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Abstract

Nested sampling is an efficient algorithm for the calculation of the Bayesian evidence and posterior

parameter probability distributions. It is based on the step-by-step exploration of the parameter space by

Monte Carlo sampling with a series of values sets called live points that evolve towards the region of interest,

i.e. where the likelihood function is maximal. In presence of several local likelihood maxima, the algorithm

converges with difficulty. Some systematic errors can also be introduced by unexplored parameter volume

regions. In order to avoid this, different methods are proposed in the literature for an efficient search of

new live points, even in presence of local maxima. Here we present a new solution based on the mean shift

cluster recognition method implemented in a random walk search algorithm. The clustering recognition is

integrated within the Bayesian analysis program NestedFit. It is tested with the analysis of some difficult

cases. Compared to the analysis results without cluster recognition, the computation time is considerably

reduced. At the same time, the entire parameter space is efficiently explored, which translates into a smaller

uncertainty of the extracted value of the Bayesian evidence.

∗ martino.trassinelli@insp.jussieu.fr
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I. INTRODUCTION

At present, Bayesian methods are routinely used in many fields: astrophysics and cosmol-

ogy [1–8], particle physics [9], plasma physics [10, 11], machine learning [12] and many others

[13, 14]. In the past few years, they were also applied to nuclear [15, 16] and atomic physics

[17–21]. On one hand, one of the reasons for this success is related to the possibility of as-

signing a probability value to models (hypotheses) from the analysis of the same set of data in

a very defined framework. In opposite to this, classical statistical tests and criterions (e.g. chi-

square and likelihood ratio, Aikaike information criterion [22], etc.) are completely powerless

if any defined preference does not emerge. On the other hand, the implementation of Bayesian

methods is only now widely possible thanks to the recent relatively cheap cost of computation

power. A large computing capability is in fact required for the fine exploration of the probability

distribution of the model parameters. Unlike standard methods, which are mostly reduced to mini-

mization/maximization problems (of the likelihood function or chi-squares), Bayesian approaches

have to deal with non-trivial integrations in multi-dimensional space. One of the key points of

Bayesian model selection is in fact the calculation of the Bayesian evidence, also called marginal

likelihood, defined by

E(M) ≡ P (Data|M, I) =

∫
P (Data|a,M, I)P (a|M, I)dJa =

∫
LM(a)P (a|M, I)dJa.

(1)

It consists in the integral of the likelihood function LM(a) = P (Data|a,M, I) in the J-

dimensional parameter space (with J the number of the parameters) weighted by the prior prob-

ability P (a|M, I) of the parameters a of a defined modelM and where I represents the back-

ground available information. From the evidence, the probability of the model P (M|Data, I) is

simply evaluated by the formula

P (M|Data, I) ∝ E(M)P (M|I), (2)

where P (M|I) is the prior probability of the model itself. The challenging part resides in the

multi-dimensional integration of Eq. (1). For this matter, different approaches have been developed

in the past, some of them are Markov chain Monte Carlo (MCMC) based techniques (see e.g.

[14, 23]) for the integration of LM(a)P (a|M, I). As an alternative, the nested sampling method

has been proposed by Skilling in 2004 [24–26]. With this method, the multi-dimensional integral

in Eq. (1) is reduced to a one-dimensional integral and calculated. Because of its high-efficiency

2



and relatively moderate calculation power requirement compared to other approaches, the nested

sampling method is actually implemented in several data analysis codes such Multinest [3, 27],

Diamonds [28], Polycord [29], DNest4 [30] and Dynesty [31] for the computation of the Bayesian

evidence and posterior probability distributions. Because of its efficient sampling, nested sampling

is also routinely used to study thermodynamic partition functions [32–35] and to explore potential

energy landscapes of atomistic systems [36–38].

When several maxima of the likelihood function are present, nested sampling algorithm can

however encounter problems with converging correctly. The parameter space exploration can

become inefficient or exclude entire regions, which introduces systematic errors in the estimation

of the evidence. In order to avoid such a problem, several solutions are proposed in the literature.

Here we present an original approach based on cluster recognition with the mean shift method,

one of the classic clustering algorithm widely used and included in the major machine learning

libraries. This method is implemented in the program NestedFit, a code developed by one of the

authors and described in details in Refs. [39, 40].

