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Abstract. We consider a coupled PDE-ODEs model that describes the bacterial dynamics
of the anaerobic biodegradation of waste in a landfill taken as an unsatureted porous
medium. We add a diffusion term in the ODEs part which gives a rise to a reaction-
diffusion system coupled with porous media equations. This yields a new model of the
biodegradation of the waste where the biological variables are varying in space and
time. We perform the mathematical analysis of the resulting system and we consider a
discretization based on BDF schemes and P1 conforming finite elements for the reaction-
diffusion subsystem and a mixed finite elements RT0/P0 for the Darcy flow. We carry out
the numerical analysis and we obtain the expected a priori estimates. We perform several
numerical 2D and 3D simulations which are in agreement with the theoretical results.

AMS subject classifications: 65M10, 78A48
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1. Introduction

Waste management and renewable energy generation are two key issues in nowadays
societies. A major research field arising in recent years focuses on combining the two afore-
mentioned topics by developing new techniques to handle waste and to use it in the energy
production. The anaerobic digestion process is a natural biological process of decompo-
sition of organic mater by microorganisms (bacteria) that are activated under anaerobic
conditions, that is to say without oxygen. It is characterized by a succession of complex
reactions both in parallel and in series. In the long term, the organic mater is transformed
into biogas, a mixture mainly composed of methane and carbon dioxide. The main stages
of this process are hydrolysis, acidogenesis, acetogenesis and methanogenesis. Models such
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as the “ADM1" allow a detailed description of this process, cf. [25]. However, such complex
models are not well suited for mathematical analysis. A large number of simpler mod-
els have been investigated in the literature over theses last years [15, 17, 18, 33, 34, 36].
When dealing with the digestion of wastewater, it is recognized that the limiting step is
the methanoganesis. In such a case, modelling include one-, two- or three-step models.
Of particular interest is the model by Bernard et al., 2001 ( [7]) which proposes to model
the anaerobic digestion process as a two-step process involving both the acidogenesis (us-
ing a Monod kinetics) and the methanogenesis processes (using a Haldane kinetics). This
model, for which the mathematical analysis has been conducted by Benyahia et al., 2012,
cf. [6], is very popular, notably for control purposes, since it remains of moderate complex-
ity while being quite easy to calibrate to predict process behaviour with satisfying perfor-
mances, [4, 16] or still [27]. It has also been the basis for proposing a systematic way to
link simple models to ADM1 predictions, cf. [25].

The waste landfill is a multiphase medium consisting of solid, liquid and gas phases and
is considered as a porous medium. The biodegradation process produces the biogas and
leachate in the landfill [32] and thus the coupling of the biological activity and the fluid
flow. We refer the interested reader to the review paper of Agostini, Sundberg, Navia [1]
on this subject.
In this article, we present a new coupled model combining the biological and the mechanical
aspects describing respectively the process of the biogas production and the leachate flow
during the anaerobic biodegradation of the organic mater in a landfill. We give, as in [31],
the standard two-step approach of the biogas production with two different specific growth
rates. We modify the model by transforming the ordinary differential equations part into
partial differential equations (PDEs) to obtain a system of diffusion-reaction. The added
diffusion allows us to better represent the bacterial dynamic in the spatial domain and to
take into account the nonhomogeneous distribution of methanogenese bacteria which is a
more realistic assumption in a waste collection sites ( [37], [30], [40]). Secondly, we give
the full system governing the leachate flow and the biodegradation.

Besides the fact that describing a part of the bacterial dynamic as a diffusion-reaction
system leads to more realistic and accurate modelling, it also acts as a regularization pro-
cedure for the initial ODEs system for which we have established in [31] the existence of
several (stable and unstable) equilibria.

We consider discrete problems based on high order time discretization and conforming
finite elements for the reaction-diffusion system and a mixed finite elements discretization
(Raviart-Thomas/P0) for the porous medium equations. We perform their numerical anal-
ysis and we obtain optimal a priori error estimates. We present some 2D and 3D numerical
results that show the relevance of the new model. This study constitutes an important step
towards the more suitable model of the dynamic of the waste in a landfill with multiple
phases (gaz/liquid/solid).

The rest of this article is organized as follows: In section 2. we derive the mathematical
model governing the chemical and physical phenomena taking place in the waste collec-
tion site. In section 3. we establish the existence and uniqueness results for the system
and we perform the semi-discretization in time based on the second order BDF2 scheme
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and we derive the variational formulation for the full problem. Section 4. is devoted to
the numerical analysis of the PDEs system. We use different discrete setting between the
reaction diffusion subsystem, for which we use P1-conforming finite element approxima-
tion and the porous medium subsystem that we discretize as mixed variational formulation
in the velocity-pressure variables, with Raviart-Thomas RT0 for the velocity and P0 finite
elements for the pressure. We carry out the numerical analysis and we derive a priori error
estimates in the spirits of [19] [5]. In section 5. we present some 2D and 3D numerical
simulations and we detail the method for solving the proposed model.The implementation
is based on the open source software FreeFem++ [26].

2. A coupled mathematical model for the biological dynamic and the flow

2.1. The bacterial dynamic

2.1.1. The anaerobic digestion system in two-step

The methane production process considered in this article is described as follows: a first
step of hydrolysis / acidogenesis of the organic mater, represented by its concentration that
we denote X , leads to the formation of carbon dioxide (CO2) and simple soluble organic
mater S. The latter is used as a substrate by methanogenic bacteria B which in turn produce
carbon dioxide (CO2) as well as methane (CH4). At their death, the methanogenic bacteria
in turn constitute a complex substrate to hydrolysis step (see FIGURE (1)). The principle of

Figure 1: Scheme used for modelling anaerobic degradation of organic mater.

mass conservation and the law of bacterial growth, show that the bacterial dynamic and the
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biogas production are solutions of the following system of ordinary differential equations














































































dX
d t
= −KhX +αKd B

dB
d t
= (µ(S)− Kd)B

dS
d t
= f1KhX −

1
Y
µ(S)B

d[CO2]
d t

= (1− f1)KhX + (1− f2)
1− Y

Y
µ(S)B

d[CH4]
d t

= f2
1− Y

Y
µ(S)B.

