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INTRODUCTION

The interplay between superconductivity and magnetism in artificial hybrid structures [START_REF] Lyuksyutov | Ferromagnet-superconductor hybrids[END_REF] leads to a rich variety of phenomena [START_REF] Basaran | Mesoscopic magnetism and superconductivity[END_REF], which span from the nanoscale confinement of the superconducting condensate [START_REF] Yang | Domain-wall superconductivity in superconductor-ferromagnet hybrids[END_REF] and the emergence of unconventional (equal-spin triplet) pairing [START_REF] Bergeret | Long-Range Proximity Effects in Superconductor-Ferromagnet Structures[END_REF][START_REF] Linder | Superconducting spintronics[END_REF] to the tuning of magnetization dynamics by superconductivity [START_REF] Bespalov | Magnon radiation by moving Abrikosov vortices in ferromagnetic superconductors and superconductor-ferromagnet multilayers[END_REF][START_REF] Dobrovolskiy | Magnon-fluxon in a ferromagnet/superconductor heterostructure[END_REF]. One of the topics receiving much continued attention is the pinning and manipulation of Abrikosov vortices (flux quanta) by ferromagnetic "templates" [START_REF] Velez | Superconducting vortex pinning with artificial magnetic nanostructures[END_REF][START_REF] Aladyshkin | Nucleation of superconductivity and vortex matter in superconductor-ferromagnet hybrids[END_REF], such as patterned arrays of nanomagnets [START_REF] Wang | Switchable geometric frustration in an artificialspin-ice-superconductor heterosystem[END_REF][START_REF] Rouco | Competition between Superconductor -Ferromagnetic stray magnetic fields in YBa2Cu3O7-x pierced with Co nano-rods[END_REF][START_REF] Rocci | Proximity Driven Commensurate Pinning in YBa 2 Cu 3 O 7 through All-Oxide Magnetic Nanostructures[END_REF] or the domain structure of ferromagnetic films [START_REF] Visani | Hysteretic magnetic pinning and reversible resistance switching in high-temperature superconductor/ferromagnet multilayers[END_REF][START_REF] Cieplak | Enhancement of vortex pinning in superconductor/ferromagnet bilayers via angled demagnetization[END_REF][START_REF] Adamus | Influence of magnetic domain landscape on the flux dynamics in superconductor/ferromagnet bilayers[END_REF][START_REF] Vlasko-Vlasov | Manipulating Abrikosov vortices with soft magnetic stripes[END_REF]. The existing research focuses both on fundamental and technological aspects [START_REF] Bergeret | Inverse proximity effect in superconductor-ferromagnet structures: From the ballistic to the diffusive limit[END_REF], since controlling the dynamics of flux quanta allows the design of the magneto-transport properties of superconductors. For instance, the magnetic pinning of Abrikosov vortices can increase the critical current (and thus decrease the electrical resistance and noise) in superconducting devices. Moreover the control of vortex motion opens the door to novel concepts of superconducting electronics and computing [START_REF] Villegas | A superconducting reversible rectifier that controls the motion of magnetic flux quanta[END_REF][START_REF] Hastings | Ratchet Cellular Automata[END_REF][START_REF] Milošević | Fluxonic cellular automata[END_REF][START_REF] Golod | Single Abrikosov vortices as quantized information bits[END_REF][START_REF] Del Valle | Superconducting/magnetic Three-state Nanodevice for Memory and Reading Applications[END_REF], from electrical rectification [START_REF] Villegas | A superconducting reversible rectifier that controls the motion of magnetic flux quanta[END_REF] to quantum cellular automata [START_REF] Hastings | Ratchet Cellular Automata[END_REF].

In this context, superconductor/ferromagnet (S/F) multilayers in which the vortex manipulation in the S is achieved through their interaction with the stray magnetic field from the F domains [START_REF] Visani | Hysteretic magnetic pinning and reversible resistance switching in high-temperature superconductor/ferromagnet multilayers[END_REF][START_REF] Cieplak | Enhancement of vortex pinning in superconductor/ferromagnet bilayers via angled demagnetization[END_REF][START_REF] Adamus | Influence of magnetic domain landscape on the flux dynamics in superconductor/ferromagnet bilayers[END_REF][START_REF] Vlasko-Vlasov | Manipulating Abrikosov vortices with soft magnetic stripes[END_REF]  are specially interesting. This is because the domain structure can be reconfigured by the history of applied magnetic fields, which allows setting different domain distributions (and thus different vortex pinning landscapes) in a single device [START_REF] Visani | Hysteretic magnetic pinning and reversible resistance switching in high-temperature superconductor/ferromagnet multilayers[END_REF][START_REF] Cieplak | Enhancement of vortex pinning in superconductor/ferromagnet bilayers via angled demagnetization[END_REF][START_REF] Adamus | Influence of magnetic domain landscape on the flux dynamics in superconductor/ferromagnet bilayers[END_REF][START_REF] Vlasko-Vlasov | Manipulating Abrikosov vortices with soft magnetic stripes[END_REF].

