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Abstract: In this article we study automorphisms of Toeplitz subshifts. Such groups are
abelian and any finitely generated torsion subgroup is finite and cyclic. When the complexity
is non-superlinear, we prove that the automorphism group is, modulo a finite cyclic group,
generated by a unique root of the shift. In the subquadratic complexity case, we show that the
automorphism group modulo the torsion is generated by the roots of the shift map and that the
result of the non-superlinear case is optimal. Namely, for any ε > 0 we construct examples
of minimal Toeplitz subshifts with complexity bounded by Cn1+ε whose automorphism
groups are not finitely generated. Finally, we observe the coalescence and the automorphism
group give no restriction on the complexity since we provide a family of coalescent Toeplitz
subshifts with positive entropy such that their automorphism groups are arbitrary finitely
generated infinite abelian groups with cyclic torsion subgroup (eventually restricted to powers
of the shift).

Key words and phrases: Toeplitz subshifts, automorphism group, complexity function, coalescence.

1 Introduction

Given a finite set A, the full shift AZ is the set of all bi-infinite sequences (xi)i∈Z with xi ∈A for all i ∈ Z.
This set can be thought of as all colorings of Z with colors in A. The finite set A is usually called the
alphabet. A subshift is a subset of a fullshift AZ which is closed for the product topology and invariant
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SEBASTIÁN DONOSO, FABIEN DURAND, ALEJANDRO MAASS, AND SAMUEL PETITE

under the shift map σ : AZ→AZ, (xi)i∈Z 7→ (xi+1)i∈Z. A word w is an element of ∪n∈NA
n. Its length |w|

is the positive integer such that w ∈A|w|. We say that a word w appears in a sequence x = (xi)i∈Z ∈ X if
there exists n ∈ Z such that w = xn · · ·xn+|w|−1. The complexity of a subshift X is the map pX(·) : N→ N
which for n ∈ N counts the number of words of length n appearing in sequences of X . An endomorphism
is a continuous onto map φ : X → X such that φ ◦σ = σ ◦φ . It is called an automorphism whenever it is
bijective. We remark that since X is compact, the inverse of an automorphism φ is also continuous and
thus is an automorphism too. The group of all automorphisms is countable and denoted Aut(X ,σ).

The study of the group of automorphisms of low complexity subshifts has become very active in
the last five years. In contrast with the positive entropy studies, where the automorphism group can
be very large (see for instance [3]), a lot of evidence suggests that low complexity systems ought to
have a small automorphism group. In particular, studies [18] and [16] on classes of minimal substitutive
subshifts showed that the automorphism groups are virtually Z. It turns out that this result holds for any
minimal subshift with non-superlinear complexity (i.e., liminf

n→∞
pX(n)/n < ∞) [9, 13]. Also, for some

special substitution subshifts with this complexity growth, the automorphism group is cyclic [7]. Higher
order polynomial complexity growth was also considered by Cyr and Kra in [8, 10]. In [8], the authors
proved that for transitive subshifts, if liminf

n→∞
pX(n)/n2 = 0 then the quotient Aut(X ,σ)/〈σ〉 is a periodic

group, where 〈σ〉 is the group spanned by the shift map. In [10], for a large class of minimal subshifts
of subexponential complexity they also proved that the automorphism group is amenable. These results
showed that the automorphism group seems to gain in constraints when the complexity goes down but
this is not always true. Interestingly, in [19] the author provided a Toeplitz subshift with complexity
pX(n)≤Cn1.757, whose automorphism group is not finitely generated.

Even though these results allow us to slowly understand the group of automorphisms of low complexity
subshifts, the complete picture is still unclear, even for particular classes of subshifts. The purpose of this
article is to use the class of Toeplitz subshifts and study their automorphism groups in order to understand
some general questions relating complexity growth and the size of the automorphism group. We observe
that since the automorphism group of a Toeplitz subshift is a subgroup of the associated odometer [13],
then it is a countable abelian group. This fact restricts our study to such class of groups.

We start by considering Toeplitz subshifts of subquadratic complexity. In this case, any endomorphism
is bijective, so the coalescent property holds (see Section 3 for an expanded discussion). In Theorem
3.2 we show that the automorphism group is spanned by the roots of the shift map modulo the torsion
subgroup. In fact, this result holds each time the quotient Aut(X ,σ)/〈σ〉 is periodic and the subquadratic
case is a consequence of [8]. When this quotient is finite, in particular when the Toeplitz subshift has
non-superlinear complexity [13], we also prove in Theorem 3.2 that the automorphism group modulo a
finite cyclic group is spanned by one root of the shift map, thus this quotient is a cyclic group. Both results
open the door to applications to other Toeplitz subshifts with higher complexities. These results follow
from the study of subgroups of odometers and allow us to recover Theorem 12 from [7], where the authors
consider a family of Toeplitz subshifts generated by substitutions. The condition on Theorem 3.2 is true
for many Toeplitz in the family called (p,q)-Toeplitz [5], including the example in [19]. Then, using
this class of Toeplitz subshifts we extend the example given by Salo in [19], proving that the condition
of non-superlinear complexity of [9, 13] cannot be relaxed. More precisely, in Theorem 4.1 we prove
that for any ε > 0 there exists a Toeplitz subshift in the aforementioned family such that the complexity
verifies pX(n)≤Cn1+ε for all n ∈ N and whose automorphism group is not finitely generated. In fact,
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this construction allows us to produce Toeplitz subshifts with arbirarily big polynomial complexity whose
automorphism group is not finitely generated. We left open the question whether we can get the same
result with an even smaller complexity. For instance, pX(n)/n≤C log(n) for all n ∈ N.

In contrast with previous results, large complexity is not enough to have a large automorphism group.
Here we prove that coalescence and the size of the automorphism group impose no restrictions to the
complexity function. In Theorem 5.4 we provide a family of coalescent Toeplitz subshifts with positive
entropy such that its automorphism group is an arbitrary infinite countable and finitely generated abelian
group with cyclic torsion subgroup. For the group Z, this result resembles the main result in [4] where
the construction is not explicit. Also, in [15], an explicit example is given, with an arbitrary entropy but
with a specific maximal equicontinuous factor. Our construction is explicit, self-contained and may be
generalized to Zd-Toeplitz arrays or G-Toeplitz arrays for any countable amenable residually finite group
G (see [6]).

Finally, we remark that not every infinite countable abelian group can be the automorphism group of
a Toeplitz subshift: it has to be a subgroup of an odometer [13], hence residually finite. For instance, the
rational numbers Q does not satisfy this property (see Section 2.3). But besides this restriction, we do not
know if every infinitely generated countable abelian group (embedded in an odometer) can be realized as
the automorphism group of a Toeplitz subshift.

2 Background

2.1 Topological dynamical systems

A topological dynamical system (or just a system) is a pair (X ,T ) where X is a compact metric space
and T : X → X is a homeomorphism. Let “dist” be a distance in X . The orbit of a point x ∈ X is given by
OrbT (x) = {T nx;n ∈ Z}. A topological dynamical system is minimal if the orbit of every point is dense
in X and is transitive if at least one orbit is dense in X . In a transitive system, points with dense orbits are
called transitive points.

