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ABSTRACT

In sciences involving soil and sediment, particle size distribution (PSD) has been one of the parameters 

given most attention over the past few decades. Formerly measured by sieving and sedimentation 

techniques, it is nowadays routinely characterized by the laser diffraction method (LDM). Many 

manufacturers develop particle size analyzers using LDM, but each device is characterized by specific 

parameters that can lead to different PSD. At the Rhône Sediment Observatory, suspended particulate 

matter collected along the Rhône River are analyzed for PSD by four different LDM devices. Analyses 

were conducted on certified materials and sediment samples for each device. The tests highlighted the 

difficulty of accurately characterizing PSD, even in the case of certified materials. First, differences 

observed for a specific device were linked to the heterogeneity observed in the subsamples due to the 

presence of organic materials such as tree leaves. Second, the difference regarding the certified 

materials was linked to the laser diffraction method which leads in some cases to underestimating clay 

content and sand. Third, the main difference observed between the devices was linked to sonication. 

The results demonstrate that its power is rarely investigated and that it has a considerable impact 

when used. However, despite significant differences, the trend was similar for each device, with 

accurate characterizations of the main modal class in most cases. Thus, in the absence of exact

https://www.editorialmanager.com/snas/viewRCResults.aspx?pdf=1&docID=4996&rev=1&fileID=134363&msid=0624c565-86fd-4a8f-b65a-e905e4c20443
https://www.editorialmanager.com/snas/download.aspx?id=134363&guid=2913f189-b669-43ec-b691-dd050add6204&scheme=1
mailto:hugo.lepage@irsn.fr
https://orcid.org/0000-0002-2260-859X


24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

2

knowledge of parameters such as sonication power and pump speed, it is recommended to compare 

only the trends of the results obtained from the different devices.

Key word

Particle size distribution, laser diffraction, ultrasound sonication, suspended particulate matter, 

sediment

Article Highlights

• Differences on the particle size distribution were always observed even with the certified 

samples.

• The use of ultrasound sonication increases or triggers differences in the particle size 

distribution.

• The lower is the proportion of a textural class (clay/silt/sand), the higher is the relative 

difference.

1. INTRODUCTION

Much research has been conducted over recent decades to understand the dynamics and 

behavior of sediment and suspended particles in rivers. Understanding the processes that affect the 

transport of these particles is crucial for ecological, economic and societal purposes, as the world's 

rivers are becoming more anthropized [1,2]. The investigation of their nature and origins has now 

become essential [3]. Among the different parameters used to characterize particles when studying 

their behavior (e.g., mineralogy, shape, color), particle size remains one of those most investigated

[4,5] and it is often an issue in geoscience studies.
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The characterization of particle size distribution (PSD) can be performed using several 

techniques such as sieving, by pipette based on Stokes diameters, and laser diffraction [6-8]. The 

choice of the optimum grain-size analysis technique depends on the aim of the study and the type of 

sediment [8]. For loamy sediments, laser diffraction instruments produced the best results for the 

various criteria [8]. The main differences observed between the laser diffraction method (LDM) and 

the other methods are related to particle morphology and clay mineralogy [5,9]. Clay content can be 

underestimated in suspended sediments [10].

The LDM is widely used on sediment and suspended particles as it covers a wide range of grain 

sizes and requires short analysis time [5,8,11]. For example, particle size analyses are processed on 

cores recovered from marine, estuarian and coastal zones for paleoceanographic and sea level 

reconstructions [12-15] and paleo-environmental questions associated with human history [16-18]. 

PSD is now commonly used to improve soil and sediment fingerprinting [19] and to investigate the 

concentration of trace metals in sediments. Apart from the geosciences, many domains such as 

forensic studies [20], pharmaceuticals and industry use this technology and require greater detail on 

the data acquired from different lasers.

Nowadays, many devices from different manufacturers are used to measure PSD by LDM, with 

different designs and software applications, leading to slightly different distributions [8,21]. 

Bieganowski et al. (2018) suggested that about 24 factors can influence the PSD results and lead to 

uncertainty or error. Differences arise as all these parameters vary between devices and laboratories, 

since resolving the issue of the homogeneous resuspension of sediment is a complex [22]. For example, 

it has been demonstrated that the use of ultrasonic power can destroy aluminum and silica particles 

due to the dissolution mechanism [23] and that the addition of oxidizing solutions to remove organic 

matter can also alter clay particles such as vermiculite [24]. However, intercomparisons of PSD 

measurements were performed more between the different PSD techniques described above than

between different LDM devices. Nevertheless, differences were observed for the PSD and the



71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

4

proportion of clay measured by the devices of different manufacturers [8,10]. Unfortunately, in the 

study conducted by Goossens (2008) on loamy sediments (sieved at 90pm), the impact of sand 

particles and the use of ultrasound sonication (US) has not been addressed.