Consequently, the superconducting transport of a S/F multilayer may be strongly dependent on the magnetic history  a property absent in bare superconductors. Being able to tailor this behavior is one of the keys to obtain functionality from it.

In this article, we show that the field range in which the above memory effects develop and their strength can be designed by engineering the size and morphology of the magnetic domain texture. This is realized with multilayers composed of ultrathin layers of a ferromagnet (Co) intercalated between heavy metal layers (Ir, Pt, Ru). By choosing the thickness and stacking order of the layers, we can design the magnetization reversal so that, within a similar range of applied fields, the ferromagnetic multilayer shows either (i) perpendicularly magnetized domains of variable size or even (ii) magnetic skyrmions [START_REF] Sampaio | Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[END_REF][START_REF] Moreau-Luchaire | Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature[END_REF]. These latter are sub-micrometric magnetization textures with non-trivial topology [see scheme in Fig. 1 (g)], which may be distributed regularly [see Fig. 1 (f)] and whose interaction with Abrikosov vortices has been recently explored theoretically [START_REF] Vadimov | Magnetic skyrmions in ferromagnet-superconductor (F/S) heterostructures[END_REF][START_REF] Dahir | Interaction of Skyrmions and Pearl Vortices in Superconductor-Chiral Ferromagnet Heterostructures[END_REF][START_REF] Baumard | Generation of a superconducting vortex via Néel skyrmions[END_REF][START_REF] Menezes | Manipulation of Magnetic Skyrmions by Superco[END_REF]. We compare vortex pinning by the different types of magnetic textures (i) and (ii) using both magneto-resistance and critical current measurements, which are analyzed using a specifically developed analytical model. This allows calculating the vortex pinning enhancement due to the Meissner currents induced by the stray field from the ferromagnet. In other terms, we consider only magnetic interactions, which favor vortex localization wherever the stray field has same magnetic polarity and is the strongest so as to minimize the magnetic energy. Note, however, that we neglect the depression of superconductivity due to the stray fields (these are much lower than the upper critical field 𝐻 𝑐2 ), as well as the proximity effect (ruled out because the pinning effects appear in the presence an insulating alumina interlayer between the superconductor and the ferromagnet).

We find that the ability to tune the characteristic domain size allows tailoring magnetic vortex pinning via two effects. First, the strength of the stray magnetic field depends on the domain size, which therefore affects the pinning energy. Second, through a geometrical effect: when the (field dependent) inter-vortex distance is comparable to the average domain size, a greater number of vortices sit near domain walls, where the stray magnetic field is the strongest. This increases the overall pinning within the superconducting film, similarly as observed with periodic pinning arrays [START_REF] Velez | Superconducting vortex pinning with artificial magnetic nanostructures[END_REF]. The relative contribution of those two effects determines the field range over which the magnetic vortex pinning is the strongest. Finally, we show that although the presence of skyrmions results in magnetic pinning, it is lower than expected for stripe domains of comparable width. As we discuss below, this is because skyrmions behave as pointlike obstacles for vortices, thus impeding vortex-motion less efficiently than elongated domains.

II. METHODS

Samples were fabricated by dc sputtering at room temperature in an argon atmosphere.

First, a 60 nm-thick film of the amorphous superconductor Mo80Si20 (thereafter denoted as MoSi) with Tc ≈ 6.5 K is deposited on an undoped silicon substrate. This sample is then cut in different pieces, some of which are spared as reference samples. Finally, different magnetic multilayers are deposited ex situ on the MoSi using the same sputtering technique. We studied three multilayers: AlOx 3nm/Pt10nm /(Co0.6nm/Pt1nm)5/Pt3nm (thereafter referred to as Co/Pt), AlOx 