Let (X ,T ) be a topological dynamical system. We say that x,y ∈ X are proximal if there exists a
sequence (ni)i∈N in Z such that limi→∞ dist(T nix,T niy) = 0. A stronger condition than proximality is
asymptoticity. Two points x,y ∈ X are asymptotic if limn→∞ dist(T nx,T ny) = 0. Nontrivial asymptotic
pairs may not exist in an arbitrary topological dynamical system but it is well known that a nonempty
aperiodic subshift always admits at least one [2, Chapter 1].

A factor map between the topological dynamical systems (X ,T ) and (Y,S) is a continuous onto map
π : X → Y such that π ◦T = S◦π . We say that (Y,S) is a factor of (X ,T ) and that (X ,T ) is an extension
of (Y,S). We use the notation π : (X ,T )→ (Y,S) to indicate the factor map. If in addition π is a bijective
map we say that (X ,T ) and (Y,S) are topologically conjugate.

The system (X ,T ) is a proximal extension of (Y,S) via the factor map
π : (X ,T )→ (Y,S) (or the factor map itself is a proximal extension) if for every x,x′ ∈ X the condi-
tion π(x) = π(x′) implies that x,x′ are proximal. For minimal systems, (X ,T ) is an almost one-to-one
extension of (Y,S) via the factor map π : (X ,T )→ (Y,S) (or the factor map itself is an almost one-to-one
extension) if there exists y ∈ Y with a unique preimage for the map π . The relation between these two
notions is given by the following folklore result. If the factor map π : (X ,T )→ (Y,S) between minimal
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systems is an almost one-to-one extension then it is also a proximal extension (see [13] for a proof).
A topological dynamical system (X ,T ) is equicontinuous if for any ε > 0 there is δ > 0 such that if

dist(x,y)≤ δ then for any n ∈ Z one has dist(T nx,T ny)≤ ε . It is well known that any topological system
has a maximal equicontinuous factor, that is, a factor that is equicontinuous and that is an extension of
any other equicontinuous factor of the system (see [2]).

An automorphism of the topological dynamical system (X ,T ) is a homeomorphism φ of the space X
to itself such that φ ◦T = T ◦φ . We denote by Aut(X ,T ) the group of automorphisms of (X ,T ). The
subgroup of Aut(X ,T ) generated by T is denoted by 〈T 〉. Analogously one defines an endomorphism
of the topological dynamical system (X ,T ) as a continuous and onto map φ : X → X such that φ ◦T =
T ◦φ . The space of endomorphisms of (X ,T ) is denoted End(X ,T ). A system (X ,T ) is coalescent if
End(X ,T )=Aut(X ,T ). When (X ,σ) is a subshift, the Curtis-Hedlund-Lyndon theorem asserts that an
endomorphism φ is defined by a local rule. That is, there exists r ∈ N (called a radius of φ ) and a block
map φ̂ : A2r+1→A such that φ(x)n = φ̂(xn−r . . .xn . . .xn+r) for every n ∈ Z.

2.2 Odometers

Let (pn)n≥1 be a sequence of natural numbers such that pn divides pn+1 for all n≥ 1. Define the quotients
associated to this sequence by q1 = p1 and qn+1 = pn+1/pn for n≥ 1. The odometer at scale (pn)n≥1 is
given by

Z(pn) = {(xn)n≥1 ∈
∞

∏
n=1

Zpn ;xn+1 = xn mod pn ∀n≥ 1},

where Zp stands for Z/pZ, notation which is usually devoted to the ring of p-adic integers when p is
prime. In this framework this ring is the one associated to the scale (pn)n≥1 so will be denoted Z(pn).

The set Z(pn) is an inverse limit lim
←

Zpn of the canonical homomorphisms Zpn+1 → Zpn . Clearly Z(pn)

is an abelian group with the coordinatewise addition and when finite it is cyclic. The odometer Z(pn)

where pn = n! for all n ≥ 1 is called the universal odometer. We notice that the odometers Z(pn) and
Z(pin )

, where (in)n≥1 is strictly increasing, are isomorphic as groups. We denote by 0 and 1 the elements
(0,0, . . .) and (1,1, . . .) in any odometer. The natural dynamics on an odometer Z(pn) is given by the
addition by 1. It is not difficult to see that it is a minimal equicontinuous topological dynamical system,
that we also call odometer and denote by (Z(pn),+1). In particular, the subgroup 〈1〉 generated by 1 is
dense in Z(pn). This subgroup is identified with the integers.

The following simple lemma is a slight generalization of the minimality of the odometer. The proof
is given for completeness.

Lemma 2.1. Let Z(pn) be an odometer and consider an integer m ∈ Z such that (m, pn) = 1 for all n≥ 1.
Then, the dynamics defined by the addition by m1 in Z(pn) is minimal.

Proof. Since the addition by 1 is minimal in Z(pn), it suffices to show that the orbit of 0 in Zpn by the
addition by m contains 1 for all n≥ 1. Since (m, pn) = 1, there exist integers a,b such that am = bpn +1.
This ends the proof.

We will also need to understand when an odometer has torsion elements. For that we need some
extra notation. For each prime number p, denote by vp(n) the p-adic valuation of the integer n, that
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is, vp(n) = max{k ≥ 0; pk divides n}. Given an odometer Z(pn), the sequence (vp(pn))n≥1 is a non-
decreasing sequence and we can define the multiplicity function, as proposed in [14], by

v((pn)) =
(

lim
n→∞

vp(pn); p prime
)
.

For an abelian group G, let T (G) denote its torsion subgroup, that is, the subgroup generated by the
torsion elements, i.e., elements of finite order. For an integer p, let T (G)p denote the set of elements in G
of order a power of p.

Lemma 2.2. Let Z(pn) be an odometer. Then its torsion subgroup is

T (Z(pn)) =
⊕

p
T (Z(pn))p,

where the sum is taken over all the prime numbers p such that limn→∞ vp(pn) is positive and fi-
nite. Moreover, each group T (Z(pn))p is a finite cyclic group of order plimn→∞ vp(pn). In particular, if
limn→∞ vp(pn) ∈ {0,∞} for all prime numbers, then Z(pn) is torsion free.

It follows from the Chinese remainder theorem that the torsion subgroup of a finitely generated
subgroup of an odometer is cyclic. Also, the group of p-adic integers Z(pn) is torsion free. In contrast,
the odometer Z(pn) where pn is the product of the first n primes, i.e., limn→∞ vp(pn) = 1 for any prime
number p, has a non-finitely generated torsion subgroup.

Proof. The Chinese remainder theorem implies that T (Z(pn)) =
⊕

p T (Z(pn))p, where the sum is taken
over all the prime numbers. So it suffices to study each group T (Z(pn))p.

Let p be a prime such that there exists (xn)n≥1 ∈ T (Z(pn))p different from 0, of order pk for some
k ≥ 1, meaning pkxn = 0 mod pn for each n≥ 1. Moreover there exists n such that for all large enough
m ≥ n, pk is the order of xm in Zpm , and, thus pk divides pm. Thus, if T (Z(pn))p is non trivial then
limn→∞ vp(pn) is positive. Let us show it is finite. If it is not the case then there would be some m such
that pm = pn pq for some integer q and we should have pk−1xm = apnq for some integer a. Consequently,
pk−1xn = 0 mod pn and thus xn = 0 mod pn. This would contradict the fact that pk is the order of xn.

