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Ecological networks: Pursuing the 
shortest path, however narrow and 
crooked
Andrea Costa1,2*, Ana M. Martín González   3*, Katell Guizien4, Andrea M. Doglioli5, 
José María Gómez6, Anne A. Petrenko5 & Stefano Allesina   7,8

Representing data as networks cuts across all sub-disciplines in ecology and evolutionary biology. 
Besides providing a compact representation of the interconnections between agents, network analysis 
allows the identification of especially important nodes, according to various metrics that often rely 
on the calculation of the shortest paths connecting any two nodes. While the interpretation of a 
shortest paths is straightforward in binary, unweighted networks, whenever weights are reported, the 
calculation could yield unexpected results. We analyzed 129 studies of ecological networks published in 
the last decade that use shortest paths, and discovered a methodological inaccuracy related to the edge 
weights used to calculate shortest paths (and related centrality measures), particularly in interaction 
networks. Specifically, 49% of the studies do not report sufficient information on the calculation to 
allow their replication, and 61% of the studies on weighted networks may contain errors in how shortest 
paths are calculated. Using toy models and empirical ecological data, we show how to transform the 
data prior to calculation and illustrate the pitfalls that need to be avoided. We conclude by proposing 
a five-point check-list to foster best-practices in the calculation and reporting of centrality measures in 
ecology and evolution studies.

The last two decades have witnessed an exponential increase in the use of graph analysis in ecological and con-
servation studies (see refs. 1,2 for recent introductions to network theory in ecology and evolution). Networks 
(graphs) represent agents as nodes linked by edges representing pairwise relationships. For instance, a food web 
can be represented as a network of species (nodes) and their feeding relationships (edges)3. Similarly, the spatial 
dynamics of a metapopulation can be analyzed by connecting the patches of suitable habitat (nodes) with edges 
measuring dispersal between patches4. Data might either simply report the presence/absence of an edge (binary, 
unweighted networks), or provide a strength for each edge (weighted networks). In turn, these weights can rep-
resent a variety of ecologically-relevant quantities, depending on the system being described. For instance, edge 
weights can quantify interaction frequency (e.g., visitation networks5), interaction strength (e.g., per-capita effect 
of one species on the growth rate of another3), carbon-flow between trophic levels6, genetic similarity7, niche 
overlap (e.g., number of shared resources between two species8), affinity9, dispersal probabilities (e.g., the rate at 
which individuals of a population move between patches10), cost of dispersal between patches (e.g., resistance11), 
etc.

Despite such large variety of ecological network representations, a common task is the identification of nodes 
of high importance, such as keystone species in a food web, patches acting as stepping stones in a dispersal net-
work, or genes with pleiotropic effects. The identification of important nodes is typically accomplished through 
centrality measures5,12. Many centrality measures has been proposed, each probing complementary aspects of 
node-to-node relationships13. For instance, Closeness centrality14,15 highlights nodes that are “near” to all other 
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nodes in the network in terms of average distance (calculated as number of edges) from all other nodes. Whenever 
the effects of a node on another weaken along the path16, then central nodes are those having the largest capac-
ity to influence the others. Consider however highly modular networks, in which tightly knit communities of 
nodes are loosely connected to one another; then, one may be interested in identifying nodes that act as bridges 
connecting the different communities, allowing for the spread of perturbations across the entire network. Stress 
centrality17, and Betweenness centrality15 serve this purpose. The choice of a centrality measure thus depends on 
the research question at hand, and on the characteristics of the data being analyzed. Different centrality measures 
have been used to identify keystone species in networks of biotic interactions5,18, to explore the robustness of 
metapopulations19, to describe connectivity patterns across fragmented habitats20, to explore social behavior and 
pathogen spread within populations21, and to provide a theoretical background to support decision-making in 
conservation planning and urban management11,22 (see Supporting Information for a complete list). Given the 
wide array of available techniques and the span of ecological applications, confusion may arise when performing 
and reporting centrality analysis. An understanding of how the calculations are performed, as well as a clear and 
sufficient reporting of the details of the analysis, are necessary in order to avoid misinterpretation of the results 
and ensure the reproducibility of published studies.