To investigate PSD, most of these studies used statistical parameters such as mean, median 

and standard deviation to summarize PSD or Kurtosis and the Skewness index to describe the variability 

of PSD [25,26]. However, such parameters might not be sufficient to describe PSD in a non-lognormal 

or multimodal distribution [27,28]. Suspended sediment PSDs are mainly multimodal and the location 

of modes can be related to the transportation processes and the origins of the particles [28]. Also, 

modes can be used to investigate the dynamics of sediment deposition [29]. Several mathematical 

solutions were developed to summarize and describe raw PSD such as two or five parameters Log- 

normal equations [30,31], demodulation [32] and surface plots [28]. Unfortunately, these approaches 

can be complex for people unfamiliar with advanced mathematics. This may explain why scientific 

publications and technical reports are still published with common parameters [33-35]. Also, 

depending on the study context, it is not necessary to rely on advanced solutions as common 

parameters may be sufficient for investigating PSD.

Since 2009, within the context of the Rhône Sediment Observatory (OSR) program, scientists 

have studied the transport of particles and their associated contaminants along the entire course of 

the Rhône River (from Lake Geneva to the Mediterranean Sea), the main source of sediments in the 

northern Mediterranean [36]. All these investigations are well-documented due to the presence of 

several monitoring stations located along the Rhône River and in its main tributaries [37]. Particle 

samples for chemical analysis are routinely collected. Analyses of PSD are systematically conducted 

not only to study the transport of particles but also to improve the interpretation of contaminant 

concentrations and they can also be used for transport modelling. For example, the use of different
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sampling techniques for suspended particle sampling (particle trap and continuous flow 

centrifugation) leads to a bias in particle size [38]. In the case of large environmental monitoring 

networks such as the OSR program, PSD analyses are processed by an array of laboratory lasers.

It is therefore crucial to evaluate the potential biases induced by the use of different devices 

in the PSD results. The Intercomparison was conducted by studying the differences observed on 

common parameters, such as the proportion of clay/silt/sand resulting from the analysis - with and 

without US - of reference standards and samples collected in the field. The objective was not to define 

which device is the most accurate but quantify the relative difference that might be observed and how 

the results can be interpreted and compared. Answering this question is crucial for the organizations 

responsible for river surveys, as we provide tools for comparisons between all the PSDs analyzed within 

the OSR.

2. MATERIALS AND METHOD

2.1. Particle size analyzers

In the OSR program, grain size is assessed using the following devices: a Beckman Coulter LS 

13 320 (Beckman Coulter, Fullerton, CA, USA), a Cilas 1190L (Cilas Company Ltd., Orléans, France), a 

Malvern Mastersizer 2000 (Malvern Instruments Ltd., Malvern, UK) and a Sequoia LISST-Portable|XR 

(Sequoia Scientific, Bellevue, WA, USA). These devices will be referred to as Coulter, Cilas, Malvern and 

Portable, respectively, for the rest of the article. As expected, the main characteristics of these devices 

differ (Table 1).

2.2. Protocol of intercomparison

The intercomparison of the devices was conducted using certified reference materials (CRMs) and

natural samples from the Rhône River and its tributaries:
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• Measurements were performed on CRMs to investigate the accuracy of the different devices 

and highlight the differences between them. Three CRMs were selected in order to accurately 

represent the ranges of suspended particle size, mostly silt-size [38], observed in the Rhône 

River: BCR-066 (0.35-3.5 pm) and BCR-067 (2.4-32 pm) [39,40]; SRM1003c (25-50 pm) [41].

• Artificial multimodal distributions were created to assess the capacity of the device to 

efficiently characterize the different modes. To do this, three mixtures of the 3 CRMs were 

prepared by weighing masses in order to reach the following proportions (BCR-066/BCR- 

067/SRM1003c in %): Mix_A: 25/50/25, Mix_B: 50/25/25 and Mix_C: 25/25/50.

• As CRMs are mostly composed with glass-quartz particles, they are not qualitatively 

representative of the suspended particulate matter (SPM) encountered in the Rhône River 

[42], especially regarding their aggregation properties. Therefore, an intercomparison was also 

conducted on the SPM samples collected in the observatory. Four samples were collected 

using different methods at different stations to characterize the diversity observed in this 

observatory:

o Arc River (45°33'44.6"N 6°12'22.8"E): lag deposits that settled during a flood event were 

collected manually with a plastic spatula. This sediment was sieved in order to keep only a 

sandy fraction between 100 pm and 2 mm.

o Azergues River (45°56'11.5"N 4°43'24.6"E): bottom sediment collected by a sediment 

dredge (Eckman),

o Jons monitoring station in the middle Rhône River (45°48'42.3"N 5°05'09.2"E): SPM

collected by particle trap (Masson et al., 2018) during baseflow in March 2017,
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o Barcarin station in the downstream Rhône River (43°25'12.5"N 4°44'50.7"E): SPM collected 

using a Niskin bottle 1m above the surface during a flood event in November 2017. This 

was the only liquid sample comprising SPM in Rhône River water.

