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Sarah Ouadah1,∗, Stéphane Robin1, Pierre Latouche2

(1) UMR MIA-Paris, INRA, AgroParisTech, Université Paris-Saclay, 75005 Paris, France
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Abstract

The degrees are a classical and relevant way to study the topology of a network.
They can be used to assess the goodness-of-fit for a given random graph model. In
this paper we introduce goodness-of-fit tests for two classes of models. First, we
consider the case of independent graph models such as the heterogeneous Erdös-
Rényi model in which the edges have different connection probabilities. Second, we
consider a generic model for exchangeable random graphs called the W -graph. The
stochastic block model and the expected degree distribution model fall within this
framework. We prove the asymptotic normality of the degree mean square under
these independent and exchangeable models and derive formal tests. We study the
power of the proposed tests and we prove the asymptotic normality under specific
sparsity regimes. The tests are illustrated on real networks from social sciences and
ecology, and their performances are assessed via a simulation study.

Keywords: random graphs; graphon; goodness-of-fit; degree variance; W -graph.

1 Introduction

Interaction networks are used in many fields such as biology, sociology, ecology, economics
or energy to describe the interactions existing between a set of individuals or entities.
Formally, an interaction network can be viewed as a graph, the nodes of which being
the individuals, and an edge between two nodes being present if these two individuals
interact. Characterizing the general organization of such a network, namely its topology,
can help in understanding the behavior of the system as a whole.

In the last decades, the distribution of the degrees (i.e. the number of connections of
each node) has appeared as a simple and relevant way to study the topology of a network,
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see Snijders (1981) and Barabási and Albert (1999). The degree distribution can also
be used to infer complex graph models such as in Bickel et al. (2011). From a more
descriptive view-point, a very imbalanced distribution may reveal a network whose edges
highly concentrate around few nodes, whereas a multi-modal distribution may reveal the
existence of clusters of nodes as observed by Channarond et al. (2012). However, in
practice, assessing the significance of such patterns remains an open problem.
The variance of the degrees has been considered since the earliest statistical studies of
networks, for instance by Snijders (1981). The first idea was simply to compare its
empirical value to the expected one under a null random graph model, typically the
Erdös-Rényi (ER) model introduced by Erdös and Rényi (1959), where each degree has
a binomial distribution. Because the ER model is rarely a reasonable model to be tested,
we define a generalized version of the degree variance statistic, which we name the degree
mean square statistic. This statistic generalizes the degree variance in the sense that it
measures the discrepancy between the observed degrees and their expected values under
several heterogeneous models we define hereafter.
For a given random graph under a specific model M0, the degree mean square statistic is
defined by

Wθ0 =
1

n

∑
i

(Di − Eθ0Di)
2,

where Di stands for the degree of node i and Eθ0Di for its expected value under a given
model with parameter θ0. More specifically, in the following we will consider independent
models parametrized with a probability matrix p and exchangeable models parametrized
with a function Φ. Although these models not only differ in terms of parameter, for the
sake of clarity, the corresponding quantities will be simply indexed with p and Φ, respec-
tively. We propose goodness-of-fit tests for several random graph models, by showing the
asymptotic normality of this statistic Wθ0 under null hypothesis and their alternatives. In
addition, because large networks are often sparse, we study under which sparsity regime
the asymptotic distributions derived before still hold.

The notations and the main models considered are the following. We consider an
undirected graph G = ({1, . . . n}, E) with no self loop, that is the connection of a node
to itself, and denote Y the corresponding n× n adjacency matrix. Thus, the entry Yij of
Y is 1 if (i, j) ∈ E , and 0 otherwise. Because G is undirected with no self loop, we have
Yij = Yji,∀i 6= j and Yii = 0, for all i’s. We further define Di the degree of node i by
Di =

∑
j 6=i Yij. In terms of random graph models, we consider two cases: the independent

case and the exchangeable one. In the independent case, ER(p) refers to the Erdös-Rényi
model, according to which all edges (Yij) are independent Bernoulli variables with same
probability p to exist. HER(p) stands for the heterogeneous Erdös-Rényi model where
edges are independent with respective probability pij to exist. The n × n matrix p has
entries pij, it is symmetric with null diagonal. In the exchangeable case, we consider a
generic model for exchangeable random graphs called the W -graph introduced in Lovász
and Szegedy (2006) and Diaconis and Janson (2008). It is based on a graphon function
Φ : [0, 1]2 7→ [0, 1] and denoted by EG(Φ). An unobserved coordinate Ui ∼ U [0, 1] is
associated with each node i(1 ≤ i ≤ n) and edges are drawn independently conditional
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the Ui’s as Yij|Ui, Uj ∼ B[Φ(Ui, Uj)]. The stochastic block model (SBM, introduced by
Holland and Leinhardt (1979) and further studied by Nowicki and Snijders (2001), and
the expected degree distribution (EDD) model, defined by Chung and Lu (2002), fall
within this framework.

Goodness-of-fit tests of the models we consider have received little attention until
recently. Cerqueira et al. (2017) propose a goodness-of-fit test for the HER(p) model
andMaugis et al. (2017) for the EG(Φ) model, both when independent and identically
distributed (i.i.d.) copies of the graph are available. Lei (2016) and Bickel and Sarkar
(2016) derived goodness-of-fit tests for the number of communities in stochastic block
models by showing the asymptotic behavior of the largest singular value of a residual
adjacency matrix. Their respective null models are ER(p) in Bickel and Sarkar (2016)
and an SBM with K communities in Lei (2016). Yang et al. (2014) proposed a test statistic
for the goodness-of-fit of a given graphon function and used a Monte-Carlo sampling to
approximate its null distribution. More recently, Gao and Lafferty (2017b) proved the
asymptotic normality of subgraph counts to test the ER(p) model against an SBM.

The paper is organized as follows. Section 2 is devoted to independent graph models
and Section 3 to the the exchangeable ones. The performances of the proposed tests are
assessed via a simulation study in Section 4. More specifically, the asymptotic distribution
of the degree mean square statistic under models HER(p) and EG(Φ) is derived Sections
2.1 and 3.1, respectively. The asymptotic normality under some specific sparsity regimes
is studied in Sections 2.3 and 3.3. In Section 2.2, we establish a test for the null hypothesis
stating that G arises from HER(p0) and give its power. The last part of this section is
devoted to the illustration of the HER goodness-of-fit test on some examples. In the same
manner, Section 3.2 deals with the EG model and its extensions, meaning the SBM and
EDD model.

2 Independent random graph models

We consider the heterogeneous Erdös-Rényi model HER(p), in which the edges are in-
dependent and have different respective probabilities to exist: Yij ∼ B[pij].

The asymptotic framework is the following.

Assumption 1 In the non-sparse setting, we consider an infinite matrix P, the elements
of which are all in the interval [c, 1 − c] for some arbitrarily small constant c ∈ (0, 1/2).
For the HER model, then we build a sequence of matrices pn made of the first n rows and
columns of P. Finally, we consider a sequence of independent graphs Gn = ({1, . . . n}, En),
with increasing size n and respective probability matrices pn.