In particular, edge weights exert a substantial influence on all measures of centrality. Many centrality met-
rics rely on calculating the shortest path connecting any two nodes, and for weighted edges this translates into 
finding the path with the smallest sum of weights. Edge weights definition is crucial in all measures of centrality. 
When edge weights represent cost, resistance, or in general scale inversely to the strength of the relationship 
between two nodes, then the definition of “shortest” paths retains its simple interpretation. However, whenever 
edge weights are proportional to the strength of the relationship between two nodes (e.g., probability of dispersal, 
interaction frequency, contact rate, carbon flow, etc.), then minimizing the sum of edges along the path makes no 
sense: the data need to be transformed prior to the analysis, or one has to choose an appropriate method able to 
deal with this situation. This issue has been raised before23,24 and is widely acknowledged among studies describ-
ing community structure, where measures of network structure have been specifically developed to account for 
weighted edges25–27. However, our analysis of the literature suggests that this issue is not fully resolved, and that 
incorrect interpretations of centrality measures linger on, particularly among weighted networks.

Furthermore, most published studies do not report with sufficient detail the calculation of the node-to-node 
distance definition used in conjunction with the calculated centrality measures. Consequently, it is often impos-
sible to evaluate the correctness of the calculations. To quantify the extent of this problematic, we performed a 
systematic analysis of the ecological network literature. We selected all ecological studies from the Web of Science 
that use a network approach, by searching on topics TS = (network AND ecolog*), and limiting our search to 
Articles written in English in the science-related citation indexes (SCI-EXPANDED, CPCI-S, BKCI-S, ESCI) 
since 2006. We further added 22 records obtained from other sources. From the resulting list of articles, we 
refined our search to those mentioning “centrality”, and from this final list of 210 articles we selected studies that 
studied ecological communities using centrality metrics requiring the calculation of shortest paths, discarding 
purely methodological studies. Finally, armed with a list of 129 articles, we checked whether the analysis was 
reported with sufficient detail to determine whether the calculations were appropriate. In Fig. 1 we summarize 
this information with a frequency chart and in the Supporting Information we provide the full list of articles. 63 
articles (49%) did not report enough information on the calculation of centrality to allow their replication, six of 
which were unclear even whether edges were binary or weighted. Moreover, 61% of the studies using weighted 
edges may contain errors in how shortest path centralities are calculated, a figure that grows to 89% if we limit 
the analysis to the case of weighted interaction networks. Noticeably, 88% of the studies that correctly accounted 
for weighted edges in the calculation of shortest paths, considered networks in which weights are inversely pro-
portional to the strength of association – thus not requiring transformation. Furthermore, nine studies (eight of 
which examine interaction networks) calculated centrality using the binary version of the weighted data, without 
providing any justification for this methodological choice.

Interestingly, the choice of using binary or weighted networks has been previously discussed in trophic net-
works describing carbon flow between species or functional groups. Binarization of those weighted networks 
did not alter species trophic status as long as food chain metrics (such as trophic and omnivory level) were com-
puted28, but turned out to alter significantly centrality measures29. Food chain metrics describe carbon flow in lin-
ear or hierarchical structures, e.g. trophic position, flow diversity, but the transformation of carbon flow weights 
into distances required to compute centrality metrics are not explicated in this study. Nevertheless, trophic net-
works are most often analyzed in their binary form seeking for universal features relating degrees frequency dis-
tribution of degrees, average distance, clustering coefficient, and connectance30. Such metrics operate differently 
than shortest-path centralities, and are therefore out of the scope of this article.