• The last step was conducted on a mixture of the samples collected in the Azergues and Arc 

Rivers to control the proportion of modes and the impact of coarse particles. The mixtures 

were prepared by weighing dry particles in the following proportions (Azergues/Arc in %): 

Mix_1: 95/5, Mix_2: 90/10, Mix_3: 85/15, Mix_4: 80/20 and Mix_5: 70/30.

Each sample was homogenized then split into 4 subsamples before being sent to the different 

laboratories for PSD analysis. For each sample, measurements were repeated on 2 or 3 distinct aliquots 

depending on the quantity available. Prior to measurement, the subsamples were dispersed in water 

according to Arvaniti et al. (2014).

The Mie model was used when possible as the optimal model, as it is more useful in samples 

characterized by fine silt and clay content [43]. The Coulter device was the only device in this 

intercomparison that uses both models. Depending on the device, the refraction indexes were chosen 

to be similar and close to silica as the variation of this index can result in different PSDs [11]. The other 

parameters of the analysis method (Table 1), such as stirrer time and speed, pump speed adapted to 

the volume of the bowl, ultrasonic duration, and measurement duration, were determined by the 

users to obtain the best possible results (these parameters were optimized for each device with

particulate samples collected in the OSR program).
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After a series of tests on the certified standards (data not presented), measurements were 

performed by conforming to the best obscuration range given by the manufacturer (Table 1). The 

results of the tests show differences occurring outside those ranges.

Each subsample was analyzed at least three times without US then three times with US to 

investigate the repeatability of the measurements and the effect of sonication on the natural samples.

2.3. Comparison parameters

One of the main difficulties in conducting an intercomparison on PSD is the need to use 

synthetic parameters, as the raw distributions cannot be directly compared due to channel 

inhomogeneity. In the following study, intercomparison will be conducted on several of the 

parameters used most frequently in environmental studies and especially in the OSR program:

• The median (d50) that synthesizes the distribution by one factor. However, this parameter is 

not the most relevant in the case of multimodal distribution, as is mostly encountered in rivers 

[28,31].

• The proportions of clay (<1.95pm), silt (1.95 - 62.5pm) and sand (62.5 - 2000pm) are 

commonly used for normalization, as contaminants are mostly fixed on clay and silt. Again, this 

does not give information on distribution shape, especially in the case of multimodality [28] 

and the range of the classes can vary depending on the scale used [26,44]. This separation into 

3 classes will be referred to as "simple classes" for the rest of the text.

• The proportions of detailed classes follow the Doeglas scale [45]: clay (<1.95pm), very fine silt 

(V_F_Silt: 1.95 - 3.91pm), fine silt (F_Silt: 3.91 - 7.81pm), medium silt (M_Silt: 7.81 - 

15.63pm), coarse silt (C_Silt: 15.63 - 31.25pm), very coarse silt (V_C_Silt: 31.25 - 62.5pm), 

very fine sand (V_F_Sand: 62.5 - 125pm), fine sand (F_Sand: 125 - 250pm), medium sand 

(M_Sand: 250 - 500pm), coarse sand (C_Sand: 500 - 1000pm), very coarse sand (V_C_Sand:
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1000 - 2000pm). It allows a good and comparable description of the distribution but the higher 

classes are less-well adapted for statistical analyses than previous parameters. This separation 

will be referred to as "detailed classes" for the rest of the text.

2.4. Spécifie case of the LISST Portable|XR device

Due to its lower range of PSD than the other devices (Table 1), and as it cannot characterize 

the particles with a diameter lower than 0.34 pm, this LDM device is sensitive to rising tails [46-48]. 

Rising tails can be linked to the refractive index for small particles [49] or shape effects [12], and most 

studies recommend removing the lower classes and keeping the larger size classes that are consistent 

[46]. Thus, as rising tails were observable for almost all the samples, the first 5 classes (< 0.72pm) of 

all the samples measured by the Portable were removed.

However, for this study, both raw and corrected PSDs were used to investigate the impact of 

rising tails on the PSD. Corrected PSD will be referred to as "Portable_C" for the rest of the text. Only 

the results of Portable_C will be presented in the graph for the sake of clarity and the results without 

correction are available in the Electronic Supplementary Material. Also, the presence of bubbles during 

the analysis led to the presence of modes in the higher classes. This was especially relevant for the 

CRMs that should not be characterized by such coarse particles. Corrections were performed on 

references (BCR-066 & BCR-067) and a mixture of references (Mix_C), by deleting the coarser classes.