An introduction to nested sampling and NestedFit code is presented in Sec. II. The description

of the mean shift algorithm, its implementation on NestedFit and the results of some tests are

presented in Sec. III. The article will end with a conclusive section (Sec. IV).

II. NESTED SAMPLING AND NESTEDFIT

A. The nested sampling algorithm

Nested sampling is based on the reduction of the multi-dimensional integral in Eq. (1) for the

evidence computation into a one-dimensional integral

E(M) =

∫ 1

0

L(X)dX. (3)

X represents the normalized value of the volume, weighted by the prior probability P (a|I), of the

portion of J-dimensional space of parameters where L(a) is higher than a certain value L:

X(L) =

∫
L(a)>L

P (a|I)dJa. (4)

Equation (3) is numerically calculated using the rectangle integration method subdividing the [0, 1]

interval in M + 1 segments with an ensemble {Xm} of M ordered points 0 < XM < ... < X2 <
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X1 < X0 = 1:

E(M) ≈
∑
m

Lm∆Xm, (5)

whereLm = L(Xm) isgiven by the invertible relation in Eq. (4) and ∆Xm is simply given byXm−

Xm+1 or by the more accurate trapezoid rule ∆Xm = 1/2(Xm−1−Xm+1). Each ∆Xm represents

a slice of parameter space of nested hypervolumes defined by Eq. (4), giving the algorithm its

name.

The evaluation of Lm is obtained by a recursive step-by-step exploration of the likelihood func-

tion by a Monte Carlo sampling. A collection of K parameter values {ak}, called live points, cor-

responds toK random points {ξ1,k} in [0, 1] interval. When the live point ã1 = a1,k′ corresponding

to the highest value of {ξ1,k}, ξ1,k′ = max{ξ1,k} (with L1 = min{L(ξ1,k)} = L(ξ1,k′) ≡ L(ã1)

from Eq. (4)) is discarded, the mean value of the interval occupied by the remaining ξk points

shrinks to

Xm = max
k 6=k′
{ξk} ≈

(
K

K + 1

)m

≈ e−m/K (6)

with, at this first step, m = 1.

If a new live point anew is found with the condition L(anew) > Lm=1, a new set of ξm=2,k points

is constructed and the next procedure iteration step starts. For each step, the discarded values

ãm = am,k′ are stored together with their corresponding likelihood values Lm = L(ãm). The Xm

are obtained by their average expectation value from Eq. (6). Step by step, the nested volumes built

with the condition L(a) > Lm converge around the parameter space regions corresponding to high

values of the likelihood function. When the algorithm converges, the evidence is evaluated from

the different values Lm,∆Xm using Eq. (5). From the set of collected values of the discarded live

points ãm and the associated weights wm = Lm∆Xm, the posterior probability P (a|Data,M, I)

can be determined. More details on the nested sampling algorithm and its implementation can be

found in Refs. [3, 24–27, 41, 42].

B. Bottleneck of nested sampling and proposed solutions

The difficulty of this elegant method is to efficiently find a new live point at each step within

the hypervolume contour defined by L(a) > Lm. Codes that use the nested sampling method

generally encounter difficulties to find new live points anew when several maxima of the likeli-

hood function are present. In this case, the exploration of the parameter space becomes generally
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inefficient or can consider only one local maximum while introducing systematic errors in the es-

timation of the evidence. In order to avoid these problems, different strategies have been proposed

in the literature. These strategies can be divided into two categories: with a cluster recognition

algorithms and without cluster recognition, but with other improvements of the search algorithm

for new live points.

A first attempt to improve the search of new live points for multimodal problems via MCMC

has been proposed by Veitch and collaborators in 2010 [42]. Here 10% of the steps of the random

walk are determined by a combination of three past points and not only the previous point of

the Markov chain. In this way, a more efficient sampling is obtained without need of cluster

recognition.

Another improved random walk method for nested sampling algorithm is the diffusive nested

sampling, developed by Brewer et al. in 2011 [43] and implemented in DNest4 [30] program.

Here, the passage between maxima is facilitate by blurring the condition L(ai) > Lm for the

parameter values explored by the MCMC, allowing to momentarily pass in regions with lower

values of the likelihood function.