III. EXPERIMENTAL RESULTS

Figure This competition results in reduced domain wall energies, and hence smaller magnetic domains (See Appendix A). The DMI also fixes the chirality of the spin textures through its sign and, if

properly balanced with all the other magnetic interactions at play, leads to the formation of Néel skyrmions [START_REF] Sampaio | Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[END_REF][START_REF] Moreau-Luchaire | Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature[END_REF][START_REF] Legrand | Hybrid chiral domain walls and skyrmions in magnetic multilayers[END_REF][START_REF] Yang | Controlling Dzyaloshinskii-Moriya Interaction via Chirality Dependent Atomic-Layer Stacking, Insulator Capping and Electric Field[END_REF] [see scheme in In particular, we assume that the Hall resistivity is dominated by the Anomalous Hall Effect as shown for similar multilayers [START_REF] Nagaosa | Anomalous Hall effect[END_REF],

and is therefore proportional to the reduced magnetization along the z-axis, 𝑚 𝑧 (𝐻) [START_REF] Maccariello | Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature[END_REF]. In addition to the field increasing (red) and decreasing (black) branches, i. However, it should be noticed that for Co/Pt [Fig. 3 (d)] the maximum critical current enhancement is observed after demagnetization (blue curve), while for Ru/Co/Pt [Fig. 3(f)] it is observed at for 𝐻=0 regardless of the magnetic history.

IV. THEORETICAL MODELLING

Based on the stacking of the samples, which is detailed in Figure 4 ) 𝑒 -2𝜋𝑛𝑎/𝐿 (Eq. 1)

Note that the magnetic field screening in a thin superconducting film is determined by Pearl's length 𝛬 = 𝜆 2 /𝑑 𝑆 ≈ 1200 nm, instead of 𝜆 as in bulk materials [START_REF] Erdin | Topological Textures in a Ferromagnet-Superconductor Bilayer[END_REF]. Thus, the induced Meissner current density in the superconductor reads:

𝑗 𝑚 (𝑥) = - 2𝑀 𝑠 𝑑 𝑓 𝜋𝛬𝑑 𝑠 ∑ 𝑛≥1 1 𝑛 sin ( 𝜋𝑛𝑤 𝐿 ) sin ( 2𝜋𝑛𝑥 𝐿 ) 𝑒 -2𝜋𝑛𝑎/𝐿 (Eq. 2)
𝐵 𝐹,𝑧 (𝑥) and the corresponding 𝑗 𝑚 (𝑥) for the domain structure sketched in Fig. 4 (b) are respectively shown in Fig. 4 (c) and (d). We find that the induced Meissner current is the highest near the domain walls and cancels in the center of the domains. The vortex depinning current can thus be estimated from the current that equals the maximum of the Meissner current,

𝑗 𝑝 = 𝑚𝑎𝑥|𝑗 𝑚 | (Eq. 3)
To calculate ∆𝐽 𝐶 (𝐻) using this model, we must account for the field-induced evolution of the magnetic domain widths (𝑤 + , 𝑤 -). The magnetization increases under an applied magnetic field 𝐻 𝑧 because domains with the polarity along the applied field 𝐻 grow (𝑤 + increases) while those with opposite polarity shrink (𝑤 .-decreases). Thus, the reduced magnetization is given by 𝑚 𝑧 = (𝑤 + -𝑤 -)/𝐿 = 2𝑤 𝐿 ⁄ -1, and the domain width evolves as a function of the applied field following the magnetization :

𝑤(𝐻) = 𝐿(𝑚 𝑧 (𝐻)+1) 2 (Eq. 4)
For each sample, we calculate ∆𝐽 𝐶 (𝐻) from Eqs. 2, 3 and 4 using : i) 𝐿 as estimated from the MFM images at 𝑚 𝑧 = 0 (Fig. 1); ii) 𝑚 𝑧 (Hz) shown in Fig. 2 makes several assumptions. First, the magnetic texture is simplified to a distribution of parallel stripe domains, and the domain wall width is neglected. Second, the critical current is estimated as the maximum of the Meissner current. While both must be proportional, their ratio between is not necessarily equal to one as assumed. Finally, temperature effects are considered only through the penetration depth 𝛬. As we discuss in the next section, these approximations impact the results at the quantitative level. However, the model allows for a good qualitative understanding of the field dependence of the critical current in the presence of magnetic domains.

V. DISCUSSION

As we detail below, the hysteretic critical current enhancement calculated with the We will start with the case of Ir/Co/Pt, for which the calculated ∆𝐽 𝐶 (𝐻) qualitatively reproduces the experimental one very closely, see Fig. 3 (e) and (h). We see that the curve measured after demagnetization (blue) presents a plateau up to 𝜇 0 𝐻 ≈ 75 mT, which is also found in the model, and corresponds to the field range in which the magnetization is constant (𝑚 𝑧 ≈ 0). Thus the domain structure remains unchanged, and consequently so does the pinning landscape. When the applied field is increased above 𝜇 0 𝐻 ≈ 75 mT, the domains parallel to the applied fields grow and 𝑚 𝑧 increases, leading to a gradual decrease in the magnetic pinning.