(2.1)

The parameters f1 and f2 are the stoichiometric coefficients which represent the parts of
organic mater (OM) transformed into simple OM or methane during the "hydrolysis / aci-
dogenesis" step or methanogenesis step respectively. Consequently (1 − f1) and (1 − f2)
represent the parts of OM transformed into CO2 during these two steps respectively. We
have denoted by Kh the rate of hydrolysis, Y the rate of use of the substrate, Kd the bacterial
mortality rate and α is a constant 0< α≤ 1 representing the fraction of the biomass mortal-
ity reused as a substrate in the methanogenesis. The dynamic variables of the system (2.1)
are the degradable complex material X , the methanogenic biomass B, the soluble organic
mater S, the carbon dioxide [CO2] and the methane [CH4]. This model was proposed by
Rouez in [36] with Monod law and α = 1. Several laws exist for the specific growth rate
µ(S). The most used are the Monod law

µ(S) =
µmS

KS + S
(2.2)

and the Haldane law

µ(S) =
µmS

KS + S + S2

KI

(2.3)

where µm is the maximum growth rate, KS is the half-saturation constant and KI is the
inhibition constant. The Monod law is related to saturation and limitation phenomena
and the Haldane law is related to saturation and inhibition phenomena [7]. In this article
we will compare the two laws. The system (2.1) allows us to compute the global rate
of production of the biogas which constitutes the main part of the source/sink term in
the PDEs model of the flow in the waste. The asymptotic behavior analysis of this ODEs
system is performed in [31] and some coupled ODEs-PDEs system in this field are studied
in [20] [13] [14] [21]. In this article, we consider the realistic case of nonhomogenous
landfill where we have to take into account the spatial dependency of the bacterial dynamic
(represented by the variables of the ODEs system). This leads us to transform the ODEs
system into a PDE system of diffusion-reaction form.
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2.1.2. The reaction-diffusion PDEs system

Let Ω be an open bounded subset of Rd , d ≥ 2, representing the landfill. We suppose that
its boundary Γ := ∂Ω is Lipschitz-continuous and is the union of two parts ΓD and ΓN where
Dirichlet and Neumann boundary conditions are respectively imposed, with ΓD ∩ ΓN = ;.
The outward normal vector on Γ will be noted n. For T > 0, the time interval is [0, T]. We
write QT = Ω×]0, T[ and ΓT = Γ×]0, T[. The following system is obtained by adding the
diffusion terms into the system (2.1) which describe the molecular agitation of the dynamic
quantities ( [30], [37], [40]).



































dX
d t
= −KhX +αKd B + div(D1∇X ) in Ω×]0, T[

dB
d t
= (µ(S)− Kd)B + div(D2∇B) in Ω×]0, T[

dS
d t
= f1KhX − 1

Y µ(S)B + div(D3∇S) in Ω×]0, T[

(2.4)

where D1, D2 and D3 are, respectively, the diffusion coefficients of X , B and S. The equa-
tions on the concentrations CO2 and CH4 are not modified because their simple structure
shows that they vary in space with the other variables. Therefore, to not increase the com-
putational cost we do not add any diffusion to these equations a priori. Thus, the last
equations in the system (2.4), remain unchanged. However, in the numerical section, we
simulate and compare the different cases, including with added diffusion to the last vari-
ables, (CO2) and (CH4) (complete diffusion vs partial diffusion). Obviously, the analysis
and the discretization remain essentially unchanged.We will denote by ¯̄Dc the complete
diffusion, that means the coefficients diffusion for (CO2) and (CH4) are added.
BOUNDARY AND INITIAL CONDITIONS OF THE SYSTEM (2.4)
We fix a time interval of biogas production [0, T]where T corresponds to the moment when
the leachate begins to stagnate at the bottom of the domain, or the moment when it is nec-
essary to recover the biogas.We take the following no-flux boundary conditions associated
with the system (2.4)

D1
∂ X
∂ n
= D2

∂ B
∂ n
= D3

∂ S
∂ n
= 0 on Γ×]0, T[. (2.5)

The initial conditions are given as follows

X (0, x) = X0(x), B(0, x) = B0(x), S(0, x) = S0(x) in Ω, (2.6)

[CO2](0, x) = [CO2]0(x), [CH4](0, x) = [CH4]0(x) in Ω. (2.7)

We set

U= (u1, u2, u3)
t = (X , B, S)t , G= (u4, u5)

t = ([CO2], [CH4])
t (2.8)
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and the diffusion coefficients matrix D is defined as follows

D =





D1 0 0
0 D2 0
0 0 D3



 .

The right-hand members of the equations in (2.1) will be denoted by the functions Fi , i =
1, 2, .., 5 defined as follows

F1(U) = −Khu1 +αKdu2, F2(U) = (µ(u3)− Kd)u2,

F3(U) = f1Khu1 −
1
Y
µ(u3)u2, F5(U) = f2

1− Y
Y
µ(u3)u2,

F4(U) = (1− f1)Khu1 + (1− f2)
1− Y

Y
µ(u3)u2,

and we set the vector functions F1 and F2 such that

F1(U) = (F1(U), F2(U), F3(U))
T , F2(U) =

�

F4(U), F5(U)
�T

. (2.9)

The system (2.4) can be written:



















































∂U
∂ t
− div

�

D∇U
�

= F1(U) in Ω×]0, T[

dG
d t
= F2(U) in Ω×]0, T[

D
∂U
∂ n
= 0 on ∂Ω×]0, T[

U(0, ·) = U0(·), G(0, ·) = G0(·) in Ω.