Alternatively to random walks, the use of single- or multi-particle trajectories have been imple-

mented for improving the search of new points in complex landscapes of the function to maximize

or minimize. This is the principle of Galilean and Hamiltonian Monte Carlo exploration [34, 44].

In the first case, linear trajectories and reflection from hard boundaries, given by the minimal likeli-

hood threshold value, are considered. In the second case, more complex trajectories are computed

from the motion determined by the Hamiltonian function, like in molecular dynamics, assimilated

here to the likelihood function.

In the case of the presence of several maxima, these methods significantly improves the search

of new points but do not allow to pass from one maximal region to another, which limits their

efficiency. A completely different approach has been proposed by Martiniani and collaborators

in 2014 [45]. To take into account the presence of several maxima without recurring to cluster

recognition, they suggest global optimization techniques to use the knowledge of identified local

maxima and their statistical weight and then to perform parallel nested sampling in correspondence

of each significant region.

A first solution with the use of a cluster recognition algorithm has been implemented in Multi-

nest code already in 2008 [3, 27]. Here, new live points are randomly selected in an ellipsoid that

is defined by the covariance matrix of the present live points. Cluster analysis is used for partition-
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ing of the parameter spaces in a series of ellipsoids. This is obtained by implementing the k-means

clustering algorithm, which is triggered when the estimated volume occupied by the live points is

much smaller than the ellipsoid volume estimated from their covariance matrix. A partition in two

cluster is initially performed (k = 2) and recursively repeated (always with k = 2) to obtain an

efficient partition of the space with many ellipsoids.

In the more recent Polycord program [29], where the search of new live points is based on the

slice sampling[46], the cluster recognition is obtained by the k-nearest neighbor algorithm. Once

the different cluster are identified, for each of them a parallel exploration and analysis via slice

sampling MCMC is independently performed.

In the recent and very complete nested sampling code Dynesty [31], different sampling methods

are proposed: from random uniform selections in ellipsoids, like Multinest, to a series of MCMC

(random walks, slice sampling,. . . ). Difficult cases with several likelihood maxima are treated

by decomposing the parameter space in several ellipsoids via a cluster analysis (using k-means

algorithm like Multinest), or spheres or cubes (with same radius/side, one per each live point) with

no need of any cluster recognition technique.

In the following sections, we present a new alternative method based on a MCMC and where

the mean shift algorithm is used for the identification of clusters. It is implemented in the existing

nested sampling code NestedFit, which is briefly introduced as well in the next paragraph.

C. The NestedFit program

NestedFit is a general-purpose code for the evaluation of Bayesian evidence and parameter

probability distributions based on nested sampling algorithm. It is written in Fortran90 with some

subroutines in Fortran77, and parallelized via OPEN- MPI. It is mainly developed and imple-

mented for the analysis in the fields of atomic, nuclear and solid-state physics [16, 39, 40, 47–50].

It is accompanied by a Python function library for visualization of the results and for automa-

tization of series of analyses. In this publication we present the version 3.2 that has the cluster

analysis of the live points as substantial upgrade with respect to older versions (see Ref. [39] for

v. 0.7 and Ref. [40] for v. 2.2). In addition, in this new version some new improvements in the

search of live point are also implemented. The source code is freely available in the repository

https://github.com/martinit18/nested_fit.

The code requires two main input files: the main input file (nf_input.dat) where the anal-
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ysis parameters are selected, and the data file, in the format (channel, counts) or (channel, y value,

y uncertainty). Dependent on the data format, a Poisson or Gaussian statistics likelihood function

is used. The function name in the input file indicates the model to be used for the calculation of

the likelihood function. Several functions are already defined in the function library for different

model of spectral lines. Additional functions can be easily defined by the user in a dedicated rou-

tine. Non-analytical or simulated profile models can be considered as well. In this case, one or

more additional files have to be provided by the user for interpolation by B-splines using FITPACK

routines [51].

Several data sets can be analyzed at the same time. This is particularly important for the cor-

rect study of physically correlated spectra at the same time, e.g., background and signal-plus-

background spectra. This is implemented by using a global user-defined function composed by

different models to describe each spectra but with common parameters between the models.

