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Abstract

In the present paper, one proposes an equation of state allowing to reasonably describe the 

behavior of the xenon/krypton mixtures, in any proportion, confined in the form of nanoscale 

bubbles in the UO2 and MOX nuclear fuels. The temperature range covered by this equation 

lies between the room temperature and the fuel melting point. The equation of state, which 

was built based on molecular dynamics results obtained on a large density-composition- 

temperature range, could be easily implemented in the nuclear fuel performance codes.
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1. Introduction

Uranium dioxide (UO2) or its mixtures (MOX fuels) with plutonium dioxide (PuÜ2) are 

used as nuclear fuels in fission reactors. Noble gas species, such as xenon (Xe) and krypton 

(Kr), form as fission reaction products at the rate of about 0.25-0.30 atoms per fission event. 

Xe is seven times more frequently produced than Kr [1]. These noble gases have a very low 

solubility in the fuel matrix and, consequently, they precipitate together into the fuel under the 

form of intragranular and intergranular bubbles [1]. In low burnup fuels, the intragranular 

bubbles are typically less than 10 nm in diameter [2-4] while in high burnup fuels, some of 

these small bubbles can coalesce to lead to a bimodal bubbles population, with the largest 

bubbles of tens [2,3] or even hundreds [5] of nanometers in diameter. The intergranular 

bubbles are generally larger in size than the intragranular ones, with a diameter of several 

hundreds of nanometers [5,6]. The noble gas density in the intragranular bubbles ranges from 

about 10 nm- to slightly more than 30 nm- [3,7,8] while for the intergranular bubbles, the 

estimated densities are less than 10 nm- [6]. The molar fraction of Kr in the Xe/Kr noble gas 

mixture in the bubble, of 0.12-0.14 [2,6], mirrors the production rates of the two noble gases.

The bubble formation into the fuel alters its overall thermomechanical properties through 

modifying its microstructure, and, in addition, it can also lead to fuel swelling. These changes 

can have an impact on fission gas release to the fuel rod free volume and result in enhanced 

cladding stresses. All these effects of the bubble presence in the fuel, generally viewed as 

performance limiting factors during the normal functioning of the reactor, could have 

dramatic consequences for the safety of nuclear devices in accident conditions. This is the 

reason why modeling the evolution of the fission gas bubbles in nuclear fuels under 

irradiation is a crucial step in any kind of simulation of nuclear fuel rod behavior in accident 

conditions.

2



The growth rate équations allowing to model the fission gas bubble évolution in nuclear 

fuels [9] make use of equations of state (EOS) in order to characterize the behavior of the 

noble gases confined in bubbles. To our knowledge, none of these EOSs is designed to 

describe mixtures of Xe and Kr or to take into account a possible bubble confinement effect. 

Moreover, as shown in Fig. 1, some of the most popular EOSs [10-12] predict pressure-density 

curves that deviate significantly from the experimental data [13], or even display an 

unphysical behavior (the van der Waals and Kaplun EOSs), for densities higher than 10 nm" . 

The implication of this is that the currently used EOSs cannot satisfactorily characterize the 

high density noble gases confined in the intragranular bubbles.

The present work aims at building an EOS of a simple form allowing to describe the 

behavior of Xe/Kr mixtures of any composition confined under the form of bubbles in the 

UO2/PuO2 nuclear fuels at densities in agreement with experimental observations (from below 

10 nm" to above 30 nm" ) and for temperatures lying between the room temperature and the 

nuclear fuel melting point. This equation is built using molecular dynamics (MD) generated 

data following two steps: in the first step, one determines the parameters of the EOS 

corresponding to the unconfined noble gas mixture and in the second step, one analyses the 

impact of the confinement on the noble gas behavior in the bubble. This analysis is necessary, 

because an earlier study [14] suggested the existence of a confinement effect in the case of Xe 

bubbles in UO2.

The paper is structured as follows: Section 2 presents the technical details of the MD 

simulations carried out in the present study. In Section 3 are discussed the steps taken to build 

the EOS for Xe/Kr noble gas mixtures in bubbles. Section 4 gives a summary of the results of 

this study.
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2. Methodology

2.1. Calculation details

MD simulations in a NPT (constant Number of particles, Pressure and Température) 

ensemble [15,16] employing 3D periodic boundary conditions were performed using the 

LAMMPS code [17]. The temperature and pressure were controlled using the Nose-Hoover 

thermostat and barostat [16] with the coupling parameters of 0.02 ps and 0.2 ps, respectively. 