The final goal of this study is to offer a precise and detailed protocol for the calculation of shortest path cen-
tralities in ecological networks. Given that the correct way to calculate shortest path-based centrality measures 
depends on the type of network considered (binary or weighted) and on the meaning of edge weights, we use sim-
ple examples as well as real data to show how different approaches can result in unreliable estimates of centrality. 
Finally, since most studies omit to report key aspects of the definition of the edge weights, we propose a simple 
checklist to foster best-practices in the calculation and reporting of shortest path-related centrality analysis.

The Shortest Path is Full of Pitfalls
In network analysis, the interaction between nodes can be thought of as a flow of information between the nodes 
that are linked by edges. The sequence of edges that information must cross in order to reach a specific node is 
called a path. It is generally assumed that the bulk of information between any two given nodes (among all the 
possible paths between these two nodes) passes through the shortest path connecting them (i.e., the one with 
“lowest weight”). However, it should be emphasized that while the concept of information flow is general, its 
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immanence can differ dramatically from case to case, depending on which network feature weights quantify. For 
reference, in Table 1 we list the principal types of networks and the proportionality of the edges to the information 
flow between nodes found in the ecological literature.

The interpretation of a shortest path as the path that funnels the bulk of information flow relies on it being the 
least weight path (i.e., the path of least resistance) between two nodes. Indeed, all the shortest path algorithms 
currently available31,32 and generally implemented in graph theory software (Table 2) seek to minimize the value 
of the path between two nodes calculated as the sum of the edge weights. The reason being that a minimization 
problem converges, while maximization can fail (see ref. 24 for a detailed explanation). Nevertheless, the identi-
fication of the shortest paths is far from trivial, as one must pay attention to what edge weights represent. That is, 
one must ensure that the edge weight is inversely proportional to the flow of information between the nodes. This 
condition is automatically fulfilled if the natural weight suggested by the network at study is already inversely pro-
portional to the information flow (e.g., resistance distance, dispersal time). However, when the weight is directly 
proportional to the information flow (e.g., interaction frequency, individual transfer, dispersal probability, path-
ogen transmission, energy transfer across food webs), it is necessary to transform the edge weight in order to cal-
culate the shortest paths, and the centrality measures that rely on them (Table 3). In particular, this is important 
when using user-friendly software packages that automate the calculation of centrality measures (Table 2).

Figure 1.  Summary of our literature analysis, detailing the number of studies by (a) edge weights, and (b) 
whether the information provided was sufficient or insufficient, and network type (as “landscape”, “interaction”, 
and “others”, which include social, co-occurrence, etc. networks). We only categorize as “correct” or as “wrong” 
studies on which we had enough information to support such a claim, and as “seems correct” and “seems 
wrong” studies on which the insufficient information available suggest that calculations are correct or wrong, 
respectively. Notice that (1) most of the correct or probably correct studies use unweighted edges (n = 52, 66%); 
(2) for all network types half of the studies do not report enough information to validate whether calculations 
were correct (n = 63, 49%); and that (3) numerous studies report unclear calculations (n = 19). Differences in 
the number of oversights in centrality calculations between weighted and landscape and interaction networks 
are probably due to the fact that in interaction networks weighted edges typically require transformation 
(see Table 1), whereas in landscape networks edge weights tend to be inversely proportional, requiring no 
transformation.

Network type Edge weight
Proportionality to 
information flow

Requires 
transformation

Example 
references

Landscape Cost-distance Inverse No 11,20

Dispersal probability Direct Yes 10,44

Dispersal time Inverse No 12

Exchange of individuals Direct Yes 45

Genetic similarity Direct Yes 46,47

Interaction Frequencies Direct Yes 48,49

Shared traits, affinity Direct Yes 50,51

Trophic (or energy) flow Direct Yes 52,53

Table 1.  Summary of different network types, describing the type of information flowing along edges and the 
consequences for weight transformation. Landscape networks are spatially-explicit, while interaction networks 
depict relationships among entities. Social networks are here included as interaction networks, where shared 
traits include shared interacting organisms, foraging time, etc. depicting social relationships or common 
characteristics.
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There is a wide range of functions that can accomplish this transformation. For example, if aij measures the 
flow of information between nodes i and j, the functions 1 − aij, exp(−aij), 1/aij, log(1/aij) and log(aij/(1 − aij)) are 
all found in the graph-theoretical literature32–35. Note that one must pay attention to the range of values that the 
edge weights can span, and to the values induced by the transformation – for example, one must avoid the use of 
negative edges (e.g., log transformation of values between 0 and 1), as these can greatly hamper the interpretation 
of the results. Finally, if the edge weights represent probabilities, one should account for the independence (or lack 
of independence) of the different edges.

