N

N

Representation of Concurrent Points of View of Urban
Changes for City Models

John Samuel Samuel, Sylvie Servigne, Gilles Gesquiere

» To cite this version:

John Samuel Samuel, Sylvie Servigne, Gilles Gesquiére. Representation of Concurrent Points of View
of Urban Changes for City Models. Journal of Geographical Systems, 2020, 22, 25 p. 10.1007/s10109-
020-00319-1 . hal-02454953

HAL Id: hal-02454953
https://hal.science/hal-02454953
Submitted on 9 Dec 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02454953
https://hal.archives-ouvertes.fr

This is a post-peer-review, pre-copyedit version of an article published in Journal of Geographical Systems. The

final authenticated version is available online: at: https://doi.org/10.1007/s10109-020-00319-1

Representation of Concurrent Points of View of Urban Changes for
City Models

John Samuel . Sylvie Servigne - Gilles Gesquiéere

the date of receipt and acceptance should be inserted later

Abstract Cities evolve over time and their evolution is often studied using material objects
and historical documents. Based on available evidence, researchers propose various hypotheses
explaining the probable evolution, both imaginary and factual. Furthermore, city models are used
to model and visualize 3D structures and semantic information of the cities. With the help of
versioning of city objects, it is possible to represent temporal changes of city structures. And with
the support for representing scenarios, it is possible to represent different possible sequences of
urban changes. In this article, we formalize a set of rules for representation of concurrent points
of view of researchers related to urban changes based on standard city model. The goal is to
understand how the cities have evolved, what were the key changes and allow exchange between
various hypotheses (or processes). We developed a proof-of-concept named UrbanCo®Fab based
on these rules to demonstrate the highly potential use cases of our proposition.

1 Introduction

Cities are under constant evolution. In the study of understanding historical past of a city, it is
important to understand not only the changes that occurred but also how these changes occurred.
Historical documents like old photographs, paintings, postal cards etc. give a snapshot [Peuquet
and Wentz, 1994] or version [Van Ruymbeke et al., 2015] of the city at a particular instant or a
period of time. Take for instance, a council meeting report describing the discussion on demolition
of a building and an associated photograph that proves its actual demolition at a later period.
But historical documents are not just confined to such factual elements of the urban past. They
may also give an imagined view of the city by different actors. Though such imagined views like
project plans may have never been implemented, their mere propositions in some cases may have
left a lasting impact on the cities.

To understand and study these aspects, researchers are increasingly looking for solutions
that can be used to model structural and semantic information concerning various city objects
at different points of time. Geographical information systems (GIS), especially maps are now
commonly used for navigational purposes, currently serving the main purpose of getting the
most recent version of the city. But historians and urban planners require options to navigate

Univ. Lyon, CPE Lyon, LIRIS, F-69616, Lyon, France - Univ. Lyon, INSA Lyon, LIRIS, F-69622, Lyon,
France - Univ. Lyon, Université Lumiére Lyon 2, LIRIS, F-69622, Lyon, France E-mail: john.samuel@liris.cnrs.fr -
sylvie.servigne@liris.cnrs.fr - gilles.gesquiere@liris.cnrs.fr

2 John Samuel et al.

through the historical timeline to comprehend several aspects of the urban fabric. They want
to spatially and temporally annotate their document corpus in GIS along with several other
domain-specific information before finally being able to pose complex queries and navigate or
explore urban data through data visualization approach. In other words, a support for nD (or
multidimensional) solutions that can represent and visualize the 3D (spatial), temporal as well
as semantic information is required.

Collaboration among multiple actors is important in every scientific domain. Researchers and
experts [Van Ruymbeke et al., 2017, Van Ruymbeke et al., 2018] propose, discuss and debate
various hypotheses on probable urban evolution. Different actors base their decisions on facts
available to them at a given moment of time. It is important to save these valuable discussions
and the resulting hypotheses to get an overview of the various points of view concerning the
study of urban changes. Projects proposed or imagined by different urban planners may or may
not come to completion. Nevertheless, these projects give multiple alternate scenarios envisioned
by the proposers in contrast to the existing reality. Thus we also need to be able to represent
different proposed scenarios. Lessons from the past failed projects also serve as a guiding factor
for the future projects of urban planners. This work here is focused on the past. Urban planning
will require changes that are not provided here in order to have a focus on the urban changes in
the past. Nevertheless, our work may be seen as a common ground for urban planning.

Finally, considering the ever-changing software landscape, one commonly discussed problem
is the incompatability of past softwares in newer platforms. Hence there is an increasing demand
for data-driven solutions based on standards (e.g standard city models) in order to promote data
interoperability and data sharing.

Considering all these requirements, we introduce and formalize a new method to represent
concurrent points of view in a 4D context in this article. Our proposed method lets multiple
researchers propose and share various scenarios of the city evolution. Section 2 describes in detail
the study of urban evolution and its various requirements. We take a look at several related works
in section 3. Section 4 details versions and workspaces and also presents their formalization. We
present UrbanCo?Fab in section 5 and briefly describe the proof of concept. Section 6 finally
concludes the article and presents the future course of actions.

2 Study of Urban Evolution

As cities expand both vertically and horizontally, the study of urban evolution has taken prime
importance in several research circles especially among the urban planners. As cities expand both
vertically and horizontally, the study of urban evolution has taken prime importance in several
research circles especially among the urban planners and historians. Lessons from the past serve
as a guidance for the future project plans of a city. Urban evolution study involves several
domains: geography, social science, urban planning, history etc. In our work, we are interested in
representing this nD (or multimensional) urban evolution information: 3D structural, temporal
and several domain-specific information. Precisely, our document corpus consists of old postal
cards, aerial views, photographs, project plans (both successful and failed), municipal meeting
notes. This corpus is currently used by us for selective case studies for the manual recreation of
a building or a city sector at different points of time using standard city models.

Cities have their stories [Fields, 2012] to tell, right from the first human establishment to its
current state. Even though it seems utopian to have a complete and continuous description of the
urban changes, historical documents and anecdotes may be considered as witnesses or footprints
of changes. Researchers study this urban evolution at various scales. While some of them focus
on the changes of buildings [Stefani et al., 2010] of historical importance, others take it to much

Representation of Concurrent Points of View of Urban Changes for City Models 3

larger scale of city sectors [Simon, 2012] or to the entire scale of the city [Renolen, 2000, Lefebvre
et al., 2008, Rollier-Hanselmann et al., 2014, Billen et al., 2012] or to even larger space [Harbelot
et al., 2013, Chaturvedi et al., 2017] in a much more generic approach. They focus on changes in
different features of city objects. Highly granular changes like on those on the level of buildings
[Stefani et al., 2010] take into consideration various possible transformations like annexation,
union etc. of buildings, whereas those on a coarser level consider only the features of city objects
like roads, buildings, bridges etc. without going into details.