(2.10)

Remark 2.1. From the 2nd, the 4th and the 5th equation of the system (2.1), we remark
that

dG
d t
= F2(U) =







(1− f1)Khu1 + (1− f2)
1− Y

Y

�

du2

d t
+ Kdu2

�

f2
1−Y

Y

�

du2

d t
+ Kdu2

�






. (2.11)

This remark will be used in the section (3.2) in order to linearize the system (11).

2.2. The flow system

The waste is considered as a porous medium consisting of a solid matrix, a liquid phase
(leachate) and a gaseous phase formed by a binary mixture of methane and carbon dioxide
(biogas). In this article, we neglect the biogas flow and consider only the leachate flow
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which is governed by the generalized Darcy’s Law (low Reynolds number) and the mass
conservation equation. The equations are given as follows [35]

∂ (ρθ (p))
∂ t

+ div (ρu) = αl in Ω×]0, T[, (2.12)

u=
kikr(p)
µ

ρg(−∇p+ ez) in Ω×]0, T[ (2.13)

or
∂ (ρθ (p))
∂ t

+ div
�

ρ
kikr(p)
µ

ρg(−∇p+ ez)
�

= αl in Ω×]0, T[ (2.14)

where u is the velocity of the leachate, ki its intrinsic permeability, kr the relative permeabil-
ity of leachate, p its pressure head, µ the dynamic viscosity, ρ the density, g the modulus of
the gravitational acceleration, z the vertical axis directed downwards, θ the water content
of the leachate and αl is the source/sink term of leachate related to the rate of the biogas
generation noted αb which will be described later. There are many empirical models to de-
scribe the variation of the water content θ (p) (called the retention curve) and the relative
permeability kr(p) in terms of the pressure head p (see the Van Genuchten, Campbel and
Brooks Corey model in [39], [12], [11]). We use here the Campbell model given by [12]

θ (p) =

¨

θs

�

pa
p

�1/b
if p < pa

θs if p ≥ pa

(2.15)

where θs is the saturation water content and pa is a scaling factor. (θ ≈ θs), and

kr(p) =

¨
�

pa
p

�2+3/b
if p < pa

Ks if p ≥ pa

where Ks is the saturation permeability, and b is a parameter describing the uniformity of
the grain size (see [29], [3], [38]).
SOURCE/SINK TERM

The production of the biogas needs water, so we have a sink term in equation (2.12) related
to αb. We follow the approach of [3], [7], [1], [28]:

αl = −γ.αb = −γg(ω)CT bλcin, (2.16)

where γ= MH2O/(3.4∗Mb) with MH2O and Mb are respectively the molar mass of H2O and
of the biogas, ω is the humidity rate

θ =
ρ0

ρ
ω,

where ρ0 is the density of the dry medium. CT b is a positive constant, and λcin is the rate
of the biogas production (see [20] and [22]) :

λcin =
dCbiogaz

d t
=

d([CH4] + [CO2])
d t

. (2.17)
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g is an explicit function on the variable ω: the humidity rate. Experimental studies (see
[3], [23]) show that below a minimal value ωmin and above a maximum value ωmax there
is no biogas production. Between these two bounds, it increases, respectively decreases,
linearly except on an interval where it is constant (that we normalize to 1), and where the
medium is considered as saturated (see FIGURE (2)).

Figure 2: The empirical function g̃(ω).

BOUNDARY AND INITIAL CONDITIONS

The boundary conditions associated with the system (2.12)-(2.13) are expressed in term
of charges (Dirichlet conditions) on ΓD:

p = pD on ΓD×]0, T[, (2.18)

and in term of flux (Neumann conditions) on ΓN :

u.n= 0 on ΓN×]0, T[. (2.19)

The initial condition is given by

p(x , 0) = p0(x) in Ω. (2.20)

We introduce the capillary capacity C (p) by rewriting the time derivative of the water
content as follows

∂ θ

∂ t
=
∂ θ

∂ p
∂ p
∂ t
=C (p)

∂ p
∂ t

and by reversing the relative permeability kr and the density ρ, we set

k(p) =
µl

kiρg
(kr(p))

−1 and f = ρ−1αl .
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The flow problem of leachate can be written finally as follows:























































C (p)
∂ p
∂ t
+ div u = f in Ω×]0, T[,

k(p)u = −∇p+ ez in Ω×]0, T[,

p = pD on ΓD×]0, T[,

u.n = 0 on ΓN×]0, T[,

p(x , 0) = p0(x) in Ω.

(2.21)

Solving this problem under mixed formulation is more suited in our case than solving
Richards equation where the velocity is eliminated. In fact, it allows us to have more
accuracy for u and in following the leachate variation during the production of biogas.
Therefore, the unknowns in this formulation are both the velocity u and the pressure p.

2.3. The final Model

The final mathematical model describing the degradation of the organic mater and the
leachate flow during the anerobic process is given by:

(S1)



















































∂U
∂ t
− div

�

D · ∇U
�

= F1(U) in Ω×]0, T[,

dG
d t
= F2(U) in Ω×]0, T[,

D
∂U
∂ n
= 0 on ∂Ω×]0, T[,

U(0, ·) = U0(·), G(0, ·) = G0(·) in Ω,

(2.22)

and

(S2)























































C (p)
∂ p
∂ t
+ div u = f in Ω×]0, T[,

k(p)u = −∇p+ ez in Ω×]0, T[,

p = pD on ΓD×]0, T[,

u.n = 0 on ΓN×]0, T[,

p(x , 0) = p0(x) in Ω.