The main analysis results are summarized in one output file (nf_output_res.dat). Here

the details of the computation, number of trials, number of iteration, can be found as well as

the final evidence value and its uncertainty E ± δE, the parameter values corresponding to the

maximum of the likelihood function, but also the mean, the median, the standard deviation and the

confidence intervals one, two and three sigma (68%, 95% and 99%) of the posterior probability

distribution of each parameter. δE, or more precisely δ(lnE) is evaluated by running the nested

sampling several time for different sets of starting live points. δ(lnE) is obtained by the standard

deviation of the different values of lnE, the natural estimation to study the uncertainty of E

[52, 53]. The information gain H and the Bayesian complexity are also provided in the output.

Data for plots and for further analyses are provided in separated files. The step-by-step information

of the nested sampling exploration can be found in the largest output file that contains the live

points used during the parameter space exploration ãm, their associated likelihood values Lm and

weight wm = Lm∆X . From this file, the different parameter probability distributions and joint

probabilities can be build from the marginalization of the unretained parameters.

Details of the NestedFit search algorithm are presented in the next section. Additional infor-

mation can be found in Refs. [39, 40].
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FIG. 1. Graphical presentation of the different search algorithms discussed in the text. a: Exploration of

the parameter volume via the lawn mower robot for finding a new live point. b: Search of a new live point

from the parameter set an outside the limit L(a) > Lm and the barycenter of the current live points. c:

Construction of the new live point from different coordinates of the current live points.

D. NenstedFit search algorithm

The search of new live points in NestedFit is based on a random walk called lawn mower

robot [39, 40, 54], which is represented in Fig. 1a. It is composed by a sequence of N steps (or

jumps, with N selected by the user) starting from a randomly chosen live point. Each step has an

amplitude and direction given by the J-dimensional vector frσ where each component frjσj is

determined by factor f , selected by the user, a random number rj and the standard deviation of

the current live points σj with respect to the jth parameter. For an efficient covering of the entire

parameter space, f and N should be chosen with the criterion

f ×N & 1 (7)

to explore regions within a distance of the order of one standard deviation around the starting

point. Each new step, which correspond to a new parameter set an, is accepted if L(an) > Lm. If
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L(an) < Lm, a new set of rj is chosen. The number of total tries nt is recorded. The choice of the

values for f and N is very critical and it could vary from case to case. N has to be large enough to

lose the memory of the starting live point position, but an increase of it produces a linear increase

in computation time. A similar situation arises for f . If it is too small, a strong correlation between

live points is artificially created. If it is too large, many failures can occur. From our experience,

a reasonable range of values is N = 20 − 40 and f = 0.1 − 0.2. In any case we suggest a visual

check of the explored live points for detecting possible correlations.

If the number of failures becomes too high (nt � N ), two different strategies are implemented

for finding a new live point. In the first one, schematically represented in Fig. 1b, a new param-

eter set is determined by randomly choosing a point between the last failing chain point an with

L(an) < Lm and the barycenter of the current live points[55]. The second method, represented in

Fig. 1c, consists on building a new synthetic live point anew from the jth components from distinct

live points: (anew)j = (am,k)j where k is randomly chosen between 1 and K (the total number

of live points) for each j. If anew L(anew) > Lm, the new point is considered, otherwise another

random live point is chosen as start of the random walk.

The two strategies are chosen randomly when nt = Nt (Nt chosen by the user in the config-

uration file) and nt is reset to zero. As suggested by the schemes in Fig. 1, the first one favors

a re-centering of the live points. In the opposite, the second can more easily explore peripheral

regions. This second strategy was in fact the only present in the previous versions of NestedFit

(where alsoNt was a fixed parameter of the code), and it was developed to improve the search algo-

rithm for multimodal cases facilitating jumps between maximal regions of the likelihood function

[39, 40].

If the entire above procedure is repeated subsequently too many times (NNt, selected by the

user), the cluster analysis, described in the following sections, is triggered for improving the search

of new live points.

III. MEAN SHIFT CLUSTERING ALGORITHM AND ITS IMPLEMENTATION

A. Preliminary tests and considerations on other cluster recognition algoritms

Before the implementation of one particular cluster recognition method in NestedFit, differ-

ent algorithms from classical machine learning libraries (https://scikit-learn.org as
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example) have been considered and some of them have been tested with simple Python scripts.