A timestep of 0.2 fs was employed in the MD integration.

When simulating the unconfined noble gases, one used a two-phase solid/fluid supercell 

containing a mixture of 1728 Xe and Kr atoms in different proportions, the composition being 

constant throughout the supercell. This solid/fluid system was built starting from two 6*6*6 

fcc supercells containing 864 noble gas atoms each. One of these supercells was relaxed at a 

relatively low pressure (0.1 GPa) and high temperature (3300 K) in order to transform it into a 

fluid structure. The solid (fcc) and fluid structures were then adjusted to have the same 

density and put together to form the two-phase simulation cell. Multiphase systems of this 

type proved to be very appropriate for building phase diagrams [18,19]. Each MD simulation 

of these systems comprised 400 ps for equilibration and 200 ps for production. The 

instantaneous and average values of the property of interest, the noble gas density, were then 

calculated from the instantaneous volumes (104 values) recorded during the production part of 

the run.

The model representing the confined noble gases (bubble/matrix system) was built starting 

from a supercell of 7*7*7 MO2 (M = U, Pu) fluorite elementary cells. Spherical cavities with 

Rc radii in the nanometer range (0.7 nm and 1.2 nm) were carved by removing a 

stoichiometric number of actinide and oxygen atoms in the middle of this supercell. Different
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numbers of Xe or Kr atoms were then randomly placed into the cavities so as to cover a range 

of noble gas densities in the bubble, from below 10 nm- to above 30 nm- , in agreement with 

the experimental findings (see Section 1). These bubble/matrix systems were equilibrated 

during 60 ps then the results were accumulated over 40 ps. 3.5*104 sets of instantaneous 

values of atomic coordinates and stress tensor components recorded during the production run 

were subsequently used to compute the instantaneous and average values of the properties of 

interest: noble gas pressures and densities in the bubble and bubble radii.

The pressure in the bubble was computed using the atomic stress tensor diagonal 

components (provided by LAMMPS in pressure^volume units [17]) of the noble gas atoms 

contained in the bubble and the bubble volume. The bubble volume was that of a sphere with 

the radius (RB) being calculated as the arithmetic mean between a “cavity minimum radius” 

and a “cluster maximum radius”. The “cavity minimum radius” was defined as the distance 

between the bubble mass center and the closest matrix atom (actinide or oxygen) and the 

“cluster maximum radius” as the distance between the bubble mass center and the furthest 

atom (Xe or Kr) in the noble gas cluster [14].

2.2. Interatomic potentials

All calculations were performed using semi empirical interatomic potentials to describe 

the three types of interactions that are present in the systems: the in-matrix M-M, M-O and O- 

O interactions (M = U, Pu), the gas-matrix M-G and O-G interactions (G = Xe, Kr) and the 

gas-gas G-G interactions.

For the in-matrix interactions, one used the embedded atom method (EAM) type potentials 

of Cooper et al. [20] with the revised PuO2 potential parameters [21]. The Cooper potentials
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allow to reproduce very well, for UO2 and PuÜ2, the available experimental data relative to 

the stability of the fluorite phase, the variation of the lattice parameter with temperature, the 

elastic constants, the variation of the bulk modulus with temperature, the melting points, the 

superionic transition temperatures, the change in enthalpy relative to 300 K as a function of 

temperature and the variation of the specific heat with temperature [20,21]. Moreover, these 

potentials provide reasonable values, with respect to Density Functional Theory (DFT) 

results, for the formation energies of the Schottky and Frenkel defects in UO2 [20].

The gas-matrix interactions were described by employing the pair potentials proposed by 

Cooper et al. in reference [22]. These potentials have a Buckingham-Hill form and their 

parameters were adjusted to reproduce the gas-matrix forces predicted by DFT. The trapping 

energies for the incorporation of Xe and Kr atoms into an oxygen vacancy, actinide vacancy 

and Schottky defect calculated with these potentials agree well with DFT results. The best 

agreement with DFT data is reached for the trapping energy into the most stable trapping site, 

the Schottky defect. The gas-matrix Cooper potentials generally perform better than other gas- 

matrix semi empirical potentials from the literature, including the popular Grimes and Catlow 

ones [22].