City object features are used to describe 3D structural, temporal, semantic and thematic
information concerning the objects. For any given city object, the feature values change during
any given period of time. These could be structural changes, like the number of storeys of a
building or they could be related to its use (e.g., administrative, religious use of a building,
use of a bridge for vehicles, pedestrians etc.). It is interesting to observe the evolution of these
changes in feature values for given city objects for the study of urban evolution. Such studies
are usually based on available evidences like paintings, municipal council minutes, project plans,
construction permits, aerial views, photographs etc. Researchers and domain experts propose,
discuss, debate different possible scenarios of urban evolution and propose various hypotheses.
They use these evidences [Simon, 2012, Samuel et al., 2016] to study the existence [Hornsby
and Egenhofer, 2000, Hallot and Billen, 2016] and non-existence (for e.g., destruction) of various
city objects and to obtain a time duration for various features of city objects. These time-
limited feature values of one or more city objects constitute a version[Van Ruymbeke et al.,
2015, Chaturvedi et al., 2017, Van Ruymbeke et al., 2017]. However, there are also periods of
time, where we do not have any evidence concerning the changes that may have occurred to
these objects or the researchers may not be interested to know about these periods. Such gaps
between two versions for the given objects is called a version transition [Chaturvedi et al., 2017].
A sequence [Van Ruymbeke et al., 2017, Van Ruymbeke et al., 2018] of versions and version
transitions arranged in a chronological order of time may describe one of the possible ways a
city could have evolved. However, multiple people working on the study either in isolation or in
collaboration may propose different possible scenarios of changes based on the evidences available
to them. Therefore, all these scenarios may be considered in parallel before a consensus is made
on the best possible scenario. This final consensus scenario may be used as a reference by all
the researchers until some other changes are decided upon. However, it is very important to save
both the consensus scenario along with other proposed scenarios to understand other points of
views on the urban changes and if necessary, to make more future modifications to the consensus
scenario.

A scenario may also contain imagined city versions for representing and understanding other
possible urban project plans proposed in the past that did not come to completion because of
socio-economic or political pressures. Researchers want to understand how the city may have
looked like if the proposed project were carried out. Documents like abandoned project plans,
construction permits can give another possible view, detailing how the city would have looked
like if the concerned plan had been carried out. New project plans often influence the surround-
ing areas especially leading to price fluctuations, construction of new habitat zones, shopping
complexes and transport lines. In some cases, even abandoned projects are known [Samuel et al.,
2016] to have left some traces on the cities, like in the case of Givors and Terrenoire, two old
industrial towns of France [Périnaud et al., 2015]. Therefore, such an information of project
influences on city infrastructure also forms a key constituent of urban evolution.

With the growing availability of different geographical information systems, the study of
historical past has become a interdisciplinary field [Gregory and Cooper, 2013] and collaboration
is important for discussing possible scenarios among stakeholders. In the past, researchers made
use of physical models like plan-reliefs or virtual mockups for proposing their hypotheses. Physical

4 John Samuel et al.

models are limited both in scale and temporal dimension and virtual mockups are created using
the software technology and expertise available at the particular time of development making
them unusable with the advancement of backward-incompatible technologies. Hence during the
last few years, a data-driven approach is being considered, where standards are promoted by
international communities in order to represent domain-specific knowledge. The primary goal
of these standards is to promote data interoperability and easier sharing and exchange. Thus
we require a solution that can support collaborative effort of the researchers using international
standards able to represent 3D, temporal and domain-specific information concerning the cities.

In this article, we focus on representing possible scenarios of changes of a city or one or
more city objects during a given period time. We believe that by adopting an abstract view
for a generic approach, we free ourselves from specific technologies. Nevertheless, such an ap-
proach can be implemented using various existing software solutions. Our proposed approach
called UrbanCo®Fab is a method that aims to provide the ability to represent several possible
scenarios of urban evolution using interoperable data standards. It is a generic approach that
can be targeted for several ongoing processes based on city models. Our proposition can be built
over several existing software solutions. UrbanCo? Fab can also be extended to represent future
imagined versions, but this requires further study and is out of scope for this paper. But this
work can be seen as a base for studies related to scenarios of future urban evolution.

3 Related Works

We are interesting in reconstructing virtual cities of the past, both hypothetical and existing
using a document corpus consisting of old postal cards, photographs, aerial views, newspaper
archives, municipal meeting notes etc. Photographs of a building, for example at different pe-
riods of time are currently used by us to manually build virtual models of the building using
standard city models at discrete time intervals. When extended to more buildings in a city sector
or town, we get an overview of how a city evolved both horizontally and vertically. Evolution
of cities [Renolen, 2000, Lefebvre et al., 2008, De Roo et al., 2013, Rollier-Hanselmann et al.,
2014, Harbelot, 2015] has been studied in several different ways. Spatio-temporal object model
(STOM) [Renolen, 2000] considers objects like roads, parcels along with their spatial, temporal
and attribute changes and models both object-level and version-level transitions. These transi-
tions are modeled using spatial, temporal, relationship and attribute descriptors. With the help of
version-level transitions, it is possible to represent when an object ceased to exist, is tranformed
from one form to another, is split into two different objects etc. Similarly, with the object-level
transitions, it is possible to represent when an object is deduced or annexed from another object.
OH_FET model [Lefebvre et al., 2008] also considers this object-oriented approach by considering
the change in functional (usage), spatial and temporal information of the individual objects of
interest. Continuum [Harbelot, 2015], a much recent work considers spatio-temporal changes as
one single entity and tracks the structural, temporal and geometrical changes altogether. Though
these studies are able to represent the version of one or more city objects at a given point of time,
they focus on giving one possible hypothesis of the urban evolution. Additionally they do not
consider imagined versions of urban evolution. OQur proposed approach takes into consideration
the above works and further explores the possibility of representing concurrent hypotheses: both
factual and imagined. Finaly, custom-built versions or scenario of urban evolution with some
proprietary technology or softwares is not our goal. In an interdisciplinary field, it has become
very important to be able to exchange data in an interoperable manner. Most of the above works
[Renolen, 2000, Lefebvre et al., 2008, Stefani et al., 2010, Simon, 2012, Harbelot, 2015] are not

Representation of Concurrent Points of View of Urban Changes for City Models 5

based on any particular international standard. Nevertheless, these works form the basis for this
proposed work.

An analogy of the proposed city object versions and scenarios can be made with the ter-
minology used in management of software repositories. Software repositories (centralized and
decentralized) [Otte, 2009] are commonly used in software development to promote parallel de-
velopment by multiple programmers. Repositories and branches can be used by historians to
suggest multiple possible historical successions of a city or city objects of interest. Yet current
implementation of most of version control systems like GIT! is primarily targeted for text files
and cannot be easily used to represent and understand the historical changes of city object fea-
tures and to even propose any future imagined changes on them. We are interested in obtaining
the value of features of such city objects at different temporal points or intervals. The focus on
textual line changes and a missing object model make the existing implementations of software
repositories unsuitable for studying historical evolution using standard city models, especially
to study changes in city features or city object features. [Swierstra and Loh, 2014] recently for-
malized the key concepts of a version control systems, though once again focusing on line based
version control systems. Nevertheless, by reutilizing the associated terminology in version control
systems, the learning curve of the researchers can be reduced.