Avoiding the pitfalls.  When computing any shortest path-related measure, various decisions need to be 
made, and the wrong decision could lead to unexpected results, as we will illustrate in the following examples. We 
focus on the effects on Betweenness (BC) and Closeness centralities (CC) as these are the most commonly used 
centrality measures. In Fig. 2 we summarize this decision process.

Binary or weighted?.  The first methodological choice when computing shortest paths is whether to con-
sider edge weights. Binary data can be highly informative: for example, it has been used to identify species fun-
damental niches36, and key species in pollination networks18. Nonetheless, studies must clearly state whether the 
analysis is performed on weighted or unweighted networks, and provide an ecological justification supporting 
either choice37. Seminal studies38 as well as recent ones10 analyzed unweighted versions of their data arguing 
that paths with fewer edges would inherently be stronger than those composed of multiple ones. In our analysis 
of the literature, we have found nine studies that, despite using weighted data for some calculations, revert to 
binary versions of the network for the calculation of centrality measures without providing a justification (Fig. 1). 
Indeed, note that unipartite projections of bipartite networks result in weighted networks even when the original 
network is binary. Seven articles out of nine use binary unipartite projections without any justification. Although 

Package References

igraph http://igraph.org/ 54

sna https://cran.r-project.org/web/packages/sna/index.html 55

tnet https://cran.r-project.org/web/packages/tnet/index.html 56

Pajek http://mrvar.fdv.uni-lj.si/pajek/ 57

Ucinet https://sites.google.com/site/ucinetsoftware/home 58

CONEFOR http://www.conefor.org/ 59

Graphab https://sourcesup.renater.fr/graphab/en/home.html 60

Table 2.  Analytical packages commonly used for the calculation of centrality in ecological studies and 
references for each package. Only tnet, sna and Ucinet packages caution in their documentation about edge 
transformations when calculating shortest paths. However, other analytical packages have functions based 
on these without warning about the potential need to perform edge transformations, e.g. bipartite uses tnet’s 
distance_w function to calculate weighted centrality.

Centrality 
Measure Definition Formula

Intended Network 
type Reference

Betweenness, BC
Quantifies the proportion of shortest paths g 
between any two nodes i, j, that pass through a 
focal node v.

=
∑ ≠ ≠BC v( ) i v j gij v

gij

( ) All types 15

Stress, SC
Measures the number of shortest paths g between 
any two nodes i, j, that pass through a focal node 
v.

= ∑ ≠ ≠SC v g v( ) ( )i v j ij
All types 17

Closeness, CC
Measures the average length of the shortest 
paths from a node v to all the other nodes in the 
network.

= −
∑

CC v( ) N

j gvj

1 All types 15

Integral Index of 
Connectivity, IIC

Measures the degree of connectivity of the 
entire landscape (of total area AL) through the 
calculation of the number of edges in the shortest 
path nlij between patches with area ai and aj.

=
∑ = ∑ = +( )IIC v( ) i

n
j
n aiaj nlij

AL

1 1 / 1
2

Binary landscape 
networks

61

Probability of 
Connectivity 
Index, PC

Quantifies the probability that two species 
randomly placed across a patchy landscape (of 
total area AL) fall into habitat patches ai and 
aj that are reachable from each other with a 
maximum connectivity probability pij, defined as 
the maximum product probability of all possible 
paths between patches i and j (including single-
step paths).