In order to avoid the non-physical singularity at zero-distance, which is a feature of the 

Buckingham-Hill functions, in the present work, the gas-matrix Cooper pair potentials were 

used with a slight modification: for small atom-atom distances, one replaced the Buckingham- 

Hill functions with Born-Mayer ones. The gas-matrix potentials thus modified have the 

following form:
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In équation (1), rij is the distance between atoms i and J, a and b indicate the species of 

atom i and atom J respectively and rcut is the inflection point of the Buckingham-Hill function 

situated between rj = 0 and the equilibrium distance rÎj = rmin. The parameters of the Born- 

Mayer functions, Bab and Dab, which were calculated from the conditions of continuity and 

derivability of the potentials in rcut, together with the corresponding rcut values, are shown in 

Table 1. The parameters of the Buckingham-Hill functions, Aab, pab and Cab, are those given 

by Cooper et al. [22].

In reference [23], Ross et al. proposed to describe the interaction between the noble gas 

atoms using exp-6 functions:

( 6 >
VŒab - 6 J exp aab

r1---'J-
V rab J

r \( * ^
6'

a ab r_at
>\aab - 6 J

rV î J
(2)

where rj, i, J, a and b have the same meaning as in equation (1). The parameters of these 

functions can be determined from the corresponding states theory, using as reference the 

parameters of the extensively tested argon-argon (Ar-Ar) potential. Thus, the Ar parameters 

SArAr and r ArAr may be scaled to those of another noble gas, eaa and r aa, by taking ratios of the 

critical temperatures Tc and volumes Vc:
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Ross et al. [23] determined using this method the parameters of the Xe-Xe potential, eXeXe 

and r XeXe. The parameter aXeXe kept the same value as for the Ar-Ar potential (aXeXe = aArAr = 

13). The Xe-Xe potential was then successfully employed [18,19,24] to describe the Xe 

properties at high pressures and temperatures (equations of state, phase diagrams). Given the 

success of the Xe-Xe potential, one employed the Ross method to also determine the 

parameters of the Kr-Kr potential. For this purpose, one used the following values: eArAr = 122 

K, r*ArAr = 3.85 Â, TcAr = 150.9 K, VcAr = 75 cm3/mol, TcKr = 209.4 K and VcKr = 91 cm3/mol. 

In the same manner as in the case of Xe [23], one took aKrKr = aArAr = 13.

The parameters of the exp-6 potential describing the Xe-Kr heterogeneous interactions 

were then calculated from the parameters of the homogeneous Xe-Xe and Kr-Kr interactions 

using the combination rules proposed by Kong and Chakrabarty [25]. The values of the 

parameters sab, r ab and aab (a, b = Xe, Kr) are given in Table 2.

In the short distance regions of the gas-gas potentials, Born-Mayer functions were 

employed in the same manner and for the same reasons as in the case of the gas-matrix 

potentials. The parameters of the gas-gas Born-Mayer functions can be found in Table 1.

The gas-gas Ross potentials were assessed by comparing the P(p) curves calculated using 

these potentials (through NPT-MD simulations on two-phase supercells as described at 

Section 2.1) with experimental pressure-density (P-p) data points [13,26-28] at low and high
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densities/pressures and with the curves predicted by two recently derived Xe-Xe and Kr-Kr 

potentials [29,30]. These recent potentials were built by fitting to very accurate ab initio 

interaction energies at the complete basis set limit obtained using the post-Hartree-Fock 

coupled-cluster method with single, double, triple and quadruple excitations in conjunction 

with very large basis sets. Core-core and core-valence correlation and relativistic effects were 

also taken into account in these ab initio calculations.

At low densities/pressures, in the case of Xe, the P(p) curves calculated using the ab initio 

derived potential are in a better agreement with the experimental results than those predicted 

by the Ross potential (Fig. 2). However, the results of the Ross potential are still reasonable 

and they improve with increasing density and temperature. In the case of Kr, both potentials 

predict low-density P(p) curves in very good agreement with experimental data (Fig. 3).

At high densities/pressures, for both Xe and Kr, the P(p) curves calculated using the Ross 

potentials are in very good agreement with the experimental results while those predicted by 

the ab initio derived potentials deviate from the experimental points with increasing density 

(Fig.4).