Finally in order to support interoperable solutions, we may base our approach on CityGML
[Groger et al., 2012] or city model [Stadler et al., 2009]. CityGML is an international standard
proposed by OGC? for representing thematic, structural and semantic information of cities at
different scales or levels of detail. It is also being currently used for the study of historical
evolution [Pfeiffer et al., 2013, Billen et al., 2012, Morel and Gesquiére, 2014, Samuel et al.,
2016, Chaturvedi and Kolbe, 2019]. The standard [Tegtmeier et al., 2014, Chaturvedi and Kolbe,
2016] is currently being used by diverse communities for integrating domain specific information
to the underlying city model[Gil et al., 2011]. It permits these extensions by Application Domain
Extensions (ADE) that allows not only to easily share the extension but also the associated
data in an interoperable manner. Take for example, a recent work studies various actions in
understanding urban modeling [Sindram and Kolbe, 2014].

CityGML also considers the urban fabric from an object-oriented approach. In CityGML,
for every city object, there is an associated information concerning its geometry and spatial
position. CityGML 2.0 building model has two temporal information yearOfConstruction and
yearOfDemolition for representing the year of construction and demolition respectively. How-
ever, this was very limited in scope since it could not be used to represent information on the
real physical existence of other types of objects. With the latest proposed extension [Chaturvedi
et al., 2017, Kutzner and Kolbe, 2018] to CityGML (see Figure 1), it is now possible to add a
temporal dimension to every feature of the city object, i.e., a time validity for the existence of an
object. This extension permits to represent lifetime of city objects right from its construction to
its demolition and various changes in between, like change of roof structure of a building or its
usage. However, this extension focused mainly on the physical existence of city objects. [Hallot
and Billen, 2016] formalize the concept of existence of city objects and distinguish between exis-
tence and presence of objects. An object comes into existence as soon as a (semantic or spatial)
relationship [Hallot and Billen, 2016] is established between this object and other objects under
consideration. In our study, this notion of existence is important since we are interested in rep-
resenting not only the physical presence of objects, but also their existence in the form of formal
project plans or a thought process. We represent the changes to the objects during their existence
time by giving a temporal validity to their known feature through Versionable AbstractFeature
and Version (see Figure 1). The extension represents the features giving them a existence time

L https://git-scm.com/
2 http://www.opengeospatial.org/

6 John Samuel et al.

validity and groups these versionable features in user-defined versions. The users can then de-
fine the transitions between the versions detailing through the transactions (Transaction) of the
various changes that occurred in between. One of their suggestions was to make use of the at-
tribute tag in the Version (see Figure 1) to create agent-specific versions for various purposes like
proposing historical evolution or even future scenarios. This suggestion enabled searching spe-
cific versions created by the agents with a given tag name to find a proposed historical evolution.
But this proposition is very limited for practical uses involving a large number of researchers
and it also missed a formal specification. Additionally their proposition also did not provide any
constraint rules on the overall proposed model. Nevertheless, the above work has been extended
in a much recent work [Samuel et al., 2016] to represent document and their references to dif-
ferent city objects. Taking into account these two works, we want to explore the study of urban
evolution by making use of an approach commonly used in version control systems.

GeoGig?, previously GeoGit [Clark et al., 2013] is one of the currently available software
solutions that tackles the problem of tracking geospatial data changes made by users. However,
it is not designed to handle situations where the agents wish to track changes of historical and
future urban data. Besides it cannot currently handle CityGML files (or other city models). We
have not found any solution that can meet all our above requirements of representing concurrent
points of view of urban evolution, factual as well as planned and support for interoperable city
data models. In particular, we want to not only obtain forward and backward traversal of the
urban changes but also be able to see other possible propositions. In this article, we formalize
our requirements and also present UrbanCo?Fab to fully describe our requirements. We may
have several technical possibilities, but in this paper, we propose a formal approach that can be
derived to a technical specification dedicated to a software or a format (e.g., GML, JSON etc.)

4 Workspaces for Concurrent City Projects

In this section, we introduce the concept of Workspace and its formalization. A workspace
manages various scenarios of urban evolution proposed by agents (e.g., researchers, users, domain
experts, enterprises etc.). Like [Hallot and Billen, 2016], we consider a workspace consisting
of one or more objects of interest and their associated period of existence. However, we wish
to distinguish between the scenario that received a majority consensus and the scenarios that
were proposed, debated or even abandoned. These scenarios, consisting of city object versions
(both factual and imagined) enables representation of concurrent points of view for the study of
historical urban evolution. We consider that every city object consisting of one or more geospatial
features, each of which can be identified by an identifier [Hornsby and Egenhofer, 2000]. There
could be multiple workspaces managed by independent groups working together in parallel. But
in this article, we focus on formalizing a single workspace. An example workspace is given in
Figure 2.

A workspace consists of two spaces: Consensus Space and Proposition Space. A space in
a workspace lets a user create different scenarios of urban evolution. A Consensus Space is a
mutually agreed upon space that can have only one scenario whereas the Propositions Space can
have more than one scenarios. A scenario consists of one or more versions, where a version of
urban evolution corresponds to the state of the city at a given instant of time (or time period). A
scenario in our context is closely related to interpretative sequence proposed by [Van Ruymbeke
et al., 2017, Van Ruymbeke et al., 2018], where the authors consider an interpretative sequence
having multiple episodes (or versions). A version can be considered Ezisting if there is enough
evidence for its materialized or physical existence [Hallot and Billen, 2016] in the real world.

3 http://geogig.org

Representation of Concurrent Points of View of Urban Changes for City Models 7

gmiBase::AbstractGML

ExternalReferenceObject
1

<<Enumeration>> <<Enumeration>> <<Enumeration>>
VersionType TransitionType | | TransactionValue
Existing Regular Tnsert

gml::AbstractFeature

Imagined Influence Delete
Replace
1
ExternaIReferenceI = 0.1 Featy
|: VersionableAbstractFeature newreature
0..% 0.1 oldFeature

+creationDate: Date
+terminationDate: Date
+validFrom: Date
+validTo: Date

- ———] 0.1 from EEISIon
Qo..x 0..* VersionTransition ~ L—>ftag: characterstring 9.
+type: TransitionType +creator: string
CityObjectGroup 5 Licreator: string — t 1. [type: VersionType
- * 0..*
T 1..%
Reference
evidence
o.*
0..*
1 1..%
Workspace Scenario
+creator: string

[1
| Consensus Spacel | Propositions Space |

0..%
Transaction

+type: TransactionValue

Fig. 1: UML model for representing concurrent points of view in CityGML. Grey boxes are
existing classes of the CityGML core. Classes VersionableAbstractFeature, TransactionValue,
Transaction represented by yellow-colored boxes are classes proposed to represent versioning of
city objects [Chaturvedi et al., 2017]. DocumentObject, Reference represented by white-colored
boxes are extensions proposed by [Samuel et al., 2016] to represent document references to ob-
jects. Classes Version, VersionTransition represented by blue-colored boxes are our proposed
changes to the proposition by [Chaturvedi et al., 2017]. Classes Workspace, Space, ConsensussS-
pace, PropositionsSpace, Scenario, VersionType, TransitionType represented by green-colored
boxes are newly proposed to support concurrent points of view in CityGML.

