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and Jean-Christophe Pesquet, Fellow, IEEE

Abstract—Underdetermined or ill-posed inverse problems re-
quire additional information for sound solutions with tractable
optimization algorithms. Sparsity yields consequent heuristics to
that matter, with numerous applications in signal restoration,
image recovery, or machine learning. Since the `0 count measure
is barely tractable, many statistical or learning approaches have
invested in computable proxies, such as the `1 norm. However,
the latter does not exhibit the desirable property of scale invari-
ance for sparse data. Generalizing the SOOT Euclidean/Taxicab
`1/`2 norm-ratio initially introduced for blind deconvolution,
we propose SPOQ, a family of smoothed scale-invariant penalty
functions. It consists of a Lipschitz-differentiable surrogate for
`p-over-`q quasi-norm/norm ratios with p ∈ ]0, 2[ and q ≥ 2.
This surrogate is embedded into a novel majorize-minimize
trust-region approach, generalizing the variable metric forward-
backward algorithm. For naturally sparse mass-spectrometry
signals, we show that SPOQ significantly outperforms `0, `1,
Cauchy, Welsch, and CEL0 penalties on several performance
measures. Guidelines on SPOQ hyperparameters tuning are also
provided, suggesting simple data-driven choices.

Index Terms—Inverse problems, majorize-minimize method,
mass spectrometry, nonconvex optimization, nonsmooth opti-
mization, norm ratio, quasinorm, sparsity.

I. INTRODUCTION AND BACKGROUND

A. On the role of sparsity measures in data science

The law of parsimony (or Occam’s razor1) is an important
heuristic principle and a guideline in history, social and empir-
ical sciences [1], [2]. In modern terms, a preference to simpler
models, when they possess — on observed phenomena — a
power of explanation comparable to more complex ones. In
statistical data processing, it can limit the degrees of freedom
for parametric models, reduce a search space, define stopping
criteria, bound filter support, simplify signals or images with
meaningful structures. For processes that inherently generate
sparse information (spiking neurons, chemical sensing), de-
graded by smoothing kernels and noise, sparsity may provide a
quantitative target on restored data. On partial observations, it
becomes a means to selecting one solution, among all potential
solutions that are consistent with observations.
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1Named after William of Ockham, stated as "Entities should not be multi-
plied without necessity" ("Non sunt multiplicanda entia sine necessitate").

A natural playground for sparsity, in discrete time series
analysis, is c00(R), the space of almost-zero real sequences,
which is closed under finite addition and convolution [3, p.
597], [4, Chapter 2]. Unless stated otherwise, in the following,
we consider sparse finite sequences (hence, in c00(R)), each
being associated with a vector x = (xn)1≤n≤N ∈ RN . The
cornerstone measure of parsimony is the count index,2 i.e. the
number of non-zero terms in x, denoted by `0(x). It is also
called cardinality function, numerosity measure, parsimony, or
sparsity. For p ∈ ]0,+∞[, we define `pp(x) =

∑N
n=1 |xn|p. It

is a norm for p ≥ 1. For quasinorms `p, p < 1, a weaker
triangle inequality holds: ‖x + y‖ ≤ K (‖x‖+ ‖y‖) with3

K ∈ [1,+∞[. The `p quasinorm (p < 1) is sometimes
called p-norm-like [5]. `0 is piecewise constant, nonsmooth
and nonconvex. It is often considered as unusable for data
optimization in large linear systems,4 since its leads to NP-hard
problems [6], [7]. Under drastic conditions, an `0-problem
can be solved exactly using a convex relation by surrogate
penalties, like the `1-norm [8]. In practice, such conditions
are rarely met, and the use of the `1-norm yields approxi-
mate solutions and becomes more heuristic [9]. Mixed-integer
programming reformulations using branch-and-bound methods
[10] are possible, albethey for relatively small-sized problems.

Norm- or quasinorm-based penalties have subsequently
played an important role in sparse data processing or par-
simonious modeling for high-dimension regression. Squared
Euclidean norm `22 possesses efficient implementations but
often heavily degrades data sharpness. As a data fidelity term,
the `22 cost function alone cannot address, at the same time,
residual noise properties and additional data assumptions. It
can be supplemented by various variational regularizations,
à la Tikhonov [11]. Those act on the composition of data
with a well-suited sparsifying operator, e.g. identity, gradi-
ents, higher-order derivatives, or wavelet frames [12]. The `22
penalty case corresponds to ridge regression [13]. In basis
pursuit [14] or lasso method (least absolute shrinkage and
selection operator [15]), the one-norm `1 or taxicab distance
is preferred, as it promotes a form of sparsity. Solutions to
the "`22 fidelity plus `1" regularization problem are related
to total variation regularization in image restoration [16].
It can be combined with higher-order derivatives for trend

2It is neither a norm nor a quasinorm. Its pseudonorm moniker depends on
the definition of the subhomogeneity axiom.

3The lowest K, modulus of concavity of the quasinorm, saturates to 1 for

norms. For 0 < p ≤ 1, `p(x + y) ≤ 2
1−p
p

(
`p(x) + `p(y)

)
.

4Other denominations are subset selection, minimum weight solution, sparse
null-space, or minimum set cover.
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filtering and source separation in analytical chemistry [17]. A
convex combination of ridge and lasso regularizations yields
the elastic net regularization [18], [19]. Other convex p-
norms (p ≥ 1) regularizations have been addressed, as in
bridge regression which interpolates between lasso and ridge
[20]. Expecting sparser solutions in practice, non-convex least-
squares plus `p (p < 1) problems have been addressed [21].
Although a priori appealing for sparse data restoration, such
problems retain NP-hard complexities [22]. Another caveat
to using the above norm/quasinorm penalties, as proxies
for reasonable approximations to `0, is their scale-variance:
norms and quasinorms satisfy the absolute homogeneity ax-
iom (`p(λx) = |λ|`p(x), for λ ∈ R). Either to copycat
the 0-degree homogeneity of `0, or to cope with scaling
ambiguity, scale-invariant contrast functions were suggested
[23]. The work [24] (SOOT: Smoothed One-Over-Two norm
ratio) also proposed an efficient optimization algorithm with
theoretically guaranteed convergence. We now investigate a
broader family of (quasi-)norm ratios `p(x)/`q(x) with couples
(p, q) ∈]0, 2[×[2,∞[, based on both their counting properties
and probabilistic interpretation.

First, we have equivalence relations in finite dimension:

`q(x) ≤ `p(x) ≤ `0(x)
1
p−

1
q `q(x) ≤ N

1
p−

1
q `q(x) (1)

with p ≤ q, from the standard power-mean inequality [25] im-
plying classical `p-space embeddings and generalized Rogers-
Hölder’s inequalities. The LHS in (1) is attained when x
realizes an instance of the most prototypical sparse signals
of c00(R), with only one non-zero component. The RHS is
reached by a maximally non-sparse x, where all the samples
are set to a non-zero constant. Thus, `p/`q quasinorm-ratios
provide interesting proxies for a sparseness measure of x, to
quantify how much the “action” or “energy” of a discrete
signal is concentrated into only a few of its components. They
are invariant under integer (circular) shift or sample shuffling
in the sequence, and under non-zero scale change (or 0-degree
homogeneity). Those ratios are sometimes termed pq-means.