All quantities computed on Gn should therefore be indexed by n as well. But for the sake
of clarity, we will drop the index n in pn in the rest of the paper.
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2.1 Asymptotic normality

We consider a goodness-of-fit test for the HER(p0) model. For a given random graph
with a matrix p0 of connection probabilities, we consider the following degree mean square
statistic:

Wp0 =
1

n

∑
i

(Di − µ0
i )

2,

where Di =
∑

j 6=iYij and µ0
i stand for the expected degree of node i under HER(p0),

namely µ0
i =

∑
j 6=ip

0
ij.

We establish the asymptotic normality of Wp0 under model HER(p). The proof
relies on projections of Wp0 on suitable spaces and the Lindeberg-Lévy Theorem (see e.g.
Theorem 7.2, p.42 in Billingsley (1968)) which is recalled below. We derive all projections
involved in the Hoeffding decomposition (see, e.g., Chapter 11 in van der Vaart (1998))
to easily calculate the moments of Wp0 . As for the asymptotic normality, we decompose
Wp0 into the sum of its Hájek projection (see, e.g., Chapter 11 in van der Vaart (1998)) to
which we apply the Lindeberg-Lévy Theorem, and a negligible term. A similar strategy
has already been used for graph studies, for instance in Bloznelis (2005) to prove the
asymptotic normality of the variance degree under model ER(p) and in Nowicki and
Wierman (1988) to prove the one of subgraph counts in random graphs.

Theorem 1 (Lindeberg-Lévy Theorem in Billingsley (1968)) Let (Xnu)1≤u≤kn be
a triangular array of independent random variables with means 0 and finite variances
(σ2

nu)1≤u≤kn. Let B2
n =

∑kn
u=1 σ

2
nu. If the Lindeberg condition

A2
n(ε)/B2

n → 0, as n→∞, for each ε > 0, where A2
n(ε) =

kn∑
u=1

∫
{|xnu|>εBn}

x2
nudP (1)

is satisfied then

1

Bn

kn∑
u=1

Xnu
D−→ N (0, 1).

Remark 1 Let consider the case of binary random variables Xnu with mean 0. More
specifically, set Xnu = anuZnu, anu ∈ R, where Znu are centered Bernoulli variables, that
is to say Znu takes value 1 − pnu with probability pnu and value −pnu with probability
1 − pnu. Because |Xnu| ≤ anu, the realization of the event |Xnu| ≥ εBn in the definition
of A2

n(ε) in (1) is controlled by |anu| ≥ εBn. Therefore, all Xnu for which |anu| < εBn do
not contribute to A2

n(ε). If this holds for all Xnu, then the Lindeberg condition is directly
satisfied. If not, only the Xnu for which it does not hold have to be considered in the
calculation of A2

n(ε) and, because |Znu| ≤ 1, their contribution is upper-bounded by their
variance σ2

nu = a2
nupnu(1 − pnu). In the forthcoming theorems proofs, we will verify the

Lindeberg condition using this observation.
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Theorem 2 Under model HER(p) and Assumption 1, the statistic Wp0 is asymptotically
normal:

(Wp0 − EpWp0)/SpWp0
D−→ N (0, 1),

where S denotes the standard deviation and

EpWp0 =
2

n

( ∑
1≤i<j≤n

(σ2
ij + δ2

ij) +
∑

1≤i<j<k≤n

(δijδik + δijδjk + δikδjk)

)
, (2)

where σ2
ij = pij(1− pij) and δij = pij − p0

ij. Moreover

VpWp0 =
4

n2

( ∑
1≤i<j≤n

σ2
ij(1− 2pij + ∆i + ∆j)

2

+
∑

1≤i<j<k≤n

(
σ2
ijσ

2
ik + σ2

ijσ
2
jk + σ2

ikσ
2
jk

) )
, (3)

with ∆i =
∑

j 6=iδij.

Proof. Let us begin with the calculation of Wp0 moments. We first observe that,

nWp0 =
∑
i

(Di − µi + µi − µ0
i )

2 =
∑
i

(∑
j 6=i

Ỹij + δij

)2

= 2
∑

1≤i<j≤n

(Ỹij + δij)
2

+2
∑

1≤i<j<k≤n

(Ỹij + δij)(Ỹik + δik) + (Ỹij + δij)(Ỹjk + δjk) + (Ỹik + δik)(Ỹjk + δjk),

where Ỹij = Yij − pij and µi =
∑

j 6=ipij. Then, we write the Hoeffding decomposition of
Wp0 :

Wp0 = P∅Wp0 +
∑

1≤i<j≤n

P{ij}Wp0 +
∑

1≤i<j<k≤n

(
P{ij,ik}Wp0 + P{ij,jk}Wp0 + P{ik,kj}Wp0

)
, (4)

where

P∅Wp0 = EpWp0 ,

P{ij}Wp0 = Ep(Wp0|Yij)− EpWp0 ,

P{ij,ik}Wp0 = Ep(Wp0|Yij, Yik)− Ep(Wp0|Yij)− Ep(Wp0|Yik) + EpWp0 .

Combining the definitions above with the expression (4) of Wp0 , we obtain that,

P∅Wp0 =
2

n

∑
1≤i<j≤n

(σ2
ij + δ2

ij) +
2

n

∑
1≤i<j<k≤n

δijδik + δijδjk + δikδjk,

P{ij}Wp0 =
2

n
Ỹij (1 + ∆i + ∆j)− σ2

ij =
2

n
Ỹij (1− 2pij + (∆i + ∆j)) , (5)

P{ij,ik}Wp0 =
2

n
ỸijỸik. (6)
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Observe now that,

nEpWp0 = 2
∑

1≤i<j≤n

(σ2
ij + δ2

ij) + 2
∑

1≤i<j<k≤n

δijδik + δijδjk + δikδjk.

Because the Ỹij are independent with zero mean, the projections are all orthogonal with
each other, which gives

n2VpWp0 = n2
∑

1≤i<j≤n

Vp(P{ij}Wp0)

+n2
∑

1≤i<j<k≤n

(
Vp(P{ij,ik}Wp0) + Vp(P{ij,jk}Wp0) + Vp(P{ik,jk}Wp0)

)
= 4

∑
1≤i<j≤n

σ2
ij(1− 2pij + ∆i + ∆j)

2 + 4
∑

1≤i<j<k≤n

(
σ2
ijσ

2
ik + σ2

ijσ
2
jk + σ2

ikσ
2
jk

)
.

We now turn to the asymptotic normality of Wp0 . Let decompose Wp0 as follows.

Wp0 − EpWp0 = W ∗
p0 − EpWp0 +Wp0 −W ∗

p0 ,

where W ∗
p0 = P∅Wp0 +

∑
1≤i<j≤n P{ij}Wp0 is the Hájek projection of Wp0 , which cor-

responds to the first two terms of the Hoeffding’s decomposition. We will show that
W ∗

p0 − EpWp0 is asymptotically normal and that Wp0 −W ∗
p0 is a negligible term.

Let consider W ∗
p0 −EpWp0 =

∑
1≤i<j≤n P{ij}Wp0 and apply Theorem 1 to the projections

P{ij}Wp0 which stand for the Xnu. We first observe that these projections are each propor-

tional to the Ỹij which are all independent centered Bernoulli variables. We may now use
Remark 1. We denote the anu by an{ij}, the explicit expression of which is given in (5). We

observe that, under Assumption 1, an{ij} = Θ(1) and B2
n = Vp

(
W ∗

p0 − EpWp0

)
= Θ(n2).