Once the magnetization is fully saturated (𝑚 𝑧 = 1), the stray magnetic field 𝐵 𝐹𝑧 (𝑥) ≈ 0, and therefore the pinning landscape becomes flat, leading to ∆𝐽 𝐶 (𝐻) ≈ 0. The model also captures the increase of ∆𝐽 𝐶 (𝐻) across the magnetic reversal (red curve). In this branch, ∆𝐽 𝐶 (𝐻)

increases until a balanced distribution of domains is obtained ( 𝑚 𝑧 ≈ 0 at 𝜇 0 𝐻 ≈ 80 mT), which yields a rough pinning landscape. Further increase of the magnetic field yields to a steady decrease of ∆𝐽 𝐶 (𝐻) as the average 𝑚 𝑧 increases, due to domain expansion and the subsequent flattening of the pinning landscape. The only discrepancy between the experiment and the model occurs indeed at low fields when |𝑚 𝑧 | = 1. In this limit, the experiments show a net decrease in the critical current (∆𝐽 𝐶 (𝐻) < 0) that is not reproduced by the model. This disagreement can be explained by the nucleation of vortices caused by the magnetized F. Notice that the model considers the pinning of vortices induced by the external field, which yields a critical current increase (similarly a decrease of magneto-resistance). However, it does not take into account the possible additional generation of vortices caused by the presence of the F, which has the opposite effect. The experiments show that the latter effect is dominant at low applied fields (when there are few vortices induced by the external field) if the F is magnetized

(|𝑚 𝑧 | = 1)
. This is because the magnetized F increases the vortex population through two mechanisms. On one hand, via finite size effects: near the edges of sample (lithographed transport bridge), fringe fields lead to the local nucleation of vortices, which can enter the bulk of the film where the magnetic pinning landscape is flat. Furthermore, if we consider a fully magnetized F and the magnetic field from vortices, we find that vortex entrance lowers the system's magnetostatic energy [START_REF] Erdin | Topological Textures in a Ferromagnet-Superconductor Bilayer[END_REF]. These two mechanisms increase the vortex population beyond that induced by the external field. This additional population is significant at low external fields, thereby producing a decrease of the critical current (∆𝐽 𝐶 (𝐻)<0), but gradually becomes negligible  and consequently its effects on ∆𝐽 𝐶 (𝐻) and 𝑅(𝐻) too  as more vortices induced by the internal field penetrate the S. . This peak appears around 𝜇 0 𝐻 𝑧 ≈10 mT, which corresponds to a distance between vortices 𝑑 ≈ √𝜙 0 𝜇 0 𝐻 ⁄ ≈ 450 nm that matches the average domain width 𝑤 ≈ 470 nm [see discussion on Fig. 1 (a)]. This suggests that the peak results from commensurability between the vortex-lattice and the domain structure. Indeed, this effect is not observed in the two other systems because the magnetic domains are much smaller. In particular, 𝑤 ≈ 110 for Ir/Co/Pt nm and 𝑤 ≈ 85 nm for Pt/Co/Ru as measured by MFM. For such domain sizes , the matching fields would be respectively of 170 and 300 mT, which are beyond the saturation fields of those multilayers.

In the case of Ru/Co/Pt, the model explains the strong critical current enhancement observed at low fields, which is associated to the presence of domains (𝑚 𝑧 ≈ 0). It also accounts for the decay of ∆𝐽 𝐶 (𝐻) with increasing 𝐻. Nevertheless, in the experiments the decay is faster than expected from the simulations. This is because the model does not consider changes in the domain morphology. Yet in this sample, a regular array of skyrmions is rapidly formed upon increasing H [Fig. 1 (f)]. Thus, unlike in Co/Pt and Ir/Co/Pt, for which elongated domains and 𝑚 𝑧 ≈ 0 persist over a large field range, for Ru/Co/Pt the model of stripe domains becomes rapidly a poor approximation as 𝐻 (and 𝑚 𝑧 ) increases. The main reason is that, due to their relatively small size and morphology, skyrmions (which repel vortices due to their opposite magnetic polarity [START_REF] Dahir | Interaction of Skyrmions and Pearl Vortices in Superconductor-Chiral Ferromagnet Heterostructures[END_REF]) constitute point-like obstacles for vortices. Thus, vortices can more easily slip around skyrmions than across elongated magnetic domains when pushed by the Lorentz force.