B. Penalties with quasinorm and norm ratios

For every p ∈]0, 2[ and q ∈ [2,+∞[, we thus define:

(`p/`q(x))
p

=

N∑
n=1

(
|xn|q∑N

n′=1 |xn′ |q

)p/q
. (2)

Expounding the term, peered in Jensen’s inequalities [25],

pn =
|xn|q∑N

n′=1 |xn′ |q
(3)

as a discrete probability distribution, then `p/`q rewrites as an
increasing function (u→ u1/p) of a sum of concave functions
(u → up/q when p ≤ q) of probabilities. The minimization
of such an additive information cost function [26], [27], a
special case of Schur-concave functionals [28], [29], is used
for instance in best basis selection [30]. Thus, special cases
of `p/`q quasinorm ratios have served as sparsity-inducing
penalties in the long history of blind signal deconvolution or
image deblurring, as as stopping criteria (for instance in NMF,

non-negative matrix factorization [31]), measures of sparsity
satisfying a number of sound parsimony-prone axioms [32],
estimates for time-frequency spread or concentration [33]. The
`p quasinorm weighted by `2 is considered as a “possible
sparseness criterion” in [34] when scaled with the normalizing
factor N

1
p−

1
2 . It bears close connection with the kurtosis [35]

for centered distributions and central moments, widely used
in sparse sensory coding [36] or adaptive filtering [37].

The most frequent one with (p, q) = (1, 2) is used [38],
[24] as a surrogate to `0 [39], [40]. This ratio was used
to enhance lasso recovery on graphs [41]. Its early history
includes the "minimum entropy deconvolution” proposed in
[42], where the "varimax norm", akin to kurtosis (`4/`2)

4, is
maximized to yield visually simpler (spikier) signals. It was
inspired by simplicity measures proposed in factor analysis
[43], and meant to improve one of the earliest mentioned
`0 regularization [44] in seismic. The relationship with the
concept of entropy was explained later [45]. It was gen-
eralized to the so-called "variable norm deconvolution" by
maximizing (`q/`2)

q [46]. Note that techniques in [42], [46]
are relatively rudimentary. They aim at finding some inverse
filter that maximizes a given contrast. They do not explicitly
take into account noise statistics. Even more, the deconvolved
estimate is linearly obtained from observations, see [47] for an
overview. Recently, [48] uses `1/`∞ for sparse recovery, and
[49] `∞/`0 for cardinality-penalized clustering. The family
of entropy-based sparsity measures (`q/`1)

q
1−q [50] (termed

q-ratio sparsity level in [51]), extends a previous work on
squared `1/`2 ratios [52] for compressed sensing. Finally, [53]
proposes an extension of [38] to an `q/`2 ratio to discriminate
between sharp and blurry images, and [54], [55] use a norm
ratio for the purpose of impulsive signature enhancement in
sparse filtering, still without rigorous convergence proofs.

C. Contribution and outline

Our main contribution resides in providing a set of smooth-
enough surrogates to `0 with sufficient Lipschitz regularity.
The resulting penalties, called SPOQ (Smoothed p-Over-q),
extend the `1/`2 SOOT [24]. A novel trust-region algo-
rithm generalizes and improves the variable metric forward-
backward algorithm from [56]. Section I recalls the parsimony
role and introduces sparsity measures. Section II describes
the observation model and the proposed SPOQ quasinorm-
norm ratio regularization. We derive our trust-region mini-
mization algorithm and analyze its convergence in Section III.
Section IV illustrates the good performance of SPOQ regu-
larization in recovering "naturally sparse" mass spectrometry
signals, over a range of existing sparsity penalties.

II. PROPOSED FORMULATION

A. Sparse signal reconstruction

Let us consider the observation model

y = DDDx + b (4)

where y = (ym)1≤m≤M ∈ RM represents the degraded mea-
surements related to the original signal x = (xn)1≤n≤N ∈ RN
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through the observation matrix DDD ∈ RM×N . Hereabove,
b ∈ RM models additive acquisition noise. In this work, we
focus on the inverse problem aiming at recovering signal x
from y and DDD, under the assumption that the sought signal
is sparse, i.e., has few non-zero entries. A direct (pseudo)
inversion ofDDD generally yields poor-quality solutions, because
of noise and the ill-conditioning of DDD. More suitable is a
penalized approach, which defines an estimate x̂ ∈ RN of
x as a solution of the constrained minimization problem

minimize
x∈C

Φ(x) + Θ(x), (5)

where C is a non-empty convex and compact subset of RN .
Function Θ : RN →]−∞,+∞] is a data fidelity function mea-
suring the discrepancy between the observation and the model.
One can define Θ as the least-squares term ζ = ξ‖DDD · −y‖2
or adopt an interesting constrained formulation, by setting

(∀x ∈ RN ) Θ(x) = ιBy
ξ
(DDDx). (6)

Hereabove, ξ > 0 is a parameter depending on noise char-
acteristics, By

ξ is the Euclidean ball centered at y with radius
ξ, and ιS denotes the indicator function of a set S, equal to
zero for x ∈ S , and +∞ otherwise. Furthermore, function
Ψ : RN →] − ∞,+∞] is a regularization function used to
enforce desirable properties on the solution. The choice of Ψ is
essential for reaching satisfying results by promoting desirable
properties in the sought signal. When sparsity is expected, the
`1 norm is probably the most used regularization function. It
is a convex envelope proxy to `0, a key feature for deriving
efficient minimizations to solve (5). However, because it is not
scale invariant, the `1 penalty can lead to an under-estimation
bias of signal amplitudes, which is detrimental to the quality
of the solution. In this work, we propose a new regularization
strategy, relying on the `p/`q norm ratio, aiming at limiting
scale ambiguity in the estimation.

B. Proposed SPOQ penalty

Let p ∈ ]0, 2[ and q ∈ [2,+∞[. We first define two
smoothed approximations to `p and `q parametrized by con-
stants (α, η) ∈]0,+∞[2: for every x = (xn)1≤n≤N ∈ RN ,

`p,α(x) =

(
N∑
n=1

((
x2
n + α2

)p/2 − αp))1/p

(7)

and

`q,η(x) =

(
ηq +

N∑
n=1

|xn|q
)1/q

. (8)

Remark that the traditional p and q (quasi-)norms are recov-
ered for α = η = 0. Our Smoothed p-Over-q (SPOQ) penalty
is then defined as the following function:

Ψ(x) = log

(
(`pp,α(x) + βp)1/p

`q,η(x)

)
. (9)

Parameter β ∈]0,+∞[ is introduced to account for the fact that
the log function is not defined at 0. It is worth noting that the
proposed function (9) combines both the sparsity promotion

effect of the non-convex logarithmic loss [57], [58] and of
the `p/`q ratio. It generalizes the Euclidean/Taxicab Smoothed
One-Over-Two norm (SOOT) penalty [24], recovered for p =
1 and q = 2. Figure 1 illustrates the shape of the SPOQ penalty
in the case N = 2, for p = 1 and q = 2 (i.e., SOOT), and
p = 1/4 and q = 2, in comparison with `0 and `1. It is worth
noticing that, on the second row, the logarithm sharpens the
`1/`2 behavior toward `0. By choosing p = 1/4, SPOQ further
enhances the folds along the axes. As a result, the bottom-right
picture best mimics the top-left `0 representation.
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Figure 1. Sparsity-promoting penalties, scaled to [0, 1]. From top to bottom
and from left to right: `0, `1, smoothed `1/`2, SOOT, smoothed `p/`q and
SPOQ with (α, β, η) = (7× 10−7, 3× 10−3, 1× 10−1).

C. Mathematical properties

We present here several properties of the proposed SPOQ
penalty, that will be essential for deriving an efficient opti-
mization algorithm to solve Problem (5).