Hence, limn→∞ vp(pn) = kp is finite and the order of (xn)n≥1 is at most pkp . Since for each large
enough n (so that vp(pn) = kp), the set of elements in Zpn of order pk′ for some 0 ≤ k′ ≤ kp, forms a
cyclic group of cardinality pkp , the group T (Z(pn))p is a cyclic group of cardinality pkp .

2.3 Toeplitz subshifts

We will use classical notions of symbolic dynamics (e.g. subshift, words, complexity,. . .) and we refer to
Section 2.3 in [13] for a presentation and the notation of these notions. We assume some familiarity of
the reader with the notion of Toeplitz subshift so we review them succinctly. We refer to [14] for a survey
on this topic.

Let x = (xn)n∈Z ∈ AZ, where A is a finite alphabet. For an integer p ≥ 1, we let Perp(x) = {n ∈
Z;xn = xn+kp for all k ∈ Z} be the set of indexes where x is p-periodic. The sequence x is said to be
Toeplitz if there exists a sequence (pn)n≥1 in N \ {0} such that Z =

⋃
n≥1 Perpn(x). Equivalently, the
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SEBASTIÁN DONOSO, FABIEN DURAND, ALEJANDRO MAASS, AND SAMUEL PETITE

sequence x is Toeplitz if all finite blocks in x appear periodically. We say that pn is an essential period if
for any 1≤ p < pn the sets Perp(x) and Perpn(x) do not coincide. If the sequence (pn)n≥1 is formed by
essential periods and pn divides pn+1, we call it a periodic structure of x. Clearly, if (pn)n≥1 is a periodic
structure, then (pin)n≥1 is also a periodic structure for any strictly increasing sequence of positive integers
(in)n≥1.

A subshift (X ,σ) is a Toeplitz subshift if X is the orbit closure of a Toeplitz sequence x ∈ X .
The subshift (X ,σ) is also referred as the subshift generated by x. Let ? be a symbol not in A. If
(pn)n≥1 is a periodic structure of x, then for every n≥ 1 we can define the skeleton map at scale pn by
Spn : X → (A∪?)Z by putting (Spn(y))m equal to ym if m ∈ Perpn(y) and to ? otherwise. Not all the points
y ∈ X are Toeplitz sequences, but they all have the same skeleton structure (Spn(y))n≥1 modulo a shift.
More precisely, if (pn)n≥1 is the periodic structure of the Toeplitz sequence x and y is any point in X , then
for any n≥ 1 there exists jn ∈ {0, . . . , pn−1} such that Perpn(y) = Perpn(x)− jn and sequences x and y
coincide on these coordinates, i.e., Spn(y) = σ jnSpn(x) (see [14], Section 8).

It is well known that a minimal subshift (X ,σ) is a Toeplitz subshift if it is an almost one-to-one
extension of an odometer. The odometer is given by Z(pn), where (pn)n≥1 is a periodic structure of a
Toeplitz point x generating X . The projection of a point y ∈ X into the odometer is given by the sequence
( jn)n≥1 described above (see for instance [20]). Hence, the projection of the Toeplitz sequence x is 0.
Moreover, this odometer is the maximal equicontinuous factor of (X ,σ). A finite Toeplitz subshift is
generated by a periodic Toeplitz sequence so it can be identified with its also finite associated odometer.

Since a Toeplitz subshift is an almost one-to-one extension of its maximal equicontinuous factor,
to study its group of automorphisms, we will use the following result proved in [13] (Lemma 2.1 and
Lemma 2.4).

Lemma 2.3 ([13]). Let (X ,T ) be a minimal system and π : (X ,T )→ (Y,S) be the projection of X onto
its maximal equicontinuous factor. Then, we can define a map π̂ : Aut(X ,T )→ Aut(Y,S), φ 7→ π̂(φ),
such that π̂(φ)(π(x)) = π(φx) for every x ∈ X. If π is a proximal extension (in particular if π is an
almost one-to-one extension) then π̂ is injective.

It is worth mentioning that the same result holds for endomorphisms and that endomorphisms of an
equicontinuous system are automatically automorphisms [1]. It follows that the automorphism group
of a Toeplitz subshift can be identified with a subgroup of the associated odometer. Indeed, it is well
known that the group of automorphisms of an equicontinuous system is homeomorphic to the space itself
(see [1] or Lemma 5.9 in [13] for a shorter proof). It follows that the automorphism group of a Toeplitz
subshift is a countable abelian group.

Many other results described below will follow from the analysis of subgroups of odometers. As a
first remark we have that if (X ,σ) is a Toeplitz subshift and Z(pn) is its associated odometer, then any
finitely generated subgroup G≤ Aut(X ,σ) is isomorphic to Zd⊕H, where, by Lemma 2.2, H is a finite
cyclic abelian group. If the odometer has no torsion, then the group H is trivial and thus G is isomorphic
to Zd . This kind of properties restrict the groups that can be realized as the automorphism groups of
Toeplitz subshifts. We already mentioned in the introduction that the group of rational numbers with the
addition cannot be injected in any odometer Z(pn). Nevertheless, we will see in Section 5 that any finitely
generated abelian group whose torsion subgroup is cyclic can be realized as the automorphism group of a
Toeplitz subshift.
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2.4 Automorphism group of disjoint Toeplitz subshifts

Two topological dynamical systems (X ,T ) and (Y,S) are said to be disjoint if the product system
(X×Y,T ×S) does not have any non-empty, closed and T ×S invariant subsets projecting onto X and Y
respectively, different from X×Y .

In what follows we use the symbol ⊕ (instead of ×) whenever we want to stress that a product is in
the group category. We start with a general lemma. Notice that the inclusion End(X ,T )⊕End(Y,S)⊆
End(X×Y,T ×S) is always true.

Lemma 2.4. Let (X ,T ) and (Y,S) be disjoint minimal systems. If φ ∈ End(X×Y,T ×S) (resp. Aut(X×
Y,T×S)) commutes with id×S and T× id, then φ ∈End(X ,T )⊕End(Y,S) (resp. Aut(X ,T )⊕Aut(Y,S)).
In particular, the conclusion holds if End(X×Y,T ×S) is abelian.

Proof. Write the endomorphism φ(x,y) = (φ1(x,y),φ2(x,y)). If φ commutes with id× S and T × id,
then we get that φ1(x,y) = φ1(x,Sny) and φ2(T nx,y) = φ2(x,y) for every n ∈ Z. By minimality of (X ,T )
and (Y,S) we get that φ1 only depends on x and φ2 only depends on y, meaning that φ belongs to
End(X ,T )⊕End(Y,S). The same is true for φ an automorphism.

Corollary 2.5. Let (X1,σ) and (X2,σ) be disjoint Toeplitz subshifts. Then, End(X1×X2,σ ×σ) =
End(X1,σ)⊕End(X2,σ) and Aut(X1×X2,σ ×σ) = Aut(X1,σ)⊕Aut(X2,σ). In particular, if (X1,σ)
and (X2,σ) are coalescent then (X1×X2,σ ×σ) is coalescent too.