Finally, if we compare the values of the critical current enhancement for low fields and 𝑚 𝑧 ≈ 0, we see that the model approximately predicts the hierarchy between the different samples. In particular, if we discard matching effects in Co/Pt, we observe that the strongest critical current increase corresponds to Ru/Co/Pt, as expected from the model. To a large extent, this is because it has the highest magnetic moment per unit area 𝑀 𝑠 𝑑 𝑓 . Thus, even if the domain size is comparable to that in Ir/Co/Pt, Ru/Co/Pt presents a much higher critical current enhancement. Conversely, Co/Pt has a similar magnetic moment to that of Ir/Co/Pt, but provides a slightly higher enhancement due to the domains being larger. Note that for all samples, the predicted ∆𝐽 𝐶 (𝐻) is up to 50 to 100 times higher than the measured one. Two reasons might explain this discrepancy. First, the model assumes vortex depinning perpendicular to the stripes. However, in the studied samples the elongated domains are disordered and point along many different directions with respect to the injected current (depinning Lorentz force). As shown earlier [START_REF] Vlasko-Vlasov | Magnetic gates and guides for superconducting vortices[END_REF], stripe domains not perpendicular to the Lorentz force pin vortices much less effectively, since vortices can glide along the domain walls, and therefore provide a much weaker contribution to the critical current enhancement.

Thus, the disordered domains expectedly yield a critical current enhancement much lower than predicted by the parallel stripes model. Second, the model considers temperature effects only through the temperature dependence of 𝛬, but thermal depinning effects  which may strongly attenuate the critical current enhancement [START_REF] Anderson | Theory of flux creep in hard superconductors[END_REF]  have not been included in it.

VI. CONCLUSION

We have studied Abrikosov vortex pinning in F/S hybrids made of superconducting thin films covered by ferromagnetic multilayers based on Co and different heavy metals. The ferromagnetic domain morphology and the magnetization reversal is engineered via changes of the multilayers stacking, which controls the balance between perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interactions. A crossover from large and elongated domains (hundreds of nm) to small magnetic skyrmions (tens of nm) can be obtained in this manner, which drastically changes the vortex pinning properties and, accordingly, the critical current. Qualitatively, the magnetic pinning is well described by a model that explains the critical current enhancement based on the magnitude of the stray magnetic field generated by the domain structure. An additional effect, geometric matching between the domain structure and the vortex distribution can further enhance pinning effects. We also show that the presence of magnetic domains enhances the critical current, whereas a homogeneous magnetization tends to degrade it. This drawback can be overcome by engineering the F magnetization reversal so that it shows nearly no remanence. We also found that a regular distribution of skyrmions produces lower pinning than expected for stripe domains of comparable width. This is essentially because the skyrmions are point-like objects, allowing the vortices to circumvent them. We also anticipate much stronger pinning due to commensurability effects if skyrmions could be stabilized in a field range in which they have the same polarity as vortices. Altogether, these results provide a key insight on how to tailor the vortex pinning in S/F bilayers through magnetic domain engineering, which allows optimizing the pinning enhancement in the desired field ranges.

fixing the period of the domains, but the internal DW texture is neglected. The period of the domains at zero external field is measured experimentally by MFM.

APPENDIX B: DETAILS ON THE THEORETICAL MODEL.

We consider a superconductor-ferromagnet bilayer as represented in Fig. 4(a). We assume that the ferromagnetic layer is thin (𝑑 𝐹 → 0). Its domain structure consist of stripes parallel to the y axis, with out-of-plane magnetization (along 𝑧). The up domains have width 𝑤, and those opposite 𝐿 -𝑤, where 𝐿 is the structure's periodicity. If the domain-wall width is much smalled than 𝑤, then a good approximation of the magnetization is a step-like function along the x-axis:

𝐌 = 𝑀(𝑥)𝐞 𝐳 ; 𝑀(𝑥) = { 𝑀 𝑠 , -𝑤/2 + 𝐿𝑛 ≤ 𝑥 ≤ 𝑤/2 + 𝐿𝑛 -𝑀 𝑠 , 𝑤/2 + 𝐿𝑛 ≤ 𝑥 ≤ -𝑤/2 + 𝐿(𝑛 + 1) (1) 
where 𝐞 𝐱 , 𝐞 𝐲 , 𝐞 𝐳 are the unitary vectors of the Cartesian frame and n is an integer. The Fourier expansion of the magnetization then writes : 

𝑀(𝑥) = ∑ ∞ 𝑛=0 𝑀
Consequently, the magnetization of the F layer can be represented as :

𝐌 = 𝑀 𝑠 𝐞 𝐳 𝛿(𝑧 + 𝑎) { 2𝑤 𝐿 -1 + 2 𝜋 ∑ 𝑛≠0 1 𝑛 sin ( 𝜋𝑛𝑤 𝐿 ) 𝑒 2𝑖𝜋𝑛𝑥/𝐿 } (4) 𝛿(𝑧 + 𝑎) = ∫ 𝑑𝑝 2𝜋 𝑒 𝑖𝑝(𝑧+𝑎) . ( 5 
)
Following that, the magnetic current sheet density 𝑗 𝐹 = 𝑑 𝐹 ∇ × 𝐌 only has a component along 𝑦, which is :