=
∑ = ∑ = 

PC v( ) i
n

j
n aiajpij
AL

1 1
2

Landscape networks 62

Table 3.  Measures of shortest path-related centrality measures commonly used in ecological network analysis. 
Notice that other common centrality measures are based on eigenvectors or dissimilarity scores instead of on 
the identification of shortest paths and are hence not considered in this work.
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calculations in these are technically correct, one must be aware that the calculation of shortest paths and related 
measures in binary and weighted versions of the same network can lead to dramatically different conclusions.

To see how discarding the edge weights can significantly change the results of network analysis, let us start 
with a highly idealized example. In Fig. 3a we show a network such that there are two possible paths between from 
Busan (South Korea) to Almería (Spain): one containing two edges (Busan-Chicago-Almería), and the other one 
three (Busan-Copenhagen-Marseille-Almería). If one considers only the binary data (implicitly assuming that the 
distance between any cities is the same), the shortest path from Busan to Almería would be crossing Chicago (one 
stopover vs. the two stopovers of the other possible path). However, if the distance between cities is considered, it 
can be easily seen that the path Busan-Copenhagen-Marseille-Almería is much shorter (~11000 vs. ~18000 Km).

For an ecologically relevant example, we constructed a connectivity matrix for a hypothetical bird species 
living between 500 and 2000 m above sea-level, and with a typical habitat size of about 15 km2. For this purpose, 
the Global Relief Database ETOPO139 data in the region we considered were coarse-grained to 15 km2 horizontal 
resolution, resulting in 787 habitat patches (Fig. 4a). Dispersal probability between patches was calculated as 
pij = exp (−α dij) following ref. 35, where dij is the geographical distance between the patches boundaries, and α is 
a parameter chosen to be 0.03 in order to have a (hypothetical) median dispersal distance of 100 km. This proba-
bility can be stored in a connectivity matrix (see Supporting Information, Fig. S1) and graph theory can be used to 
identify the habitat patches that have high Betweenness and Closeness centrality scores. Calculating BC and CC 
on binary and weighted versions of this dataset resulted in markedly different outcomes. None of the 20 habitat 
patches with highest BC and CC in the binary network (Fig. 4b,c) match the ones obtained from the analysis of 
the weighted network (Fig. 4d,e). Note that to calculate Betweenness and Closeness centralities in weighted data 
we first inverted the edge weights using log(1/pij) (see next section for a detailed explanation).

Modifying edge weights.  The next question one should answer when computing shortest paths is whether 
edge weights are inversely proportional to the information flow between the nodes in the network (Fig. 2). If 

Figure 2.  Scheme illustrating the step-by-step decision process for the calculation of shortest path-centrality 
measures in ecological networks and the 5-point guide of information require for good-practices.

https://doi.org/10.1038/s41598-019-54206-x
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this is the case, the shortest path between nodes can be calculated directly using the edge weights. If, on the 
other hand, edge weights are proportional to the flow of information, one must transform them before using 
shortest path algorithms. If one does not modify the edge weights, the shortest path algorithms will either fail 
(and identify the longest, rather than shortest path), or will be unable to identify a shortest path at all. We use the 
transformations 1/aij or log(1/aij) for the edges (although for this operation there are several alternative options 
reviewed below).

For example, let us consider a small network of four primates sharing a certain number of parasites (Fig. 5a). 
In order to detect the primate mediating the transmission of infectious diseases in this network, one could iden-
tify the primate displaying the largest number of parasites common to other primates – indicated by stronger 
edges. In this simple network it is easy to verify that most of the paths with the highest edge weight (largest num-
ber of shared parasites) pass through primate A. However, if BC and CC were calculated directly on unmodified 
edge weights, we would conclude that primate B is the key primate in this network (Fig. 5a). If, on the other hand, 
we transform edge weights using the function 1/aij, we correctly identify primate A as the primate with the highest 
BC and CC (Fig. 5b).