Proof. It suffices to notice that the system (X1×X2,σ ×σ) is a Toeplitz subshift itself. By Lemma 2.3,
End(X1×X2,σ ×σ) is abelian and we can apply Lemma 2.4.

3 Automorphism group of Toeplitz subshifts with subquadratic complex-
ity

In this section we study the automorphism groups of Toeplitz subshifts of subquadratic complexity. That

is, the complexity function verifies liminf
n→∞

pX(n)
n2 = 0. In this case, a simple argument relying in Lemma

5 of [17] implies that these systems are coalescent. In fact, if (X ,σ) is a minimal subshift of subquadratic
complexity (not necessarily Toeplitz), we can consider the spacetime tiling of an endomorphism φ , as
done in [8, 11, 12], and obtain a periodicity condition on this tiling that is translated into φ n = σm for
some n ∈ N and m ∈ Z. From this we deduce that φ is injective and then is an automorphism.

Recall that for an abelian group G, T (G) is its torsion subgroup and that G/T (G) is a torsion free
group. Most of the proofs rely on the following property of odometers.

Lemma 3.1. If G is an abelian group and s ∈ G is an element of infinite order such that G/〈s,T (G)〉 is
finite, then G/T (G) is a cyclic group isomorphic to 〈s〉. In particular, the quotient (G/T (G))/〈s〉 is also
a cyclic group.

Proof. Since G/〈s,T (G)〉 is finite, let g1, . . . ,gm ∈ G be representatives for all of its cosets. For every
i ∈ {1, . . . ,m} there exists an integer `i ∈ Z such that `igi ∈ 〈s,T (G)〉. Let ` denote the smallest positive
integer such that `g ∈ 〈s,T (G)〉 for every g ∈ G. It is standard to check that ` divides lcm(`1, . . . , `m).
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Now, for each i ∈ {1, . . . ,m}, let ki be the integer such that `gi ≡ kis mod T (G). Since G/T (G) is
torsion free, the minimality of ` gives that
(`,k1, . . . ,km) = 1. By Bezout’s Theorem there exist integers a0, . . . ,am such that

a0`+a1k1 + · · ·+amkm = 1.

Therefore, s= (a0`+a1k1+ · · ·+amkm)s≡ `(a0s+a1g1+ · · ·+amgm) mod T (G), and consequently
there exists g ∈ G such that `g≡ s mod T (G). Since `gi ≡ `kig mod T (G) for each i ∈ {1, . . . ,m} and
G/T (G) is torsion free, it follows gi ≡ kig mod T (G). This together with `g≡ s mod T (G) shows that
G/T (G) is generated by g, thus is cyclic. Clearly (G/T (G))/〈s〉 is also cyclic.

Theorem 3.2. Let (X ,σ) be a Toeplitz subshift and let T = T (Aut(X ,σ)) be the torsion subgroup of
Aut(X ,σ).

1. If Aut(X ,σ)/〈T,σ〉 is a periodic group, then any subgroup H of Aut(X,σ) containing the shift is
spanned by the roots of σ mod T (H) in H and T (H). In particular, a torsion free subgroup H
containing σ is spanned by the roots of σ in H.

2. If Aut(X ,σ)/〈σ〉 is finite, then Aut(X ,σ) is isomorphic to Z⊕T and T is either trivial or isomor-
phic to some ZN .

The statement (1) of this theorem applies for instance when (X ,σ) has subquadratic complexity, by
the main result in [8]. Statement (2) applies when (X ,σ) has non-superlinear complexity [13]. Moreover,
since Aut(X ,σ) embeds into the odometer Z(pn) associated to (X ,σ), Lemma 2.2 implies that any prime
divisor p of N satisfies limn→∞ vp(pn) is positive and finite. In this situation, the odometers of the Toeplitz
substitutions considered in [7] are groups of p-adic integers Z(pn), that have no torsion. So it follows that
in this case Aut(X ,σ) is itself a cyclic group, which corresponds to Corollary 12 in [7].

Proof. Let Z(pn) be the odometer associated to the Toeplitz subshift (X ,σ) and let H be a subgroup of
Aut(X ,σ) containing σ . For φ ∈ H, consider the subgroup G of H spanned by φ and σ . By Lemma
2.3 we can see G as a subgroup of the odometer Z(pn) and translate the hypothesis to the statement:
G/〈T (G),1〉 is an abelian finitely generated periodic group. But this implies that G/〈T (G),1〉 is in fact
finite. From Lemma 3.1, the group G/T (G) is cyclic. In particular, there exist ρ ∈ G and m1,m2 ∈ Z
such that φ ≡ ρm1 mod T (H) and σ = ρm2 mod T (H). This completes (1).

If Aut(X ,σ)/〈σ〉 is finite, then Aut(X ,σ) is finitely generated. So Lemma 2.2 implies that its torsion
subgroup T is cyclic. A direct consequence of Lemma 3.1 to Aut(X ,σ) is that Aut(X ,σ)/T is cyclic.
Since Aut(X ,σ)' (Aut(X ,σ)/T )⊕T we have proved statement (2).

It is worth noting that if ϕ is a root of σ , then the integer ` such that ϕ` = σ has to be prime with each
pn appearing in the odometer Z(pn). This follows from the fact that the equality ϕ` = σ (in Aut(X ,σ))
is translated into `z = 1 for z ∈ Z(pn), which is possible only if ` is prime with pn for all n ≥ 1. This
observation allows us to produce examples of Toeplitz subshifts without roots, so where the automorphism
group is trivial.

We illustrate Theorem 3.2 and previous comment in the next general construction. We concentrate on
part (2). Examples for part (1) appear in the next section.
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Consider a sequence (wn)n≥1 on the finite alphabet A∪{?} such that for each n≥ 1, |wn|= qn ≥ 3
and, for n≥ 2, wn = un?vn, where un and vn are non empty words on the alphabet A. Thus wn contains
exactly one symbol ?. Now define the sequence (Wn)n≥1 by: W1 = w∞

1 = . . .w1w1.w1w1 . . ., where the
central dot indicates the position to the left of the zero coordinate, and Wn+1 = FWn(w

∞
n+1) for every

n≥ 1. Here, FWn(w
∞
n+1) is the sequence obtained from Wn replacing consecutively all the symbols ? by

the sequence w∞
n+1, where (w∞

n+1)0 is placed in the first ? to the right of coordinate 0. The map F will be
studied in more details in next section.

Since symbol ? moves away from zero coordinate with n, then the sequence (Wn)n≥2 converges to a
point x ∈AZ. In addition, each coordinate of x is periodic with periods in the sequence (pn)n≥1, where
pn = q1 · · ·qn. Hence x is a Toeplitz sequence. We let the reader check that one can choose the words un’s
and vn’s to construct a non periodic sequence x. Also, special choices of the un’s and vn’s allow us to
prove that (pn)n≥1 is the sequence of essential periods of x (for example consider two different letters
a,b ∈ A and take un = a, vn = bqn−2). So, under this assumption we have that Z(pn) is the odometer
associated with X , the orbit closure of x by the shift map. Finally, remark that any word of length pn

appearing in x can be constructed filling one symbol ? in Wn, which is a periodic sequence of period pn.
Then, the complexity of X verifies pX(pn)≤ |A| pn, and thus X has non-superlinear complexity.