𝐣 𝐅 = -𝑑 𝐹 𝐞 𝐲 𝜕𝑀 𝜕𝑥 δ(z + a) = - 4𝑖𝑀 𝑠 𝑑 𝑓 𝐿 𝐞 𝐲 ∫ 𝑑𝑝 2𝜋 𝑒 𝑖𝑝(𝑧+𝑎) ∑ 𝑛≠0 sin ( 𝜋𝑛𝑤 𝐿 ) 𝑒 𝑖2𝜋𝑛𝑥/𝐿 (6) 
As a result, the vector potential 𝐀 𝐅 = 𝐴 𝐹 (𝑥, 𝑧)𝐞 𝐲 due to the ferromagnet is also directed along 𝑦 and is obtained from the Maxwell equation : The resulting Meissner sheet current density is then given by : 𝑗 𝑚 (𝑥)𝑑 𝑠 = - In images (d) and (f), the skyrmions appear as the red disks. 

∇ × ∇ × 𝐀 𝐅 = -𝛻 2 𝐀 𝐅 = 𝜇 0 𝐣 𝐅 (7 

  3nm/Pt10nm/(Ir1nm/Co0.6nm/Pt1nm)5/Pt3nm (thereafter Ir/Co/Pt), and Ta5nm/Pt8nm/(Pt1.2nm/Co1.6nm /Ru1.4nm)4/Pt3nm (thereafter Ru/Co/Pt). The single S films and S/F structures were patterned into a multi-probe transport bridge (200 µm-long and 40 µm-wide) that allows measuring the longitudinal and transverse resistivities. The patterning is done using conventional UV lithography and argon ion milling. Four-probe magneto-transport measurements were carried out either in a liquid-He cryostat or in a close-cycle refrigerator, both equipped with an electromagnet producing a magnetic field perpendicular to the film plane. The dc resistance R = V/I was measured by injecting an electrical current I with a dc source and measuring the voltage V with a voltmeter. The voltage offsets are removed by measuring both current polarities. The critical current Jc is calculated from V(I) curves, using a voltage criterion of 5 µV (EC = 25mV.m -1 ). The magnetic domain structure is characterized by room temperature Magnetic Force Microscopy (MFM) in 'lift mode', at a typical height of 30 nm above the surface.