It implies that the Lindeberg condition is fulfilled because, for any ε, each anu becomes
smaller than εBn when n goes to infinity. Now by considering (4) the Hoeffding decom-
position of Wp0 , we see that

Wp0 −W ∗
p0 =

∑
1≤i<j<k≤n

(
P{ij,ik}Wp0 + P{ij,jk}Wp0 + P{ik,kj}Wp0

)
.

Then we observe that an{ij,ik} given in (6) is Θ(n−1) and therefore that Vp

(
Wp0 −W ∗

p0

)
=

Θ(n). We conclude to the asymptotic normality of Wp0 by combining the one of W ∗
p0 −

EpWp0 and the fact that Vp

(
Wp0 −W ∗

p0

)
/VpW

∗
p0 → 0 as n→∞. �

Plug-in version of the test. In many situations, p0 is actually unknown and one needs
to resort to an estimate p̂0. There is no hope to get a precise estimate when n increases
if no restriction is imposed to p0. When a vector of covariates xij ∈ Rd is available for
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each pair of nodes, one natural way to impose such a restriction is to assume that p0
ij has

a logistic form, that is logit(p0
ij) = xᵀijβ, where β is the vector of regression coefficients

and logit(u) = log(u/(1− u)). A plug-in version of the proposed test can be obtained by

fitting the logistic model to the observed edges to get an estimate β̂, which provides us
with p̂0, which in turn provides us with a plug-in version Wp̂0 of the test statistic.
The simulation study presented in Section 4 shows that Wp̂0 behaves well for large graphs.
A possible strategy to understand the asymptotic behavior of Wp̂0 would be to control
the difference between Wp0 and Wp̂0 . Indeed, denoting µ̂0

i =
∑

j 6=i p̂
0
ij and ∆i = µ̂0

i − µ0
i ,

Wp̂0 can be decomposed as

Wp̂0 :=
1

n

∑
i

(
Di − µ̂0

i

)2
= Wp0 − 2

n

∑
i

(
Di − µ0

i

)
∆i +

1

n

∑
i

∆2
i . (7)

If the p̂0
ij result from a parametric estimation based on the O(n2) edges, we expect the

estimation error |p0
ij − p̂0

ij| to be OP (n−1), which makes the last term of (7) negligible.
Still, the joint dependence structure of the Di and ∆i is quite intricate, which makes the
control of the second term of (7) not straightforward. In Section 2.2, we present a specific
case where we prove the asymptotically normality of the plug-in version of the test.

Degree variance test

We consider the following statistic which is the empirical degree variance for the test of
H0 = ER versus H1 = HER(p).

V =
1

n

∑
i

(
Di −D

)2
,

where D = (1/n)
∑

j Dj. The variance of the degrees has been naturally considered earlier
in statistical studies of networks. Hagberg (2003) derives the exact moments of the degree
variance and suggests to use a Gamma distribution as in Hagberg (2000). Snijders (1981)
also gives the first two moments of the degree variance, but conditionally to the total
number of edges. To our knowledge the first and only proof of the asymptotic normality
of the degree variance under the ER model is given in a technical report from Bloznelis
(2005). Here, we establish the asymptotic normality of V under model HER(p) and
obtain the ER version as a consequence.

Corollary 1 Under model HER(p) and Assumption 1, the degree variance is asymptot-
ically normal:

(V − EpV ) /SpV
D−→ N (0, 1),

with

EpV =
2(n− 2)

n2

∑
1≤i<j≤n

pij +
2(n− 4)

n2

∑
1≤i<j<k≤n

{pijpik + pijpjk + pikpjk}

− 8

n2

∑
1≤i<j<k<l≤n

{pijpk` + pikpj` + pi`pjk} ,
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and

VpV =
1

4n4

∑
1≤i<j≤n

σ2
ij

4(n− 2) + 4(n− 4)
∑
k/∈(i,j)

(pi,k + pj,k)− 16
∑

k<l/∈(i,j)

pk`

2

+
1

n4

∑
1≤i<j<k≤n

4(n− 4)2
{
σ2
ijσ

2
ik + σ2

ijσ
2
jk + σ2

ikσ
2
jk

}
+

1

n4

∑
1≤i<j<k<l≤n

64
{
σ2
ijσ

2
k` + σ2

ikσ
2
j` + σ2

i`σ
2
jk

}
.

The proof follows the line of this of Theorem 2 and is given in Appendix A.1.
Note that the asymptotic normality of the degree variance under model ER(p) is a
straightforward application of Corollary 1 to the case where all pij are equal to p. We
have,

(V − EpV ) /SpV
D−→ N (0, 1),

where EpV = n−1(n− 1)(n− 2)pq and VpV = n−32(n− 1)(n− 2)2pq (1 + (n− 6)pq), as
given in Hagberg (2000).

2.2 Test and power

We now study the test of H0 = HER(p0) versus H1 = HER(p). The next Corollaries
provide the null distribution of the test statistic Wp0 and the power of the associate test.

Corollary 2 Under model HER(p0) and Assumption 1, the statistic Wp0 is asymptoti-
cally normal with moments:

Ep0Wp0 =
2

n

∑
1≤i<j≤n

σ0
ij

2
, (8)

Vp0Wp0 =
1

n2

(
4
∑

1≤i<j≤n

σ0
ij

2
(1− 2p0

ij)
2 +

∑
1≤i<j<k≤n

(
σ0
ij

2
σ0
ik

2
+ σ0

ij
2
σ0
jk

2
+ σ0

ik
2
σ0
jk

2
))

,

(9)

where σ0
ij

2
= p0

ij(1− p0
ij).

This is a direct consequence of Theorem 2 in the special case of the HER(p0) model
for which all δij’s are zero (δij = pij − p0

ij).
A formal test with asymptotic level α can be constructed based on Corollary 2, which

rejects H0 as soon as Wp0 exceeds Ep0Wp0 + t1−αSHER(p0)Wp0 , where t1−α stands for the
1 − α quantile of the standard Gaussian distribution. The power of this test is given by
the following Corollary.
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Corollary 3 The asymptotic power of the test for H0 = HER(p0) versus H1 = HER(p)
is

π(p) = 1− Φ ((Ep0Wp0 + t1−αSp0Wp0 − EpWp0) /SpWp0 ) , (10)

where Φ stands for the cumulative distribution function [cdf ] of the standard normal dis-
tribution and t1−α = Φ−1(1− α).

The following corollary gives a sufficient condition on the departure between p and p0

to ensure that the proposed test is asymptotically powerful.

Corollary 4 For probability matrices p0 and p, define

∆n(p0,p) := EpWp0 − Ep0Wp0

=
2

n

( ∑
1≤i<j≤n

δ2
ij +

∑
1≤i<j<k≤n

(δijδik + δijδjk + δikδjk) +
∑

1≤i<j≤n

(σ2
ij − σ0

ij
2
)

)
.