1) Gradient and Hessian: Let us express the gradient and
Hessian matrices of function Ψ at x ∈ RN :{

∇`qq,η(x) = q
(
sign(xn)|xn|q−1

)
1≤n≤N

∇2`qq,η(x) = q(q − 1) Diag
(
(|xn|q−2)1≤n≤N

) (10)

and
∇`pp,α(x) = p

(
xn(x2

n + α2)
p
2−1
)

1≤n≤N
∇2`pp,α(x) = p Diag

(
(
(
(p− 1)x2

n + α2
)

×(x2
n + α2)

p
2−2)1≤n≤N

)
,

(11)

with the notation sign(x) = 0 for x = 0, −1 for x < 0 and
+1 for x > 0. It is worth noting that one can decompose the
SPOQ penalty under the form

Ψ(x) = Ψ1(x)−Ψ2(x), (12)

by setting

Ψ1(x) =
1

p
log
(
`pp,α(x) + βp

)
, (13)

and
Ψ2(x) =

1

q
log
(
`qq,η(x)

)
. (14)
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Hence, ∇Ψ = ∇Ψ1−∇Ψ2, and ∇2Ψ = ∇2Ψ1−∇2Ψ2, with

∇Ψ1(x) =
1

p

∇`pp,α(x)

`pp,α(x) + βp
, (15)

∇Ψ2(x) =
1

q

∇`qq,η(x)

`qq,η(x)
, (16)

p∇2Ψ1(x) =
∇2`pp,α(x)

`pp,α(x) + βp
−
∇`pp,α(x)

(
∇`pp,α(x)

)>
(`pp,α(x) + βp)

2 , (17)

q∇2Ψ2(x) =
∇2`qq,η(x)

`qq,η(x)
−
∇`qq,η(x)

(
∇`qq,η(x)

)>
`2qq,η(x)

. (18)

From the above, we derive the following proposition, stating
that for suitable parameter choices, function Ψ has 000N , i.e. the
zero vector of dimension N , as a minimizer, which is desirable
for a sparsity promoting regularization function.

Proposition 1. Assume that either q = 2 and η2αp−2 > βp,
or q > 2. Then, ∇2Ψ(000N ) is a positive definite matrix and
000N is a local minimizer of Ψ. In addition, if

η2 ≥ β2 max

{
8α2−p

p(2 + p)β2−p ,
1

(2p/2 − 1)2/p

}
(19)

then 000N is a global minimizer of Ψ.

Proof: See Appendix A.
2) Majorization properties: We now gather in the following

proposition two properties that allow us to build quadratic
surrogates for Function (9).

Proposition 2. Let Ψ be defined by (9).
(i) Ψ is a L-Lipschitz differentiable function on RN , i.e, for

every (x, x′) ∈ (RN )2,

‖∇Ψ(x)−∇Ψ(x′)‖ ≤ L‖x− x′‖ (20)

where

L = p
αp−2

βp
+

p

2α2
max

{
1,
(Nαp
βp

)2}
+
q − 1

η2
. (21)

In particular,

Ψ(x′) ≤ Ψ(x) + (x′ − x)>∇Ψ(x) +
L

2
‖x′ − x‖2. (22)

(ii) For every ρ ∈ [0,+∞[, define the `q-ball complement:

Bq,ρ = {x = (xn)1≤n≤N ∈ RN |
N∑
n=1

|xn|q ≥ ρq}. (23)

Ψ admits a quadratic tangent majorant at every x ∈ Bq,ρ, i.e.

(∀ x′ ∈ Bq,ρ) Ψ(x′) ≤ Ψ(x) + (x′ − x)>∇Ψ(x)

+
1

2
(x′ − x)>AAAq,ρ(x)(x′ − x), (24)

where

AAAq,ρ(x) = χq,ρ IN

+
1

`pp,α(x) + βp
Diag

(
(x2
n + α2)p/2−1

)
1≤n≤N , (25)

with
χq,ρ =

q − 1

(ηq + ρq)2/q
. (26)

Moreover, for every x ∈ RN ,

χq,ρ IIIN ≤ AAAq,ρ(x) ≤ (χq,ρ + β−pαp−2)IIIN . (27)

Proof: See Appendix B.
Proposition 2(i) leads to a rather simple majorizing function

for Ψ, valid on the whole Euclidean space RN . This extends
our previous result established in [24] for the particular case
when p = 1 and q = 2. The majorization property presented
in Proposition 2(ii) only holds in the non-convex set Bq,ρ. By
limiting the size of the region where majorization is imposed,
one may expect more accurate approximations for Ψ. This
observation motivates the trust-region minimization algorithm
we will propose in the next section to solve Problem (5).

III. MINIMIZATION ALGORITHM

A. Preliminaries

We first introduce some key notation and concepts. Problem
(5) can be rewritten equivalently as:

minimize
x∈RN

Ω(x) (28)

where Ω = Ψ + Φ with Ψ defined in (9) and Φ = Θ + ιC . We
will assume that function Θ belongs to Γ0(RN ), the class of
convex lower semi-continuous functions. This is for instance
valid for the least-squares term as well as for function (6).
Note that the assumptions made on set C implies that Φ is
coercive and belongs to Γ0(RN ). The particular structure of
Ω, summing a Lipschitz differentiable function Ψ and the non-
necessarily smooth convex term Φ suits it well to the class
of variable metric forward-backward (VMFB) optimization
methods [59], [60], [56], [61]. In such methods, one alternates
gradient steps on Ψ and proximity steps on Φ, preconditioned
by a specific sequence of metric matrices. Let us recall that,
for Φ ∈ Γ0(RN ), and for a symmetric positive definite (SPD)
matrix AAA ∈ RN×N , the proximity operator of Φ at x ∈ RN
relative to the metric AAA is defined as

proxAAA,Φ(x) = argmin
z∈RN

(
1

2
‖z− x‖2AAA + Φ(z)

)
(29)

with notation ‖u‖AAA =
√

u>AAAu for u ∈ RN . Then, the VMFB
method for solving Problem (28) reads, for every k ∈ N,

xk+1 = proxγ−1
k AAAk,Φ

(
xk − γk(AAAk)−1∇Ψ(xk)

)
, (30)

where x0 ∈ RN , and (γk)k∈N and (AAAk)k∈N are sequences
of positive stepsizes and SPD metrics, respectively, chosen in
such a way to guarantee the convergence of VMFB iterates to a
solution to Problem (5) [56]. Two main challenges arise, when
implementing the VMFB algorithm, namely (i) the choice for
the preconditioning matrices (AAAk)k∈N, and (ii) the evaluation
of the proximity operator involved in the update (30). In [56],
a novel methodology was proposed based on the choice of pre-
conditioning matrices satisfying a majorization condition for
Ψ. This methodology provides a practically efficient algorithm.
Furthermore, it allows to establish convergence in the case of
a non necessarily convex function Ψ, as soon as it satisfies the
so-called Kurdyka-Łojasewiecz inequality [62]. Convergence
also holds when the proximity update is subject to numerical
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errors. These advantages are particularly beneficial in our
context, as our SPOQ penalty Ψ is non-convex, and the
data fidelity term Φ may have a non closed form for its
proximity operator (for instance, in the case of (6)). As shown
in Proposition 2, function Ψ is Lipschitz differentiable and
thus a constant metric could be used in our implementation
of VMFB, then reduced to the standard forward-backward
(FB) scheme. However, FB algorithm sometimes exhibit poor
convergence speed performance. In particular, it is clear that
L — the Lipschitz constant defined in (21), albeit an upper
bound — can become very high for small parameters (α, β, η),
which is actually the case of interest as the only act as
smoothing constants for ensuring differentiability. As shown
in Proposition 2(ii), it is possible to build a more accurate
quadratic majorizing approximation on Ψ, whose curvature de-
pends on the point it is calculated. However, the majorization
in that case holds only on a subset of RN . We extend [56]
with a trust-region scheme in order to use local majorizing
metrics. Without deteriorating the convergence guarantees of
the original method, this gives rise to a novel preconditioned
proximal gradient scheme adapted at each iteration.

B. Proposed algorithm

arg1, for solving Problem (28). At each iteration k ∈ N,
we will make B ≥ 1 trials of values (ρk,i)k∈N,1≤i≤B for the
trust-region radius. For each tested radius ρk,i ≥ 0, a VMFB
update zk,i is computed within the majorizing metricAAAq,ρk,i at
xk, defined in Proposition 2(ii). Then, a test is performed for
checking whether the update does belong to the region Bq,ρk,i .
If not, the region size is reduced with a factor θ ∈]0, 1[, and a
new VMFB step is performed. The trust-region loop stops as
soon as zk,i ∈ Bq,ρk,i . Note that, for the last trial, i.e. i = B,
a radius equal to 0 is tested, which allows us to guarantee the
well-definiteness of our method. More precisely, this leads to
the following sequence, for the radius values:

ρk,i =


∑N
n=1 |xn,k|q if i = 1

θρk,i−1 if 2 ≤ i ≤ B − 1

0 if i = B.