  Figure 1 shows room temperature MFM images of the domain structures recorded for

Fig. 1 (

 1 Fig. 2 (a)-(c) show magnetization loops 𝑚 𝑧 (𝐻) as deduced from Hall effect

  e. those corresponding to the reversal from negative to positive magnetic saturation and vice versa, a third branch is shown (blue) which starts from a demagnetized state at 𝐻 = 0. The samples are demagnetized by cycling the field between positive/negative polarities, starting from saturation and reducing the amplitude by 10% each iteration.Both Co/Pt [Fig.2(a)] and Ir/Co/Pt [Fig 2. (b)] show 100% remanence, but the former multilayer has a much sharper magnetization reversal and a smaller coercive field, as Co/Pt multilayers have a larger perpendicular anisotropy than Ir/Co/Pt. In both samples, the demagnetized state is quite stable against the applied field [see blue curves in Fig. 2 (a) and (b)]. On the other hand, the Ru/Co/Pt sample [Fig. 2 (c)] was designed to have a nearlyvanishing out-of-plane magnetic anisotropy, orders of magnitude smaller than the two other samples, and shows a radically different behavior. First, the magnetization abruptly decreases before the applied field is actually reversed. Second, it shows nearly no remanence. Third, the curve measured after demagnetization (blue) falls on top of the field-increasing branch (red).Magnetoresistance 𝑅(𝐻) measurements below Tc (T = 3.5 K), for the same field sweeps (and same color code) as for the magnetization curves in (a)-(c) are plotted in Fig.2 (d)-(f). In these measurements, the magnetoresistance is strongly hysteretic for all the S/F samples, which is in contrast with the behavior of bare MoSi films [green curve in each panel of Fig.2 (d)-(f)].In the case of Co/Pt [Fig.2 (d)], sharp dips around the positive/negative coercive fields are observed. The resistance is lower during the magnetization reversal than when the sample magnetization is saturated. Notably, the lowest resistance is reached after the sample has been demagnetized [blue curve in Fig.2 (d)]. When comparing the S/F magneto-resistance with that of the single MoSi film (green curve), two different field regimes have to be distinguished. For a field large enough to saturate the F magnetization, the S/F multilayer and the single S film show similar magnetoresistances. At intermediate and low fields, the S/F magnetoresistance is lower than that of the MoSi film only in the presence of magnetic domains, i.e. across the magnetization reversal or when the sample has been demagnetized (blue curve). Contrarily, if the magnetization is saturated (|𝑚 𝑧 | = 1) and below 𝜇 0 𝐻 ≈ 60 mT, the resistance becomes significantly higher for the S/F multilayer than for the single S film.The Ir/Co/Pt sample [Fig,2 (e)] behaves qualitatively similar to the Co/Pt one. The main difference is that the resistance drop around the coercive fields extends over a larger field range, as the magnetization reversal does [see Fig.2 (b)]. In the case of Ru/Co/Pt [Fig.2 (f)], the resistance drop associated with the magnetization reversal (presence of magnetic domains) extends over an even broader field range, following the magnetization curve [Fig.2 (c)].Furthermore, the resistance drop is much stronger than in the two previous samples. Consider for instance the resistance around 𝜇 0 𝐻 ≈ 50 mT (red curve) and -50 mT (black curve), which is in the 10 -3  range for this sample [Fig.2 (f)] and one order of magnitude higher for the two others [Fig.2 (d) and (e)]. Notice also that, in the field regime 𝜇 0 |𝐻|< 30 mT and regardless of the magnetic history (red, black and blue curves), the Ru/Co/Pt sample's magnetoresistance is lower than that of the single S film (green curve), which is in stark contrast with the two other S/F samples. This is because, regardless of the field history, the Ru/Co/Pt magnetization is broken into domains (|𝑚 𝑧 | < 1) for 𝜇 0 |𝐻| ≲ 30 mT.The effect of the different domain structures can be quantified by considering the fielddependent critical current of the different S/F multilayers, 𝐽 𝐶,𝑆𝐹 (𝐻) and that of the bare MoSi control samples, 𝐽 𝐶,𝑆(𝐻) [see examples of 𝐽 𝐶 (𝐻) in the insets of Fig.3 (d)-(f)]. Indeed, a direct signature of the critical current variation due to the presence of F can be obtained by considering ∆𝐽 𝐶 (𝐻) = 𝐽 𝐶,𝑆𝐹 (𝐻) -𝐽 𝐶,𝑆 (𝐻), as shown in Fig.3 (d)-(f). The three colored curves in each figure correspond to the same three different magnetic field sweeps (same color code) followed in the magnetization loops [Fig.3 (a)-(b)]. The behavior is consistent with that observed in the magnetoresistance, and presents a series of features common for all samples. A net critical current enhancement (∆𝐽 𝐶 > 0) is observed when the F is broken into domains (|𝑚 𝑧 | < 1)  that is, during magnetization reversal and after demagnetization (blue). When the F is uniformly magnetized (|𝑚 𝑧 | = 1), two regimes can be distinguished. When the magnetic fields are low, ∆𝐽 𝐶 < 0 which means that the presence of the F leads to a decrease of the critical current. At high fields ∆𝐽 𝐶 ≈ 0 , which proves that in that regime, the presence of F does not have a strong effect on 𝐽 𝐶 . Besides these common features, there are strong differences from sample to sample. Qualitatively, we can see that the shape of curves measured after demagnetization (blue) are very different for the three samples. Also, while there is a qualitative resemblance between Co/Pt [Fig.3(d)] and Ir/Co/Pt [Fig. 3(e)] concerning the sweeps from negative and positive saturation (red and black curves), in the case of Ru/Co/Pt the curve is very different [Fig. 3(f)]. Quantitatively, we find that the maximum critical current enhancement is around twice lower for the Ir/Co/Pt [Fig. 3 (e)] than for the two other samples.

  (a), we construct a simple model to capture how the varying domain structures might enhance the critical current. This model is sketched in Fig. 4 (b). We consider a superconducting film of thickness 𝑑 𝑠 . The magnetic multilayer, which consists of N repetitions of Co/heavy element layers (Co/Pt, Ir/Co/Pt or Ru/Co/Pt), is modeled as a single ferromagnetic film of saturation magnetization 𝑀 𝑠 and thickness 𝑑 𝑓 = 𝑁 × 𝑑 𝐶𝑜 , with 𝑑 𝐶𝑜 the thickness of the individual Co layers in the structure.The ferromagnetic and superconductor films are separated by a distance 𝑎, which accounts for the presence of buffer layers in the structure. In the ferromagnet, the magnetization points outof-plane (along the z axis). For simplicity, we consider a periodic domain structure consisting of stripes parallel to the y-axis. Their width is 𝑤 + = 𝑤 for "up" domains, and 𝑤 -= 𝐿 -𝑤 for "down" ones, with L being the periodicity of the structure. The ratio w+/w-is fixed by the external field, while L depends only on the material properties. Considering that the ferromagnet is thin (𝑑 𝑓 << L) and that the width of the domain walls is negligible compared to L, we approximate the magnetization profile as an alternating step-like function along x. The stray magnetic field 𝐵 𝐹 from such a domain structure can be analytically calculated (see Appendix B) and has components only along 𝑥 and 𝑧. Since the superconducting film is thin with respect to the magnetic penetration depth (𝑑 𝑠 = 60 nm ≪ 𝜆 ≈ 270 nm as estimated from the normal state resistivity and Tc measurements[START_REF] Gor'kov | Theory of Superconducting Alloys in a Strong Magnetic Field near the Critical Temperature[END_REF]), we consider only the component along 𝑧. At the surface of the superconductor (𝑧 = 0), that component reads:

  (a)-(b) for the different field sweeps; and iii) 𝑀 𝑠 = 1.09 MA.m -1 for Co/Pt, 𝑀 𝑠 = 0.9 MA.m -1 for Ir/Co/Pt, and 𝑀 𝑠 = 1.21 MA.m -1 for Ru/Co/Pt, as obtained from magnetization measurements at 300 K. The results are shown in Fig. 3 (g)-(h)-(i) for comparison with the experimental data. Note that our model

  Fig. 2 (d)-(e)-(f). This implies that the pinning enhancement is produced by the Meissner current

For

  the case of Co/Pt, experiments [Fig. 3 (d)] and theory [Fig 3 (g)] agree similarly as for Ir/Co/Pt only for the fields sweeps that start from magnetic saturation (red and black curves). However, in the measurement made after demagnetization (blue curve), a strong peak develops [Fig. 3 (d)] which contrasts with the plateau theoretically expected [Fig 3 (g)] for the constant 𝑚 𝑧 ≈ 0 [Fig. 3 (a)]

  we have 𝐿 ≪ 𝛬 = 𝜆 2 /𝑑 𝑠 . We may then neglect the superconducting screening to calculate 𝐴 𝐹 .The stray magnetic field 𝐵 𝐹 from the domain structure only has components along 𝑥 and 𝑧. As the superconductor is thin (𝑑 𝑠 ≪ 𝜆), we consider only the latter. At the surface of the superconductor (𝑧 = 0), it writes :

Figure 1 :

 1 Figure 1: MFM images at 300K for Co/Pt (a)-(b), Ir/Co/Pt (c)-(d), and Ru/Co/Pt (e)-(f)

Figure 2 :

 2 Figure 2: (a)-(b)-(c) magnetization loops 𝑚 𝑧 (𝐻) = 𝑀 𝑧 (𝐻)/𝑀 𝑆 deduced from Hall effect

Figure 3 :

 3 Figure 3: (a)-(b)-(c) Zoom for positive fields of the magnetization loops shown in Fig. 2 (a)-

Figure 4 :

 4 Figure 4: (a) Schematic of the model, with a superconductor of thickness 𝑑 𝑠 and a ferromagnet of total Co thickness 𝑑 f . The ferromagnet and superconductor are separated by a distance 𝑎,
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APPENDIX A: ROLE OF DMI FOR MAGNETIC DOMAIN SIZES.

The size of magnetic domains results from the competition between different energies: dipolar energy, symmetric (Heisenberg) and antisymmetric (DMI) exchange, anisotropies, and external fields. The presence of domains reduces the dipolar energy, but the associated domain walls (DW) cost an energy density given by 𝜎 𝐷𝑊 = 4√𝐴𝐾 -𝜋𝐷, with 𝐴 the exchange stiffness, 𝐾 the effective wall anisotropy and 𝐷 the effective DMI [START_REF] Rohart | Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction[END_REF][START_REF] Bogdanov | Thermodynamically stable magnetic vortex states in magnetic crystals[END_REF][START_REF] Heide | Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110)[END_REF]. The calculation of the domain size for magnetic multilayers is complex but has been done for simplified models with uniform magnetization through the multilayer thickness [START_REF] Lemesh | Accurate model of the stripe domain phase of perpendicularly magnetized multilayers[END_REF], as well as for the complex case where the DMI competes with the stray field of the domains, resulting in hybrid textures [START_REF] Legrand | Modeling the Shape of Axisymmetric Skyrmions in Magnetic Multilayers[END_REF][START_REF] Lemesh | Twisted domain walls and skyrmions in perpendicularly[END_REF].

In our study, we are only interested in the stray field from the multilayer, and we considered the approximation of a DW of zero width to have a handleable model. So DMI plays a role in magnetized multilayers, Phys. Rev. B 98, (2018).