Fixing the values of (qn)n≥1 in such a way that pn = n! for all n≥ 3 we get a Toeplitz subshift whose
odometer is the universal one. In this case, by Lemma 2.2 we have that Aut(X ,σ) is torsion free and
by Theorem 3.2 it is spanned by the roots of σ . But by the discussion after previous theorem the only
possible root is the shift itself. Again, by Lemma 2.2, one can make other choices of the sequence (qn)n≥1
in such a way that Aut(X ,σ) is torsion free and isomorphic to Z.

The same construction together with Corollary 2.5 allow us to get Toeplitz subshifts with non-
superlinear complexity such that Aut(X ,σ) is isomorphic with Z⊕ZN for any N ∈N. Indeed, in previous
construction consider p a prime number not dividing N and set qn = p for any n≥ 1. Then consider the
cartesian product system (X ×ZN ,σ ×+1), which, by the mentioned corollary, is a Toeplitz subshift
with the desired automorphism group.

As consequence of the discussion of this section we can formulate the following dichotomy.

Corollary 3.3. Let (X ,σ) be a Toeplitz subshift such that Aut(X ,σ)/〈σ〉 is a periodic group. If Aut(X ,σ)
is torsion free, then either Aut(X ,σ) is cyclic or Aut(X ,σ) is not finitely generated.

Proof. The dichotomy follows from considering the cases whether Aut(X ,σ) is spanned by finitely or
infinitely many roots of σ .

We can think of this result as a consequence of the algebraic structure of the automorphism group of
a Toeplitz subshift, which for given automorphisms φ1 and φ2 allow us to take a “common divisor”, i.e.
an automorphism φ such φ1 and φ2 belong to 〈φ〉 (assuming that there is no torsion). This situation has to
be contrasted with the case of a mixing shift of finite type, where the shift always admits only finitely
many roots (see the discussion after Problem 3.5 in [3]).

In the next section we exhibit some examples where the shift does have infinitely many roots. It
remains open whether we can give a precise description of the roots of the shift map generating the
automorphism groups in previous theorems.
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4 Not finitely generated automorphism groups for Toeplitz subshifts

As proved in Theorem 3.2, the quotient of the automorphism group by the torsion subgroup for a Toeplitz
subshift of subquadratic complexity is generated by the roots of the shift map. In the particular case
of non-superlinear complexity the automorphism group modulo its torsion subgroup is virtually Z and
generated by a unique root. In this section we prove that the last result is in some sense optimal. That is,
we can construct Toeplitz subshifts of subquadratic complexity such that the automorphism group is even
not finitely generated. The same construction allows to get Toeplitz subshifts of arbitrary polynomial
complexity whose automorphism groups are not finitely generated.

The main result of the section is the following,

Theorem 4.1. For every ε > 0, there exists a Toeplitz subshift (X ,σ) such that the complexity verifies
pX (n)

n ≤Cnε for all n≥ 1 and whose automorphism group is torsion free and not finitely generated.

To achieve this, we make use of the class of (p,q)-Toeplitz subshifts. In [5], Cassaigne and Karhumäki
introduced this class and established the fundamental properties we discuss in the sequel. In this class
one can get complexities that are arbitrarily close to non-superlinear (but always superlinear). This class
was implicitly used by Salo [19] to give an example of a subshift of complexity pX(n)≤Cn1.757 with
a non-finitely generated automorphism group. We simplify and extend his result in the generality of
Theorem 4.1. We start introducing the basic notions from [5], then we use freely their results. It is worth
noting that in [5] the construction was carried out for one sided subshifts, but all can be extended without
any problem to the two sided case.

4.1 (p,q)-Toeplitz subshifts

We refer to Section 2 in [5] for a detailed discussion on next properties and concepts.
Let A be a finite alphabet and ? a letter not in A (usually the symbol ? is referred as a “hole”).

Let x ∈ (A∪ {?})Z. The sequence x represents a sequence over the alphabet A with holes. Given
x,y ∈ (A∪{?})Z, define Fx(y) as the sequence obtained from x replacing consecutively all the ? by the
symbols of y, where y0 is placed in the first ? to the right of coordinate 0. In particular, if x has no holes,
Fx(y) = x for every y ∈ (A∪{?})Z. In addition, observe that:

if z = Fx(y) then Fz = Fx ◦Fy. (1)

Now, consider a finite word w in A∪{?}. Let p be the length of w and q the number of its holes.
Denote by w∞ the sequence · · ·www.www · · · ∈ (A∪{?})Z, where the central dot indicates the position to
the left of coordinate 0. We define the sequence (Tn(w))n≥1 by: T1(w) = w∞ and Tn+1(w) = Fw∞(Tn(w))
for every n≥ 1. It is not complicated to see that each Tn(w) = u∞

n for some word un of length pn and un has
qn holes. We have that the limit x = lim

n→∞
Tn(w) is well defined as a sequence in (A∪{?})Z. Moreover, if

w does not start or finish with a hole, then the limit sequence belongs to AZ, i.e., x has no holes. The point
x is called a (p,q)-Toeplitz sequence. Its orbit closure under the shift map X is called a (p,q)-Toeplitz
subshift.

One of the main results in [5, Theorem 5] states that the complexity of a non periodic (p,q)-Toeplitz
is Θ(nr), where r = log(p/d)/ log(p/q) and d = (p,q).
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Now suppose that (p,q) = 1. Then, there exist positive constants C1 and C2 such that

C1n1+ logq
log p−logq ≤ pX(n)≤C2n1+ logq

log p−logq , ∀n≥ 1. (2)

Moreover, the length of |un| above is the smallest possible, (pn)n≥1 is a periodic structure for x and the
associated odometer is given by Z(pn) which is torsion free by Lemma 2.2. Therefore, thanks to Lemma
2.3 we get the same conclusion for Aut(X ,σ).

If p is large enough compared with q, we have that | logq
log p−logq | ≤ ε . Thus, (p,q)-Toeplitz subshifts is

a natural class to study to prove Theorem 4.1.

4.2 Self reading properties of (p,q)-Toeplitz

Let w be a finite word in (A∪{?}) of length p and q holes with (p,q) = 1. Let x = limn→∞ Tn(w) be the
(p,q)-Toeplitz sequence generated and X its orbit closure under the shift. The purpose of this section is
to prove the main consequences of the so called “self-reading” property of x. First we summarize some
basic results, some were already discussed in [5], others need to be proved.

Proposition 4.2. We have,

1. For every n≥ 1, the map FTn(w) : (A∪{?})Z→ (A∪{?})Z is continuous and FTn(w)(x) = x.

2. FTn(w)(σ
qn

y) = σ pn
FTn(w)(y) for every y ∈ (A∪{?})Z.

3. The skeleton structure of x is (Tn(w))n, i.e., Spn(x) = Tn(w) for all n≥ 1.

4. The transformation σqn
is minimal in X for every n≥ 1.

5. FTn(w) leaves X invariant.

Proof. Continuity in statement (1) is direct from definition. Now, from (1) we have that Tn+1(w) =
Fw∞(Tn(w)), and thus FTn+1(w) = Fw∞ ◦FTn(w), which implies FTn(w) = (Fw∞)n. From this equality we
deduce FTn(w)(x) = limm→∞(Fw∞)n+m(w∞) = x. This proves (1).