(31)

Let us remark that xk ∈ Bq,ρk,1 and the following inclusion
holds by construction:

Bq,ρk,1 ⊂ Bq,ρk,2 · · · ⊂ Bq,ρk,B = RN . (32)

Algorithm 1 TR-VMFB algorithm

Initialize: x0 ∈ domΦ, B ∈ N∗, θ ∈]0, 1[, (γk)k∈N ∈]0,+∞[
For k = 0, 1, . . . :

For i = 1, . . . , B :
Set trust-region radius ρk,i using (31)
Construct AAAk,i = AAAq,ρk,i(xk) using (25)
zk,i = proxγ−1

k AAAk,i,Φ

(
xk − γk(AAAk,i)

−1∇Ψ(xk)
)

If zk,i ∈ Bq,ρk,i : Stop loop
xk+1 = zk,i

As already mentioned, the computation of the proximity
operator of Φ within a general SPD metric cannot usually be
performed in a closed form, and an inner solver is required. In
order to encompass this situation, we propose in Algorithm 2
an inexact form of our TR-VMFB method. The precision for
the computation of the proximity update is measured by means
of two inequalities, Alg. 2(a) and Alg. 2(b).

Algorithm 2 TR-VMFB algorithm — Inexact form

Initialize: x0 ∈ domΦ, B ∈ N∗, θ ∈]0, 1[, (γk)k∈N ∈]0,+∞[
For k = 0, 1, . . . :

For i = 1, . . . , B :

Set trust-region radius ρk,i using (31)
Construct AAAk,i = AAAq,ρk,i(xk) using (25)
Find zk,i ∈ RN such that
(a) Φ(zk,i) + (zk,i − xk)>∇Ψ(xk)

+γ−1
k ‖zk,i − xk‖2AAAk,i ≤ Φ(xk)

(b) ‖∇Ψ(xk) + rk,i‖ ≤ κ‖zk,i − xk‖AAAk,i
with rk,i ∈ ∂Φ(zk,i) and κ > 0

If zk,i ∈ Bq,ρk,i : Stop loop
xk+1 = zk,i

C. Convergence analysis

In this section, we show that Algorithm 1 can be viewed
as a special instance of Algorithm 2 provided that κ is
chosen large enough. Moreover, we establish a descent lemma
for Algorithm 2, that allows us to deduce its convergence
to a solution to Problem (28). We start with the following
assumptions on the sequences (γk)k∈N and (AAAk,i)k∈N,1≤i≤B ,
that are necessary for our convergence analysis:

Assumption 1.
(i) There exists (γ, γ) ∈]0,+∞[2 such that for every k ∈ N,
γ ≤ γk ≤ 2− γ.
(ii) There exists (ν, ν) ∈]0,+∞[2, such that, for every k ∈ N
and for every i ∈ {1, . . . , B}, νIIIN ≤ AAAk,i ≤ νIIIN .

Remark 1. By construction, iterates (xk)k∈N produced by
Algorithms 1 and 2, belong to the domain of Φ and therefore
to the set C. This implies that sequence (xk)k∈N is bounded,
so that there exists ρmax ≥ 0 such that, for every k ∈ N and
i ∈ {1, . . . , B}, we have ρk,i ≤ ρmax. Assumption 1(ii) thus
holds as a consequence of (27), by setting ν = χq,ρmax and
ν = χq,0 + β−pαp−2.

The following lemma establishes the link between Algo-
rithm 1 and its inexact form, Algorithm 2.

Lemma 1.
Under Assumption 1, for every i ∈ {1, . . . , B}, there exist
rk,i ∈ ∂Ψ(zk,i) such that conditions Alg. 2(a) and Alg. 2(b)
are fulfilled, with

zk,i = proxγ−1
k AAAk,i,Φ

(
xk − γk(AAAk,i)

−1∇Ψ(xk)
)

(33)

and κ ≥ γ−1
√
ν.
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Proof: Let k ∈ N and i ∈ {1, . . . , B}, and set zk,i as
in (33). Due to the variational definition of the proximity
operator, and the convexity of Φ, there exists rk,i ∈ ∂Φ(zk,i)
such that{

rk,i = −∇Ψ(xk) + γ−1
k AAAk,i(xk − zk,i)

(zk,i − xk)>rk,i ≥ Φ(zk,i)− Φ(xk).
(34)

Thus, zk,i satisfies:

Φ(zk,i) + (zk,i− xk)>∇Ψ(xk) + γ−1
k ‖zk,i− xk‖2AAAk,i ≤ Φ(xk)

(35)
Therefore, condition Alg. 2(a) holds. Moreover, using (34) and
Assumption 1,

‖rk,i +∇Ψ(xk)‖ = γ−1
k ‖AAAk,i(xk − zk,i)‖

≤ γ−1
√
ν‖xk − zk,i‖AAAk,i . (36)

Hence the condition Alg. 2(b) holds for κ ≥ γ−1
√
ν.

We now establish a descent property on the sequence
generated by our method.

Lemma 2.
Under Assumption 1, there exists µ ∈]0,+∞[ such that, for

every k ∈ N,

Ω(xk+1) ≤ Ω(xk)− µ

2
‖xk+1 − xk‖2 (37)

with (xk)k∈N defined in Algorithm 2.

Proof: We have

(∀k ∈ N) Ω(xk+1) = Ψ(xk+1) + Φ(xk+1) (38)

Under condition Alg. 2(a),

Φ(xk+1)+(xk+1−xk)>∇Ψ(xk)+γ−1
k ‖xk+1−xk‖2AAAk,i ≤ Φ(xk).

(39)
By construction, xk+1 ∈ Bq,ρk,i for some i ∈ {1, . . . , B}.
Moreover, xk ∈ Bq,ρk,1 ⊂ Bq,ρk,i . Therefore, by Proposition 2,

Ψ(xk+1) ≤ Ψ(xk)+(xk+1−xk)>∇Ψ(xk)+
1

2
‖xk+1−xk‖2AAAk,i .

(40)
Thus,

Ω(xk+1) ≤ Ψ(xk) + Φ(xk) +
1

2
‖xk+1 − xk‖2AAAk,i

− γ−1
k ‖xk+1 − xk‖2AAAk,i ,

≤ Ω(xk)− (γ−1
k −

1

2
)‖xk+1 − xk‖2AAAk,i . (41)

Consequently, using Assumption 1, we deduce (37) by taking
µ = νγ

2(2−γ) .

Theorem 1.
If Φ is a semi-algebraic function on RN and Assumption 1
holds, then the sequence (xk)k∈N generated by Algorithm 1
converges to a critical point x̂ of Ω.

Proof: Since C is compact, function Ω is coercive. More-
over, it belongs to an o-minimal structure including semi-
algebraic functions and logarithmic function, so that it satisfies
Kurdyka-Łojasiewicz inequality [62], [63]. Therefore, by using
Lemma 2, and [56, Theorem 4.1], we deduce that (xk)k∈N
converges to a critical point of Ω.

IV. APPLICATION TO MASS SPECTROMETRY PROCESSING

A. Problem statement

In this section, we illustrate the usefulness of the proposed
SPOQ regularizer in the context of mass spectrometry (MS)
data processing. MS is a fundamental technology of analytical
chemistry to identify, quantify, and extract important informa-
tion on molecules from pure samples and complex chemical
mixtures. Thanks to its high performance and capabilities, MS
is applied as a routine experimental procedure in several fields,
including clinical research [64], anti-doping and proteomics
[65], metabolomics [66], biomedical and biological analyses
[67], [68], diagnosis process, cancer and tumors profiling [69],
food contamination detection [70].