For this purpose, we used different ensembles of live points issued from NestedFit runs on real

data when convergence problems were encountered. We excluded a priori Density-Based Spa-

tial Clustering of Applications with Noise (DBSCAN) method. This method is well adapted for

detecting cluster with singular shapes (e.g. arc of circle) without necessary improving the imple-

mented random walk algorithm that is based on the standard deviation of the recognized cluster.

We then test the Gaussian mixture method with the determination of the number of clusters based

on the expectation-maximization algorithm. The results were not convincing and requires external

criterions for determining the number of clusters. For similar reasons, we excluded the k-means

method that requires a preliminary choice of number of clusters and the x-means method that uses

external criterions to determinate the best choice of k. We did not consider the recursive use of

k-means with k = 2, like in the Multinest code, to keep a simple cluster recognition implementa-

tion. From these preliminary tests and considerations, the mean shift clustering algorithm [56, 57]

emerges for its simplicity of implementation, its robustness and, more important, because it does

not require a choice of the number of clusters before the analysis.

B. The mean shift algorithm for cluster recognition

Mean shift is a recursive algorithm based on the iterative calculation of the mean of points

within a given region. Considering an ensemble {xi}, for each point the mean value mi of the

neighbor points NH(xi) is calculated recursively via a kernel function K(xi,xj) via

ms,i =

∑
xs,j∈NH(xs,i)

K(xs,i,xs,j)xs,j∑
xs,j∈NH(xs,i)

K(xs,i,xs,j)
, (8)

with s = 1 and xs=1,i = xi for the first step. Then the procedure is repeated considering instead

of the initial points xi, the mean values of the previous step, xs,i = ms−1,i, until convergence or

the maximum number of allowed steps is reached. Different points belonging to the same cluster

are identified by the vicinity of the final ms,i values.

With the present implementation, via a Fortran module in NestedFit, the identification of the

neighbor points NH is determined by the Euclidean distance d(xi,xj) < D, with D selected by

the user. Two choices of K are available: a flat kernel K(xi,xj) = 1, and a Gaussian kernel

K(xi,xj) = exp(−d(xi,xj)/`), with ` the bandwidth selected by the user. Before the imple-

mentation of the mean shift algorithm, the live points are normalized to their minima and maxima
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FIG. 2. Data corresponding to the high-resolution X-ray spectrum of the helium-like uranium 1s2p 3P2 →

1s2s 3S1 intrashell transition obtained by Bragg diffraction from a curved crystal [58] (left) and of the single

decay of H-like 142
61 Pm ions to the stable 142

60 Nd bare nucleus via electron capture [16].

(xk)j = [(am,k)j − min{(am,k)j}]/[max{(am,k)j} − min{(am,k)j}] to have parameter D and `

dimensionless and in a fixed possible range [0, 1].

At the end of the analysis, each live point has an additional flag indicating its belonging cluster

that is used in the main NestedFit search algorithm.

C. Mean shift implementation in NestedFit

As written above, the cluster analysis is triggered when there are too many tries in the main

search algorithm (nt = Nt ×NNt). Once the cluster analysis is performed, the algorithm restarts

from a random live point but, instead of the standard deviation of whole ensemble of live points

σ, only the standard deviation of the belonging cth cluster σcluster
c is used for the random walk.

Even if the cluster analysis is not perfect (e.g. too many or too few clusters are recognized), the

generally smaller values of σcluster
c compared to σ significantly improves the efficiency of the

nested sampling. When the algorithm becomes inefficient (nt reach Nt), a new starting live point

is chosen. When nt is becoming too high again ( nt = Nt × NNt), a new cluster analysis is

performed and the calculation continues until the end of the evidence calculation. Because of the

random selection of the starting live point, small clusters have small probability to be chosen, and

naturally disappear (or eventually grow) to the advantage (disadvantage) to clusters with higher

(lower) likelihood values during the nested sampling.
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To illustrate the cluster recognition at work in NestedFit, two practical examples are considered.

In both cases, a Gaussian kernel has been used with a relatively large value of D = 0.5 − 0.6

in order to avoid having too many isolated clusters and ` = 0.1 − 0.2, which ensures a good

convergence of the algorithm. The cluster analysis is triggered after few failures, NNt = 2 − 3,

with a relatively low number of maximal tries nt (Nt = 100−200) to change search strategy quite

often when it becomes critical. With these criteria, the cluster analysis is triggered only about

2− 10 times for one entire nested sampling computation.