Using a real-world case, the impact of not reversing edge weights can be illustrated using the Global Mammal 
Parasites Database (GMPD, https://parasites.nunn.lab.org) containing data on 542 primate species and their 750 
parasites (ref. 40 and references therein). To identify the species mediating the transmission of parasites (similarly 
to ref. 41), a connectivity matrix linking primates that have been found to host the same parasite was built (see 
Supporting Information, Fig. S2). Edge weights were defined as the number of shared parasites between any two 
species. Therefore, edge weight is directly proportional to the relationship strength between two species and, 
as in the previous example, the quantity should be transformed before calculating the shortest paths. In Fig. 6a 
we show the lack of correlation between species rankings based on the centrality scores calculated on modified 
and unmodified edge weights. For this example, we use the inverse of the edge weights, e.g., 1/aij. Interestingly, 
the BC scores calculated using the modified edge weights highlight only few species, one of which has by far the 
highest BC score. Instead, if we directly use the unmodified values, several more species have comparable BC 
scores. This is not surprising if we consider that, when using the raw weights, shortest paths pass through weak 
connections, which are likely to be numerous. Differences in ranks are substantial. For instance, among the top 
ten high-Betweenness species identified using modified weights, only one is also among the high-Betweenness 
species identified using raw weights (see Supporting Information, Table S1).

Likewise, the results from the Closeness-based rankings (Fig. 6b) show that species rankings based on CC 
also differ significantly between modified and unmodified edge weights. The CC scores calculated on modified 
edge weights also support the importance of a handful of species (see Supporting Information, Table S1). Unlike 
with BC, nine of the top 10 high-Closeness species are the same ones when using the unmodified weights (also in 
Supporting Information) but the exact ranking differs between the two cases.

Other modifying functions.  Adding constants.  When edges are directly proportional to the information 
flow, it is frequent practice to make them inversely proportional by subtracting their value from a theoretical 

Figure 3.  Toy networks depicting two possible paths to arrive from the city of Busan to the city of Almería. 
Edges connecting the different cities quantify distance in Km (a), or using different measurements of the 
movement of researchers between these cities (b–d; see text for explanation).

https://doi.org/10.1038/s41598-019-54206-x
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maximum or some other meaningful constant32,35. For example, in the case of transfer probabilities (migration, 
mass, energy, networks), one could choose to subtract the edge weights aij from 1. However, the new edge weight 
1-aij biases the calculation of the shortest paths towards the path with the lowest number of edges (because prob-
abilities sum to one, nodes with many edges tend to have lower values).

 
 

 

Figure 4.  Land topography and ocean bathymetry (m) of the Italian region (data from the ETOPO1 Global 
Relief database; doi:10.7289/V5C8276M). A hypothetical bird species lives between 500 and 2000 m a.s.l., with a 
typical habitat size of about 15 km2 and a dispersal distance of 100 km. (a) Pixels in lighter tones denote patches 
of suitable habitat (colored in black in the following panels). After computing Betweenness (BC) and Closeness 
centrality (CC), we highlighted in red the 20 pixels with highest BC in the binary (b) and weighted network 
(c), and the 20 pixels with highest CC in the binary (d) and weighted network (e). Note the differences in the 
identification of the pixels between weighted and binary versions of the data.
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Again, we will use the simple toy matrix presented in Fig. 3, where we show a network connecting different 
cities. We then consider three different quantities to weight the edges that represent the movement of researchers 
between these cities. In the first case (Fig. 3b), edge weights quantify the number of researchers who moved from 
one site to another. In this case, the path sustaining the largest”flow of researchers” between Busan and Almería 
is the three-steps path Busan-Copenhagen-Marseille-Almería (30 vs 10). However, applying a shortest path algo-
rithm directly to this network would identify the two-step path as more important. One possible way to reverse 
the edge weight is to subtract the edge weights from a large (and in most instances arbitrary) constant C – de facto 
adding a constant to all edges. For example, if one chooses C = 100, now the largest edge weights (those repre-
senting largest flows) are the smallest and would hence be identified by the shortest-path centrality algorithm as 

Figure 5.  Toy network describing the social affinity between four primates. Edges quantify proportion of shared 
parasites. Drawings are public domain (https://commons.wikimedia.org/wiki/File:Primates-drawing.jpg).
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more central. However, one can easily verify that such a transformation did not change the fact that the two-step 
path is the shortest between Busan and Almería (190 vs 270). The reason is that adding a constant to all the edge 
weights biases the shortest paths algorithm towards paths with fewer edges.