3. RESULTS

3.1. Accuracy of the devices

The first part entailed measuring the CRMs. For this step, the use of US had a negligible impact 

as CRMs are characterized by non-cohesive materials (quartz). Only the results with US will be

presented in this chapter.
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First, the results obtained by each device from the different aliquots of the CRMs (Fig. 1) were 

characterized by low standard deviations (SD) except for mixture C (Mix_C) measured by the Coulter 

(high SD on clay and coarse silt). For this device with this mixture, the mean d50 ranged from 2.4 ± 0.1 

^m to 6.2 ± 1.4 ^m for the three aliquots measured and the mean proportion of clay ranged from 27 

± 2 % to 42 ± 1 % (Electronic Supplementary Material).

Second, the values measured by the devices were compared to the certified values (Table 2 - 

Fig. 1). For the finest CRM (BCR-066), all the devices overestimated the d50 (Table 2) and 

underestimated the proportion of clay (Fig. 1). The absolute difference ranged from 13 % to 34% for 

the clay proportion, which represented 15% to 40% of the relative difference. For BCR-067 and 

SRM1003c, the measured d50s were similar to the certified parameters with a relative difference lower 

than 20% (Table 2). For the simple classes, the relative difference was also lower than 20% but each 

device measured particles in classes in which the CRMs should not be observed. Indeed, all the PSDs 

measured by the devices were more spread out with a low amount (<10%) of particles observed in the 

finer and coarser classes than the expected classes of the CRMs. This difference was clearly observed 

on the detailed classes (Fig. 1) and the relative difference exceeded 20% for all the devices on the 

classes certified by the BCR-067 (from 25% to 175%). For the SRM1003c, the difference exceeded 10% 

only once with the proportion of very coarse silt measured by the Portable_C device (38%) (Fig. 1). 

Thus, all the devices underestimated the proportion of particle in the modal class (Fig. 1).

The intercomparison of the devices was conducted on those results. The d50s measured on 

the CRMs by the four devices were similar whereas significant differences were observed between the 

devices for the mixtures (Table 2). For instance, the d50 measured by the Cilas for mixture C (11.4 ± 

0.5 ^m) was more than twice as high as the d50 measured by the Coulter (4.6 ± 2.3 ^m). Modal classes
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of the CRMs (unimodal) and the mixtures (bimodal) were accurately characterized by all the devices 

with the exception of mixture B measured by the Coulter. For this mixture, the PSD measured by the 

Coulter was unimodal and no particles coarser than medium silt was measured whereas it represented 

more than 20% for the other device (Fig. 1). Thus, the proportion of clay measured by the Coulter was 

significantly higher than the other devices for this mixture (54% vs 30% to 33% - Fig. 1). For the other 

samples, the proportions measured by the devices were similar (<10% absolute difference) except for 

the finest CRM (BCR-066). The proportions of clay measured by the Cilas and the Coulter on this CRM 

(74% and 70%, respectively) were significantly higher than the two other devices (53% and 58% - Fig. 

1).

3.2. Natural samples

The first natural sample, collected directly in the water flow with a Niskin bottle at Barcarin, 

was mostly silt sized with a non-negligible proportion of clay (Fig. 2 - Table 3). The PSD measured by 

the different devices were similar, so as for the d50 (Table 4). A difference was observed only for the 

Coulter which measured a significant and higher proportion of clay (+11-13%), as observed previously 

for Mixtures B and C (Fig. 1). The d50 measured by the Coulter was strictly lower than the other devices 

(Table 4). Sonication was used only on the Cilas and had a negligible impact on this sample (Electronic 

Supplementary Material).

The sample collected by particle trap at Jons was coarser than the SPM from Barcarin (Fig. 2), 

with a significant proportion of sand (up to 27 % - Table 3). The differences between the devices 

observed on the measures performed without US remained lower than 10% (Fig. 2) and the d50s were 

similar (Table 4). As observed previously, the d50 and the clay content measured by the Coulter were 

respectively lower and higher than the results obtained by the two other devices. The use of US led to 

significant change in the PSD for the Portable_C (from 20% to 3% of very fine sand), while PSD
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remained similar for the Coulter and Cilas. Thus, the proportion of silt was significantly higher (+20%) 

for the Portable_C with sonication than for the other devices (Table 3).