Statement (2) follows from the fact that each Tn(w) is periodic of period pn and contains qn holes.
Statement (3) is direct.

Let π denote the factor map from X to Z(pn). Since (p,q) = 1, statement (4) follows from the fact
that translation by qn1 acts minimally in the odometer Z(pn) by Lemma 2.1, for every n≥ 1. Indeed, if
A⊆ X is closed and invariant under σqn

, then π(A) is also closed (since X is compact) and invariant. By
minimality we get that π(A) = π(X) = Z(pn). But π is almost one-to-one and thus A contains all points
with one preimage (which is a Gδ -set). Since A is closed we get A = X . This proves (4).

We finally notice that properties (1) and (2) imply that FTn(w)((σ
qn
)mx) ∈ X for all n≥ 1 and m ∈ Z.

The minimality of σqn
implies that FTn(w) leaves invariant X , proving (5).

DISCRETE ANALYSIS, 2017:11, 19pp. 11

http://dx.doi.org/10.19086/da
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4.3 Proof of Theorem 4.1

First, we choose a word w of length p and with q holes in A∪{?} such that the associated limit sequence
x is non periodic and in AZ. It is enough to avoid the symbol ? in the first and last coordinates of w. Recall
we are considering p and q to be relatively primes. Notice that, by (2), within the family of (p,q)-Toeplitz
subshifts with p and q relatively primes we can get for any ε > 0 complexities such that for some constant
C > 0, pX(n)/n≤Cnε , for all n≥ 1. It remains to prove that the automorphism group of the subshift X
generated by x is not finitely generated.

Let n≥ 1 and z ∈ X . As observed in Section 2.3, we can find a unique m = m(n,z) ∈ {0, . . . , pn−1}
such that Spn(z) = σmSpn(x) = σmTn(w), where in the last equality we have used Proposition 4.2 (3).
Recall that Spn(·) is the skeleton map at scale pn and m is nothing but the projection of z onto the factor
Zpn .

Let z ∈ X 7→ Hn(z) be the map that associates the sequence in AZ of the consecutive symbols of z in
the holes of Spn(z) from the coordinate −m(n,z). That is, the unique sequence satisfying

FSpn (x)(Hn(z)) = σ
−m(n,z)(z). (3)

We have that Hn is a continuous function. Let k be an integer and r such that 0≤ r < pn and k+m= l pn+r
for some l ∈ Z. It is straightforward to check that m(n,σ k(z)) = r. Then, using (3) and Proposition 4.2
(2), one gets

Hn(σ
kz) = σ

lqn
Hn(z). (4)

We claim that Hn(z) belongs to X . Since Spn(z) = σmSpn(x), there is an integer sequence (`i)i≥0 so that z
can be written as z = limi→∞ σ pn`i+m(x). Using formula (4) we get,

Hn(z) = Hn(lim
i→∞

σ
pn`i+m(x)) = lim

i→∞
σ

qn`iHn(σ
m(x)).

But, from (3), Hn(σ
m(x))=Hn(x) and by Proposition 4.2 (1) Hn(x)= x, then Hn(z)= limi→∞ σqn`i(x)∈X .

The claim is proved.
Define ϕn(z) = σmFSpn (x)(σ(Hn(z))). We have that this map ϕn : X → X is well defined by the

previous claim and Proposition 4.2 (5). This map leaves invariant each A-letter in the pn-skeleton of z
and shift the symbols of z in the holes by one within the holes.

Using again formula (4) it is not difficult to check that ϕn is an automorphism of (X ,σ). Moreover,
we have that ϕ

qn

n = σ pn
because there are qn holes in the first pn letters of Spn(x) = Tn(w).

On the other hand, qn is the minimum positive integer ` such that ϕ`
n ∈ 〈σ〉. Indeed, if ϕ`

n = σ r for
some integer r, then σ `pn

= ϕ
`qn

n = σ rqn
and by aperiodicity, `pn = rqn. Since p and q are relatively

prime, qn divides `.
In particular, 〈{ϕn : n ∈ N},σ〉/〈σ〉 is an infinite periodic group and thus it is not finitely generated

(finitely generated torsion abelian groups are finite). This implies that Aut(X ,σ) is not finitely generated.
�

We finish this section pointing out that if we choose p and q = p−2 for a large odd value of p, then
the associated (p,q)-Toeplitz subshift has a polynomial complexity of degree log(p)

log(p)−log(p−2) ≥
p−2

2 log(p).
We conclude that,
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Corollary 4.3. There exist Toeplitz subshifts of arbitrarily large polynomial complexity with a not finitely
generated automorphism group.

In the light of Corollary 3.3, we notice that we can easily exhibit infinitely many roots of the shift.

Corollary 4.4. Let (X ,σ) be a (p,q)-Toeplitz, with (p,q) = 1. Then for every n≥ 1, σ admits a qn-root.

Proof. We have that for every n≥ 1 there exists an automorphism ϕn such that ϕ
qn

n =σ pn
. Since (p,q)= 1

we can find a,b ∈ Z such that apn = bqn +1. Then ϕ
aqn

n = σapn
= σbqn

σ and the automorphism ϕa
n σ−b

is a qn-root of σ .

5 Realization of finitely generated abelian groups

In this section we show that within the class of Toeplitz subshifts we can realize any finitely generated
abelian group with cyclic torsion subgroup as an automorphism group. Recall that the property of the
torsion is necessary by Lemma 2.2. In the process, we show that large entropy does not suffice to have
a large automorphism group, by constructing Toeplitz subshifts with arbitrarily large entropy and no
automorphisms other than powers of the shift. This result is a consequence of the following theorem.

Theorem 5.1. For any infinite odometer there exists a uniquely ergodic Toeplitz subshift (X ,σ) with
an arbitrarily large topological entropy whose associated odometer is equal to the given one and
Aut(X ,σ) = End(X ,σ) = 〈σ〉.

Proof. Fix an odometer Z(pn) not isomorphic to a finite group. In this case we can consider (pn)n≥1
strictly increasing. Below we construct a Toeplitz point x and its associated subshift X in an iterative
process and prove all the desired properties. Without loss of generality we may assume that p1 = 1.
The Toeplitz subshift. Let D0 > 1 and k1 > 3 be constants that will be adjusted later. In the following,
we will assume that k1 is large enough so that 2n−2k1 > (n+1)2D0 for all integer n≥ 2. We consider an
alphabet A with k1 letters and let i1 = 1.

Fix n≥ 2 and suppose that at step (n−1) we have defined kn−1≥ 2n−2k1 words B1,n−1, . . . ,Bkn−1,n−1 of
the same length pin−1 on A. Pick a positive integer in > in−1 such that pin > pin−13kn−1((n2D0)

−1−k−1
n−1)

−1

(the definition of k1 ensures that the term (n2D0)
−1− k−1

n−1 is positive). Next, we build words of length
pin by concatenating the words B1,n−1, . . . ,Bkn−1,n−1 according to the following rules:

C1) The words B1,n−1 . . .Bbkn−1/2c,n−1 and Bbkn−1/2c+1,n−1 . . .Bkn−1,n−1 respectively always appear as prefix
and suffix of all words of step n.