If ∆n(p0,p) = Θ(nα) is positive and α > 1/2, then under Assumption 1, the test H0 =
HER(p0) versus H1 = HER(p) is asymptotically powerful.

Proof. It is sufficient to prove that the argument of the cdf Φ in (10) tends to minus infinity
as n increases. From (3) and (9), we have that under Assumption 1, SpWp0 = Θ(n1/2)
and Sp0Wp0 = Θ(n1/2). As a consequence,when ∆n(p0,p) > 0 and α > 1/2, the negative
argument of Φ in (10) goes to infinity at rate nα−1/2, which concludes the proof. �

Note that, when ∆n(p0,p) < 0 the same corollary holds for the test which rejects H0

as soon as Wp0 < Ep0Wp0 + tαSHER(p0)Wp0 , where tα stands for the α quantile of the
standard Gaussian distribution.

Degree variance test

We now consider the use of the statistic V for the test of H0 = ER versus H1 = HER(p).
Because the probability is unknown in practice, we consider the following test statistic
using a plug-in version of the moments, namely

(V − Ep̂V ) /Sp̂V,

where p̂ = [n(n− 1)]−1
∑

i 6=jYij.
The asymptotic power π(p) = Pp{V > tα} of the considered test, with nominal level
α > 0, is

π(p) = 1− Φ ((Ep̄V + t1−αSp̄V − EpV ) /SpV ) ,

where p = [n(n − 1)]−1
∑

i 6=jpij. This results from the asymptotic normality of (V −
Ep̄V )/Sp̄V under the HER(p) model. Actually, the asymptotic distribution of the test
based on (V − Ep̄V )/Sp̄V is the same as the one of the test based on the statistic (V −
Ep̂V )/SER(p̂)V (see Lemma 2 in Appendix A.2), and we have shown that under model
ER, (V − Ep̂V )/SER(p̂)V is asymptotically normal (see Lemma 1 in Appendix A.2).
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Remark 2 The ER(p) model corresponds to HER(p0) where the matrix p0 has all en-
tries equal to p. In this case, the test statistic Wp0 can be viewed as the theoretical version
of the empirical variance statistic V studied in Section 2.1 as

Wp0 =
1

n

∑
i

(Di − (n− 1)p)2 .

Because as p̂ is an average over Θ(n2) edges, we have that (p̂−p)2 = ΘP (n−2) so Wp0−V =
(n− 1)2(p̂− p)2 = ΘP (1). Combined with arguments similar to these of Corollary 1 and
Lemma 2, this implies that, under the ER model, the tests based on V and Wp0 are
asymptotically equivalent.

Illustration

We illustrate the use of the proposed test on the following series of networks.

Karate network: it describes the friendships between a subset of n = 34 members of a
karate club at a university in the US, observed from 1970 to 1972 and was originally
studied by Zachary (1977). The network is made of four known groups characterized
by a node qualitative descriptor.

Ecological networks: this consists in two ecological networks first introduced in Vacher
et al. (2008) and further studied in Mariadassou et al. (2010). Each of these net-
works describe the interaction between a series of n = 51 trees and n = 154 fungi,
respectively. In the tree network, two trees interact if they share at least one com-
mon fungal parasite. As for the fungal network, two fungi are linked if they are
hosted by at least one common tree species. Three quantitative edge descriptors are
available characterizing the genetic, geographic, and taxonomic distances between
the tree species.

Political blogs network: this consists in a set of n = 196 French political blogs studied in
Latouche et al. (2011). Two blogs are connected if one contains an hyperlink to the
other.

Each node is associated with a political party from the left wing to the right wing
and the status of the writer is also given (political analyst or not).

CKM: this data set was created by Burt (1987) from the data originally collected by
Coleman et al. (1966). The network we considered characterizes the friendship
relationships among n = 219 physicians, each physician being asked to name three
friends.

The physicians were also asked to answer to a series of questions regarding their
profession, corresponding to node covariates. Note that we imputed the missing
values in the data set using the missMDA R package of Josse and Husson (2016).
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Faux Dixon High network: this network characterizes the (directed) friendship between
n = 248 students. It results from a simulation based upon an exponential random
graph model fit, see Handcock et al. (2008), to data from one school community
from the AdHealth Study, Wave I of Resnick et al. (1997).

Node covariates are provided, namely the grade, sex, and race of each student.

AdHealth 67: this data set is related to the Faux Dixon network described previously.
However, it was constructed from the original data of the AdHealth study, and not
simulated from any random graph model. The AdHealth study was conducted using
in-school questionnaires, from 1994 to 1995. Students were asked to designate their
friends and to answer to a series of questions. Results were collected in schools
from 84 communities. In our study, we considered a network associated to school
community 67 which characterizes the undirected friendship relationships between
n = 530 students.

Nodes covariates are the same as the one of the Faux Dixon network.

For some networks, only node descriptors xi and xj are available and building an edge
descriptor xij from node descriptors is not straightforward as depicted in Hunter et al.
(2008). In these examples, the node descriptors are all qualitative. For each category of
each node descriptor, we build binary edge descriptors indicating if both node belong to
the same category, or if at least one on the two belong to it. The precise definition of the
edge covariates for each dataset is explained in Latouche et al. (2018).

We fist applied the degree variance test to each of these networks to check if their
topology is similar to the one of an ER network. As expected, their topology are far too
heterogeneous to fit an ER(p) model, and the null hypothesis is rejected for each one of
them.
The question is then to know if the available covariates on edges are sufficient to explain
the heterogeneity of the network, at least in terms of degrees. To address this question,
for each network separately, we fitted a logistic regression model logit(p0

ij) = xᵀijβ, which
provided us with an estimate p̂0 of the connection probability matrix p0. We then applied
the degree mean square test to check if the considered covariates are sufficient to explain
the heterogeneity of the network.

The results given in Table 1 show the ability of the proposed test to detect a departure
from the degrees predicted by the covariates. Indeed, the null hypothesis is rejected for
all networks except for the CKM and Karate networks. As for the ecological networks,
these results are consistent with these from Mariadassou et al. (2010), who detected a
residual heterogeneity in the valued versions of these networks after correction for these
covariates.

2.3 Case of sparse graphs

We discuss the validity of Theorem 2 when considering sparse graphs. Sparsity can be
defined in two ways. Either each connection probability vanishes as n grows, or the frac-
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Table 1: Degree mean square HER test. TestStat = (Wp̂0 − Ep̂0)/Sp̂0 .
Network n mean(p̂0

ij) st-dev(p̂0
ij) Wp̂0 Ep̂0Wp̂0 Sp̂0Wp̂0 TestStat

Karate 34 0.135 0.149 3.84 3.22 0.88 0.71
Trees 51 0.553 0.2 140.23 10.66 2.11 61.55
Fungis 154 0.226 0.021 592.12 26.82 3.06 184.55
Blogs 196 0.075 0.112 84.82 11.05 1.2 61.5
CKM 219 0.015 0.035 3.16 3 0.32 0.5
Faux Dixon 248 0.02 0.037 11.34 4.41 0.43 16.05
AdHealth 530 0.007 0.008 8.77 3.43 0.24 22.27

tion of non-zero connection probabilities decreases as n grows. The following Proposition
deals with a combination of both scenarios.