In Fig. 3c we see that subtracting the edge weights from a theoretical maximum C (in the case of transfer 
probabilities of interaction frequencies, C = 1) makes the three-step path with higher information flow the short-
est path (3 × (1 − 0.9) vs 2 × (1 − 0.1)). However, this transformation does not work in all cases. In fact, if the 
edge weights, as frequently occurs in ecological studies, span different orders of magnitude (e.g., Fig. 3d), the 
three-step path will not be the shortest path anymore (3 × (1 − 10−3) vs 2 × (1 − 10−5)), as in Fig. 3b. Furthermore, 
we note that this type of transformation, even when it is likely to work, cannot be used for all the edge weights. 
For example, it cannot be used for probabilities, as the values of log(1-aij) are negative and, consequently, cannot 
be used to find shortest paths (see next section).

A real-world example of the effect of adding constants to the edge weights is provided in the Supporting 
Information (Figs. S3–5).

Negative weights and loops.  Another way to reverse the edge weights is to reverse the sign of the weights (i.e., 
using −aij). However, as shortest path algorithms seek to minimize the value of a path, they would keep looping 
closed paths (cycles) ad infinitum, without ever converging. It must be noted that there are alternative algorithms 
that can handle negative edges values (e.g., the Bellman-Ford-Moore algorithm42) cannot handle cycles. As cycles 
are essentially ubiquitous in ecological applications, edge weight transformations that result in negative values 
should therefore be avoided. As an example, consider a simple toy network depicting the carbon flow between 
different layers of a food chain (Fig. 7a). In this case, given that the flow of carbon is directly proportional to the 
strength of the connection between two layers of the food chain, we need to transform the weights. However, if 
one uses -aij (Fig. 7b), the shortest path algorithms would never converge, and would keep circling the loop. On 
the other hand, using another weight reversing function, such as 1/aij, would correctly identify the 2nd order con-
sumers as key species pivoting the carbon flow in this network example (Fig. 7c).

Independence of probabilities.  We should note an important aspect to consider when calculating the 
lengths of paths in networks: when edges represent probabilities, as for instance dispersal probabilities, we must 
question the independence of the edges in order to calculate meaningful values for the overall probability of the 
entire path. From a practical point of view, this means that when calculating the value of a path from node A to 
node C passing through node B (path ABC), we need to postulate that the path BC does not depend on the path 
used to reach B. When edges represent independent probabilities, the probability along a path containing multiple 
nodes is the product of the probabilities of all the paths linking the nodes. Interestingly, in the case of independent 
probability edges, converting edge weight aij into distance using log(1/aij) nicely transform probability product 
along multiple nodes path into distances addition along this path, conserving weights relative contribution to 
the path and avoiding weights distortion in shortest paths algorithm. Without that edge transformation, the path 
ABC will be the sum of the probabilities of paths AB and BC, resulting in the identification of most improbable 
paths as those more central (see ref. 24 for a detailed explanation, and Fig. S6 for an example using the ETOPO1 
dataset).

One or all shortest paths?.  In most networks, whether binary or weighted, there may be more than one 
shortest path connecting any two nodes. To account for this fact, an alternative definition of Betweenness central-
ity based on random walks43 and a generalization of node centrality that considers both edge weight and number 
when calculating centrality measures35 have been developed. Although the discussion of the pros and cons of the 

 

Figure 6.  Scatter plot showing species ranks based on Betweenness (a) and Closeness centrality (b) values 
calculated on untransformed and inversed edge weights.
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different formulations falls beyond the scope of this study, we encourage the reader to be aware that considering 
a single or all shortest paths may also introduce differences in the resulting centrality values, and the decision 
should hence also be reported. This is of particular importance when comparing centrality metrics with food 
chain length related metrics, where all paths may be considered.