C2) After ensuring C1), we complete the remaining positions with pin/pin−1− kn−1words of length pin−1

of the previous step. To do so, we consider all different concatenations of B2,n−1, . . . , Bkn−1,n−1 (we
exclude B1,n−1) such that each Bi,n−1 appears the same number of times di,n−1, for every i ≥ 2. More
precisely, set dn = di,n−1 = b(pin/pin−1 − kn−1)/(kn−1− 1)c for i ≥ 3 (so it is constant for such i) and
d̂n = d2,n−1 = pin/pin−1− kn−1− (kn−1−2)dn. Clearly, d̂n ≥ dn. For any such concatenation we obtain a
word of step n of length pin and we let kn denote the number of words of this length we get. We have the
bound kn ≥ f (dn,kn−1−1), where f (d,k) = (dk)!

(d!)k denotes the number of partitions of a set of cardinality
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dk in k atoms such that each atom has d elements. Observe that f (d,k)≥ k! and so kn ≥ 2kn−1 ≥ 2n−1k1
for each n≥ 2. We choose an order B1,n, . . . ,Bkn,n of them and continue with step n+1.

By construction, there exists a sequence x in AZ such that for every n≥ 1 the word around coordinate
0 is equal to Bkn,n.B1,n, where the dot indicates the position to the left of coordinate 0 in x. It is not
difficult to see that for every n≥ 1 the sequence x is a concatenation of words B·,n. Moreover, any finite
word in x appears periodically with period pin for some n≥ 1. Indeed, by construction, any finite word
in x is a subword of Bkn,n.B1,n for some n ≥ 1, which by C1) is pin+1-periodic. This implies that x is a
Toeplitz sequence. Call (X ,σ) the associated Toeplitz subshift.

We will need the following fundamental claim. We say a word u has a trivial overlapping with the
word v whenever u appears in v only as a prefix or a suffix, meaning if v = pus for some words p,s then
p or s has to be the empty word.

Claim 5.2. For every n ≥ 1, each word Bi,n has a trivial overlapping with B j,nBk,n for any i, j,k ∈
{1, . . . ,kn}.

Proof. We proceed by induction. The case n = 1 is true by construction. Now assume the result
holds for n and by contradiction assume that Bi,n+1 is a subword (different from a prefix or a suffix) of
B j,n+1Bk,n+1 for some i, j,k ∈ {1, . . . ,kn+1}. We have that in the word B j,n+1Bk,n+1, B1,n only appears as
prefix of B j,n+1 and prefix of Bk,n+1, otherwise B1,n would be a subword of B j′,nBk′,n for some j′,k′ ∈
{2, . . . ,kn}, contradicting the induction hypothesis. But Bi,n+1 also starts with B1,n so the only possibility
is B j,n+1Bk,n+1 = Bi,n+1Bk,n+1 or B j,n+1Bk,n+1 = B j,n+1Bi,n+1, which contradicts our assumption.

Before giving the rest of the proof, let us fix some notations. For a word y (eventually infinite),
i < j ∈ Z, y|[i, j) denotes the word yi · · ·y j−1. We say that a word u occurs in y if there exists some i ∈ Z
such that y|[i,i+|u|) = u, where |u| denotes the length of u and the index i is called an occurrence of u.

Now we check that X is an almost one-to-one extension of the odometer Z(pin )
. For this, it is enough

to verify that (pin)n≥1 is a periodic structure of x = (xn)n, and for this it is only left to check that each pin
is an essential period of x. If not, there exists n≥ 1 and 1≤ p < pin such that Perp(x) = Perpin

(x). By
condition C1), {0,1, . . . , pin−1 −1} ⊆ Perpin

(x), so p is an occurrence of x|[0,pin−1 )
= B1,n−1 in x. Since

B1,n is a concatenation of words B·,n−1, Claim 5.2 and condition C2), both imply that B1,n−1 has no
occurrence, except 0, in B1,n = x|[0,pin )

. This contradicts the fact that 1≤ p < pin .

Lower bound for the topological entropy. We use the following lower bound of the topological entropy

h(X ,σ) = lim
n→∞

log pX(n)/n ≥ limsup
n→∞

logkn

pin
. A standard computation using the Stirling formula gives

that

log f (d,k)≥ (d−1)(k−1) log(k+1)

for every d and k larger than some universal constant. Since we have dn ≥ 3(((n + 1)2D0)
−1 −

(2n−2k1)
−1)−1−2 and kn ≥ 2n−1k1, in what follows we can assume that k1 and D0 are large enough so

that dn and kn satisfy the previous estimates for all n≥ 1. An iterated use of the previous inequality leads
to:
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logkn

pin
≥ log f (dn,kn−1−1)

pin

≥ dn−1
pin

(kn−1−2) logkn−1 =
pin−1

pin
(dn−1)(kn−1−2)

logkn−1

pin−1

≥
pin−1

pin
(dn−1)(kn−1−2) · · · pi1

pi2
(d2−1)(k1−2)

logk1

pi1
.

Now, a standard computation gives that for all n≥ 2∣∣∣∣ pin−1

pin
(dn−1)(kn−1−2)−1

∣∣∣∣≤ 1
kn−1−1

+
pin−1

pin
3kn−1 ≤

1
n2D0

.

Let C > 0 and 0 < r < 1 be constants such that z+1≥ exp(−C|z|) when |z|< r. Then, if D0 is large
enough, we can take z =

pin−1
pin

(dn−1)(kn−1−2)−1 to get

∏
n≥2

pin−1

pin
(dn−1)(kn−1−2)≥ exp(−C ∑

n≥2

1
n2D0

).

It follows that h(X ,σ)≥ exp(−C ∑n≥2
1

n2D0
) logk1

pi1
. Hence, we can make the entropy arbitrarily large by

moving k1.

Unique ergodicity. Condition C2) and Claim 5.2 both impose that for every n≥ 1 and i ∈ {1, . . . ,kn} the
set of occurrences of the word Bi,n in x has a specific frequency. More precisely, the word Bi,n appears
exactly a specific number of time in B j,n+1 for every j ∈ {1, . . . ,kn+1} (Namely one time if i = 1 and
di,n +1 times otherwise). Since any x ∈ X is a concatenation of words B·,n+1 (Condition C2)), it follows
that the average number of occurrences of Bi,n, 1

N ∑
N−1
k=0 1[Bi,n]0(σ

kx) converges, as N goes to infinity, to
(1+di,n)/|B1,n+1|= (1+di,n)/pin+1 (with the convention d1,n = 0). Hence for every ergodic measure µ

we have that µ([Bi,n]0) = (1+di,n)/pin+1 by the Ergodic Theorem. Since the cylinders [Bi,n]0 (and their
images under the powers of the shift) generate the Borel σ -algebra, the associated subshift is uniquely
ergodic.

Automorphism group. We now prove that (X ,σ) has no other endomorphisms than the powers of σ . Let
φ ∈ End(X ,σ) and consider n≥ 1 large enough such that pin−1 is greater than the radius of a block map
for φ .