Proposition 1 Consider the HER(p) model, when pij = p∗ijn
−a, a > 0, p∗ij following

Assumption 1 and a fraction 1 − n−b, b ≥ 0, of pij’s is set to zero. The p0
ij’s satisfy the

same assumptions. Then, provided that a + b < 2, the statistic Wp0 is asymptotically
normal.

Proof. We will show that W ∗
p0 − EpWp0 is asymptotically normal then that Wp0 −W ∗

p0

is a negligible term. The projections P{ij}Wp0 involved in W ∗
p0 − EpWp0 still stand for

the Xnu and an{ij} expressed in (5) stand for anu (notation of Remark 1). Since under
Assumption 1 ∆i = Θ(n1−a−b), we see that an{ij} = Θ(n−(a+b)) if a + b < 1 and Θ(n−1)
if a + b > 1. Therefore, we have VpP{ij}V = Θ

(
n−3a−2b

)
if a + b < 1 and Θ (n−a−2) if

a + b > 1. Combining this with the number of non-zero terms which equals Θ(n2−b), we
get that B2

n = Θ
(
n2−3(a+b)

)
if a + b < 1 and Θ

(
n−(a+b)

)
if a + b > 1. Comparing A2

n(ε)
with B2

n, we see that the Lindeberg condition is fulfilled for a+ b < 2.
Now we consider Wp0 −W ∗

p0 as the sum of the projections P{ij,ik}Wp0 . The an{ij,ik} given

in (6) equal Θ(n−1), thus VpP{ij,ik}Wp0 = Θ (n−2a−2). Since the number of non-zero terms

in the sum is Θ(n3−2b), we have therefore Vp

(
Wp0 −W ∗

p0

)
= Θ(n1−2(a+b)).

We conclude to the asymptotic normality of Wp0 by combining the one of W ∗
p0 − EpWp0

under condition a + b < 2 and the fact that Vp

(
Wp0 −W ∗

p0

)
/VpW

∗
p0 → 0 as n → ∞

under the same condition. �

Remark 3 The condition a + b < 2 ensures that, although the density of the graph goes
to zero, the number of edges still goes to infinity as n grows.

We now extend Corollary 1 for the degree variance to sparse graphs, considering a
setting similar to this of Proposition 1.

Corollary 5 Consider the HER(p) model, with exactly the same conditions as in Propo-
sition 1. Then, provided that a+ b < 2, the V statistic is asymptotically normal.

The proof follows the line of this of Proposition 1 and is given in Appendix A.3.
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3 Exchangeable random graph models

We consider EG(Φ) a generic model for exchangeable random graphs based on a graphon
function Φ : [0, 1]2 7→ [0, 1] and commonly called the W -graph introduced in Lovász and
Szegedy (2006) and Diaconis and Janson (2008). Under EG(Φ), a coordinate Ui ∼ U [0, 1]
is associated with each node i(1 ≤ i ≤ n) and edges are drawn independently conditional
the Ui’s as

Yij|Ui, Uj ∼ B[Φ(Ui, Uj)].

Many statistical models such as the expected degree-corrected SBM, see Dasgupta et al.
(2004); Karrer and Newman (2011), and the random Rash model, see Rasch (1960), fall
into this framework. In this paper, we focus on the stochastic block model (SBM) and
the expected degree distribution (EDD) model.

SBM. The SBM introduced in Holland and Leinhardt (1979) and Nowicki and Snijders
(2001) consists in a mixture model for random graph as pointed out by Daudin et al.
(2008), in which a discrete variable Zi ∈ {1, . . . K} is associated with each node and
edges are drawn conditionally as Yij|Zi, Zj ∼ B[πZi,Zj

], where [πk`]k,` stands for
the so-called connectivity matrix. Indeed, SBM corresponds to a W -graph with
block-wise constant graphon function, see Latouche and Robin (2016).

EDD. The EDD model is an exchangeable version of the expected degree sequence model
studied in Chung and Lu (2002) and of the configuration model from Newman
(2003). Under these two models, the degree of each node is fixed which makes them
non exchangeable. Under the EDD, an expected degree Ki (not necessarily integer)
is first drawn independently and identically for each node from some distribution
G and the edges are drawn independently conditional on the Ki as Yij|Ki, Kj ∼
B[KiKj/κ], so E(Di|Ki) ∝ Ki. EDD corresponds to a W -graph with product-
form graphon function: Φ(u, v) = g(u)g(v), taking g(u) = G−1(u)/

√
κ. Young and

Scheinerman (2007) consider a specific case of this model.

3.1 Asymptotic normality

We propose a goodness-of-fit test for the W -graph model. For a given graphon Φ0, we
consider the following degree mean square statistic.

WΦ0 =
1

n

∑
i

(Di − (n− 1)φ0
1)2,

where φ0
1 stands for the marginal probability for any given edge to exist, namely φ0

1 =∫ ∫
Φ0(u, v)dudv. We establish the asymptotic normality of WΦ0 under model EG(Φ).

The proof relies on a central limit theorem for acyclic patterns from Bickel et al. (2011),
which is recalled hereafter.

Let us consider a fixed pattern R (i.e. a given graph as displayed in Figure 1) with m
nodes and set of edges ER. Let us consider a random graph GR with m nodes generated

13



by EG(Φ). We define P (R) and its empirical version P̂ (R) computed on a graph G with
n nodes as follows.

P (R) = P (GR = R) , and P̂ (R) =

(
n

m

)−1

N(R)−1
∑
GS⊂G

1 (GS ∼ R) , (11)

where ∼ stands for the isomorphic relation and N(R) is the number of graphs isomorphic
to R. Let us denote φj the probability P of pattern Rj given in Figure 1 as defined in
Bickel et al. (2011): φj = P (Rj).

Figure 1: Definition of the patterns R1 to R10 involved in the calculation of the moment
of the W statistics.

Theorem 3 (Bickel et al. (2011)) Consider a set of fixed patterns R = (R1, . . . , Rk)

with respective sizes mj ≤ m and
∫ ∫

(Φ(u, v)/φ1)2|ERj
| dudv < ∞ (Φ = Φ(n) and φ1 =

φ1(n)). Suppose that (n− 1)φ1 is of order n1−2/p or higher. Then,

√
n
(

(P̃ (R1), . . . , P̃ (Rk))− (EP̃ (R1), . . . ,EP̃ (Rk))
)

D−→ N (0,ΣR),

where P̃ (Rj) = φ̂
−|ERj

|
1 P̂ (Rj) with φ̂1 =

∑
iDi/[n(n− 1)]. We further have φ̂1/φ1 →P 1.