Widening The Path
Network analysis has been developing quite independently in different branches of ecology. However, dissemina-
tion between ecological disciplines and reproduction of published studies are being hampered, at least partially, 
by the lack of transparency when describing the methodologies used. Establishing a protocol for the analysis and 
reporting of calculations would ease these obstacles, and boost the use of centrality metrics for unconventional 
uses. For example, in a species-interaction network (where species are typically considered closer if they inter-
act with higher frequencies), one could purposely choose to calculate shortest path-centrality measures without 
transforming the weights in order to study the effect of weak interactions across the network. For this reason, we 

Figure 7.  Toy network describing the carbon flow through a marine food web. Drawings by Siyavula Education 
under a CC BY 2.0 license (https://www.flickr.com/photos/121935927@N06/13578843423).
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urge all the researchers applying graph theory to ecological data to pay special attention when reporting their 
calculations, and, in particular, to provide a description of the network and edge weight they used.

Here, we provide a checklist of crucial methodological information that should always be reported (Fig. 2). 
Following this guide ensures the study reports sufficient information to allow reproducibility, a quick under-
standing of the methods by readers from other fields, and that the decision process prior calculations is done 
sequentially.

	(1)	 A clear definition of what nodes and edges represent. Nodes and edges depict different entities and relation-
ships in different ecological studies. Nodes may represent proteins, genes, individuals, populations, species, 
sites, etc., and edges may depict interactions of different kind, or movement measured in numerous ways. 
A clear definition of nodes and edges enables a faster and deeper understanding of the rationale and meth-
odology of the analysis by readers from different disciplines.

	(2)	 Are edges binary or weighted? If edges are weighted, one needs to report the proportionality of the edge 
weight to the information flow between the nodes in order to evaluate whether edges need to be modified. 
In particular, one should ensure that there is no contradiction between the weights of a network and the 
interpretation of shortest paths.

	(3)	 Report the eventual transformation applied to edge weight before the calculation of centrality measures. Fur-
thermore, carefully justify any conceptual reason to not transform edge weights, or to use the unweighted 
versions of weighted data. These decisions result in the identification of different central nodes or edges, 
and hence should be justified from an ecological perspective.

	(4)	 Report the formula used for the calculation of the centrality measure, and whether it considers all shortest 
paths or only one. To ensure reproducibility and a deeper understanding of what the results represent.

	(5)	 Report the full version of the software or package used for the calculation of centrality. To ensure reproduci-
bility and to account for potential future updates in the algorithms used by different packages.

Conclusions
Graph theory enables to achieve precious insights on ecological networks. For this reason, it has gained popu-
larity in ecology and has developed quite independently in different disciplines, becoming a routine analysis in 
ecological studies. Our analysis of the literature evidenced that this familiarity is however associated to a lack of 
methodological rigor in the published studies. Indeed, by reading the methodological sections of a large portion 
of the published studies, we were not able to clearly ascertain what edges represented when centrality measures 
calculations were carried out. The increasing popularity of packages for the analysis of ecological networks will 
only boost the use of tools and methodologies researchers may be unfamiliar with. Using both theoretical and 
real-world case studies we showed that oversights in the methods and calculations can lead to radically different 
results. Hence it is fundamental to establish a code of good practices that guides researchers through the calcula-
tions, while ensuring the correct calculation of metrics across fields, aiding understanding from other fields and 
the reproducibility of results. For that reason, in this article we provide an overview of different methods to mean-
ingfully calculate shortest paths and related centrality measures in ecological systems, and a checklist to ensure 
clear and sufficient reporting of such calculations. We hope that following the protocol we suggest will further 
increase the popularity of centrality measures in ecology, and, at the same time, guarantee the reproducibility of 
these studies.
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