By Claim 5.2 and condition C2), any occurrence i ∈ Z of B1,n is an occurrence of some B j,n+1 in x.
Since x is a concatenation of words B·,n+1, the index i− (kn−bkn/2b)pin− pin−1 is an occurrence of the
word

Bkn−1,n−1Bbkn/2c+1,n . . .Bkn,n B1,n B2,n . . .Bbkn/2c,nB1,n−1,

meaning that the word B1,n is always preceded in x by Bkn−1,n−1Bbkn/2c+1,n . . .Bkn,n and followed by the
word B2,n . . .Bbkn/2c,nB1,n−1. This phenomenon is usually referred as B1,n is an extensible word.

Therefore, there exists a word w of length kn pin such that

{i ∈ Z;x|[i,i+pin )
= B1,n} ⊆ {i ∈ Z;φ(x)|[i−(kn−bkn/2c)pin ,i+bkn/2cpin )

= w}.

DISCRETE ANALYSIS, 2017:11, 19pp. 15

http://dx.doi.org/10.19086/da
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By construction, the set in the left hand side of the equation is pin+1Z, so the word w occurs periodically
with period pin+1 in φ(x).

Recall that φ(x) is a concatenation of the words Bi,n+1 of length pin+1 and, in such decomposition,
condition C2) ensures that each word Bi,n+1B j,n+1, i, j ∈ {2, . . . ,kn+1} appears at least once. From the
periodicity of occurrences of w there exists 0≤ p≤ pin+1 such that for every i, j ∈ {2, . . . ,kn+1},

Bi,n+1B j,n+1|[p,p+kn pin )
= w. (5)

The following claim shows that this p has to be close to pin+1 , that is, w starts with a suffix of Bi,n+1
and ends with a prefix of B j,n+1.

Claim 5.3. Let p be an integer 0≤ p≤ pin+1 that satisfies (5). Then,∣∣p+ kn pin− pin+1−bkn/2cpin−1
∣∣≤ pin−1(bkn−1/2c+1).

Proof. Assume the inequality is false. This implies that the word w = Bi,n+1B j,n+1|[p,p+kn pin )
has a

suffix (or a prefix) with a factor B·,n−1 of Bi,n+1 (or of B j,n+1) different from the ordered part given by
condition C1). Since condition C2) ensures that we can find any word B`,n−1, `≥ 2, at any position in
pinZ∩{pinbkn/2c, . . . , pin+1 − (kn−bkn/2c)pin} outside the ordered parts given by condition C1), there
exist indices i′, j′ ∈ {2, . . . ,kn+1} such that Bi′,n+1B j′,n+1|[p,p+kn pin )

6= w, leading to a contradiction

Call the word Bi,n+1B j,n+1|[p+(kn−ckn/2b)pin−1,p+(kn−ckn/2b+1)pin )
the middle word of w. For any occur-

rence ` of B1,n in x, the unique extension property implies that ` also is an occurrence of the middle word
of w in φ(x). Thus, by Claim (5.3), ` is at distance at most pin−1(bkn−1/2c+1) from an occurrence of
B1,n in φ(x). Finally, we get k ∈ Z with |k| ≤ pin−1(bkn−1/2c+1) such that both x and σ kφ(x) starts with
B1,n. Considering σ kφ instead of φ , we can assume that x and φ(x) start with the word B1,n, where φ

admits a block map φ̃ of radius smaller than pin−1 + pin−1(bkn−1/2c+1)≤ pin .
By the extensible property of B1,n we get that φ([B1,n]0)⊆ [B1,n]0, where [B1,n]0 is the cylinder set

starting with word B1,n at zero coordinate. Using that B1,n only appears as a prefix of the words B j,n+1 for
all j∈{1 . . . ,kn+1}, we get that φ(x) has to start with some word B j,n+1. Since the radius of φ̃ is lower than
pin , the same argument as before shows that there exists another k ∈ Z with |k| ≤ pin(bkn/2c+1)< pin+1

such that both x and σ kφ(x) starts with B1,n+1. But since φ(x) starts with some B j,n+1 we have that if
j 6= 1 then k ≥ pin+1 . So we get that j = 1 and k = 0. Inductively we conclude that x and φ(x) start
with the word B1,n for every n ≥ 1. Hence, x and φ(x) are right asymptotic. Since any word of x
has a positive occurrence in x, the block map φ̃ codes the identity map, so φ = Id. We conclude that
End(X ,σ) = Aut(X ,σ) = 〈σ〉, finishing the proof.

In the previous proof we can relax condition C2) by considering all the concatenations of words
Bi,n−1, i ∈ {2, . . . ,kn−1}, without imposing restrictions on their number of occurrences, leading to the
construction of a coalescent Toeplitz subshift with entropy arbitrarily high but not necessarily uniquely
ergodic.

The fact that we can choose first an infinite odometer and then find a Toeplitz almost one-to-one
extension of it with arbitrarily high entropy allow us to deduce the following.

Theorem 5.4. Any infinite finitely generated abelian group with cyclic torsion subgroup can be realized
as the automorphism group of a coalescent Toeplitz subshift with arbitrarily large or zero entropy.
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Proof. Let G be a finitely generated abelian group with cyclic torsion subgroup. By the fundamental
theorem of finitely generated abelian groups, we may identify G with Zd ⊕Za, where d ≥ 1 and
a = as1

1 · · ·a
s`
` with different prime numbers ai for i ∈ {1, . . . , `} and `≥ 1.

Consider d different primes r1, . . . ,rd , where each r j is also chosen to be different from the ai’s for
i ∈ {1, . . . , `}. Let us consider for each j ∈ {1, . . . ,d} a Toeplitz subshift (X j,σ) such that End(X j,σ) =
Aut(X j,σ) = 〈σ〉, so is isomorphic to Z, and whose associated odometer is Z(rn

j )
, i.e., where the scale is

given by (rn
j )n≥1. Examples of such subshifts are provided by Theorem 5.1, in the positive entropy case

and by the examples illustrating Theorem 3.2 (2) in the zero entropy case.
Consider the product space X = X1×·· ·×Xd×Za with the action σ : X → X given by the shift on

each X j for j ∈ {1, . . . ,d} and by the addition by one on the finite system Za (recall that in the case a
Toeplitz is finite we identify it with the associated odometer). The fact that all the involved odometers
(finite and infinite) have different primes in their bases implies that the system (X ,σ) is a minimal system
(we refer to Section 12 in [14] for a deeper discussion on disjointness properties of Toeplitz subshifts).
Moreover, (X ,σ) is also a Toeplitz subshift: the k-th coordinate of x = (x1, . . . ,xd ,m) ∈ X is periodic of
period the product of the periods of the k-th coordinates of x1, . . . ,xd ,m. By Corollary 2.4 we get that
(X ,σ) is coalescent and its automorphism group is abelian and equal to Aut(X1,σ)⊕·· ·⊕Aut(Xd ,σ)⊕
Aut(Za,+1), which is nothing but Zd⊕Za, and thus is isomorphic to G.

Finally remark that any finite cyclic group can be realized as the automorphism group of a periodic
Toeplitz subshift. So to summarize, any finitely generated abelian group with cyclic torsion subgroup can
be realized as the automorphism group of a Toeplitz subshift.

We finish this section with some open questions: Given a countable subgroup of an odometer Z(pn),
can we find a Toeplitz subshift whose automorphism group realizes this group? In particular, does there
exist a Toeplitz subshift whose automorphism group contains an infinite countable direct sum of Z?
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