Imagined version corresponds to an imagined city (like in a urban plan) or a possible state (as
proposed by a historian). Take for example, a photograph may be considered as sufficient evidence
by a research group to call a version FEzisting and unimplemented project plans or mockups
may be enough to call a version Imagined. Hence definition for Ezisting or Imagined versions
is decided beforehand by a group based on the available categories of evidences. ‘ Transitions’
between versions are used to represent the change from one state to the other. A transition
[Hornsby and Egenhofer, 2000] may signify a certain time period or point in time for which
enough evidence on the city object(s) is not available. We also assume the ability to identify city

8 John Samuel et al.

objects [Hornsby and Egenhofer, 2000] across different periods of time, i.e., we consider that it is
possible to identify the objects that undergo changes. Take for example, we have two photographs
(or videos) concerning the construction of a city building and its finished version, but we may
not have any evidences on the stages of its development. This uncertain period is represented
by a transition. As more evidence on intermediate states are obtained, it is possible to add new
versions and transitions between them.

‘Influence’ is a special type of link between two versions in order to show that an imagined
version (of the past) had some influence on a later version (Ezisting). This is used to represent
situations where some project plans (like project plan for construction of a new highway) impact
the city (like construction or destruction of houses).

A user would like to navigate in time to see the events at a given instant of time (both the
past and the future with respect to that considered moment of time). As shown in Figure 2, the
agent is at time T,ps and navigates the past and the future with respect to this point. We did
not show the transactions in Figure 2. Transactions include addition, modification or removal of
features of city object(s).

The key objects required to represent workspaces are further detailed in corresponding UML
classes in the model of Figure 1. It is based on the extension of the CityGML core and slightly
modifies the previous work [Chaturvedi et al., 2017] on the versioning of city objects. Yet the
above model is not sufficient to specify the various constraint rules on each of the objects specified
in the model. We now formalize workspaces using description logic, presenting both the key
objects and the various constraint rules on them. It is important to note that on first look, it
may seem that this work can be used immediately for imagining future scenarios starting from the
current date. There are several questions that may require adjustments, especially with respect to
transition types. Stating a statement on the current date like a future project influenced another
future project is questionable. What evidences can be given to justify such a statement? These
discussions are out of scope of this paper and will be presented in our future works.

4.1 Theoretical Preliminaries

We need to provide a formalized representation that can be mapped to several models that can
manage city related information (e.g., CityGML). Additionally, we want to specify constraint
rules on these models for representing a consistent city model. Current UML based model of
CityGML (v2.0) doesn’t specify the constraint rules. There are several ways of formalization like
UML or description logic. We use description logic [Baader et al., 2003] to formalize the notions
of concurrent points of view of urban evolution given its capability to define both the concepts
and the associated constraints rules. This choice is also considering the fact that it can be easily
mapped to semantic web languages and to ensure mapping to other possible data representations
or city models. Let T be a top concept and L be a bottom concept and A, B, C,... be atomic

Representation of Concurrent Points of View of Urban Changes for City Models 9

A Workspace

Consensus
Space

transition *
&> influence -
@ Existing *
@ Imagined :

Physical Time T

Propositions Space

Fig. 2: Workspace for the study of historical evolution. There is one workspace with the consensus
space and propositions space. A consensus space has only one scenario whereas the propositions
space has multiple scenarios. Each scenario consists of many versions and transitions in between.
There are two types of versions: Existing and Imagined. Two types of transitions are also shown:
Regular transition (or simply Transition) and Influence. The agent is at time Tops and navigates
through the time to study both the past and future with respect to Tops.

concepts. Let R be an atomic role. Following are also concepts:

—A (negative concept)
B C (intersection)
B U C (union of concepts)
VR.C (value restriction)
JR.T (limited existential quantification) (1)
JR.C (full existential quantification)
> nR (at-least number restriction)
< nR (at-most number restriction)
)

= nR (equal number restriction

The interpretation of the above syntax is given by T = (AZ,.Z), where A is called the
domain of the interpretation and .7 is an assignment of every atomic concept A to a subset of
A7 and every atomic role R to a subset of A7 x AT, ¢ corresponds to an empty set. Delta®\ AT
below corresponds to all elements present in Delta” excluding those in Delta AZ.

10 John Samuel et al.

I _ AL

1I=9
(—A) = AT\ AT
(Bnc)r =Bfnct
(BuC)f =Bfuct

(VR.C)* = {a € AT |Vb.(a,b) € R = bec C*} (2)
(BR.T): = {a € AT | 3b.(a,b) € R}
OV ={a € AT | 3b.(a,b) € RE A e CF}
n) ={ac AT | [{b|(a,b) € RI}| >n}
n) ={ac€ AT ’ [{b|(a,b) € RI}| <n}
nR) ={ac€ AT | [{b|(a,b) € RI}| =n}

(
(
(

With a given interpretation Z, inclusion is defined in the following manner

IN IV

B C C, if and only if B € C* (3)
Finally, equivalence is defined in the following manner
B = C, if and only if Bf = C* (4)

An equivalence is called a definition when the left side of the equation is an atomic concept
(e.g., see definitions of Temporallnterval, Temporal Point etc.)

4.2 Time

In order to consider precise instants or time intervals, we introduce temporal point T'emporal Point
(a precise instant of the chosen timeline) and time interval Timelnterval (period between two
instants of the chosen timeline)[Harbelot, 2015].

Temporal Point C T (5)

A time interval defined by [t,,t.], where t,,t. € Temporal Point® correspond to start and
end temporal points following strict ordering.

Timelnterval C T
Timelnterval = (= 1hasStartingPoint.Temporal Point)MN (6)
(= 1hasEndingPoint.Temporal Point)

We require 7 to refer to temporal points or a time interval (e.g. documents like photographs
are momentary whereas videos, project plans etc. have a time duration).

7 = Temporal Point L TimelInterval (7)
Temporal points and time intervals are disjoint.

Temporal Point M Timelnterval CL (8)

Representation of Concurrent Points of View of Urban Changes for City Models 11

Time

—
_—
(] (] (]
([] ([] ([]
1. Meets 2. Before

3. During

Fig. 3: Different time constraints: Dots represent temporal points and line represents time in-
tervals. Three terms are introduced: Meets, Before, During. Meets shows that black colored
temporal events are immediately followed by red-colored temporal events. Before corresponds
to represent events when black colored temporal events are followed by red-colored temporal
events but not immediately, i.e., there is a temporal gap of more than one instance of time be-
tween them. During shows that black colored temporal events occur at the same time as those
of red-colored temporal events.

In order to specify various conditions like an instant (or a period) is immediately followed by
another instant (or a period), occurred before another instant (period) or happened at the same
instant (or during a given period), we introduce meets similarly like [Harbelot, 2015], before
and during respectively, inspired from [Allen, 1983] (See Figure 3).

if Ti, Tix1 € Temporal Point
VT, Tiv1 — suce(Ti) = Tita

if Va,b € Temporal Point®

if VI, I' € Timelnterval®

if V(I,a) € hasEndingPoint
if V(I',b) € hasStartingPoint
—a=0b

meetst = {< T;, Tis1 > |i € N}and

if Ti, Tix1 € Temporal Point
VT Tivr = Ti < Tia

if Va,b € Temporal Point™

if VI, I' € TimelInterval®

if V(I,a) € hasEndingPoint
if V(I',b) € hasStartingPoint
—a<b

beforer = {< T;, Tix1 > |i € N}and

12 John Samuel et al.

if Ti, Tiv1 € Temporal Point
VTi, Tiv1 — Ti = Tita

if Ya,b,c,d € Temporal Point*
if VI, I' € Timelnterval®

if V(I,a) € hasStartingPoint
if V(I,b) € hasEndingPoint
if V(I',¢) € hasStartingPoint
if V(I',d) € hasEndingPoint
—a>cANb<d

during® = {< T;, Tiz1 > |i € N}and

= =

4.3 Versionable Features

In this section, we make use of the UML model given in [Chaturvedi et al., 2017], which in turn
is based on the city model [Groger et al., 2012] to define versionable abstract features.