The ab initio derived potentials were built using interaction energies which were 

calculated for isolated pairs of atoms. Therefore, as there is no perturbation induced by an 

atomic environment on the interaction between any two atoms, these potentials do not take 

into account the many-body effects. For this reason, at high densities/pressures, where the 

atoms are very close to each other and the many-body effects become significant, they fail to 

predict P(p) curves in agreement with experimental data. Meanwhile, at low 

densities/pressures, where the many-body effects are negligible, the predictions of the ab 

initio derived potentials are accurate. On the other side, given that the parameters of the Ross 

potentials were obtained from high-density noble gas experimental data (critical temperature
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and critical volume), these potentials incorporate some many-body features in the sense that 

they describe two-body interactions which are perturbed in an effective manner by an atomic 

environment. This explains why, at high densities/pressures, the predictions of the Ross 

potentials are in a better agreement with the experiment than those of the ab initio derived 

ones.

Because the Ross potentials are generally capable of predicting pressure-density curves in 

very good agreement with the experiment at both low and high densities, one used them in the 

subsequent calculations.

As two of our approaches could have an impact on the simulation results, one carried out 

calculations in order to quantify this impact.

Firstly, one checked that the introduction of a Born-Mayer function at small atom-atom 

separations does not significantly alter the initial prediction capacity of the gas-matrix Cooper 

potentials. This was carried out by comparing (see Table 3) the trapping energies for Xe and 

Kr at different sites of a 7*7x7 UO2 or PuO2 supercell determined through energy 

minimisation calculations using our trio of potentials (Cooper/Cooper/Ross) and the 

corresponding values extracted from Fig. 4 of reference [22].

In the end, one verified that our 7*7*7 supercell (supercell length of about 3.83 nm) is 

large enough to minimize the bubbles interactions with their periodic images by evaluating 

the impact of the supercell size on the bubble radius and the noble gas density and pressure in 

the bubble. To this end, one performed NPT-MD simulations at 1400 K, using the 

Cooper/Cooper/Ross set of potentials, on four types of systems (Xe/UO2, Xe/PuO2, Kr/UO2 

and Kr/PuO2) where the largest bubbles analyzed in the present study (RB ~ 1.2 nm) with high 

noble gas densities (from 24 to 26 nm- ) were placed in a 7*7*7 supercell and in a larger
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9x9x9 supercell (supercell length of about 4.92 nm). As shown in Table 4, the bubble 

properties corresponding to the two supercell sizes are very similar. One should add that in 

our 7x7x7 supercells, even for the largest bubbles, the bubble separation between the periodic 

images (about 1.43 nm) surpasses the cutoff distance (1 nm) of the gas-gas potentials. This 

allows avoiding the direct interactions between the noble gas atoms and their periodic images 

and as a consequence, there is no impact of the supercell size on the noble gas behavior in the 

bubble.
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3. Results and discussion

3.1. The analytical form of the EOS

An EOS of a simple form that allows describing the behavior of a pure fluid confined in 

the form of bubbles in a solid matrix was introduced in a previous paper [31] dedicated to the 

study of helium bubbles in steel matrices. This EOS can be adapted to describe the Xe/Kr 

mixtures confined in actinide oxides matrices, thus taking the following form:

3PB (pB, x, T, Rs ) = pBC (Rb ) kT + £ F, ( x, T) < C+1 (Rs ) (4)
i=1

In equation (4), PB and pB are the pressure and the density respectively of the noble gases 

in the bubble, Rb is the bubble radius, k is the Boltzmann’s constant and Fi(x,T) are functions 

of the composition x (the molar fraction of Kr) of the Xe/Kr mixture and temperature T. A 

second degree polynomial function can be employed to describe the dependence of F, (i = 1, 

2, 3) on composition x:

F (x, T) = A, (T)x2 + Bt (T)x + C, (T) (5)

The temperature dependent coefficients of equation (5), Ai(T), Bi(T) and Ci(T), can also be 

expressed as second degree polynomial functions with the adjustable parameters Ay, By and 

Cy (i, j = 1, 2, 3):

A (T) = AT2 + a,2t+a,3

b, (T)- BT +BaT + B0 (6)

c, (T )=CT2 + c, T+c,3
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Finally, the term C(Rb) from équation (4) allows taking into account the matrix

confinement effect on the noble gases through the use of an effective global parameter AR:

C ( Rb ) = R3
(Rb “AR) (7)

In the case of unconfined (free) noble gases (AR = 0 Â), equation (4) becomes:

PF (Pf , x, T) = pFkT + XF (x, T) p1;1 (8)
i=1

3

where PF and pF denote the free noble gas pressure and density respectively.