The bottom sediment collected in the Azergues River was characterized by a mix of silt and 

sand particles (Table 3), with the main mode observed between the coarse silt and the very fine sand 

(Fig. 2). In absence of US, the trend was similar for each device and only the Portable_C was 

characterized by a higher proportion in the silted classes and a lower proportion of sand. The 

proportion of silt measured by Portable_C (72.6 ± 9.9 %) was significantly higher than the other devices 

(from 44.2 to 51.3 %) but characterized by a high standard deviation. The use of US on this sample led 

to a significant variation for all the devices and to an increase of silt particles (+ 6% to 37%) for all the 

devices (Table 3). However, this variation was greater for the Cilas (Fig. 2) (+37% of silt) than for the 

three other devices (+6-16%). The proportions of the classes after US were different and separated 

into two groups: Cilas and Portable_C with almost 90% silt, with coarse silt as the modal class, and 

Coulter and Malvern characterized by a large proportion of sand (35-43%) and very coarse silt as the 

modal class. Once again, the differences observed for the d50 were significant whether US was used 

or not (Table 4). For instance, d50s measured by the Malvern with and without US (respectively 40.0 ± 

5.4 pm and 71.6 ± 5.8 pm) were two times higher than on Portable_C (20.9 ± 1.8 pm and 37.9 ± 9.1 

pm).

The last sample, the lag deposit collected in the Arc River, was characterized by fine sands (Fig. 

2). For the four devices, the proportion of sand was higher than 80% and reached 100% for the Malvern 

(Table 3). The Coulter and Portable_C distributions were characterized by higher uncertainty intervals. 

These devices also measured a higher mean proportion of silt particles compared to the other two 

devices, resulting in a significantly lower d50 (Table 4). However, despite this difference, the trend was 

similar between the devices with the maximum proportion observed in the fine sand class (Fig. 2). The
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PSDs measured by the Malvern were less spread than for the other device while the proportion of sand 

classes measured by the Cilas was more spread with a lower proportion in the modal class (F_Sand) 

and a higher proportion in the coarser sand class (M_Sand). Finally, as this sample was mostly sandy, 

US had a negligible impact on the distribution, as observed for the d50 (Table 4).

3.3. Mixtures of natural samples

Measures were then performed on the mixtures of the Arc and Azergues samples. As expected, 

the increase of the proportion of the coarser sample (from mixture 1 to 5) led to a higher d50 (Fig. 3) 

and higher proportions in the coarser classes (Electronic Supplementary Material) whatever sonication 

was used or not. However, breaks were observed for the Coulter (Mix_1), the Malvern (Mix_4 and 

Mix_5) and the Portable_C (Mix_3 and Mix__5).

The differences observed between the devices were similar to the difference observed for the 

Azergues sample as it represented more than 70% of the mixture. Thus, the parameters were different 

both with and without US (Fig. 4). Significant differences were observable for d50 and with the 

proportion of silt and sand, whereas the proportion of clay remained lower than 5% for each device 

(Fig. 4). The position of the main mode was also different, both without (simple and detailed classes) 

and with US (detailed classes). Using US led to the strong variation for simple classes measured by the 

Cilas and the Portable_C (+35% silt) whereas it had no effect for the Coulter (Fig. 3-4). US also affected 

the Malvern device (+20% silt). The trends and the differences between the devices were similar 

whatever the proportion of sand in the samples.

4. DISCUSSION

The measures performed by the 4 devices on the different samples (CRMs, sediments and

associated mixtures) allowed determining their respective capacities in terms of measurement quality.
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The results demonstrated that several différences were observed despite the good and reproducible 

characterization of the main/modal classes and their distribution by the devices. These differences can 

be separated into three groups: intra-variation, variation with the certified materials, and variation 

between the devices.

4.1. Intra-variation

The intra-variation is the difference observed for the aliquots of the same subsample measured 

by the same device. For the CRMs, this difference was observed only in mixture C measured by the 

Coulter (Fig. 1) and is linked to the operator subsampling operation. Subsampling appears to be highly 

operator-dependent and can infer variations on the results of the same sample that are even higher 

than the analytical differences observed [5]. The intra-variation of the natural samples was observed 

mostly for coarse classes (very coarse silt to fine sand) measured by the Coulter and the Portable_C 

devices (Fig. 2). This was observed both without and with US and was mainly related to the 

heterogeneity of the sample particles. Indeed, during the subsampling some samples contained coarse 

organic particles such as tree leaves that modified the proportions between modes. For the 

Portable_C, it was also related to the presence of bubbles as explained in the chapter 2.4. To improve 

the characterization of sand particles, the pump speed of this device was increased for coarse samples 

and triggered the formation of bubbles. It is therefore relevant to perform measures on multiple sub- 

samplings of a sample (at least three) to characterize a more precise mean PSD and to be careful with 

the presence of coarse organic materials and bubbles. Also, the sieving of coarse particles could be a 

solution for decreasing the pump speed.