(2.23)
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3. Variational formulation and semi-discrete system

In what follows, We make some assumptions:

Hypothesis 3.1. Coefficients α, Kd , Y , f1 and f2 fulfill the following conditions.

1. The proportion of nutrient recycling α cannot exceed 1

0< α≤ 1 (3.1)

2. The mortality rate Kd is a positive parameter which is below the maximum growth
rate

0< Kd <max
s
µ(s) (3.2)

3. The rate of use of the substrate is a strictly positive parameter such that

0< Y < 1 (3.3)

4. The stoichiometric coefficients parameters f1 and f2 are strictly positive and satisfy

0< f1 < 1 and 0< f2 < 1. (3.4)

Hypothesis 3.2. The functions p −→ θ (p), p −→C (p) = ∂ θ
∂ p and p −→ k(p) are uniformly

bounded, i.e. there exist nonnegative constants cθ , Cθ , c
′

θ
, C

′

θ
, ck and Ck such that

0< cθ ≤ θ (p)≤ Cθ , 0< cp ≤C (p)≤ Cp, 0< ck ≤ k(p)≤ Ck (3.5)

The final model obtained in (2.22)-(2.23) is weakly coupled, therefore, we can separate
the analysis of the system (2.22) and (2.23).

3.1. Existence and uniqueness for problems (S1)− S(2)

We recall the definitions and notations used in this section. The usual Sobolev space

H1(Ω) = {v ∈ L2(Ω) / ∇v ∈ (L2(Ω))d},

and the trace operator γ0 : H1(Ω) −→ L2(Γ ). The trace space is

H1/2(Γ ) := γ0(H
1(Ω))

and if ΓD is a part of the boundary of Ω we denote

H1
ΓD
(Ω) = {φ ∈ H1(Ω), φ = 0 on ΓD}.
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We recall also that H−1(Ω) is the dual of H1
0(Ω). The space L2(0, T ; H1(Ω)) is the set of

measurable functions

u :]0, T[−→ H1(Ω) such that

T
∫

0

‖u(t)‖2H1(Ω)d t < +∞, equipped with the norm

‖u‖L2(0,T ;H1(Ω)) =





T
∫

0

‖u(t)‖2H1(Ω)d t





1/2

.

L∞(QT ) is the space of measurable functions u :]0, T[×Ω −→ R such that |u(t, x)| is
bounded almost everywhere in QT , equipped with the norm

‖u‖L∞(QT ) = inf {C , |u(t, x)|< C in QT } .

Finally, C([0, T], L2(Ω)) is the space of continuous functions from [0, T] with values in
L2(Ω) and L∞(Ω,R3

+) is the space of positive measurable functions
u : x ∈ Ω −→ u(x) ∈ R3

+ such that ui(x) is bounded almost everywhere in Ω.
Due to the fact that the specific growth rate µ(·) is a nonnegative and bounded function
in both Monod and Haldane cases, and under hypothesis (3.1)-(3.2), it is readily checked
that assumptions of Theorem 1 in [9] are verified and we have the following proposition.

Proposition 3.1. For any U0 ∈ L∞
�

Ω,R3
+

�

, the system (2.10) has a unique global nonneg-
ative weak solution U= (u1, u2, u3)T in the following sense : ∀T > 0

∀i ∈ {1, 2,3}, ui ∈ C
�

[0, T]; L2(Ω)
�

∩ L∞(QT )∩ L2
�

0, T ; H1(Ω)
�

;
∀ψ ∈ C∞(QT ) such that ψ(T ) = 0

−
∫

Ω

u0
iψ(0) d x −

∫

QT

ui
∂ψ

∂ t
d x d t +

∫

QT

Di∇ui · ∇ψ d x d t =

∫

QT

Fi(U(t, x)). ·ψ d x d t







































(3.6)

Moreover, for any T > 0, there exists C > 0 such that

‖U‖L∞(QT )3 + ‖U‖L2(0,T ;H1(Ω)3) + ‖∂tU‖L2(0,T ;H−1(Ω)3) ≤ C . (3.7)

Next, eliminating the velocity u in the Darcy equations, we obtain the well-known
Richards equation on the pressure p ((2.14)). The existence and uniqueness for this parabolic
PDE is obtained in [2]. More precisely, we have

Proposition 3.2. For all p0 ∈ L2(Ω) and pD ∈ H
1
2 (ΓD), There exists a unique weak solution

p− pD ∈ L2(0, T ; H1
ΓD
(Ω)) of the Richards equation (2.14).
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3.2. Semi-discretization in time and variational formulation of the system (S1)

Let τn = tn+1− tn , n= 0, ..., N , where N ∈ N∗, be a partition of [0, T] with t0 = 0 and
tN = T . In what follows we denote by f n the values of a function f at tn.
The semi-discrete scheme for the system (S1) considered here is the second order backward
differentiation formula BDF2 for the variables (X , S, B) and the implicit Euler scheme for
the ODEs on ([CO2], [CH4]). The problem reads: find Un+1 ∈ Z =

�

H1(Ω)
�3

such that

∫

Ω

3Un+1 − 4Un +Un−1

2τn
· vd x +

∫

Ω

D∇Un+1 · ∇vd x =

∫

Ω

F1
�

Un+1
�

· vd x ∀v ∈ Z (3.8)

where the initial values are computed as follow: find U1 ∈ Z such that

∫

Ω

U1 −U0

τ0
· vd x +

∫

Ω

D · ∇U1 · ∇vd x =

∫

Ω

F1
�

U1
�

· vd x ∀v ∈ Z . (3.9)

We linearize the scheme by using the Taylor formula

F1
�

Un+1
�

' F1 (Un) + JF1 (Un) · (Un+1 −Un) (3.10)

where JF1 is the Jacobian matrix of the vector function F1. Consequently, the final BDF2
scheme reads : find U1 ∈ Z =