The following two sections present the steps taken to determine the parameters Ay, By, Cy 

and AR of the previously introduced EOS.

3.2. The parameters Aj, Bj and Cj

The values of the EOS parameters Ay, By and Cy (Table 5) were determined with the 

method of least squares (as implemented in the Igor Pro software) by fitting equation (8) to a 

set of pressure-density-composition-temperature (P-p-x-T) MD data points corresponding to 

unconfined Xe/Kr mixtures. The MD data points were obtained through simulations in the 

NPT ensemble on two-phase supercells in the manner described at Section 2.1. The MD 

calculations were carried out at seven different temperatures from 300 K to 3300 K and over 

the pressure range from 0.1 GPa to 19 GPa. The proportion of the Xe and Kr atoms in the 

simulation box was varied as to give multiple compositions: x = 0 (pure Xe), x = 0.25, x = 0.5, 

x = 0.75 and x = 1 (pure Kr).
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In the T-P range covered by our MD simulations, the noble gases behave either as 

supercritical fluids or solids. As exemplified on Fig. 5 for pure Xe and pure Kr, at relatively 

low temperatures, the present MD calculations found fluid-to-solid phase transitions, in 

agreement with experimental findings [32] or other simulation results [18,19]. The 

discontinuities associated with the fluid-to-solid phase transitions are barely noticeable, 

allowing us to neglect them in the fitting process without significantly altering the quality of 

the resulting fit.

Given that one used an fcc structure for the solid phase of the initial two-phase solid/fluid 

supercells, the MD simulations predicted only an fcc crystalline structure for the final 

monophase solid systems. Some experimental studies [33] showed that, in the case of Xe and 

Kr, fcc and hcp solid phases could coexist (at least at room temperature) on a quite large 

range of pressures. However, given that the fcc and hcp solid phases have the same molar 

volume [33], the inability of our MD simulations to reproduce the coexistence of the two solid 

phases is not expected to have any impact on the MD calculated P-p data points.

As shown on Fig. 6, equation (8) encapsulates fairly accurately the totality of the MD data 

used in the fitting process. It has to be mentioned, that this equation, despite its formal 

resemblance to a virial expansion up to the fourth coefficient, cannot be considered as such. 

Indeed, a fourth-order virial equation can be properly employed to describe fluids, but if 

forced to fit P-p data points in both fluid and solid domains, as is the case with equation (8), it 

loses the physical meaning of its virial coefficients. Moreover, the functional form one chose 

to describe the dependence of the F2 and F3 terms of equation (8) on composition does not 

correspond to that of a virial equation [34].
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3.3. The confinement parameter AR

The confinement parameter was determined by selecting the value of AR which minimizes 

a penalty function S(AR) defined as a sum of squared residuals:

1 Np ,S(*R)=^HP7 (,-pBD] (9)
N P j=1

Pb,jEOS(AR) is the pressure in the bubble calculated for a given (pB, x, T, RB) set of values 

using equations (4)-(7) with the previously determined parameters Aj, Bj and Cj, PbJ10 is the 

corresponding pressure in the bubble calculated by MD simulations and Np represents the 

number of MD values used in the fitting process.

The MD data points were obtained using the methods and the bubble/matrix systems built 

as presented in Section 2.1. Four types of bubble/matrix systems were created, Xe/UO2, 

Kr/UO2, Xe/PuO2 and Kr/PuO2, which correspond to the lower and the upper limits for the 

composition of the Xe/Kr mixture in the bubble or the UO2/PuO2 mixture in the solid matrix. 

The MD calculations were carried out at temperatures of 500 K, 1400 K and 2300 K, thus 

covering a large temperature range. No external pressure was applied to the simulated systems 

(P = 0 GPa).

For the four types of bubble/matrix systems considered here, the following AR values were 

obtained by fitting: -0.003 Â (Xe/UO2 systems), 0.022 Â (Kr/UO2 systems), -0.01 Â 

(Xe/PuO2 systems) and 0.013 Â (Kr/PuO2 systems). Whatever the case, the AR values are 

very low suggesting a negligible confinement effect. Actually, as shown on Fig.7, the EOS 

encapsulates in a reasonable manner all the MD data for pure confined Xe or Kr used in the 

fitting process, regardless of whether or not the confinement was taken into account.
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Therefore, the confined noble gases could be correctly described using the EOS 

corresponding to the unconfined ones (AR = 0 Â).