In an MS experiment, the raw signal arising from the
molecule ionization in an ion beam is measured as a function
of time via Fourier Transform. A spectral analysis step is then
performed leading to the so-called MS spectrum signal. It
presents a set of positive-valued peaks distributed according
to the charge state and the isotopic distribution of the studied
molecule, generating typical patterns. The observed signal
entails the determination of the most probable sample chemical
composition, through the determination of the monoisotopic
mass, charge state, and abundance of each present isotope.

In the particular context of proteomic analysis, the studied
chemical compound contains only molecules involving carbon,
hydrogen, oxygen, nitrogen, and sulfur. Thus, its isotopic pat-
tern at a given mass and charge state can be easily synthesized,
by making use of the so-called "averagine"5 model [71], [72].
Assuming that the charge state is known and mono-valued
(see [73] for the multi-charged case), we propose to express
the measured MS spectrum y ∈ RM as the sparse combination
of individual isotopic patterns, i.e.

y =

N∑
n=1

xnd(miso
n , z) + b (42)

where d(miso
n , z) ∈ [0,+∞[M represents the mass distribution

built with the "averagine" model at isotopic mass miso
n and

charge z, discretized on a grid of size M , and xn ≥ 0 the
associated weight. A non-zero value for entry xn corresponds
to the presence of monoisotope with mass miso

n . Moreover,
b ∈ RM models the acquisition noise and some possible
errors arising from the spectral analysis step. Let us form
a dictionary matrix DDD ∈ RM×N whose n-th column reads
d(miso

n , z). Then, the above observation model (42) reads as
(4), and the problem becomes the restoration of the sparse
positive-valued signal x, given y andDDD. We proposed in [73] a
restoration based on a penalized least squares problems with `1
prior and a primal-dual splitting minimization. In this section,
we show by means of several experiments the benefits obtained
by considering instead the proposed SPOQ penalty. We also
perform comparisons between SPOQ and various other non-
convex penalties.

5Determining an average amino acid from a statistical distribution.
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B. Simulated datasets and settings

Two synthetic signals A and B, with size N = 1000, are
used for the sought vector x, containing P randomly selected
nonzero components (P = 48 and P = 94, respectively).
In both examples, the mass axis contains N regularly spaced
values between mmin = 1000 Daltons and mmax = 1100
Daltons, and we set M = N . This allows us to generate the
associated dictionary DDD. The condition number of this matrix
is equal to 4 × 104. The observed vector y is then deduced
using Model (4), where the noise is assumed to be zero-mean
Gaussian, i.i.d with known standard deviation σ (chosen as a
given percentage of the MS spectrum maximal amplitude).

Figure 2 presents the sought isotopic distributions x
and an example of associated MS spectra, for dataset
A and B. In order to retrieve the original sparse sig-
nals, we will solve Problem (28) using Θ defined in
(6) and C = [0, xmax]N with xmax = 105. Concern-
ing the regularization function Ψ, we will make compar-
isons between the `1 norm, `0, the SPOQ penalty for
p ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1, 1.25, 1.5} and q ∈
{2, 3, 5, 10}, the Cauchy penalty Ψ(x) =

∑N
n=1 log(1 +

x2
n/δ

2) with δ > 0 [74, p. 111–112], the Welsch penalty
Ψ(x) =

∑N
n=1(1 − exp(−x2

n/δ
2)) with δ > 0 [75],

and the Continuous Exact `0 penalty (CEL0) Ψ(x) =∑N
n=1

(
δ − ‖dn‖

2

2

(
|xn| −

√
2δ
‖dn‖

)2

1{|xn|<
√

2δ
‖dn‖

}

)
where δ > 0

and dn is the n-th column of DDD [76], [77].6

The resolution of (28) is performed by using the primal-dual
splitting algorithm in [78], [79] in the case of `1 norm, `0 and
CEL0 penalties. For Cauchy and Welsch penalties, we use
the VMFB strategy, using the majorizing metrics described
in [56]. Finally, in the case of SPOQ, we run our trust-
region VMFB method, where we set θ = 0.5, B = 10, and
γk ≡ 1.9. The proximity operator of Φ within the metric is
computed by using the parallel proximal splitting algorithm
from [80], with a maximum number of 5 ·103 iterations. With
the exception of `1, all the tested penalization potentials are
non-convex and only convergence to a local minimum can
be guaranteed. In order to limit the sensitivity to spurious
local minima, we initialize the optimization method using 10
iterations of primal-dual splitting algorithm with `1 penalty.
All algorithms were run until the stopping criterion defined as
‖xk+1− xk‖ ≤ ε‖xk‖ is satisfied (in our case, ε = 10−4), and
a maximum of 103 iterations. The most difficult task in this
application is to estimate the support of the signal. Each of
the iterative approaches presented has been evaluated with this
regard. In order to avoid any bias in the estimation of the signal
values, the support estimation process has been followed by a
basic least squares step.

The considered non-convex regularizations depend on
smoothing parameters, namely δ for Cauchy, Welsch and
CEL0, and (α, β, η) for SPOQ. When not precised, hyper-
parameters were optimized with grid search to maximize the
signal-to-noise ratio (SNR) defined as

SNR(x, x̂) = 20 log10

(
‖x‖2
‖x− x̂‖2

)
(43)

6The characteristic function is defined as 1χ = 1 if χ holds, 0 otherwise.

where x̂ is the estimated signal and x the original one. More-
over, the bound ξ in (6) is set to

√
Nσ. A sensitivity analysis

is performed to assess the influence of these parameters on the
solution quality. For quantitative comparisons, we use the SNR
defined above, the thresholded SNR metric denoted TSNR,
defined as the SNR computed only on the support of the sought
sparse signal, and the sparsity degree given as the number of
entries of the restored signal greater (in absolute value) than
a given threshold (here we take 10−4). Figure 2 shows the
difficulty to distinguish the monoisotopic masses x from the
MS spectrum y, especially when different isotopic peaks are
present with different intensities in the same mass region.
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Figure 2. Original sparse signals and associated MS spectra for dataset A
(left, N = 1000, P = 48) and dataset B (right, N = 1000, P = 94), top:
synthetic data, bottom: noisy MS spectra (σ = 0.1% of the MS spectrum
maximal amplitude).

C. Numerical results

1) Comparison of sparse penalties: Tables I and II show
the quality reconstruction of signals A and B for different
regularization functions and two relative noise levels of the
MS spectrum maximal amplitude (0.1 % and 0.2 %), when
the SNR, TSNR and sparsity degree are averaged on 10
noise realizations. It appears that the SPOQ approach always
yields the best performance, for a suitable choice of p and
q. Moreover, its estimated sparsity degree is the closest to
the reference. One can notice that the quality degrades for
p > 1, especially for small values of q. A good compromise
seems reached for p ∈ {0.75, 1} and q ∈ {2, 3}. The `0,
`1 and CEL0 regularization functions ensure a good TSNR.
However, SPOQ shows its clear superiority, in terms of SNR,
as it is able to better estimate the sought support of the
signal. Finally, Cauchy and Welsch peform slightly below the
other regularization methods, possibly as a consequence of
the smoothing induced by parameter δ. These results prove
that SPOQ can be the most efficient sparse penalty for an
appropriate choice of p and q.