Every feature is versioned by the duration of time interval. VersionableAbstractFeature is a
time-stamped feature giving the agents the ability to specify the time duration (or validity) of
the concerned feature. The relationship between versions and versionable features is shown with
a graphical view in Figure 4. We consider two objects O1 and O2 composed of features like name,
function, geometry and storeysaboveground and their changes in a particular period of time.
As can be seen, whenever there is a change in some features like values, a version transition is
created. Note the change in values for storeysaboveground and the resulting creation of versions
and version transitions.

We introduce concepts Name to define names and Agent to define agents responsible for
creating or manipulation of instances.

In addition to an identifier [Hornsby and Egenhofer, 2000], every feature also has a name. This
identification of feature is important to track every change that occured to any given feature.

AbstractFeature = (= lhasName.Name)

. . (12)
(= lhasIdentifier.Identifier)

We now introduce Versionable Abstract Feature, that is an abstract feature with additional
attributes to specify the existence of the feature.

Versionable Abstract Feature C AbstractFeature (13)

It has two properties hasFExistenceTime and hasTransactionTime for representing the time
period or interval of the existence of an object and the transaction interval concerning the addition
of a object in a data store (e.g., database transaction interval).

Versionable Abstract Feature = (= 1hasExistenceTime.r)MN (14)
(= lhasTransactionTime.TimelInterval)

An abstract city object [Chaturvedi et al., 2017] is a Versionable Abstract Feature.

AbstractCityObject C Versionable Abstract Feature (15)

Representation of Concurrent Points of View of Urban Changes for City Models 13

City Object
Features o
VF,3,0 VF,,3.1 3.Name
k=2
VF;2,0 2. Function §
N
VF,,1,0 1. Geometry 'Q
VF,40 VF 4,1 VF,,4,2 VF,,4,3 4.Storeys
aboveground g
VF4,3.0 3.Name o
R=x
[+3
VF,2,0 VF,21 VF,,2,3 2. Function &
15
VF,,1,0 1. Geometry 2
VD TO Vl T1 VZ T2 v3
Physical Time Interval
V;: Version i VF,i,j: Versionable Feature | of Object O of counterj T,: Transition k

Fig. 4: Versions and versionable features. Box with yellow and orange colored strokes correspond
to the features of object Oz and O;. A version can be defined as a set of stable version features of
objects during the defined time interval of the version. The space between two consective versions
corresponds to a version transition.

It is also possible to create groups of city objects. This CityObjectGroup inherits all the
properties of AbstractCityObject. It also permits aggregation of city objects.
CityObjectGroup = AbstractCityObject
CityObjectGroup = (> OhasAbstractCityObject. AbstractCityObject)N (16)
(= lhasParent. AbstractCityObject)
It is possible to create city object groups of city object groups, the hierarchy of which is

tracked by hasParent. hasParent is a transitive property. In order to prevent cycling of groups,
the following condition is introduced (see also [Groger et al., 2012]):

VocVopVo, (hasParent(oc, 0p) A hasParent(o4,04)) — 04 7 Oc (17)

We introduce DocumentObject which is also considered as an abstract city object by [Samuel
et al., 2016] and therefore inherits all its properties. A document object references other city
objects (or another document, or collection of documents).

DocumentObject C AbstractCityObject

18
DocumentObject = (> OhasRe ference. AbstractCityObject) (18)

A document may concern another city object for a particular time instant (e.g., photos, news-
papers) or an interval (e.g., videos), which is defined by the following definition of hasRe ference

hasReference = (= lhasRe ferenceTime.T) (19)

Changes occur during the course of time and these changes are captured by transactions.
There are three ways a new transaction may occur: new features are added, values of features

14 John Samuel et al.

may be changed or an old feature may be removed. Hence TransactionV alue is used to represent
these three types of transactions:

TransactionValue = Insertl

(20)
Replace U Delete

A transaction [Chaturvedi et al., 2017] is defined to capture these changes between two
temporal geospatial features.

Transaction = (= lhasTransactionV alue. TransactionV alue)n
(< 1hasOldV ersionable Abstract Feature.Versionable Abstract Feature)r (21)
(< 1hasNewVersionable Abstract Feature.Versionable Abstract Feature)

Insert: When a previously unknown value for feature is now known, Insert is used.

Vt(hasTransactionValue(t, Insert)

NhasOldV ersionable Abstract Feature(t, NULL)
AhasNewV ersionable Abstract Feature(t,vf)
Auf # NULL

Note that NULL can be used to signify unknown value or no value.
Delete: When a previously known value for a feature is no longer valid and a new value is
not available anymore, Delete is used.

Vt(hasTransactionValue(t, Delete)

AhasOldV ersionable Abstract Feature(t,v f)
AhasNewV ersionable Abstract Feature(t, NULL)
Aof # NULL

(23)

Replace: When a previously known value for a feature is no longer valid and a new value is
available, Replace is used.

Vt(hasTransactionValue(t, Replace)
NhasOldV ersionable Abstract Feature(t, v f1)

AhasNewV ersionable Abstract Feature(t, v fa) (24)
AhasExistenceTime(v f1,tmq) A hasExistenceTime(v fo, tms)
Nbefore(tmy,tma) Avfi # vfa)

4.4 Version

A version is created by a user and is a collection of temporal geospatial features [Chaturvedi
et al., 2017], geospatial features with a timespan. There are two types of versions: Ezisting or
Imagined. For every version, there may exist some supporting evidence.

VersionType = Existing U Imagined (25)

A version can be considered Existing based on the materialized evidence available to the user
to prove the real physical existence. It is entirely left to the researchers in how they use the

Representation of Concurrent Points of View of Urban Changes for City Models 15

document evidences to decide whether a version is imagined or existing. A version may have
user-defined tags.

Version C Versionable AbstractFeature

Version = (= lhasVersionType.VersionType)

(> OhasEvidence. DocumentObject)1

(> OhasTag.Tag)r

(> 1hasVersionable Abstract Feature.Versionable Abstract Feature)n

(= 1hasCreator. Agent)

The existence time of a version must be contained within the existence time of every version-

able abstract feature contained in it.

Yoo f(hasV ersionable Abstract Feature(v, vf) A hasEzistenceTime(v, tmy)

hasExistenceTime(vf,tmy) (27)
— during(tm,,tmy))

4.5 Version Transitions
A version transition [Chaturvedi et al., 2017] is a collection of transactions between two versions,
i.e., it a collection of changes between two versions. There are two types of version transitions:

Regular and Influence. Regular transitions are transitions used to represent the time period (or
interval) between two consecutive versions.

