.04597

[24] Masaki Saito and Yusuke Matsui. 2015. Illustration2Vec: A Semantic Vector
Representation of Illustrations. In SIGGRAPH Asia 2015 Technical Briefs (SA ’15).
ACM, New York, NY, USA, Article 5, 4 pages. https://doi.org/10.1145/2820903.
2820907

[25] Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James Hays. 2016.
Scribbler: Controlling Deep Image Synthesis with Sketch and Color. CoRR
abs/1612.00835 (2016). arXiv:1612.00835 http://arxiv.org/abs/1612.00835

[26] K. Simonyan and A. Zisserman. 2014. Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).

[27] Hao Tang, Dan Xu, Wei Wang, Yan Yan, and Nicu Sebe. 2019. Dual Generator
Generative Adversarial Networks for Multi-Domain Image-to-Image Translation.
CoRR abs/1901.04604 (2019). arXiv:1901.04604 http://arxiv.org/abs/1901.04604

[28] Holger Winnemöller, Jan Eric Kyprianidis, and Sven C. Olsen. 2012. XDoG:
An eXtended difference-of-Gaussians compendium including advanced image
stylization. Computers & Graphics 36, 6 (2012), 740 – 753. https://doi.org/10.1016/
j.cag.2012.03.004 2011 Joint Symposium on Computational Aesthetics (CAe), Non-
Photorealistic Animation and Rendering (NPAR), and Sketch-Based Interfaces
and Modeling (SBIM).

[29] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015. Empirical Evaluation of
Rectified Activations in Convolutional Network. CoRR abs/1505.00853 (2015).
arXiv:1505.00853 http://arxiv.org/abs/1505.00853

[30] Lvmin Zhang, Yi Ji, and Xin Lin. 2017. Style Transfer for Anime Sketches with
Enhanced Residual U-net and Auxiliary Classifier GAN. CoRR abs/1706.03319
(2017). arXiv:1706.03319 http://arxiv.org/abs/1706.03319

[31] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng, Angela S. Lin, Tianhe
Yu, and Alexei A. Efros. 2017. Real-Time User-Guided Image Colorization with
Learned Deep Priors. CoRR abs/1705.02999 (2017). arXiv:1705.02999 http://arxiv.
org/abs/1705.02999

9

https://www.gwern.net/Danbooru2018
https://www.gwern.net/Danbooru2018
https://www.gwern.net/Danbooru2018
http://proceedings.mlr.press/v70/arjovsky17a.html
http://arxiv.org/abs/1711.09020
http://arxiv.org/abs/1711.09020
http://arxiv.org/abs/1808.03240
http://arxiv.org/abs/1808.03240
http://arxiv.org/abs/1808.03240
http://arxiv.org/abs/1704.08834
http://arxiv.org/abs/1704.08834
http://arxiv.org/abs/1706.06759
http://arxiv.org/abs/1706.06759
http://dl.acm.org/citation.cfm?id=2969033.2969125
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1706.06918
http://arxiv.org/abs/1706.06918
https://doi.org/10.1145/3005358.3005388
https://doi.org/10.1145/3005358.3005388
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1603.08155
http://arxiv.org/abs/1603.08155
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
https://doi.org/10.1109/SNPD.2017.8022768
https://doi.org/10.1109/SNPD.2017.8022768
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1711.07064
http://arxiv.org/abs/1711.07064
http://arxiv.org/abs/1711.07064
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1705.01908
http://arxiv.org/abs/1705.01908
http://arxiv.org/abs/1705.01908
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
https://paintschainer.preferred.tech/
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://doi.org/10.1145/2820903.2820907
https://doi.org/10.1145/2820903.2820907
http://arxiv.org/abs/1612.00835
http://arxiv.org/abs/1612.00835
http://arxiv.org/abs/1901.04604
http://arxiv.org/abs/1901.04604
https://doi.org/10.1016/j.cag.2012.03.004
https://doi.org/10.1016/j.cag.2012.03.004
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1706.03319
http://arxiv.org/abs/1706.03319
http://arxiv.org/abs/1705.02999
http://arxiv.org/abs/1705.02999
http://arxiv.org/abs/1705.02999

	Abstract
	1 Introduction
	2 Related Work
	2.1 Synthetic Colorization
	2.2 Generative Adversarial Network
	2.3 Double Generator GAN

	3 Proposed Method
	3.1 Dataset
	3.2 Preprocessing
	3.3 Model
	3.4 Loss
	3.5 Training

	4 Results
	4.1 *FID Evaluation
	4.2 *MOS Evaluation
	4.3 Visual Improvements

	5 Application
	6 Limitations
	7 Conclusion
	References