4.2. Variation with the CRMs

The measures performed on the CRMs for all the devices presented differences with the 

certified values. First, they underestimated the proportion of clay in the finest reference (BCR-066) and



331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

15

the different associated mixtures (Fig. 1). This underestimation was linked to the particle morphology 

and the clay mineralogy [9] affecting the PSD measured by LDM. Similar observations had already 

performed by [10,21]. Second, the PSDs measured by all the devices were more spread out than the 

associated references or mixtures. Also, particles were observed in classes where they should not have 

been present. For example, all the devices measured clay particles with the BCR-067 and SRM1003c 

(Fig. 1). However, the proportions in these classes were lower than 10%. This difference might be 

related to the presence of particles not washed during cleaning. Despite the measure of the 

background PSD with tap or dionized water, some particles might have been trapped in the system 

and resuspended during other measurements. This difference might also be linked to the different 

methods used to characterize the particle size for their certification. BCR-066 and BCR-067 were 

characterized by the Pipette method [39] which might have triggered differences with the LDM, as 

observed with the proportion of clay.

To summarize, all 4 devices exhibit the same trends in accuracy from small to coarser particles. 

However, deviations on the d50 remain roughly lower than 10% for the standard ranging from 4pm to 

35pm. As explained previously, the devices do not accurately characterize clay, whatever the 

proportion observed, with the exception of the total absence of clay. Higher relative differences are 

observed when the proportion of clay is low (approx. 10%). For the silt, a small difference is observed 

in the CRMs characterized by almost only silt particles. Below 30% silt, the difference can be significant 

(from 20% up to 300%), especially for CRMs mainly characterized by clay and silt (BCR-066). Finally, 

the absence of particles in any simple class is accurately characterized by the devices.

4.3. Intercomparison of the devices

The variation between the devices was observed on almost all the samples including the CRMs 

and their mixtures and was directly related to the specificities of the devices. As explained previously,
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each device is manufactured differently (water volume, laser cells, etc.). One of the main source of 

différences is linked to the use of US and its power. Strong (Cilas, Portable_C) and weak (Coulter) 

variations were therefore observed after using US for certain samples. The absence of variation for the 

Coulter demonstrated that the US power might have been insufficient to separate the aggregates. 

However, it is difficult to investigate US power on CRMs as they are mostly composed of non-cohesive 

materials and, unfortunately, this parameter was not expressed in Joules by mL [50], so the power 

used by the different devices was different (Table 1). This observation demonstrates the need to 

describe the power and time of US used in future studies to ensure reproducibility, as expressed by 

Bieganowski et al. (2018). Sonication is used to estimate the aggregation index of soil and sediment 

samples [51] and the results obtained may not be comparable in the absence of such description.

Another strong difference was observed when the main mode was located close to an interval 

between two classes, a phenomenon also observed for the CRM SRM1003c. The proportion of these 

two classes could be significantly different between the devices which distribute the mode between 

them (Fig. 1). Moreover, this distribution can be problematic when the interval is located between clay 

and silt or silt and sand such as the Azergues sample (Fig. 2 - Table 3). Vigilance is crucial when 

comparing such results.

Results on raw PSD and corrected PSD of the Portable were compared to investigate the impact 

of the rising tails observed for the finest classes (Electronic Supplementary Material). The results 

demonstrated that rising tails had a negligible impact on the proportion of the classes. Highest 

difference was observed on the clay content of the Barcarin sample with 18% on the raw PSD and 11% 

on the corrected PSD. Moreover, the potential characterization of a lower proportion of clay by 

deleting the finest classes remained non-significant and the values were mainly in the range of the 

values of the other devices. For this specific study, it was not relevant to remove the finest classes. 

However, correction remained necessary for the coarse modes induced by the presence of bubbles

caused by the pump speed as explained above.
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To evaluate the différences and allow users to determine those they can obtain with their 

devices, figures 5, 6 and 7 summarize the observations by grouping all the measures performed on all 

the natural samples and mixtures for all the parameters studied. Relative differences were then 

estimated for each device.

For d50 (Fig. 5), the larger differences (up to 80% of relative difference with the mean d50) 

were observed when the sample was a mix of silt and sand particles with a d50 ranging from 25 pm to 

50 pm or from 50 pm to 80pm, with and without US, respectively. For samples with a high d50 (higher 

than 150pm), the difference remained lower than 20% while it could exceed 20% for samples with a 

low d50.

For the simple classes (Fig. 6), the relative difference was significant (>20%) when the 

proportion was lower than 70% and 80% with and without US, respectively, and this difference 

increased when the proportion decreased and was lower than 25%.

Similar observations were performed for the detailed class (Fig. 7), the relative difference 

decreased as the proportion increased, but remained mostly higher than 20% whatever the proportion 

and the US. Therefore, since multimodality was characterized in most cases, detailed classes should be 

used to describe the trend of the PSD rather than comparing results from different devices on a 

qualitative basis.