TransitionType = Regularll

(28)
Influence
VersionTransition T VersionableAbstractFeature (29)
VersionTransition = (> OhasEvidence. DocumentObject)
(> 1hasTransaction.Transaction)n
(= lhasPreviousVersion.Version)n (30)
(= lhasNewVersion.Version)n

(= lhasTransitionType. TransitionType)N
(= lhasCreator.Agent)

Following condition ensures that an Influence transition type is allowed between two versions
(for example, in Figure 2, a transition between V9 to V2), where the previous version is imagined
and the new version is existing and also the imagined version must exist before the existing
version.

Vut(hasTransitionType(vt, In fluence) A
hasPreviousVersion(vt, v,) A hasNewVersion(vt, v,)A (31)
hasV ersionType(v,, Imagined) A hasVersionType (v, Existing)A

hasExistenceTime(vy, tmy) A hasEzistenceTime(vy,, tms)) — be fore(tmq,tms)

16 John Samuel et al.

Following conditions ensure that a Influence transition type is allowed between two imag-
ined versions having different existence times (one before the other) as in Figure 2, an example
transition between V13 to V9.

Yot(hasTransitionType(vt, In fluence)\

hasPreviousVersion(vt,v,) A hasNewV ersion(vt, v,)A (32)

hasExistenceTime(vy, tm1) A hasExistenceTime(v,, tma)) — before(tmy, tms)

The time limits of the version transition must be greater than or equal to the end time of old
version and the start time of the new version

Yot(hasTransitionType(vt, In fluence) A
hasPreviousVersion(vt,v,) A hasNewVersion(vt, v,)A
hasVersionType(v,, Imagined) A hasVersionType (v, Imagined) (33)

hasExistenceTime(vp, tmy) A hasExistenceTime(v,, tma)A

hasExistenceTime(vy, tm)) — meets(tmq, tm) A meets(tm,tmg)

4.6 Scenario

A scenario [Chaturvedi et al., 2017] or an interpretative sequence [Van Ruymbeke et al., 2017,
Van Ruymbeke et al., 2018] consists of a number of versions.

Scenario = (> lhasVersion.Version)r
(> OhasVersionTransition.VersionTransition)n (34)
(= 1hasTransactionTime. TimelInterval)r

(= 1hasCreator.Agent)

All the version transitions present in a scenario also must have their one previous and next
version existing in the scenario.

Vut(hasVersionTransition(b, vt)A
hasPreviousVersion(vt, vt,) A hasNewVersion(vt, vt,,)) (35)
— hasVersion(b, vt,) A hasVersion(b, vty)

For any two versions present in the scenario, there must exist a version transition.

Y1 Ve Jut(hasVersionTransition(b, vt)A
hasVersion(b,v1) A hasVersion(b,vs) (36)

AhasPreviousVersion(vt,va) A hasNewVersion(vt,vy))

There must not be any existence time overlap between any two versions or any two version
transitions.
YuiVug(hasVersion(b,v1) A hasVersion(b,vs)
hasExistenceTime(vy,tmy) A hasVersion(vy, tms)) (37)

Atmy = tmo — v1 = Vs

Representation of Concurrent Points of View of Urban Changes for City Models 17

No two version transitions in a branch can have the same existence time.
Vot Vote(hasVersionTransition(b, vt1) A hasVersionTransition(b, vts)
hasEzistenceTime(vty, tm1) A hasExistenceTime(vta, tms)) (38)
Atmq = tmg — vt1 = vig

There exists only one version that is shared between the two transitions, i.e., the next version
of a version transition is the same as previous version of another one.

Juty Yuta (hasVersionTransition(b, vt) A hasVersionTransition(b, vts) (39)
hasNewVersion(vty,v1) A hasPreviousVersion(vty, v1))

These conditions are necessary to ensure a single sequence of changes proposed by a scenario.

4.7 Workspace for concurrent points of view

A workspace has two spaces: Consensus Space and Propositions Space. Both these spaces contain
scenarios detailing the changes occuring in a given place or time through a sequence of versions.
A Consensus Space is the reference space used by the researchers in a group and there is a
consensus among them about its contents. A Consensus Space has only one scenario whereas
the Propositions Space can have zero or more scenarios. Contrary to the Consensus Space, a
Propositions Space is used by agents to propose alternate scenarios.

Space T T (40)

Space = (> lhasTransaction.Transaction)n

41
(= 1hasCreator.Agent) (1)

Propositions Space has zero or more scenarios. A scenarios inPropositions Space may have
different type of versions having version type Existing or Imagined.

PropositionsSpace C Space

PropositionsSpace = (> 0hasScenario.Scenario) (42)
Consensus Space has a scenario with all the versions having version type Existing.
ConsensusSpace C Space (43)
ConsensusSpace = (= lhasScenario.Scenario)
All the version types in a Consensus Space must be Existing.
Yo(ConsensusSpace(c) A hasScenario(c,b) A hasVersion(b,v) (44)

AhasVersionType(v,t,)) — t, = Existing
A workspace consists of one Consensus Space and one Propositions Space. It has an owner.

Workspace = (= lhasConsensusSpace.ConsensusSpace)rl
(= lhasPropositionSpace.PropositionsSpace)rl (45)

(= lhasTransactionTime.Timelnterval)N
(= 1hasCreator.Agent)

18 John Samuel et al.

Consensus Space and Propositions Space are mutually disjoint.
ConsensusSpace 1N PropositionsSpace C_L (46)

Consensus Space and Propositions Space must share at least one common version (i.e., the
starting point).

Juy, , vy, (ConsensusSpace(c) A hasScenario(c,b.) A hasVersion(be, vy,)
PropositionsSpace(p) A hasScenario(p, by) A hasVersion(by,vy,)) (47)
— Vp, = pr

5 UrbanCo?Fab: Collaborative Comprehension of Urban Fabric

In section 4, we presented a new formalization to manage concurrent points of view of urban
evolution. These rules pave way to manage all the possible use cases and are used to develop
the UrbanCo? Fab command-line tool [Samuel et al., 2018]. It can represent concurrent points of
view of the evolution of one or more city objects proposed by a group of users by ensuring the
consistency of the underlying city data and its extensions by making use of rules. The command
line application focuses on management of workspaces and is based on the above proposed rules
and CityGML. CityGML uses identifiers to identify the city objects and uses XML data format.
Every CityGML city object has a set of attributes and associated values. Thanks to the XML
format and path query languages like XPath, it is possible to get the value of any attribute
of a city object given its object identifier. Considering the close similarity between workspaces
and current version control systems, we proposed the extensions [Samuel et al., 2018] required
to implement UrbanCo?Fab using git version control system. To reduce the learning curve of
UrbanCo?Fab command line tool, we reused the vocabulary of git like init, commit, push, pull,
add, rm [Samuel et al., 2018].