The first example consists of the analysis of a high-resolution X-ray spectrum corresponding

to the helium-like 1s2p 3P2 → 1s2s 3S1 intrashell transition of uranium obtained by Bragg diffrac-

tion from a curved crystal [58]. For the analysis of the spectra, we assume the presence of four

Gaussian peaks with the same width and a flat background. The second analysis is related to the

measurement of the single decay of H-like 142
61Pm ions to the stable 142

60Nd bare nucleus via electron

capture. Here, an exponential decay with a sinusoidal modulation is used as a model, considered

parameters are the relative amplitude, pulsation and phase (see Ref. [16] for more details). Both

data sets, presented in Fig. 2, are characterized by low statistic and the presence of many local

maxima of the likelihood function, which makes them therefore difficult to analyze. In the first

case, the possible permutations of the position of different peaks correspond to different maxima

of the likelihood (4!=24 maxima for four peaks). In the second case, the multimodal behavior is

caused by the different possible combinations of phase and pulsation values and corresponding

beats.

To observe the evolution of the nested sampling algorithm with and without cluster analysis in

the first case, we represent in Fig. 3 the evolution of one of the model parameters (ãm)j relative to

the position of one of the four Gaussian peaks as function of the step number m for ten different

choices (tries) of starting live points. Different colors correspond to different values of the step

weight wm = Lm∆Xm. Parameters with higher values or wm have a higher influence on the

final evidence and probability distributions P (a|Data,M, I). When the cluster analysis is not

implemented (Fig. 3 (top)), each try slowly converges to one likelihood maximum only, which

corresponds to one of the four possible positions. The convergence in different maxima produces

as consequence a spread of the values of the Bayesian evidence E.

In contrast, when the cluster analysis is turned on ( Fig. 3 (bottom)), all four possible peak

positions are considered at the same time and are equally explored for any try. The convergence

improvement is directly observable in the smaller value of uncertainty of the evidence E. When
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FIG. 3. Evolution of one of the components of the discarded live points ãm relative to the position of one of

the four considered Gaussian peaks (see text) as function of the nested sampling step and for ten different

choices starting live points. Results relative to the analysis without (top) and with the cluster analysis

(bottom).

the cluster analysis is off, we have lnE = −320.52± 1.71 and lnE = −323.22± 0.17 when it is

on. These results have been obtained with f = 0.1 for the analysis without clusters and f = 0.2

for the analysis with it, N = 20 and K = 2000 for both cases. The uncertainty of the previous

values, and for all following evaluations, is obtained from the standard deviation of 16 different

lnE values obtained running the analysis with 16 different sets of starting live points. The smaller

value of f for the run without clusters has been chosen to reduce the computation time, which is

still about 8 times longer than with the cluster analysis. It is interesting to note that, surprisingly,

the two main values with and without cluster analysis are compatible (note: a difference of 0.9 in

the lnE corresponds to about two sigmas [59]), without a systematic shift due to the exploration

of a smaller parameter space. Only the associated uncertainty significantly changes.

To better visualize the cluster analysis process, a 3D presentation of the evolution of three

components of ãm, relative to the position of three peaks is presented in Fig. 4. Each image is

obtained just after a cluster analysis, where different clusters are represented by different colors.

To note, the analysis is triggered only a few times (four times for this selected example with

13



FIG. 4. Results of the cluster recognition corresponding to the analysis of four Gaussian peak. The position

of three peaks are represented. Different colors represent different identified clusters. In black, the projec-

tion to some planes are represented. The 24 likelihood maxima (corresponding to the 4! permutation of the

position of four peaks) are well visible.

K = 2000, Nt = 200, NNt = 2 and with a Gaussian kernel with D = 0.6 and ` = 0.2), showing

the efficiency of the clustering recognition in the search of new live points (for about 60000 steps

for each run). After the first run of the mean shift analysis, only a large cluster (and few isolated

live points) are identified. In the following cluster analysis, all 24 different maxima likelihood

regions are correctly identified.

The correct and simultaneous identification of all maxima translates to a more regular his-

14



380 400 420 440 460 480
Peak position (ch.)

0

50

100

150

200

250

Pe
ak

 a
m

pl
itu

de
 (c

ou
nt

s)

380 400 420 440 460 480
Peak position (ch.)