Theorem 4 Under model EG(Φ), the statistic WΦ0 is asymptotically normal :

(WΦ0 − EΦWΦ0)/SΦWΦ0
D−→ N (0, 1),

with moments

EΦWΦ0 = n−1
{
n(n− 1)2(φ0

1)2 + [1− 2(n− 1)φ0
1]n1φ1 + n2φ2

}
, (12)

VΦWΦ0 = n−2

{
4[1− 2(n− 1)φ0

1]2
(
n1

2
φ1 + n2φ2 +

n3

4
φ2

1 −
n2

1

4
φ2

1

)
+8[1− 2(n− 1)φ0

1]
[n2

2
(2φ2 + φ3) +

n3

2
(φ5 + 2φ6) +

n4

2
φ1φ2 −

n1n2

4
φ1φ2

]
+4
[n2

6
(3φ2 + 6φ3) +

n3

2
(4φ4 + 2φ5 + 2φ6 + φ7)

+
n4

4
(4φ8 + φ9 + 4φ10) +

(
n5

5
− n2

2

4

)
φ2

2

]}
, (13)

where nj =
∏j

k=0(n− k) and φj = P (Rj) defined just above.
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Proof. The proof relies on the fact that the statistic WΦ0 is a linear combination of the
P̂ (Rj) of three particular patterns Rj to which we will apply Theorem 3. Let us begin
with the calculation of the moments of WΦ0 . First observe that,∑

i

[Di − (n− 1)φ0
1]2 = n(n− 1)2(φ0

1)2 + 2[1− 2(n− 1)φ0
1]
∑
i<j

Yij

+2
∑

1≤i<j<k≤n

YijYik + YjiYjk + YkiYkj

= n(n− 1)2(φ0
1)2 + 2[1− 2(n− 1)φ0

1]M1 + 2M2,

where
M1 =

∑
1≤i<j≤n

Yij, M2 =
∑

1≤i<j<k≤n

YijYik + YijYjk + YikYjk.

Then, we see that,

EΦM1 =
n1

2
φ1 and EΦM2 =

n2

2
φ2,

which gives EΦWΦ0 .
Next, we calculate the three forthcoming expectations (calculation details are given in
Appendix A.4):

EΦ(M2
1 ) =

n1

2
φ1 + n2φ2 +

1

4
n3(φ1)2,

EΦ(M1M2) =
n2

2
(2φ2 + φ3) +

n3

2
(φ5 + 2φ6) +

n4

4
φ1φ2

EΦ(M2
2 ) =

n2

6
(3φ2 + 6φ3) +

n3

2
(4φ4 + 2φ5 + 2φ6 + φ7) +

n4

4
(4φ8 + 4φ10 + φ9) +

n5

4
φ2

2,

which give VΦWΦ0 .
We now turn to the asymptotic normality of WΦ0 . By using definition (11) of P̂ and

the one of P̃ given in Theorem 3, we observe that,

nWΦ0 =
∑
i

[Di − (n− 1)φ0
1]2

= n(n− 1)2(φ0
1)2 + [1− 2(n− 1)φ0

1]
∑
j 6=i

Yij +
∑
k 6=j 6=i

YijYik(1− Yjk) +
∑
k 6=j 6=i

YijYikYjk

= n(n− 1)2(φ0
1)2 + [1− 2(n− 1)φ0

1]n1P̂ (R1) +
1

3
n2P̂ (R2) + n2P̂ (R3)

= n(n− 1)2(φ0
1)2 + [1− 2(n− 1)φ0

1]n1φ̂1P̃ (R1) +
1

3
n2φ̂1

2
P̃ (R2) + n2φ̂1

3
P̃ (R3),(14)

where R1, R2 and R3 are depicted in Figure 1. Thus we obtain the following linear
combination of P̃ (R1), P̃ (R2) and P̃ (R3) :

n−3/2
(
WΦ0 − (n− 1)2(φ0

1)2
)

= Θ(n1/2)× φ̂1P̃ (R1) + Θ(n1/2)× φ̂1

2
P̃ (R2)

+Θ(n1/2)× φ̂1

3
P̃ (R3). (15)
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Let us apply the asymptotic normality result of Theorem 3 to the right-hand side of
Equation (15). Since φ̂1 →P φ1 by Theorem 3, we conclude by the Slutsky’s lemma. Note

that condition
∫ ∫

(Φ(u, v)/φ1)2|ERj
| dudv <∞, j = 2, 3 is fulfilled because Φ ≤ 1 and φ1

are constants. �

Remark 4 The test statistics Wp0 in the independent case and WΦ0 in the exchangeable
case measure both the discrepancy between the observed degrees and their expected values
under specifics models. Let us stress that the latent layer in the exchangeable case implies
an additional variability of the degrees. The third term in Equation (15) is a consequence
of this additional variability.

Particular cases: SBM and EDD

Because SBM and EDD are special cases of the W -graph, all results above apply to
them. Interestingly, for both models, the critical calculation of coefficients φ1 to φ10 can
be achieved exactly. Indeed, the calculation of the first two moments of pattern counts
under SBM and EDD is explicitly addressed in Picard et al. (2008). In this reference, it
is already observed that patterns 4 to 10 from Figure 1 need to be considered as ’super-
patterns’ (or ’super-motifs’) of patterns 2 and 3 and that the variance of the count of a
given pattern depends on the expected frequency of its super-patterns.
The formula of φj for SBM is explicitly in Picard et al. (2008). Denoting αk the probability
for any given node to belong to group k (1 ≤ k ≤ K), we have that

φj = P (Rj) =
K∑
k1

· · ·
K∑
kpj

αk1 . . . αkpj

∏
1≤u<v≤pj

πm
j
uv

kukv

where pj stands for number of nodes in pattern Rj and mj
uv is 1 if nodes u and v are

connected in pattern Rj and 0 otherwise.
The EDD model is also studied in Picard et al. (2008) but needs to be adapted to the
W -graph framework. For φ(u, v) = g(u)g(v), we have that

φj =

pj∏
u=1

gdju , where gk =

∫ 1

0

gk(u)du

and dju stands for the degree of node u within the pattern Rj. Some examples are

φ1 = g2
1, φ2 = g2

1g2, φ3 = g3
2, φ4 = g1g

2
2g3, φ10 = g3

1g2g3.

Plug-in version of the test. In many situations, Φ0 is unknown and one needs to
resort to an estimate Φ̂0. The question is then to understand the asymptotic behaviour
of (WΦ̂0−EΦWΦ̂0)/SΦWΦ̂0 . A first strategy would consist in estimating Φ0 from the data.
Still, few results are available regarding the statistical properties of the graphon estimates.
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More recently, Gao and Lafferty (2017a) considered a simpler statistic, the moments of
which can be estimated via the empirical counts of the patterns R1, R2, R3 (see Figure 1).
They proved the asymptotic normality of its plug-in version in the degree-corrected SBM
model. In our case, this would require to establish asymptotic results about quantities
that combine patterns R1 to R10, in a particularly intricate manner.

3.2 Test and power

We now study the test of H0 = EG(Φ0) versus H1 = EG(Φ). The next Corollaries provide
the null distribution of the test statistic WΦ0 and the power of the associated test. They
are direct consequences of Theorem 4.

Corollary 6 Under the model based on Φ0 the statistic WΦ0 is asymptotically normal
with moments expressed as those of Theorem 4 with all φj replaced by φ0

j .

Recall that the particular terms δij = pij − p0
ij appear in the moments of Wp0 under

model HER(p) whereas it is not the case anymore under HER(p0) (see Theorem 2 and
Corollary 2 in sections 2.1 and 2.2). Notice that this simple measure of discrepancy
between two alternative models is not visible in the moments of WΦ0 but spread out all
differences between φj and φ0

j .
A formal test with asymptotic level α can be constructed based on Corollary 6, which

reject H0 as soon as WΦ0 exceeds EΦ0WΦ0 + t1−αSΦ0WΦ0 . The expression of its power
follows.