�

H1(Ω)
�3

such that

∫

Ω

�

τ−1
0 I3 − JF1

�

U0
��

·U1 · vd x +

∫

Ω

D · ∇U1 · ∇vd x =

∫

Ω

�

τ−1
0 U0 + F1

�

U0
�

− JF1

�

U0
�

·U0
�

· vd x ∀v ∈ Z , (3.11)

and for all n≥ 1, find Un+1 ∈ Z such that

∫

Ω

�

3
2τn

I3 − JF1 (Un)
�

·Un+1 · vd x +

∫

Ω

D · ∇Un+1 · ∇vd x =

∫

Ω

�

4Un −Un−1

2τn
+ F1 (Un)− JF1 (Un) ·Un

�

· vd x ∀v ∈ Z . (3.12)
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On the other hand, by using the Remark 1, the approximation of G at t = tm+1 Gm+1 =
(um+1

4 , um+1
5 )T , for ,0≤ m≤ n, is given by

um+1
4 − um

4

τm
= (1− f1)Khum+1

1 + (1− f2)
1− Y

Y

�

um+1
2 − um

2

τm
+ Kdum+1

2

�

, (3.13)

um+1
5 − um

5

τm
= f2

1− Y
Y

�

um+1
2 − um

2

τm
+ Kdum+1

2

�

. (3.14)

3.3. Semi-discretization in time and variational formulation of the system (S2)

We use the semi-implicit scheme for (S2) :

k(pn)un+1 = −∇pn+1 + ez in Ω, (3.15)

C (pn)
pn+1 − pn

τn
+ div un+1 = f n+1 in Ω, (3.16)

where the unknowns un+1 and pn+1 refer to the approximation of u(tn+1) and p(tn+1) with

un+1 · n= 0 on ΓN and pn+1 = pD on ΓD. (3.17)

MIXED VARIATIONAL FORMULATION

We introduce the following functional spaces

H(div,Ω) =
�

v ∈ (L2(Ω))d , div v ∈ L2(Ω)
	

,

V= H0,N (Ω) = {v ∈ H(div,Ω), v.n= 0 on ΓN},

W = L2(Ω),

equipped with the norms

∀v ∈ V, ‖v‖V = ‖v‖H(div,Ω) =
�

‖v‖20,Ω + ‖div v‖20,Ω

�1/2
(3.18)

and
∀ϕ ∈W, ‖ϕ‖W = ‖ϕ‖0,Ω

where ‖ · ‖0,Ω is the L2-norm and we denote the dual spaces of V and W by V
′

and W
′

respectively. The weak formulation of (3.15)-(3.16) with the conditions (3.17) is now
written as follows:






























find un+1 ∈ V and pn+1 ∈W such that
∫

Ω

k(pn)un+1 ·ψd x −
∫

Ω

div ψpn+1 = −
∫

ΓD

pDψ · nds+

∫

Ω

ez ·ψd x , ∀ψ ∈ V,

∫

Ω

div un+1ϕd x +

∫

Ω

C (pn)
τn

pn+1ϕd x =

∫

Ω

C (pn)
τn

pnϕd x +

∫

Ω

f n+1ϕd x , ∀ϕ ∈W,
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which can be written in the following form



















find
�

un+1, pn+1
�

∈ V×W such that

a
�

un+1,ψ
�

+ b
�

ψ, pn+1
�

= g1 (ψ) , ∀ψ ∈ V,

b
�

un+1,ϕ
�

− d
�

pn+1,ϕ
�

= g2 (ϕ) , ∀ϕ ∈W,

(3.19)

where a : V×V −→ R, b : V×W −→ R and d : W ×W −→ R are the bilinear forms defined
by

a (u,ψ) =

∫

Ω

k(pn)u ·ψd x ; (u,ψ) ∈ V×V (3.20)

b (u,ϕ) = −
∫

Ω

div uϕ ; (u,ϕ) ∈ V×W (3.21)

d (p,ϕ) =

∫

Ω

C (pn)
τn

pϕd x ; (p,ϕ) ∈W ×W (3.22)

and the second members g1 : V −→ R and g2 : W −→ R are the linear forms defined by

g1 (ψ) = −
∫

ΓD

pDψ · nds+

∫

Ω

ez ·ψd x ; ψ ∈ V (3.23)

g2 (ϕ) = −
∫

Ω

C (pn)
τn

pnϕd x −
∫

Ω

f n+1ϕd x ; ϕ ∈W. (3.24)

We define the continuous operator B : u ∈ V −→ div u ∈W
′
and its transpose B t : W −→ V

′

such that

< Bv,ϕ >W ′×W=< v, B tϕ >V′×V= b(v,ϕ) ∀v ∈ V,∀ϕ ∈W,

and then we introduce the subspace of V :

KerB = {v ∈ V, ∀ϕ ∈W, b(v,ϕ) = 0} .

3.3.1. Existence and uniqueness of the solution of (3.19)

Proposition 3.3. For all pD ∈ H1/2(ΓD) and f ∈ L2(Ω) the system (3.19) has a unique
solution, and we have the estimate

‖un‖V ≤ C1‖g1‖V′ + C2‖g2‖W ′ and ‖pn‖W ≤ C2‖g1‖V′ + C3‖g2‖W ′ (3.25)
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with

C1 =
(1+ C2

Ω)
−1 + 4τ−1

n−1C(pn−1)Ck

ck(1+ C2
Ω)−1

, C2 =
2C1/2

k

c1/2
k (1+ C2

Ω)−1/2
,

C3 =
4Ck

τ−1
n−1C(pn−1) + 2(1+ C2

Ω)−1
,

where CΩ is the Poincaré constant.