0

50

100

150

200

250

Pe
ak

 a
m

pl
itu

de
 (c

ou
nt

s)

FIG. 5. Joint probability distribution of the position and amplitude of one of the four considered peaks

obtained without (left) and with cluster analysis (right).

togram of probability distributions evaluated from the nested sampling outputs. This is shown in

Fig. 5, where the 2D histogram relative to the joint probability of position and amplitude of one

of the peaks is presented for the analysis with and without cluster recognition. When the cluster

analysis is not implemented, the presence of very localized maxima of the probability distribution

reflects the pathological behavior of the nested sampling convergence to only one of the likelihood

maxima. On the contrary, a much smoother distribution of the joint probability is present when

the cluster analysis is on.

A more quantitative measurement on the cluster analysis is obtained by varying the number of

used live points K. As it can be observed in Fig. 6 (left, top), the final evidence does not change

significantly with K. In opposite, the evaluated uncertainty (in blue) changes by several order

of magnitudes and is systematically larger than its theoretical estimation (in black) δ(logE) ≈√
H/K [25, 52], where H is the information gain. When the evaluated evidence uncertainty is

plotted in logarithmic scale (Fig. 6 left, bottom), it can be observed that, for high values of K (≥

500), δ(logE) is proportional to 1/
√
H/K as expected (δ(logE) ∝ Kc with c = −0.52± 0.02),

but is systematically higher by a factor of about 1.6 than the estimated accuracy (not shown in the

bottom figure). When K is too low (K < 500 in the present case), even with the cluster analysis,

the nested sampling algorithm cannot efficiently explore the 24 minima producing a systematic

increases of δ(logE).

As expected, the computation time (equivalent for one single CPU) per set of live points grows

almost linearly with K. A simple fit gives an exponential dependency∝ Kc with c = 1.13± 0.01.

A significant deviation is observed for K = 10000. In this case the cluster analysis, which number
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FIG. 6. Top: evaluation of the logarithm of the evidence for different number of live points K for the four

gaussian peaks analysis (left) and the modulated exponential decay (right). In blue are indicated the uncer-

tainty values evaluated by the results of 16 different run for each case. In black the theoretical uncertainty√
H/K estimated from the information gainH. Bottom: dependency of the evaluated uncertainty and CPU

time with K. The dashed lines are the fits with power laws, which results are also shown. Data relative to

K < 500 and K > 5000 are excluded for the fit of logE uncertainty and CPU time, respectively.

of operations is proportional to K2, is significantly contributing to the total computation time.

Cluster analyses of above results have been obtained all with the same set of parameter: with

a Gaussian kernel and with D = 0.6, ` = 0.2, Nt = 200 and NNt = 2. The exploration of

the algorithm efficiency as dependence of these parameters is investigated and the corresponding

results are resumed in Fig. 7, where the final evidence values and required computation time are

presented for different parameter sets. Several cases are considered with flat and Gaussian kernel,

indicated in the label by ‘f’ and ‘g’, respectively, and different values of D and `, indicated in the

label as well (only D for the flat kernel). As it can be noticed, for too small values of D and ` the

final accuracy is poor. This is related to the identification of too many and too small clusters that

finally induce an inaccurate, but fast, exploration of the parameter space. On the opposite, for too
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FIG. 7. Values of logE and CPU time for different choices of parameter values of the cluster recognition

algorithm. Uncertainties of the evidence relative to the labels ‘f 0.7’ and ‘g 0.8 0.3’ are not evaluated

because of the large computation time corresponding to these cases.

large values, one or very few clusters are identified. In these cases, the cluster algorithm is called

very often without really improving the situation but increasing significantly the total computation

time. Gaussian kernel results to be more robust and flexible than a flat kernel, probably due to the

presence of the counter-reaction of the two parameters. The optimal parameter choice depends on

the specific problem and the values of Nt and NNt. It is generally observed that low values of Nt

allow for changing starting live point often enough improve the efficiency of the algorithm. NNt

has to be adapted to trigger enough times the cluster analysis, but not too often.

The analysis of the other considered case is characterized by a completely different cluster

evolution. In Fig. 8 we represent the amplitude, pulsation and phase of the modulation values after

each cluster analysis. After the first run, several clusters are identified even if no clear structures

are visible. In the following analysis, a very complex landscape is drawn, with many clusters and

with very narrow values in omega. Even if characterized by very different sizes for the different

parameters (even after their normalization), different clusters are well identified by the mean shift

algorithm.