In order to strengthen this last conclusion, one also included in Fig.7 a comparison 

between the pressures in the bubble at 1800 K calculated using our EOS with AR = 0 Â and 

the corresponding MD values for eight systems obtained by filling 0.7 and 1.2 nm radius 

cavities in UO2 and PuO2 with Xe/Kr mixtures of two different compositions (x = 0.33 and 

0.66).

A previous MD study [14] found that, for Xe nanobubbles in UO2, the pressure of the 

confined noble gas was higher than its bulk pressure at an equivalent density and temperature. 

This result indicates a confinement effect, in the sense that the UO2 matrix induces a more 

repulsive environment for the cluster of Xe atoms in the bubble than the environment this 

cluster of atoms would have in the bulk at the same density and temperature. These findings 

are in contradiction with those of the present study. The magnitude of the confinement effect 

is dependent on the ratio between the gas-matrix and the gas-gas interactions, since most, if 

not all, of the noble gas atoms in small bubbles interact both with the matrix atoms and with 

similar noble gas atoms. As shown on Fig. 8, the potentials used in reference [14] describe 

Xe-matrix interactions that are more repulsive and Xe-Xe interactions that are less repulsive 

than the corresponding ones from the present study. This helps to explain why in reference

[14] the matrix environment was found to be more repulsive for the confined Xe atoms than 

suggested by the present results. However, the good accuracy of the potentials used in this 

work (see Section 2.2) provides a higher level of confidence in the present results, showing a 

negligible confinement effect.
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4. Conclusions

In the présent work, an EOS (équations (4)-(7)) was built that allows describing Xe/Kr 

mixtures, in any proportion, confined in the form of bubbles in the nuclear fuels like UO2 and 

MOX. This equation is valid for a noble gas density range in the bubble from below 10 nm- 

to above 30 nm- and for temperatures lying between the room temperature and the nuclear 

fuel melting point.

The parameters of the EOS were determined using MD simulations results. The MD 

calculations, carried out in a wide p-x-T range on unconfined and confined Xe/Kr mixtures, 

were performed using accurate semi empirical potentials that were validated against quantum 

DFT results and experimental data.

It was shown in the present study that there is practically no matrix confinement effect on 

the noble gases. Therefore, the confinement parameter AR that appears in the EOS can be 

neglected (AR = 0 Â), that is, the EOS corresponding to the free noble gas mixtures can be 

safely used to describe the confined ones, irrespective of the type of confining fuel matrix 

(UO2, PuO2 or MOX).

Because of its simple form, the EOS proposed here could be easily implemented in the 

nuclear fuel performance codes. Moreover, this new equation allows overcoming the 

drawbacks of the existing EOSs which cannot be used to describe Xe/Kr mixtures and fail to 

characterize the noble gases at densities similar to those found in the intragranular bubbles (> 

10 nm-3).
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Figure captions

Fig. 1. Comparison between the P(p) curves for Xe at 298 K calculated using the van der 

Waals, Carnahan-Starling [10], Ronchi [11] and Kaplun [12] EOSs and high density/pressure 

experimental data from reference [13].

Fig. 2. Comparison between the P(p) curves for Xe at low densities/pressures calculated using 

the Ross and ab initio derived potentials and experimental data.

Fig. 3. Comparison between the P(p) curves for Kr at low densities/pressures calculated using 

the Ross and ab initio derived potentials and experimental data.

Fig. 4. Comparison between the P(p) curves for Xe and Kr at high densities/pressures 

calculated at 298 K using the Ross and ab initio derived potentials and experimental data.

Fig. 5. Sets of pressure-density MD data points (linked through eye-guiding lines) 

corresponding to pure unconfined Xe (top) and Kr (bottom).

Fig. 6. Comparison between the unconfined noble gas pressures calculated using the equation 

(8) and the corresponding MD results used in the fitting process.