Proof. The bilinear form a(·, ·) is symmetric, continuous and KerB-elliptic according to
the hypothesis (3.2) and since in KerB, the norm (3.18) is reduced to the L2-norm. The
bilinear form d(·, ·) is symmetric, continuous and W−elliptic

|d (p,ϕ) | ≤ γ1‖p‖W‖ϕ‖W ∀(p,ϕ) ∈W ×W,

d(ϕ,ϕ)≥ γ2‖ϕ‖2W ∀ϕ ∈W,

with γ1 =
Cp

τn
and γ2 =

cp

τn
. (3.26)

Moreover, the bilinear form b(·, ·) is continue on V×W , and applying Lax-Milgram theorem
to the auxiliary problem







−∆v= ϕ in Ω,
v= 0 on ΓD,
∇v.n= 0 on ΓN ,

we deduce in standard way that b(·, ·) satisfies the in f − sup condition (e.g. [8])

∃β =
1

q

1+ C2
Ω

> 0; ∀ϕ ∈W, sup
u∈V

b(u,ϕ)
‖u‖V

≥ β‖ϕ‖W .

Therefore, the existence follows from Brezzi-Babuska theorem.

4. Discrete problem and analysis

We assume in this section that Ω is a polygonal domain of Rd . Let Th be a partition
of Ω̄ into triangles T (in R2) or tetrahedra (in R3) and we denote by Pk(O) the space
of polynomial functions defined in a subset O of Rd of total degree at most k. In order
to define the full discritization of the problem (2.22)-(2.23), we introduce the following
finite-dimensional space

Zh =
¦

vh ∈
�

C(Ω̄)
�3

; ∀T ∈ Th vh|T ∈ (P1(T ))
3
©

. (4.1)

We recall the definition of the local Raviart-Thomas space of lowest order (see [10]), ∀T ∈
Th

RT0(T ) :=
�

vh ∈ H(div, T ) : vh ∈ Pd
0 (T )⊕ xP0(T ), x ∈ T

	

, (4.2)
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and the global Raviart-Thomas space of lowest order is given by

RT0(Th) := {vh ∈ H(div,Ω) : vh|T ∈ RT0(T ),∀T ∈ Th} . (4.3)

We introduce the discrete spaces

Vh =
�

vh ∈ RT0(Th) vh · n|ΓN = 0
	

. (4.4)

and

Wh :=
�

qh ∈ L2(Ω) : qh|T ∈ P0(T ), ∀T ∈ Th

	

. (4.5)

4.1. Full discretization of the system (S1)

The discrete problem associated to (3.11)-(3.14) reads : find U1
h ∈ Zh such that

∫

Ω

�

τ−1
0 I3 − JF1

�

U0
��

·U1
h · vd x +

∫

Ω

D · ∇U1
h · ∇vd x =

∫

Ω

�

τ−1
0 U0 + F1

�

U0
�

− JF1

�

U0
�

·U0
�

· vd x ∀v ∈ Zh, (4.6)

and for all n≥ 1, find Un+1
h ∈ Zh such that

∫

Ω

�

3
2τn

I3 − JF1

�

Un
h

�

�

·Un+1
h · vd x +

∫

Ω

D · ∇Un+1
h · ∇vd x =

∫

Ω

�

4Un −Un−1

2τn
+ F1 (Un)− JF1 (Un) ·Un

�

· vd x ∀v ∈ Zh. (4.7)

On the other hand, we seek Gm+1
h = (um+1

4h , um+1
5h )

T , ∀m, 0≤ m≤ n, such that

um+1
4h − um

4h

τm
= (1− f1)Khun+1

1h + (1− f2)
1− Y

Y

�

um+1
2h − um

2h

τm
+ Kdum+1

2h

�

, (4.8)

um+1
5h − um

5h

τm
= f2

1− Y
Y

�

um+1
2h − um

2h

τm
+ Kdum+1

2h

�

. (4.9)

Remark 4.1. In practice we choose m= n in our numerical simulation to solve in one step
the discrete problem. Nevertheless, we write under this general form because it may be
suitable for some applications two have to time grid for the ODEs part and the reaction-
diffusion term.
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4.2. Full discretization of the system (S2)

The mixed finite element method formulation of (3.19) reads



















find
�

un+1
h , pn+1

h

�

∈ Vh ×Wh such that

a
�

un+1
h ,ψh

�

+ b
�

ψh, pn+1
h

�

= g1 (ψh) ∀ψh ∈ Vh

b
�

un+1
h ,ϕh

�

− d
�

pn+1
h ,ϕh

�

= g2 (ϕh) ∀ϕh ∈Wh

(4.10)

EXISTENCE AND UNIQUENESS FOR THE DISCRETE PROBLEMS

Proposition 4.1. Problem (4.10) admits a unique solution.

Proof. We denote Bh : Vh −→W
′

h the operator

b(vh,ϕh) =< Bhvh,ϕh >W ′
h×Wh

∀v ∈ Vh,∀ϕh ∈Wh

and we introduce the kernel of Bh:

KerBh = {vh ∈ Vh , ∀ϕh ∈Wh , b(vh,ϕh) = 0} .

Let Ph be the orthogonal projection operator from W to Wh, then for all vh ∈ Vh and
q ∈W Thus, KerBh ⊂ KerB, and a(·, ·) is uniformly (KerBh)-elliptic: there exists a constant
α0 independent of h such

a(uh,uh)≥ α0‖uh‖2V ∀uh ∈ KerBh. (4.11)

Moreover, the discrete inf-sup condition follows from the continuous one. There exists a
constant β > 0 independent of h such that

inf
vh∈Vh

sup
wh∈Wh

b(vh, wh)
‖vh‖V‖wh‖W

≥ β

We deduce the existence and uniqueness of the solution of (3.19) thanks to Brezzi-Babuska
theorem.