2) Advantage of trust-regions: Figure 3 shows the con-
vergence profile, in terms of SNR evolution, of the trust-
region VMFB algorithm (1), the VMFB algorithm and the FB
algorithm, to recover datasets A and B when p = 0.75 and
q = 2, for a given noise realization. Let us remind that VMFB
algorithm corresponds to (30). Here, we set AAAk = AAAq,0(xk)
and γk = 1.9 for every k ∈ N. FB algorithm is obtained by
setting AAAk = LIIIN and γk = 1.9 in (30), where L is the
Lipschitz constant given by (21). It is worth noting that our
trust-region VMFB algorithm converges much faster than the
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σ ≈ 0.081 (0.1% of the dataset A maximum amplitude)
`p/`q `0 `1

Cauchy Welsch CEL0

HHHp
q

2 3 5 10 δ = 100 δ = 2 δ = 0.5

SN
R

0.05 52.20 52.20 52.20 52.20

42.81 47.85 41.20 30.16 37.68

0.1 52.20 52.20 52.20 52.20

0.15 52.20 52.20 52.20 52.20

0.2 52.20 52.20 52.20 52.20

0.25 52.20 52.20 52.20 52.20

0.5 52.20 52.20 52.20 52.20

0.75 52.20 52.20 52.20 52.20

1 50.40 47.63 46.15 44.87

1.25 29.88 32.14 34.84 38.43

1.5 10.05 34.14 38.19 41.27

T
SN

R

0.05 52.20 52.20 52.20 52.20

47.82 49.87 44.95 42.13 46.57

0.1 52.20 52.20 52.20 52.20

0.15 52.20 52.20 52.20 52.20

0.2 52.20 52.20 52.20 52.20

0.25 52.20 52.20 52.20 52.20

0.5 52.20 52.20 52.20 52.20

0.75 52.20 52.20 52.20 52.20

1 51.18 49.70 48.90 47.85

1.25 38.85 40.81 42.73 44.16

1.5 35.81 41.22 43.47 45.40

Sp
ar

si
ty

0.05 48 48 48 48

236 77 248 545 435

0.1 48 48 48 48
0.15 48 48 48 48
0.2 48 48 48 48
0.25 48 48 48 48
0.5 48 48 48 48
0.75 48 48 48 48

1 49 59 76 109
1.25 502 457 381 318
1.5 904 396 309 267

σ ≈ 0.163 (0.2% of the dataset A maximum amplitude)
`p/`q `0 `1

Cauchy Welsch CEL0

HHHp
q

2 3 5 10 δ = 2 δ = 2 δ = 0.5

SN
R

0.05 31.83 31.18 32.78 37.23

36.78 41.84 32.33 25.19 26.98

0.1 31.83 31.18 34.38 38.64

0.15 31.83 31.18 37.23 38.66

0.2 31.84 31.18 38.64 38.66

0.25 31.85 31.18 38.64 38.66

0.5 33.45 38.66 39.99 39.99

0.75 39.66 39.68 40.02 40.02

1 42.72 40.32 40.06 38.70

1.25 25.78 24.18 27.99 31.82

1.5 −4.78 23.04 30.39 34.95

T
SN

R

0.05 34.48 33.32 34.69 38.51

41.79 43.83 37.15 37.34 41.13

0.1 34.48 33.32 36.08 39.74

0.15 34.48 33.32 38.51 39.75

0.2 34.44 33.32 39.74 39.75

0.25 34.44 33.32 39.74 39.75

0.5 35.83 39.75 40.86 40.86

0.75 40.65 40.65 40.86 40.85

1 43.91 42.68 42.82 41.76

1.25 34.18 33.44 36.40 38.10

1.5 28.95 33.96 36.65 39.32

Sp
ar

si
ty

0.05 59 49 49 48

236 75 310 496 513

0.1 59 49 48 48
0.15 59 49 48 48
0.2 59 49 48 48

0.25 59 49 48 48
0.5 59 48 48 48

0.75 48 48 48 49
1 51 64 75 118

1.25 386 511 410 330
1.5 957 480 345 273

Table I
DATASET A (N = 1000, P = 48): COMPARISON OF SNR, TSNR AND SPARSITY DEGREE VALUES AVERAGED ON 10 NOISE REALIZATIONS USING SPOQ

WITH DIFFERENT p ∈]0, 2[ AND q ∈ [2,+∞[ AND SOME OTHER REGULARIZATION FUNCTIONS.

σ ≈ 0.087 (0.1% of the dataset B maximum amplitude)
`p/`q `0 `1

Cauchy Welsch CEL0

HHHp
q

2 3 5 10 δ = 100 δ = 5 δ = 0.5

SN
R

0.05 51.78 51.78 51.78 51.78

42.70 45.39 39.96 37.22 39.17

0.1 51.78 51.78 51.78 51.78

0.15 51.78 51.78 51.78 51.78

0.2 51.78 51.78 51.78 51.78

0.25 51.78 51.78 51.78 51.78

0.5 51.78 51.78 51.78 51.78

0.75 51.78 51.78 51.78 51.78

1 47.82 46.08 44.13 44.35

1.25 32.21 31.50 34.90 38.64

1.5 10.25 16.71 36.46 40.36

T
SN

R

0.05 51.78 51.78 51.78 51.78

46.52 47.89 43.09 44.79 46.69

0.1 51.78 51.78 51.78 51.78

0.15 51.78 51.78 51.78 51.78

0.2 51.78 51.78 51.78 51.78

0.25 51.78 51.78 51.78 51.78

0.5 51.78 51.78 51.78 51.78

0.75 51.78 51.78 51.78 51.78

1 49.17 48.25 46.61 46.82

1.25 38.68 38.87 40.61 43.09

1.5 35.29 35.98 41.61 43.83

Sp
ar

si
ty

0.05 94 94 94 94

297 157 330 413 484

0.1 94 94 94 94
0.15 94 94 94 94
0.2 94 94 94 94
0.25 94 94 94 94
0.5 94 94 94 94
0.75 94 94 94 94

1 100 121 169 206
1.25 454 567 471 385
1.5 904 834 433 345

σ ≈ 0.174 (0.2% of the dataset B maximum amplitude)
`p/`q `0 `1

Cauchy Welsch CEL0

HHHp
q

2 3 5 10 δ = 90 δ = 5 δ = 0.5

SN
R

0.05 33.68 33.68 31.92 30.91

45.46 39.1028 31.64 29.1765 30.79

0.1 33.68 33.68 32.42 31.50

0.15 33.87 33.87 32.54 31.56

0.2 33.41 33.40 32.93 32.99

0.25 33.58 33.93 34.46 33.39

0.5 40.97 40.24 42.44 36.77

0.75 45.76 45.76 45.76 41.93

1 41.99 39.62 38.68 38.52

1.25 25.87 25.16 26.48 32.23

1.5 0.03 3.23 27.59 33.94

T
SN

R

0.05 35.39 35.39 33.49 32.62

45.46 41.55 34.82 37.68 41.54

0.1 35.39 35.39 33.58 32.87

0.15 35.65 35.65 33.48 32.93

0.2 35.01 35.00 33.98 34.18

0.25 35.27 35.51 35.13 34.54

0.5 41.81 40.64 42.65 38.04

0.75 45.76 45.76 45.76 42.66

1 43.09 41.76 41.29 41.01

1.25 32.35 32.66 33.63 36.90

1.5 28.86 29.60 33.90 37.67

Sp
ar

si
ty

0.05 95 95 94 94

94 155 330 472 531

0.1 95 95 94 94
0.15 95 95 94 94
0.2 94 94 94 93

0.25 94 94 93 93
0.5 94 94 94 94

0.75 94 94 94 94
1 97 124 176 208

1.25 439 559 534 397
1.5 955 893 513 355

Table II
DATASET B (N = 1000, P = 94): COMPARISON OF SNR, TSNR AND SPARSITY DEGREE VALUES AVERAGED ON 10 NOISE REALIZATIONS USING SPOQ

WITH DIFFERENT p ∈]0, 2[ AND q ∈ [2,+∞[ AND SOME OTHER REGULARIZATION FUNCTIONS.

two other variants, which behave here quite similarly. This
illustrates the advantage of our local preconditioning scheme.