As described above in section 3, current implementations of GIT mainly targets line based
changes. In our case, we are interested to know the city objects that underwent a change between
two versions along with the changes in their attribute values. In order to work with CityGML files
(XML files), we needed to modify the way differences between two changes of a file. UrbanCo2F ab
command line tool, developed using python library Pygit2* uses git to store both the CityGML
files and the key metadata of versions, version transitions, scenarios and workspace. A user writes
to a CityGML file the values of different attributes of relevant city objects with their identifiers.
Then the user commits a version (using the command urbanco2fab commit [Samuel et al., 2018])
assigning a physical existence time for a given version. The identifiers of a (git) commit are
used to identify versions. User can continue creating new versions for specifying changes to city
objects. To see the changes between any two versions, the classical git diff tool is not very useful
since it will show the lines that changed. However, urbanco2fab diff makes use of the git diff to
not only identify these lines but also the city objects that underwent changes. Thanks to this,
the user can see the object (identifiers) as well as the attribute value changes (replace, insert
etc.)

There are three major metadata files in UrbanCo2F ab: workspace.json, scenarios.json and
versions.json. Recall that the identifier of a commit in GIT is a unique hash value generated
taken into account the transaction time, the commit message, the author and the diff. A version
transition is identified by two version identifiers, i.e., if id; and idy are two identifiers of a commit
(or a version), a possible version transition can be identified by id; — ids. The version metadata

4 http://pygit2.org/

Representation of Concurrent Points of View of Urban Changes for City Models 19

scenariol Consensus

scenario2

Proposition
1950 1957 1958 1960 1961 1962 time 1965 1967 1970 1972
consensus:scenariol
30f25¢ —— 055¢5¢ —— db6db0a —— 968ela —— b41f4d3

scenario2

476779

Fig. 5: Example of workspace and output of urbanco2fab viz showing one consensus scenario
(scenariol) and one proposition scenario (scenario2). 6 first letters of hash created following a
urbanco2fab commit are used to identify the different versions

file versions.json is used to track the changes to the city model files (CityGML). It contains
important information related to every version: identifier, title, description, related documents,
physical existence time of a given version, version type, transaction times etc. The scenario
metadata files scenarios.json store the key information concerning the different scenarios created
by users, the associated versions and version transitions, the transactions of version transitions,
title, description, scenario type etc. The workspace metadata file workspace.json contains the
identifiers of consensus and proposition scenarios.

Figure 5 shows the output of urbanco2fab wviz. It shows two scenarios in workspace: one
consensus and one proposition scenario. The 6-character identifier is the version identifier (6 first
letters of hash created following a urbanco2fab commit). Internally, UrbanCo2Fab uses pygit2
to generate version identifiers. The consensus scenario has five versions 30f25¢, 055e5¢, d6db0a,
968ela, b41f43 and the proposition scenario scenario2 has three versions 30f25¢, 476779, b41f43.
Thanks to the constraint rules presented in section 4, it is possible to verify validity of a version,
a version transition and a scenario. These rules are used to reject cases like when a user tries to
create scenarios with versions having the same physical existence times etc.

20 John Samuel et al.

Fig. 6: UDV: Application to visualize and navigate 3D cities

6 Conclusion

Study of urban evolution of a city helps not only to understand its history but also to obtain
valuable lessons from the past for its future plans. The work started by [Chaturvedi et al., 2017] to
represent temporal evolution of city objects was enhanced in this article to represent concurrent
possible hypotheses of urban evolution. Our new contributions on Workspace, Scenario, Version,
Version Transition and Versionable Features enable researchers to represent, store and navigate
multiple parallel hypotheses on the evolution of a city. Based on these enhancements and the
initial proposal from [Chaturvedi et al., 2017], we defined a complete set of rules in order to
describe the urban evolution. We developed a proof of concept UrbanCo?Fab by making use of
the formalization rules linked with real city models. Analogous to existing control systems and
their well-known options, we tend to reduce the learning curve of the end users of our proposal.
Our next goal is to fully integrate our solution to the current 3D visual environment so that
users can easily visualize the urban past. Figure 6 shows the current 3D visualization tool called
UDV [Gaillard et al., 2015]. Additonal work is needed to link UDV with our current proposal on
UrbanCo?Fab to allow complete navigation in 4D urban environment. This will be completed by
providing a graph-based visual interactive tool that can guide the users in the concurrent views
of city lifecycle. Another objective will be to manage additional rules for rights management on
the data related to workspaces and versions.

Acknowledgements

This work was performed within the framework of the LABEX IMU (ANR-10-LABX-0088)
of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007)
operated by the French National Research Agency (ANR). We would like to thank Clémentine
Périnaud, Vincent Jaillot, Eric Boix, Frédéric Pedrinis and Jérémy Gaillard for their feedback.
We would also like to thank anonymous reviewers for their valuable feedback, thanks to which
we we were able to improve our work.

Representation of Concurrent Points of View of Urban Changes for City Models 21

Bibliography
References

[Allen, 1983] Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832—
843.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F., editors
(2003). The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press.

[Billen et al., 2012] Billen, R., Carré, C., Delfosse, V., Hervy, B., Laroche, F., Lefevre, D., Servieres, M., and
Van Ruymbeke, M. (2012). 3d historical models: the case studies of liege and nantes. In COST Action TU801
workshop on Semantic Enrichment of 3D city models for sustainable urban development.

[Chaturvedi and Kolbe, 2016] Chaturvedi, K. and Kolbe, T. H. (2016). Integrating dynamic data and sensors
with semantic 3d city models in the context of smart cities. ISPRS Annals of Photogrammetry, Remote Sensing
and Spatial Information Sciences, IV-2/W1:31-38.

[Chaturvedi and Kolbe, 2019] Chaturvedi, K. and Kolbe, T. H. (2019). A requirement analysis on extending
semantic 3d city models for supporting time-dependent properties. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, IV-4/W9:19-26.

[Chaturvedi et al., 2017] Chaturvedi, K., Smyth, C. S., Gesqui¢re, G., Kutzner, T., and Kolbe, T. H. (2017).
Managing versions and history within semantically enriched 3d city models. Advances in 8D Geoinformation,
Lecture Notes in Cartography and Geoinformation, Springer.

[Clark et al., 2013] Clark, S., Mesdaghi, S., Palumbo, D., and Holmes, C. (2013). Rapid open geospatial user-
driven enterprise (rogue) joint capability technology demonstration white paper.

[De Roo et al., 2013] De Roo, B., Bourgeois, J., and Maeyer, P. D. (2013). On the way to a 4d archaeological
gis: state of the art, future directions and need for standardization. Proceedings of the 2013 Digital Heritage
International Congress. Vol. 2., page .

[Fields, 2012] Fields, G. (2012). Urbanization and the Transition from Agrarian to Industrial Society. Berkeley
Planning Journal, 13(1).

[Gaillard et al., 2015] Gaillard, J., Vienne, A., Baume, R., Pedrinis, F., Peytavie, A., and Gesquiere, G. (2015).
Urban data visualisation in a web browser. In Jia, J., Hamza-Lup, F. G., and Schreck, T., editors, Proceedings
of the 20th International Conference on 3D Web Technology, Web3D 2015, Heraklion, Greece, June 18-21,
2015, pages 81-88. ACM.

[Gil et al., 2011] Gil, J., Almeida, J., and Duarte, J. P. (2011). The backbone of a city information model (cim):
Implementing a spatial data model for urban design. In 29th eCAADe Conference, Ljubljana, Slovenia, 21-24
September 2011.