A PRIORI ESTIMATES

In the sequel we consider (3.19) and (4.10) and we drop the subscript n for simplicity.

Proposition 4.2. Let (u, p), respectively (uh, ph), denotes the solutions of problems (3.19),
respectively (4.10). We assume that u ∈ (H2(Ω))2 and p ∈ H1(Ω), then there exists a constant
C> 0 independent of h which satisfies the following estimate

‖u− uh‖V + ‖p− ph‖W ≤ Ch
�

|u|1,Ω + |div u|1,Ω + |p|1,Ω

�

(4.12)
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Proof. Combining the ellipticity of the bilinear form a(., .) and the uniform discrete
inf-sup condition on b(., .) it is standard to derive the abstract estimate

‖u− uh‖V + ‖p− ph‖W ≤ C̄
�

inf
vh∈Vh

‖u− vh‖V + inf
qh∈Wh

‖p− qh‖W
�

.

Using the interpolation operators Raviart-Thomas operator Πh and the the orthogonal L2-
projection operator Ph, we get ( [24], [10])

‖u− uh‖V + ‖p− ph‖W ≤ Ch
�

|u|1,Ω + |div u|1,Ω + |p|1,Ω

�

.

5. Numerical results

In this section we present some numerical results for the system (S1)-(S2). In all the
experiments, we take Ω =]0,1[×]0, 1[×]0,1[⊂ R3, ∂Ω = ΓD ∪ ΓN and ΓD = {(x , y) ∈
]0,1[×]0,1[ and z = 1} for 3D simulations andΩ= {(x , y) ∈]0,1[×]0, 1[ and z = 0}, with
the corresponding boundaries for 2D simulations. The various constants used are fixed as
in [36] and [3] and given in TABLE (1), and from the same references, we take the initial
conditions for the biodegradation system (in mgC/L) as given in TABLE (2). The boundary
conditions for the biodegradation system are all homogeneous Neumann conditions (see
(2.5)). The boundary and initial conditions for the flow system are given in TABLE (3).

We recall that, at each time step, the system (S1) is approximated by (4.6)-(4.9), and
its solution gives the source term in the flow system (S2), approximated by (4.10).

Table 1: Parameters.

KH µm f1 f2 KS Kd Y α KI µl

0.176 0.3 0.7 0.76 160 0.04 0.05 0.9 500 4.61027× 10−4

θr θs ki pa b Mb(g/mol) MH2O(g/mol) Am CT b(m3/K g)
0.27 0.9715 10−4 -0.0323 2.5 30 18.01 0.8 0.178

Table 2: Initial conditions for the biodegradation system.

X0(x , y) S0(x , y) [CO2]0(x , y) [CH4]0(x , y)
1751 0 0 0

Table 3: Initial and boundary conditions for the flow system.

p0 in Ω pD on ΓD u · n on ΓN
−0.7 −0.1020 0

The two first examples, less sensitive to the dimension, are 2D simulations for compari-
son purposes. The two last examples are the preliminary 3D simulations. Notice that in all
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the examples, except (5.4), we consider only the system (S1) for comparisons with existing
results in the literature. This is not a restriction due to the weak coupling of (S1) and (S2)
in the present model.

We first compare the numerical results obtained with the reaction-diffusion system (S1)
and the ones obtained in [36] and in [31]. In example (5.2), we use different values of
the diffusion coefficients in order to show the effect on the final solution. Example (5.3)
consists of solving (S1) with the partial diffusion and with the complete diffusion (on all
the variables of (S1)). The last example consists of solving the full system (S1)− (S2).

5.1. Model verification

In this example, we denote ¯̄Dval = diag (DX , DS , DB), with DX = 0.1, DS = 0.3 and
DB = 0.5, the diffusion matrix. We set B0 = 2 and we use Monod law, and we plot in
FIGURE (3) the evolution in time of all the variables. We notice that the results are identical
to similar numerical experiments in the literature for (S1) without diffusion (e.g. [36]).
Next, we use Haladane law and we represent in FIGURE (4) the same curves but with
different values of X0, which also confirms the previous results. Moreover, in FIGURE (5) we
plot the curve of the biogas [CH4]+[CO2] as a function of the initial value X0 and we obtain
a discontinuity, already noticed in [31]. In fact, if X0 < 475 the curve is monotonically
increasing otherwise, it is decreasing. The explanation of this behaviour of the dynamical
system is thouroughly detailed in [31] and the added diffusion do not change qualitatively
the expected dynamic. In particular, Haladane law, usually, considered as more realistic
(and the Monod function can be seen as a particular case for large values of the parameter
KI , see FIGURE (6)) yields more accurate predictions on the biogas production.

Figure 3: Evolution of the averages variables of (S1) using the Monod law and the diffusion ¯̄Dval and
B0 = 2, X0 = 1751, α= 1
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Figure 4: Evolution of the average quantity of biogas using the Haldane law with B0 = 2, KI = 10 and
the diffusion ¯̄Dval for different values of X0
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Figure 5: Biogas production as a function of Evolution of X0 using the Haldane law with B0 = 2, KI = 10
and the diffusion ¯̄Dval

5.2. Effect of the diffusion parameters on the biogas production

In this example, we use and compare several choices of the diffusion coefficients on the
solution of the reaction-diffusion system. We set

¯̄D2 = {DX = 0.001, DS = 0.003, DB = 0.005}
¯̄D3 = {DX = 0.01, DS = 0.03, DB = 0.03}
¯̄D4 = {DX = 0.1, DS = 0.3, DB = 0.5}

and we consider the initial condition on B as follow

B0(x , y) =







0 in
∑

1 := {0≤ x ≤ 0.5 , 0.5≤ y ≤ 1 and 0.5≤ z ≤ 1},
2 in

∑

2 := {0.5≤ x ≤ 1 ,0.5≤ y ≤ 1 and 0.5≤ z ≤ 1},
5 in

∑

3 := {0≤ x ≤ 1 , 0< y < 0.5 and 0≤ z < 0.5}.