Fig. 7. Comparison between the pressures of the confined noble gases (in a pure form or as a 

mixture) calculated using the EOS (equations (4)-(7)) either taking into account the 

confinement or not taking it into account (AR = 0 Â) and the corresponding MD mean 

pressures. The error bars represent the standard error of the MD mean pressures calculated 

using the “blocking method” [16,35].

Fig. 8. Comparison between the Xe-matrix (Xe-U and Xe-O) and Xe-Xe potentials of Grimes 

and Brearley used in reference [14] and the corresponding ones of Cooper and Ross employed 

in the present study.
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Table 1

Parameters for the Born-Mayer functions used in the présent work in the short distance région 

of the gas-matrix and gas-gas potentials.

a-b atom pair Bab(eV) Dab(Â) r cut(Â)

Xe-U 2815.17 0.3989 0.791
Xe-Pu 2648.98 0.3864 0.787
Xe-O 480.81 0.4807 1.188
Kr-U 3483.58 0.3796 0.756

Kr-Pu 3290.25 0.3669 0.753
Kr-O 435.73 0.4604 1.170

Xe-Xe 1579.76 0.4929 1.314
Kr-Kr 1137.85 0.4528 1.207

Xe-Kr 1359.39 0.4726 1.257
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Table 2

Parameters for the exp-6 potentials used to describe the gas-gas interactions.

a-b atom pair £ab(eV) r*ab(Â) aab
Xe-Xe 0.02025073 4.470 13.000
Kr-Kr 0.01458914 4.106 13.000

Xe-Kr 0.01693305 4.296 13.025
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Table 3

Comparison between the trapping energies ET in electronvolts for Xe and Kr at different sites 

of a 7x7x7 UO2 or PuO2 supercell calculated with our set of potentials and the corresponding 

values (given in brackets) from Fig. 4 of reference [22]. The trapping sites into the actinide 

oxides matrices are: oxygen vacancies OV, actinide vacancies AcV and the three 

configurations of the Shottky defects SD1, SD2 and SD3, as defined in reference [22].

Noble gas atom/Matrix T7 OVET rAcVET 77’ SD1 /T? SD2 / -rp SD3Et /Et / Et

Xe/UO2 -3.4 (-3.4) -8.1 (-8.0) -9.7/-8.7/-8.2 (-8.7)
Kr/UO2 -2.2 (-2.3) -6.2 (-6.4) -7.3/-6.4/-6.2 (-6.4)

Xe/PuO2 -3.6 (-3.5) -7.7 (-7.5) -9.6/-8.4/-7.9 (-8.5)
Kr/PuO2 -2.4 (-2.3) -5.8 (-5.8) -7.1/-6.2/-5.9 (-6.0)
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Table 4

Comparison between the values of the bubble radii (Rb), densities (pB) and pressures (Pb) in 

the bubble for the largest dense bubbles analyzed in the present study placed in 7*7x7 

UO2/PUO2 supercells and the corresponding values (given in brackets) for bubbles placed in 

larger 9*9*9 supercells.

Noble gas atom/Matrix RB(nm) PB(nm-3) PB(GPa)

Xe/UO2 1.18 (1.18) 23.8 (24.0) 6.97 (7.22)
Kr/UO2 1.16 (1.16) 25.2 (25.1) 4.26 (4.27)

Xe/PuO2 1.17 (1.16) 24.4 (25.3) 7.59 (8.14)
Kr/PuO2 1.15 (1.15) 26.0 (25.8) 4.74 (4.72)
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Table 5

Parameters Aÿ, Bÿ, Cj to be used in the EOS. In this équation, one employed the following 

units: the GPa for the pressure, the Kelvin for the temperature, the angstrom Â (1 Â = 10"1 

nm) for RB and AR and the Â"3 (1 Â"3 = 1000 nm"3) for the density. Within this system of units, 

the Boltzmann’s constant takes the value k = 1.38066x10"2 GPa-Â3-K-1.

ij Aij Bj Cj

11 -1.141x10"3 1.211x10"3 2.263x10"3

12 3.653*10° -3.100X100 "8.204x100

13 -1.281x103 -6.951X102 7.422x103

21 4.523*10"2 6.177x10"2 -3.123X10"1

22 -7.717X101 "4.800x102 1.348x103

23 -9.698*104 7.368x105 -1.221X106

31 9.027X10"1 "5.386X100 8.211x100

32 -5.182X103 2.498x104 -3.368x104

33 1.020x107 -4.138X107 4.740x107

36