Finally, the Specific Surface Area (SSA) was estimated [52] based on the PSDs of the different 

references and samples. However, as the proportion of clay was different between the devices, and 

even non-significant, the SSAs estimated by them were all substantially different from each other. It 

appeared that this parameter is difficult to reproduce on different devices and cannot be compared

directly.
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5. CONCLUSION

The tests performed during this study demonstrated that the comparison of particle size 

measured using different devices can be complicated since differences were observed on certified 

materials and natural samples. Despite using similar protocols and samples, the results obtained for 

the selected parameters (d50, simple and detailed classes) were characterized by differences that 

could be significant. Those differences were directly related to the specificities of the devices, as each 

device is manufactured differently (water volume, number of laser cells, etc.). In the absence of 

information on measurement parameters such as US power in J.ml-1 and pump speed, the comparison 

of PSDs from different studies can be erroneous, even for a similar device. It is therefore better to only 

compare the trend (such as the modal classes or the presence of these types of particle) rather than 

the measured proportion. Quantitative comparisons should only be performed if the parameters of 

the different analyses are known.

Differences in d50 were observed even with CRMs. Deviation from the expected d50 observed 

on all the lasers presented similar trends, with increases in particle size. Although there were 

differences in the amplitude of uncertainty, they all estimated the d50 for particle-sizes above 10pm 

within 10% uncertainty. However, for samples mostly characterized by clay and fine silt particles, the 

d50 was overestimated. This is important, especially for natural samples where these fractions are 

often present. Indeed, this information is required in numerous studies. Moreover, on natural 

sediments mixed with clay silts and sands, the problem of sand is not trivial. Sand is often not seen in 

these cases when clay size particles are present in quantity. Sieving sediments to remove the sand 

might be a solution to eliminate the impact of coarse particles.

For the different classes, the main problem observed concerned the position of the modes. 

Displaying the distribution of the classes greatly depends on the classification chosen relative to the 

sediment grain size distribution. It is therefore crucial to define the localization of the modes before
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conducting a comparison with results from different devices. Significant différences can be observed 

in samples characterized by a PSD with modes between two classes (clay/silt, silt/sand or detailed 

classes).
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Table 1: Main parameters of the grain size analyzers used within the OSR. n.a. not available.

Main characteristics of the devices
Brand Cilas Beckman Coulter Malvern Sequoia
Model 1190L LS 13 320 Mastersizer 2000 LISST-Portable|XR
Range of measured size (|am) 0.04 - 2500 0.04 - 2000 0.02 - 2000 0.34 - 500
Number of channels 100 132 100 33
Max. volume of the vessel (mL) 450 1000 1000 117

Main parameters set for analysis
Ultrasonic use 30s before during analysis during analysis 30s before analysis

and during analysis
Type of liquid and dispersant deionized water tap water tap water deionized water

without dispersant without dispersant without dispersant without dispersant
Duration of a single measurement 60 s 60 s 10 s 60 s
Optical model Mie Mie+Fraunhofer* Mie Mie
Refractive index 1,55 1,5 1,57 1,54
Absorption coefficient 0,1 0,0 0,1 0,1
Ultrasound sonication power 50% 6 on scale

of 8 levels
100% 30%

Stirrer speed 150 RPM n.a. 1000 RPM n.a.
Pump speed 120 RPM 80-90% 2500 RPM 20-25%
Obscuration (Obs) 
or Optical Transmission (OT)

Obs: 5 - 25% Obs: 8-16% Obs: 5 - 25% OT: 0.75 - 0.95

* Fraunhofer used when particles are coarse (LS-13320 Manual)
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Table 2 - Mean D50 (^m) and standard déviation determined by the devices without US. n.a. 
not available.

BCR66 BCR67 SRM1003C Mix_A Mix_B Mix_C
Certified range (^m) 0.35 - 3.5 2.4 - 32 25 - 50 n.a. n.a. n.a.
Certified D50 (^m) 1.13 10.41 32.1 ± 1.0 n.a. n.a. n.a.
Cilas 1.2 ± 0.1 12.4 ± 0.1 32.6 ± 0.8 11.5 ± 0.1 4.2 ± 0.4 11.4 ± 0.5
Coulter 1.5 ± 0.1 11.3 ± 0.1 31.6 ± 0.1 8.9 ± 0.5 1.8 ± 0.1 4.6 ± 2.3
Malvern 1.9 ± 0.1 12.3 ± 0.1 31.9 ± 0.1 10.1 ± 0.1 3.0 ± 0.1 8.9 ± 0.1
Portable C 1.9 ± 0.1 11.8 ± 0.4 32.6 ± 0.6 9.3 ± 0.1 2.8 ± 0.1 5.9 ± 0.7
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Table 3 - Mean proportion (%) and standard déviation of the simple classes measured by the four devices on the natural samples with and without 
US. n.d. not detected; n.a. not analyzed.