3) Setting SPOQ parameters: In all our tests, the smoothing
parameter δ for Cauchy, Welsch and CEL0 penalties were
chosen empirically, so as to maximize the final SNR. Aside,
we provide a pairwise sensitivity analysis for the α, β and

η parameters (9) of SPOQ in Figure 4. We consider dataset
A, for the noise level 0.1 %, and the setting p = 0.75 and
q = 2 as it was observed to lead to the best results in this
case. One parameter being fixed, we cover a large span of
orders of magnitude for the two others (α ∈ [10−7, 102],
β ∈ [10−7, 102] and η ∈ [10−7, 102]). The first observation
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Figure 3. SNR evolution along time, for the proposed trust-region VMFB
algorithm 1, VMFB algorithm [56] and FB algorithm, to process datasets A
and B on a given noise realization (relative noise level: 0.1%).

is the layered structure of both figures. This is interpreted as
the notably weak interdependence of hyperparameters, which
is advantageous. Secondly, the horizontal red/dark red strip,
where the best SNR performance is attained, is relatively large,
spanning about one order in magnitude in the tuned parameter.
This suggests robustness, with tenuous performance variation
through mild parameter imprecision. Thirdly, α seems to have
little impact, especially when β and η are optimized. Note that
we did not display the variations for fixed α as we observed
that the SNR exhibits non-noticeable value variations. Param-
eter α essentially controls the L-Lipschitz value (21) and the
derivability of `p,α at 0 (see (7)).
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Figure 4. SNR computed for dataset A (N = 1000, P = 48) using SPOQ
regularization with different α, β and η parameters where p = 0.75 and
q = 2 (relative noise: 0.1%).

4) Noise level influence: Using different penalties (`0, `1,
Cauchy, Welsch, CEL0 and two instances of SPOQ), we
present SNR values obtained from datasets A and B recon-
struction at different noise levels. As expected, SNR for all
methods decreases as noise intensity increases. Let us remind
that the standard deviation σ in our case is expressed as a
percentage of the MS spectrum maximal amplitude. A noise
level greater than 0.1 % corresponds here to a quite high noise
level for our datasets, and obviously leads to a deterioration
of reconstruction quality. SPOQ proves its capability to ensure
the best quality reconstruction in comparison with others
penalties. The choice p = 0.75 and q = 2 shows its superiority
over SOOT (i.e. p = 1 and q = 2) for all tested noise levels.

5) Sparsity level influence: Our final test consists in eval-
uating the performance of SPOQ penalty for various spar-
sity degrees. To do so, we tried out different datasets with
a fixed size N = 1000 and different sparsity degrees
P ∈ {10, 20, 48, 94, 182, 256, 323, 388}, generated in a similar
fashion as in our datasets A and B. We make use of the SPOQ
penalty with p ∈ {0.25, 0.75, 1} and q = 2. Figure 6 presents
the evolution of estimated sparsity degree. As we can see, the
latter is well estimated when the signal presents a high sparsity
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Figure 5. Influence of noise level (σ expressed as a percentage of the MS
spectrum maximal amplitude) on quality reconstruction of datasets A (left)
and dataset B (right) using various penalties: SPOQ `3/4/`2, SPOQ `1/`2
(or SOOT), `0, `1, Cauchy, Welsch and CEL0 (SNR values averaged over
10 noise realizations).

level (Figure 6, case of p = 0.25 and q = 2, p = 0.75 and
q = 2). However as P increases, the reconstruction quality of
SPOQ where p = 1 and q = 2 (i.e., SOOT) tends to worsen.
This confirms the interesting flexibility of setting parameter p.
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Figure 6. Estimated sparsity degree for different sparse signals using SPOQ
on a single noise realization (relative noise: 0.1% (left) and 0.2% (right)).

V. CONCLUSION

SPOQ offers scale-invariant penalties, based on ratios of
smoothed quasinorms and norms. These surrogates to the `0
count index are non-convex, yet possess Lipschitz regularity,
that permits efficient optimization algorithms based on the
majorize-minimize methodology. In particular, we propose a
novel trust-region approach, that extends the variable metric
forward-backward algorithm. On sparse mass-spectrometry
peak signals, SPOQ outperforms other sparsity penalties for
various quality metrics. Moreover, once the norm exponents
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are chosen, smoothing hyperparameters are easy to set. Further
works include algorithmic acceleration and application to other
types of sparse data processing, such as image deconvolution.

APPENDIX A
PROOF OF PROPOSITION 1

First, we have ∇`pp,α(000N ) = ∇`qq,η(000N ) = 000N , so that 000N
is a critical point of Ψ. By using (17),

∇2Ψ1(000N ) =
αp−2

βp
IIIN , (44)

with IIIN identity matrix of RN . If q > 2, it follows from (18)
that

∇2Ψ2(000N ) =
1

q

(
q(q − 1) Diag ((0q−2)1≤n≤N )

ηq
− q

η2q
000N×N

)
= 000N×N , (45)

otherwise, if q = 2,

∇2Ψ2(000N ) =
1

2

(
2(2− 1) Diag ((00)1≤n≤N )

η2
− 2

η2q
000N×N

)
=

1

η2
IIIN (46)

since 00 = 1 by convention. Consequently

∇2Ψ2(000N ) =


1

η2
IIIN if q = 2,

000N×N elsewhere.
(47)

According to these results, we deduce that ∇2Ψ(000N ) is a
positive definite matrix if (q = 2 and η2αp−2 > βp) or if
q > 2. When these conditions are fulfilled, 000N is a local
minimizer of Ψ.

Let us now show that, under suitable assumptions,

(∀x ∈ RN) Ψ(x) ≥ Ψ(000N )

⇔
(`pp,α(x) + βp)1/p

`q,η(x)
≥ β

η
(48)

that is(
1 +

N∑
n=1

αp

βp

(( zn
α2

+ 1
)p/2 − 1

))2/p

≥

(
1 +

N∑
n=1

z
q/2
n

ηq

)2/q

(49)

by setting, for every n ∈ {1, . . . , N}, zn = x2
n. Let ε ∈

]0,+∞[. According to the second-order mean value theorem,

(∀υ ∈ [0, ε]) (υ + 1)p/2 − 1 ≥ pυ

2

(
1− 2− p

4
ε
)
. (50)

On the other hand, since υ 7→
(
(υ + 1)p/2 − 1

)
/υp/2 is an

increasing function on ]0,+∞[,

(∀υ ∈ [ε,+∞[) (υ+1)p/2−1 ≥ (ε+ 1)p/2 − 1

εp/2
υp/2. (51)

In the following, we will assume that ε < 4/(2− p). Let

I = {n ∈ {1, . . . , N} | zn < εα2} (52)

and let I = {1, . . . , N} \ I . Since 2/p > 1,(
1 +

N∑
n=1

αp

βp

(( zn
α2

+ 1
)p/2 − 1

))2/p

≥

(
1 +

∑
n∈I

αp

βp

(( zn
α2

+ 1
)p/2 − 1

))2/p

+

∑
n∈I

αp

βp

(( zn
α2

+ 1
)p/2 − 1

)2/p

≥ 1 +
∑
n∈I

pαp−2

2βp

(
1− 2− p

4
ε
)
zn

+

∑
n∈I

(ε+ 1)p/2 − 1

εp/2βp
zp/2n

2/p

. (53)

If

pαp−2

2βp

(
1− 2− p

4
ε
)
η2 ≥ 1 (54)(

(ε+ 1)p/2 − 1
)2/p

εβ2
η2 ≥ 1, (55)

then(
1 +

N∑
n=1

αp

βp

(( zn
α2

+ 1
)p/2 − 1

))2/p

≥ 1 +
∑
n∈I

zn
η2

+

∑
n∈I

z
p/2
n

ηp

2/p

. (56)

In addition, as p/2 < 1 ≤ q/2,(
1 +

∑
n∈I

zn
η2

)q/2
≥ 1 +

∑
n∈I

z
q/2
n

ηq
(57)

∑
n∈I

z
p/2
n

ηp

2/p

≥

∑
n∈I

z
q/2
n

ηq

2/q

, (58)

where the last inequality follows from (1). This yields(
1 +

N∑
n=1

αp

βp

(( zn
α2

+ 1
)p/2 − 1

))2/p

≥

(
1 +

∑
n∈I

z
q/2
n

ηq

)2/q

+

∑
n∈I

z
q/2
n

ηq

2/q

. (59)

We deduce Inequality (49) by applying the triangle inequality
for the `q/2 norm to the right-hand side of (59). The provided
condition in (19) corresponds to the choice ε = 1 in (54)-(55).