In TABLE (4), we observe that the values of the diffusion coefficients have a negligible
effect on the average values of the biogas production.
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Figure 6: Evolution of all the average quantities of biogas production of (S1) with the diffusion ¯̄Dval and
X0 = 340, B0 = 2 as in [31] and using the Monod and the Haldane law (for KI = 10, 50,200, 500,1000 )

Figures (7) and (8) show that the lack of methanogenic bacteria in a given area (i.e.
B0 = 0 in

∑

1), induces nul biogas production in Σ1 and sharp transition between Σi ,
i = 1,2, 3 in the case of no diffusion, whereas with the additional diffusion, the transition
become more diffuse and biogas production expand to the entire domain.

Table 4: Four days evolution of the average quantity of methane using different values of diffusion with
the Haldane law.

Diffusion ¯̄Di 0.5 day 1 days 1.5 days 2 days
¯̄D0 (no diffusion term) 1.60651 4.48873 7.89388 11.5530
¯̄D2 1.60671 4.48927 7.89465 11.5537
¯̄D3 1.60737 4.49098 7.89703 11.5560
¯̄D4 1.60949 4.49647 7.90468 11.5633

5.3. Comparison of the partial diffusion ¯̄D and the complete diffusion ¯̄Dc .

In this example, we compare the partial diffusion with the complete diffusion case
where DCO2

6= 0 and DCH4
6= 0. We set

¯̄D5 = {DX = 0.005, DS = 0.007, DB = 0.009}
¯̄Dc

5 =
�

DX = 0.005, DS = 0.007, DB = 0.009, DCO2
= 0.009, DCH4

= 0.009
	

In FIGURES (9) and (10), we notice that the concentration of CH4 is more smooth
(regularizing effect) but its average value do not increases. Besides, the CPU time is smaller
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(a)- ¯̄D = ¯̄D0 (no diffusion term) (b)- ¯̄D = ¯̄D2
Figure 7: The production of methane after 2 days using the Haldane law without the diffusion in (a)
and with the diffusion ¯̄D2 in (b).

(c)- ¯̄D = ¯̄D3 (d)- ¯̄D = ¯̄D4

Figure 8: The production of methane after 2 days using Haldane law with the diffusion ¯̄D3 in (c) and
¯̄D4 in (d).

with the partial diffusion, (7.605s in 2D and 71s in 3D), than with the complete one (8.7s
in 2D, and 103s in 3D). Therefore the partial diffusion seems more suitable choice in 3D.
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Figure 9: The production of methane after 2 days using Haldane law with ¯̄D5 and ¯̄Dc
5 in 2D.

¯̄D5
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5

Figure 10: The production of methane after 2 days using Haldane law with ¯̄D5 and ¯̄Dc
5 in 3D.

5.4. Solution of the full problem (S1)-(S2)

We turn now to the full system (S1)-(S2) and we take Haldane law and ¯̄D3 as a diffusion
term. We set B0

B0(x , y) =







1 in {0≤ x ≤ 0.5 , 0.5≤ y ≤ 1 and 0.5≤ z ≤ 1},
2 in {0.5≤ x ≤ 1 , 0.5≤ y ≤ 1 and 0.5≤ z ≤ 1},
3 in {0≤ x ≤ 1 n 0< y < 0.5 and 0≤ z < 0.5}.

Figures (12), (13) and (14) show respectively, the velocity field of the Darcy flow, the
pressure head, and the water content (via the function θ (p)). We notice that after 2 days
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there is a stagnation zone of the leachate (i.e the liquid phase) in the bottom indicating
that the medium is saturated therefore there is no biogas production there (we recall that
the humidity rate ω lies between ω1 and ω2). It follows that injecting water in the landfill
will improve the biogas production which should be addressed in a more precise way with
an optimal control approach.

This also suggests to investigate more deeply the role of the humidity rateω (see Figure
(2)) in the modelling.

(a) 1 day (b) 2 days
Figure 11: Evolution of biogas production with ¯̄D3 and Haldane law.

(a) 1 day (b) 2 days
Figure 12: The velocity of leachate (liquid phase) with ¯̄D3 and Haldane law.
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(a) 1 day (b) 2 days
Figure 13: Evolution of the pressure head p with ¯̄D3 and Haldane law.

(a) 1 day (b) 2 days
Figure 14: The water content evolution with ¯̄D3 and Haldane law.

6. Conclusion

In this article we have considered a coupled system of ODE-PDEs representing the bac-
terial activity in a landfill taken as an unsaturated and inhomogeneous porous medium.
We have introduced new diffusion terms in the ODEs system in order to take into account
the spatial evolution of the bacterial dynamic. We analyzed the new model of reaction-
diffusion coupled with Darcy flow system and we carried out the analysis of the discrete
systems with finite element method. We obtained well-posedness and a priori error esti-
mates for the discrete problems. Finally, we have performed several numerical 2D and 3D
simulations which are in agreement with the theory and the literature. In particular, we



26 Z. Belhachmi, Z. Mghazli and S. Ouchtout

obtain that the introduction of the additional diffusion in the bacterial dynamic improves
the existing models and enforces the accuracy of the coupling with the porous medium flow.
The discrete problems with a BDF2 scheme and a mixed finite element formulation with
RT0/P0 constitute a highly efficient numerical method to solve such a complex problem.
In a forthcoming paper we extend this approach to a two phase flow where the gaseous
phase is included in the model. Moreover, for more realistic models in waste management
and renewable energy production, the transport of the biogas should be considered and the
approach followed in this article seems to be the right way to do so.
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