[Gregory and Cooper, 2013] Gregory, I. and Cooper, D. (2013). Geographical Technologies and the Interdisci-
plinary Study of Peoples and Cultures of the Past. Journal of Victorian Culture, 18(2):265-272.

[Groger et al., 2012] Groger, G., Kolbe, T. H., C., N., and K. H., H. (2012). OGC city geography markup language
(CityGML) encoding standard v2.0. OGC Doc, page .

[Hallot and Billen, 2016] Hallot, P. and Billen, R. (2016). Enhancing spatio-temporal identity: States of existence
and presence. ISPRS International Journal of Geo-Information, 5(5):62.

[Harbelot, 2015] Harbelot, B. (2015). Continuum : a spatio-temporal and semantic model for the discovery of
dynamic phenomena within geospatial environments. PhD thesis, University of Burgundy, Dijon, France.

[Harbelot et al., 2013] Harbelot, B., Arenas, H., and Cruz, C. (2013). Continuum: a spatiotemporal data model
to represent and qualify filiation relationships. In Kashani, F. B., Basalamah, A., and Zhang, C., editors,
Proceedings of the 4th ACM SIGSPATIAL International Workshop on GeoStreaming, IWGS 2013, November
5, 2013, Orlando, FL, USA, pages 76-85. ACM.

[Hornsby and Egenhofer, 2000] Hornsby, K. and Egenhofer, M. J. (2000). Identity-based change: a foundation
for spatio-temporal knowledge representation. International Journal of Geographical Information Science,
14(3):207-224.

[Kutzner and Kolbe, 2018] Kutzner, T. and Kolbe, T. H. (2018). Citygml 3.0: Sneak preview. In Kersten, T. P.,
Glch, E., Schiewe, J., Kolbe, T. H., and Stilla, U., editors, PFGK18 - Photogrammetrie - Fernerkundung -
Geoinformatik - Kartographie, 87. Jahrestagung in Mnchen 2018, volume 27 of Publikationen der Deutschen
Gesellschaft fr Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V., pages 835-839, Mnchen.
Runder Tisch GIS e.V.; Deutsche Gesellschaft fr Photogrammetrie, Fernerkundung und Geoinformation (DGPF)
e.V.; Deutsche Gesellschaft fr Kartographie (DGfK) e.V., Deutsche Gesellschaft fr Photogrammetrie, Fernerkun-
dung und Geoinformation e.V.

[Lefebvre et al., 2008] Lefebvre, B., Rodier, X., and Saligny, L. (2008). Understanding urban fabric with the
oh_fet model based on social use, space and time. Archeologia e calcolatori 19, pages 195-214.

[Morel and Gesquiére, 2014] Morel, M. and Gesquiere, G. (2014). Managing temporal change of cities with
citygml. Furographics Workshop on Urban Data Modelling and Visualisation, pages 37-42.

[Otte, 2009] Otte, S. (2009). Version control systems. Computer Systems and Telematics, page .

22 John Samuel et al.

[Périnaud et al., 2015] Périnaud, C., Gay, G., and Gesquitre, G. (2015). Exploration of the changing structure
of cities: Challenges for temporal city models. In 2015 Digital Heritage, volume 2, pages 73-76.

[Peuquet and Wentz, 1994] Peuquet, D. and Wentz, E. (1994). An approach for time-based analysis of spatiotem-
poral data, pages 489-504. Taylor & Francis, London.

[Pfeiffer et al., 2013] Pfeiffer, M., Carré, C., Delfosse, V., Hallot, P., and Billen, R. (2013). Virtual leodium: from
an historical 3d city scale model to an archeological information system. ISRP Annals of Photogrammetry,
2-5/W1.

[Renolen, 2000] Renolen, A. (2000). Modelling the real world: Conceptual modelling in spatiotemporal informa-
tion system design. Trans. GIS, 4(1):23-42.

[Rollier-Hanselmann et al., 2014] Rollier-Hanselmann, J., Petty, Z., Mazuir, A., Faucher, S., and Coulais, J.-F.
(2014). Développement d’un sig 4d pour la ville médiévale de cluny. Archeologia e calcolatori, pages 164-179.

[Samuel et al., 2016] Samuel, J., Prinaud, C., Servigne, S., Gay, G., and Gesquire, G. (2016). Representation
and Visualization of Urban Fabric through Historical Documents. In Catalano, C. E. and Luca, L. D., editors,
Eurographics Workshop on Graphics and Cultural Heritage. The Eurographics Association.

[Samuel et al., 2018] Samuel, J., Servigne, S., and Gesquiere, G. (2018). Urbanco2fab: Comprehension of concur-
rent viewpoints of urban fabric based on git. volume IV-4/W6, pages 65-72.

[Simon, 2012] Simon, G. (2012). Modélisations multi-scalaires des dynamiques urbaines dans la longue durée:
Pexemple du quartier abbatial de vendéme (41). Cybergeo: European Journal of Geography.

[Sindram and Kolbe, 2014] Sindram, M. and Kolbe, T. H. (2014). Modeling of urban planning actions by complex
transactions on semantic 3d city models. In Proceedings of the 7th International Congress on Environmental
Modelling and Software.

[Stadler et al., 2009] Stadler, A., Nagel, C., Konig, G., and Kolbe, T. H. (2009). Making interoperability persis-
tent: A 3d geo database based on citygml. In 8D Geo-Information Sciences, pages 175-192. Springer.

[Stefani et al., 2010] Stefani, C., De Luca, L., Véron, P., and Florenzano, M. (2010). Time indeterminacy and
spatio-temporal building transformations: an approach for architectural heritage understanding. International
Journal on Interactive Design and Manufacturing (IJIDeM), 4(1):61-74.

[Swierstra and Loh, 2014] Swierstra, W. and Loh, A. (2014). The semantics of version control. In Black, A. P.,
Krishnamurthi, S., Bruegge, B., and Ruskiewicz, J. N., editors, Onward! 201/, Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software, part
of SPLASH ’14, Portland, OR, USA, October 20-24, 2014, pages 43-54. ACM.

[Tegtmeier et al., 2014] Tegtmeier, W., Zlatanova, S., van Oosterom, P. J. M., and Hack, H. R. G. K. (2014).
3d-gem: Geo-technical extension towards an integrated 3d information model for infrastructural development.
Computers & Geosciences, 64:126—135.

[Van Ruymbeke et al., 2015] Van Ruymbeke, M., Carré, C., Delfosse, V., Pfeiffer, M., and Billen, R. (2015).
Towards an archaeological information system: Improving the core data model. In CAA 201/ 21st century Ar-
chaeology: Concepts methods and tools: Proceedings of the 42nd Annual Conference on Computer Applications
and Quantitative Methods in Archaeology, pages 245-253. Archaeopress.

[Van Ruymbeke et al., 2017] Van Ruymbeke, M., Hallot, P., and Billen, R. (2017). Enhancing cidoc-crm and
compatible models with the concept of multiple interpretation. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, IV-2/W2:287-294.

[Van Ruymbeke et al., 2018] Van Ruymbeke, M., Hallot, P., Nys, G.-A., and Billen, R. (2018). Implementation
of multiple interpretation data model concepts in CIDOC CRM and compatible models. Virtual Archaeology
Review, 9(19):50.