APPENDIX B
PROOF OF PROPOSITION 2

(i) Let us first show that Ψ is Lipschitz-differentiableby
investigating the properties of ∇2Ψ. We start by studying the
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behavior of |||∇2Ψ1(x)|||, where x ∈ RN and the spectral
norm is denoted by |||.|||. Using (11) and (17), we obtain

|||∇2Ψ1(x)||| ≤ |||Diag (Z)|||
`pp,α(x) + βp

+
p‖Y‖2

(`pp,α(x) + βp)
2 (60)

where we make use of the shorter notation:{
Y =

(
xn(x2

n + α2)
p
2−1
)

1≤n≤N
Z =

((
(p− 1)x2

n + α2
)

(x2
n + α2)

p
2−2
)

1≤n≤N
(61)

First, we have

|||Diag(Z)|||
`pp,α(x) + βp

=
1

`pp,α(x) + βp
(62)

× sup
1≤n≤N

(∣∣(p− 1)x2
n + α2

∣∣ (x2
n + α2)

p
2−2
)
. (63)

Since p < 2 and, for every n ∈ {1, . . . , N},

|(p− 1)x2
n + α2| ≤ x2

n + α2, (64)

we deduce that
|||Diag(Z)|||
`pp,α(x) + βp

=
1

`pp,α(x) + βp
sup

1≤n≤N
(x2
n + α2)

p
2−1

≤ p
αp−2

βp
. (65)

Besides, by setting ν =
∑N
n=1

(
x2
n + α2

)p/2
,

‖Y‖2

(`pp,α(x) + βp)
2 =

1

(`pp,α(x) + βp)
2

N∑
n=1

x2
n(x2

n + α2)p−2

≤ 1

(`pp,α(x) + βp)
2

N∑
n=1

x2
n

(x2
n + α2)2

(x2
n + α2)p

≤ 1

2α2 (`pp,α(x) + βp)
2

N∑
n=1

(x2
n + α2)p

≤ 1

2α2 (`pp,α(x) + βp)
2

( N∑
n=1

(x2
n + α2)p/2

)2

=
ν2

2α2(ν −Nαp + βp)2

=
1

2α2

(
1 +

Nαp − βp

ν −Nαp + βp

)2

≤ 1

2α2
max

{
1,
(Nαp
βp

)2}
. (66)

These results prove that ∇2Ψ1 is bounded
Let us now study the Hessian of Ψ2 at x ∈ RN . Let ε ∈

]0,+∞[, let

Λε =
∇2`qq,η(x) + q(q − 1)εIN

`qq,η(x)
, (67)

and let

∇2
εΨ2(x) =

1

q

(
Λε −

∇`qq,η(x)
(
∇`qq,η(x)

)>
`2qq,η(x)

)
(68)

By continuity,

lim
ε→0
|||∇2

εΨ2(x)||| = |||∇2Ψ2(x)||| (69)

On the other hand, since Λε is a positive definite matrix,

∇2
εΨ2(x) =

1

q
Λ1/2
ε (IN − vεv

>
ε )Λ1/2

ε (70)

where, by using (10),

vε

= Λ−1/2
ε

∇`qq,η(x)

`qq,η(x)

=

√
q

q − 1

1

`
q/2
q,η (x)

[ sign(x1)|x1|q−1√
|x1|q−2 + ε

, . . . ,
sign(xN )|xN |q−1√
|xN |q−2 + ε

]>
.

(71)

Therefore,

|||∇2
εΨ2(x)||| = |||1

q
Λ1/2
ε (IN − vεv

>
ε )Λ1/2

ε |||

≤ 1

q
|||Λε||| |||IN − vεv

>
ε |||. (72)

According to (67),

Λε =
q(q − 1)

`qq,η(x)
Diag

(
(|xn|q−2 + ε)1≤n≤N

)
. (73)

Consequently,

|||Λε||| =
q(q − 1)

`qq,η(x)
sup

1≤n≤N
(|xn|q−2 + ε). (74)

We thus derive from (72) that

|||∇2
εΨ2(x)||| = q − 1

`qq,η(x)
sup

1≤n≤N
(|xn|q−2 + ε)

×max{1, ‖vε‖2 − 1} (75)

As ε→ 0, (69) yields

|||∇2Ψ2(x)||| ≤ q − 1

`qq,η(x)
sup

1≤n≤N
|xn|q−2 max{1, ‖v‖2 − 1}

(76)
where, according to (71),

‖v‖2 = lim
ε→0
‖vε‖2 =

q

q − 1

∑N
n=1 |xn|q

`qq,η(x)
(77)

which is equivalent to

‖v‖2 − 1 =
1

q − 1

(
1− qηq

`qq,η(x)

)
(78)

Since
(

1− qηq

`qq,η(x)

)
< 1 and 1

q−1 < 1 for all q ∈ [2,+∞[, we
deduce that ‖v‖2 − 1 < 1. Resultingly,

|||∇2Ψ2(x)||| ≤ q − 1

`qq,η(x)
sup

1≤n≤N
|xn|q−2

=
q − 1

(ηq +
∑N
n=1 |xn|q)2/q

(
sup1≤n≤N |xn|q

ηq +
∑N
n=1 |xn|q

) q−2
q

≤ q − 1

(ηq +
∑N
n=1 |xn|q)2/q

(79)

≤ q − 1

η2
. (80)
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From the boundedness of ∇2Ψ1 and ∇2Ψ2, ∇2Ψ = ∇2Ψ1−
∇2Ψ2 is bounded, hence Ψ is a Lipschitz-differentiable and

|||∇2Ψ(x)||| = |||∇2Ψ1(x)−∇2Ψ2(x)|||
≤ |||∇2Ψ1(x)|||+ |||∇2Ψ2(x)|||. (81)

Using (65), (66), and (80), we conclude that

|||∇2Ψ(x)||| ≤ pα
p−2

βp
+

p

2α2
max

{
1,
(Nαp
βp

)2}
+
q − 1

η2
,

hence Ψ is Lipschitz differentiable with constant L as in (21).
(ii) Let us now prove that Ψ satisfies the majorization

inequality (24). By noticing that ξ 7→ (ξ+α2)p/2 is a concave
function, it follows from standard majorization properties [81]
that for every (x′, ex) ∈ (RN )2, and n ∈ {1, . . . , N}:

(x′2n + α2)p/2 ≤(x2
n + α2)p/2 + pxn(x2

n + α2)p/2−1(x′n − xn)

+
p

2
(x2
n + α2)p/2−1(x′n − xn)2. (82)

As a consequence,

`pp,α(x′) ≤ `pp,α(x)+(x′−x)>∇`pp,α(x)+
p

2
(x′−x)>AAA1(x)(x′−x)

where AAA1(x) = Diag
(

(x2
n + α2)p/2−1

)
1≤n≤N

)
. By using

the Napier inequality expressed as(
∀(u, v) ∈]0,+∞[2) log u ≤ log v +

u− v
v

, (83)

we get

Ψ1(x′) ≤Ψ1(x) + (x′ − x)>∇Ψ1(x)

+
1

2(`pp,α(x) + βp)
(x′ − x)>AAA1(x)(x′ − x). (84)

By applying the descent lemma to function −Ψ2, and using
(79) we obtain(
∀(x, x′) ∈ B2

q,ρ

)
−Ψ2(x′) ≤ −Ψ2(x)− (x′ − x)>∇Ψ2(x)

+
χq,ρ

2
‖x′ − x‖2. (85)

The majorization property is then derived from (84) and
(85). The inequality (27) can be deduced in a straightforward
manner, by noticing that both `pp,α(x) and (x2

n+α2)p/2−1 are
minimal for x = 000N .
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