Corollary 7 The asymptotic power of the considered test is

π(p) = 1− Φ ((EΦ0WΦ0 + t1−αSΦ0WΦ0 − EΦWΦ0) /SΦWΦ0 ) . (16)

Remark 5 Let consider the test of H0 = ER versus H1 = EG(Φ). This simply corre-
sponds to the degree variance test based on the statistic V described in Section 2.2.

The following corollary gives a sufficient condition on the departure between Φ and
Φ0 to ensure that the proposed test is asymptotically powerful.

Corollary 8 For functions Φ0 and Φ, define

∆n(Φ0,Φ) := EΦWΦ0 − EΦ0WΦ0 = [1− 2(n− 1)φ0
1]n1(φ1 − φ0

1) + n2(φ2 − φ0
2).

If ∆n(Φ0,Φ) > 0, then the test H0 = EG(Φ0) versus H1 = EG(Φ) is asymptotically
powerful.

Proof. The proof follows the line of Corollary 4. The expression of ∆n(Φ0,Φ) comes
from (12). Because functions Φ and Φ0 are fixed, we have that ∆n(Φ0,Φ) = Θ(n3).
Furthermore, from (13), we have that SΦWΦ0 = Θ(n3/2) and SΦ0WΦ0 = Θ(n3/2). As a
consequence, if ∆n(Φ0,Φ) > 0, the negative argument of Φ in (10) goes to infinity at rate
n3/2, which concludes the proof. �
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Remark 6 In Corollary 8,
(i) the condition only depends on the relative frequencies of R1 and R2. If Φ and Φ0 have
the same φ1 and φ2 but differ in terms of, say φk (k > 2) the proposed test may no be
able to detect the discrepancy.
(ii) observe that, if the function Φ depends on n (and is denoted Φn), the asymptotic
power is still guaranteed as long as ∆n(Φ0,Φn) = Θ(nα) > 0 with α > 3/2.

Illustration

As an illustration of the proposed test, we consider the networks described in Section 2.2.
The question is to know if a fitted graphon is sufficient to explain the heterogeneity of a
network, at least in terms of degrees. To address this question, for each network sepa-
rately, we estimated a graphon function using the variational expectation maximization
of Daudin et al. (2008) to provide estimates of the SBM model parameters and build
the corresponding block-wise constant graphon function. The number of blocks was es-
timated using the model selection criterion considered in Daudin et al. (2008). This is
implemented in the package mixer (available on the https://cran.r-project.org/).
We then calculated the moments of the graphon and applied the degree mean square test
to check if the fitted graphon is sufficient to explain the heterogeneity of the network.
The results are given in Table 2.

Table 2: Degree mean square EG test for an SBM-graphon. TestStat = (WΦ̂0 − EΦ̂0)/SΦ̂0 .

Network n density K WΦ̂0 EΦ̂0 SΦ̂0 TestStat
Karate 34 0.139 4 14.6 15.57 6.16 -0.16
Tree 51 0.54 5 163.14 162.84 17.31 0.02
Fungi 154 0.227 15 597.6 584.42 116.63 0.11
Blog 196 0.075 11 104.72 92.77 25.89 0.46
CKM 219 0.015 3 3.9 4.04 0.76 -0.18
FauxDixon 248 0.02 5 16.78 11.97 1.94 2.48
AdHealth 530 0.007 4 10.7 7.54 1.42 2.22

Using the normal approximation for the distribution of WΦ̂0 under H0, the EG(Φ̂0)
model is rejected for two of these networks: FauxDixon and AdHealth. The highest test
statistic is observed for the FauxDixon network, which has actually been simulated under
a model that does not belong to the class of EG(Φ).

3.3 Case of sparse graphs

The following theorem discusses the validity of Theorem 4 when considering sparse graphs,
namely when φ1 = φ1(n) vanishes as n grows with a rate we specify.
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Proposition 2 Under the model based on the graphon Φ such that φ1 and φ0
1 are of order

n−2/3 or higher, if
∫∫

(Φ(u, v)/φ1(n))6 dudv <∞ then the statistic WΦ0 is asymptotically
normal.

Proof. We apply Theorem 3 to a function of WΦ0 which is a linear combination of P̃ (R1),
P̃ (R2) and P̃ (R3) involving the quantity φ̂1/φ1, where R1, R2 and R3 refer to the patterns
from Figure 1. Equations (14)–(15) state that

n−3/2
(
WΦ0 − (n− 1)2(φ0

1)2
)

= Θ(φ0
1φ1)×Θ(n1/2)× φ̂1

φ1

P̃ (R1)

+Θ(φ2
1)×Θ(n1/2)×

(
φ̂1

φ1

)2

P̃ (R2)

+Θ(φ3
1)×Θ(n1/2)×

(
φ̂1

φ1

)3

P̃ (R3).

The asymptotic normality of
√
n
(
P̃ (R1), P̃ (R2), P̃ (R3)

)
holds under conditions :∫ ∫

(Φ(u, v)/φ1)2|ERj
| dudv <∞ with |ERj

| ≤ 3 and φ1 being of order n−2/p or higher with
p = 3. Now, we observe that under the condition that φ1 and φ0

1 are of order n−α for
0 < α < 2/3,

n−3/2+2α
(
WΦ0 − (n− 1)2(φ0

1)2
)

= Θ(n1/2)× φ̂1

φ1

P̃ (R1) + Θ(n1/2)×

(
φ̂1

φ1

)2

P̃ (R2)

+Θ(n1/2−α)×

(
φ̂1

φ1

)3

P̃ (R3).

Since φ̂1/φ1 →P 1 by Theorem 3, we conclude by applying the asymptotic normality
result of the same theorem to the right-hand side of the equality above combined with
the Slutsky’s lemma. Note that the third term mentioned in Remark 4 is negligible. �

4 Simulation study

We designed a simulation study to assess the performance of the tests described above.
More specifically, our purpose is to evaluate the power of these tests for various graph
sizes and densities (mean connectivities). We also aim at illustrating for which graph size
the asymptotic normal approximation is accurate; we especially focus on this point in the
sparse regime.
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4.1 Simulation design

Design for the independent case. We designed our simulation so that to mimic the
situation where an heterogeneous model HER(p0) is considered, which still misses some
heterogeneity. More specifically, each node i was associated with a vector of covariates
xi ∈ Rd (all values were drawn i.i.d. with standard Gaussian distribution and d was set
to 3). Each edge (i, j) was then associated with the covariate vector xij =

√
π|xi − xj|/2

so that all xij are positive with mean 1. The edges were then drawn according a logistic
model: logit(pij) = a + xᵀijβ1 where βᵀ1 = [βᵀ0 β]ᵀ ∈ Rd, β0 ∈ Rd−1. The constant a was
set to preserve the mean connectivity, denoted ρ∗ in the sequel. The probability matrix
p0 = [p0

ij] of the null model was defined according to the same logistic model, removing

the last covariate, namely logit(p0
ij) = a0 + x0ᵀ

ij β0, where x0
ij is xij deprived from its last

coordinate. Hence, the discrepancy between the null hypothesis and the true model is
measured by the coefficient β of the last covariate. All β0’s were set to 1 except β which
ranged from 0 to 2. We also studied the behaviour of the plug-in version as defined in the
paragraph ’Plug-in version of the test’ at the end of Section 2.1.