Barcarin Jons Azergues Arc
Devices US Clay Silt Sand Clay Silt Sand Clay Silt Sand Clay Silt Sand
Cilas without 8.8 ± 1.3 90.3 ± 0.8 0.5 ± 0.5 3.2 ± 0.4 69.2 ± 0.4 27.4 ± 0.9 2.0 ± 0.1 51.3 ± 0.7 47 ± 0.9 0.7 ± 0.1 1.0 ± 0.1 98.3 ± 0.5
Cilas with 9.8 ± 2.1 90.0 ± 1.9 0.2 ± 0.4 4.4 ± 0.5 78.3 ± 1.6 17.1 ± 1.5 3.0 ± 0.1 87.6 ± 0.7 9.4 ± 1 1.0 ± 0.1 6.4 ± 2.0 92.8 ± 1.9
Coulter without 21.6 ± 0.9 78.0 ± 0.7 0.4 ± 0.5 8.0 ± 0.1 64.8 ± 1.0 27.3 ± 1.0 2.0 ± 0.1 49.0 ± 1.5 49.4 ± 1.4 0.7 ± 0.5 13.0 ± 8.1 86.3 ± 8.6
Coulter with n.a. n.a. n.a. 10.7 ± 1.2 67.3 ± 3.8 21.7 ± 5.0 2.0 ± 0.1 55.3 ± 1.1 42.7 ± 1.1 0.7 ± 0.5 14.2 ± 8.4 84.9 ± 8.8
Malvern without n.a. n.a. n.a. n.a. n.a. n.a. 1.7 ± 0.5 44.2 ± 2.1 54 ± 2.2 n.d. n.d. 100.0 ± 0.1
Malvern with n.a. n.a. n.a. n.a. n.a. n.a. 2.8 ± 0.4 62.3 ± 3.9 34.9 ± 4.3 n.d. 0.4 ± 0.9 99.6 ± 0.9
Portable_ C without 11.0 ± 1.4 87.5 ± 0.7 1.5 ± 2.1 3.0 ± 0.1 74.0 ± 2.8 23.0 ± 2.8 2.1 ± 0.6 72.6 ± 9.9 25.1 ± 10.7 0.3 ± 0.1 9.6 ± 1.0 90.0 ± 1.0
Portable C with n.a. n.a. n.a. 7.0 ± 0.1 89.3 ± 2.1 3.3 ± 3.2 4.2 ± 0.4 89.4 ± 1.7 6.4 ± 2.1 0.7 ± 0.8 15.4 ± 11.8 83.9 ± 12.3
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Table 4 - Mean D50 (|im) and standard déviation measured by the four devices on the natural 
samples with and without US. n.a. not analyzed.

Devices US Barcarin Jons Azergues Arc
Cilas without 9.9 ± 0.5 34.6 ± 1.0 57.0 ± 1.3 194.1 ± 3.6
Cilas with 9.2 ± 0.7 25.0 ± 1.3 23.1 ± 1.1 179.3 ± 5.3
Coulter without 6.2 ± 0.4 28.2 ± 0.7 61.1 ± 2.8 146.6 ± 20.0
Coulter with n.a. 21.9 ± 3.7 49.7 ± 1.3 145.9 ± 20.5
Malvern without n.a. n.a. 71.6 ± 5.8 171.9 ± 1.6
Malvern with n.a. n.a. 40.0 ± 5.4 171.5 ± 2.1
Portable_C without 7.9 ± 1.0 35.4 ± 0.2 37.9 ± 9.1 143.9 ± 20.1
Portable_C with n.a. 15.5 ± 3.4 20.9 ± 1.8 132.9 ± 25.3
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Fig.1 Proportion of the detailed classes measured with US by the different devices (Cilas, Coulter, 

Malvern and Portable corrected) on the CRMs (BCR-066, BCR-067 and SRM1003c) and the different 

mixtures (A, B and C). Certified proportions are also presented (Reference). Values over the bar 

represents the percentage of the proportion

Fig.2 Detailed classes measured by the different devices on the natural samples with and without US. 

Values over the bar represent the percentage of the proportion. No measures were conducted on the 

Malvern for Barcarin and Jons samples

Fig.3 d50 measured by the different devices on the mixtures of Arc and Azergues samples

Fig.4 Detailed classes measured by the different devices on mixture 2 with and without US. Values over 

the bar represent the percentage of the proportion

Fig.5 Relative difference between the mean d50 measured by all the devices and the mean d50 

measured by each device with and without US. Grey areas represent 10% and 20% difference

Fig.6 Relative differences between the mean proportion of each simple class measured by all the 

devices and the mean proportion measured by each device with and without US. Grey areas represent 

10% and 20% difference. Abscise represent the mean proportion of the associated simple class for all 

devices

Fig.7 Relative differences between the mean proportion of each detailed class measured by all the 

devices and the mean proportion measured by each device with and without US. Grey areas represent

https://www.editorialmanager.com/snas/download.aspx?id=134353&guid=ceca8ca2-bb14-4397-9b06-646f1c7bcebf&scheme=1
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for all devices
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