The complex dependency on the modulation pulsation ω is also presented in Fig. 9, where

its evolution as function of the nested sampling step is represented for two different choices of

starting live points. It can be observed that the rich landscape of the likelihood value as function

of ω is well reproduced for each try, demonstrating again the efficiency of the cluster analysis
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FIG. 8. Results of the cluster recognition corresponding to the analysis of the modulation of the exponential

decay. The relative amplitude, pulsation and phase are represented. Different colors represent different

identified clusters. In black, the projection to some planes are represented.

implementation once again.

As in the previous example, similar values of the Bayesian evidence are found: lnE =

−1921.54 ± 0.12 without cluster analysis and −1922.04 ± 0.21 with. In contrast to the pre-

vious case, the uncertainty for the analysis without cluster analysis is very small. This is mainly

caused by the choice of the value f = 0.014 (and N = 40, K = 5000), a very small value com-

pared to the value set for the analysis with cluster analysis (with f = 0.1, N = 20, K = 5000).

This small value of f contradicts in fact also the recommendation from Eq. (7) with the risk to
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FIG. 9. Evolution of one of the components of the discarded live points ãm relative to the pulsation ω of

the modulation of the single ion exponential decay (see text) as function of the nested sampling step with

cluster analysis and for two different starting live points selections.

introduce some systematic errors in the computation. It was however required for insuring the

convergence of the computation, which was otherwise impossible without cluster analysis. Like

the previous example, the computation time without cluster analysis is in the best case about eight

times longer than with the cluster analysis.

When the number of live points K is varied, keeping the other parameters fixed (Gaussian

kernel with D = 0.6, ` = 0.2, Nt = 100 and NNt = 3), we can observe in Fig. 6 (right) a similar

tendency for the results as in the previous case. The estimated evidence accuracy is found to be

proportional, as expected, to 1/
√
K ( δ(logE ∝ Kc with c = −0.48 ± 0.08). Here too, δ(lnE)

is by a factor of 4.4–5.5 higher than the estimated accuracy. Because of the presence of less local

minima than in the case of the four Gaussian peaks problem, the evaluated accuracy follows the

proportionality to 1/
√
K down to K = 100. An almost linear dependency of the computation

time on K is visible in this case too (CPU time ∝ Kc with c = 1.13 ± 0.01), with a significant

deviation for K = 10000 due to the high cluster analysis requirements for high K.

These two examples show the general behavior of the cluster algorithm and its dependency on

the parameters choice. However, each case can be different and the user should vary the different

parameters to reach the required accuracy. A general and simple suggestion is to use a large
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number of live points to efficiently explore the whole parameter space. This is crucial when

multiple local maxima of the likelihood function are present to avoid missing one of them. This is

an important requirement even when a cluster analysis is available.

IV. CONCLUSIONS

We present a new application of cluster recognition to a nested sampling algorithm for the

evaluation of the Bayesian evidence and posterior parameter probability distributions. For this

matter, we selected the method of the mean shift, a robust and simple classical cluster recognition

method widely used in the machine learning community. This clustering algorithm proved itself

well adapted to critical data analysis when several likelihood maxima are present. It has been

implemented in the program NestedFit and tested with two different benchmark cases, proving its

efficiency in exploring the parameter space without excluding any region. As a consequence, the

computation time is reduced by a factor at least eight. At the same time, a smaller value of the

estimated evidence uncertainty is obtained. As a result from study the dependency on the different

algorithm parameters, a sufficiently high number of live point should be always used, even when

the cluster analysis is implemented, to efficiently explore all local likelihood maxima. Moreover

for a good efficiency of the mean shift cluster recognition, its typical parametric distances (D and

`, the maximal neighbours distance and the bandwidth of the Gaussian kernel) should neither be

too small or too large. In one case very low accuracy, but fast computation is obtained, in the other

case the computation time increases too much.

In this article we explore only the implementation of the mean shift algorithm for cluster recog-

nition. In the future, we plan to explore other methods like the k-nearest neighbours and the

x-means method, successfully used in other nested sampling codes, and compare NestedFit per-

formances with these codes in benchmark cases.
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