Design for the exchangeable case. We designed a situation where a null block-wise
constant graphon Φ0, associated to a SBM model, is contaminated by an alternative
graphon of the form considered in Latouche and Robin (2016). Thus, graphs were sam-
pled from an EG(Φ) model where Φ(u, v) = Φ0(u, v)ρβ2uβ−1vβ−1. Note that Φ induces
a random graph model related to the degree corrected SBM model of Karrer and New-
man (2011) which has received strong attention in the last five years. This model, by
characterizing explicitly the degrees of the vertices, is often employed as an alternative
to the standard SBM model. Note however that in its original form the degree corrected
SBM model is not exchangeable since the degree parameters are fixed. Conversely, Φ
induces an exchangeable model here since the degree terms uβ−1 and vβ−1 are random.
For the null graphon Φ0, we considered a SBM with 2 blocks, with the same proportions.
Moreover, Φ0 was given a product form such that Φ0(u, v) = ηkη` if u and v are in blocks
k and `, respectively. We set η1 = 0.4 and η2 = 0.5. In this simulation framework, the
discrepancy between the null hypothesis and the true model is measured by the term β
which ranges from 1 to 2 and controls the imbalance of the expected degrees of the nodes.
The null graphon is retrieved when β = 1. Finally, the term ρ was set in order to obtain
the desired mean connectivity ρ∗.

Note that is both designs, the density of the network is kept constant equal to ρ∗ when
going away from the null model. Therefore, the departure from H0 detected by the tests
is not due to a mean degree difference. In both designs, β measures the departure from
the null model, although the its nominal values are not comparable from one design to
another. 1 000 simulations were ran for each combination of the parameters (n, ρ∗, β).

Sparse graphs. For both tests, we considered sparse graphs in the setting described in
Sections 2.3 and 3.3. We focused on the asymptotic normality of the degree mean square
statistic under the null hypothesis. To this aim, we designed a reference null probability
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matrix p0∗ and a reference null graphon Φ0∗ as described above. We then considered the
two sparsity scenarios:

• vanishing connection probabilities: p0
ij = p0∗

ij n
−a and Φ(u, v) = n−aΦ0∗(u, v);

• sparse connection probabilities: p0
ij = p0∗

ij with probability n−b and 0 otherwise.

The second scenario does not make sense for the EG(Φ) test. The mean connectivity
ρ∗ was set to 0.1. The density of the graphs therefore decrease as ρ∗n−a and ρ∗n−b,
respectively.

Criteria. For each parameter configuration, we computed the moments of the respec-
tive statistics and derived the theoretical power. Based on the replicates, we estimated
the empirical power, and its plug-in version in the independent case. For the sparse set-
ting, the proximity with the normal distribution was investigated plotting the empirical
quantiles versus the theoretical Gaussian quantiles (QQ-plots).

4.2 Results

Power and asymptotic normality. The power curves of the degree mean square
tests in the independent and exchangeable cases are given in s 2 and 3, respectively. As
expected, the power increases with the departure β, the graph size n and the network
density ρ∗. We remind that the departure parameter β can not be compared between
the two figures. The binomial confidence interval around the theoretical power informs
us about the convergence to the asymptotic normality. We observe that the empirical
power (dots) falls within this interval showing that the normal approximation is accurate
for reasonably large (n > 100) graphs. This does not hold for the empirical version of
the HER test (triangles), which suggests that the cumulative effect of all the estimation
errors |p̂0

ij − p0
ij| on Wp̂0 vanishes later than the convergence of Wp0 to normality. The

power of both tests also depends on the density of the graph; it is satisfying for ρ∗ ≥ 1%
in the independent case and for ρ∗ ≥ 3%, in the exchangeable case. As for the empirical
version of the HER test, it becomes reasonable only when n reaches 300, whatever the
density.

Sparse graphs. Figures 4 and 5 display the QQ-plots of the standardized Wp0 and
WΦ0 statistics under the vanishing probabilities scenario for graphs with several sizes.
Remember that the larger the power a, the sparser the graph. We observe again that
normality holds for the non sparse graphs (a = 0) even for n = 100, but the departure is
visible for n = 100 as soon as a ≥ 0.4. The same is observed for n = 1 000, although a bit
later (a ≥ 0.8). For the largest graph (n = 10 000), normality holds until a ' 1.2 − 1.4
but does not seem to be reached for higher sparsity regimes. As expected, in the very
sparse regime, normality can only be relied on for very large graphs. Similar conclusions
can be drawn for the sparse probabilities scenario, each distribution being slightly closer
to normal.
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Figure 2: Power of the degree mean square test in the HER design, as a function of β the
effect of the last covariate. Top left (log10 ρ

∗ = −2.5), top right (log10 ρ
∗ = −2), bottom

left (log10 ρ
∗ = −1.5), bottom right (log10 ρ

∗ = −1). Color refers to the graph size: n = 32
(red), 100 (green), 316 (blue), 1 000 (cyan) (green, blue and cyan curves and points overlap
in the last panels). Points = empirical power (average on 1 000 simulations): dots = Wp0

test, solid line = theoretical power, dashed line = binomial confidence interval for 1 000
simulations, triangles = Wp̂0 test (for n ≥ 100).
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A Appendix

A.1 Proof of Corollary 1

Let express V as follows.

n2V =
1

2

∑
i 6=j

(Di −Dj)
2

= 2(n− 2)
∑

1≤i<j≤n

Yij

+2(n− 4)
∑

1≤i<j<k≤n

{YijYik + YijYjk + YikYjk}

−8
∑

1≤i<j<k<l≤n

{YijYk` + YikYj` + Yi`Yjk} . (17)

Then we write the Hoeffding decomposition of V :

V = P∅V +
∑

1≤i<j≤n

P{ij}V +
∑

1≤i<j<k≤n

{
P{ij,ik}V + P{ij,jk}V + P{ik,kj}V

}
+

∑
1≤i<j<k<l≤n

{
P{ij,kl}V + P{ik,jl}V + P{il,jk}V

}
. (18)
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Taking all projections with respect to HER(p), we have

P∅V =
1

2n2

(
4(n− 2)

∑
1≤i<j≤n

pij + 4(n− 4)
∑

1≤i<j<k≤n

{pijpik + pijpjk + pikpjk}

)

− 8

n2

∑
1≤i<j<k<l≤n

{pijpk` + pikpj` + pi`pjk} ,

which gives the expectation. The other projections provide the variance. We have,

P{ij}V =
1

2n2
Ỹij

4(n− 2) + 4(n− 4)
∑
k/∈(i,j)

(pik + pjk)− 16
∑

k<l/∈(i,j)

pk`

 , (19)

P{ij,ik}V =
2(n− 4)

n2
ỸijỸik, and P{ij,kl}V = − 8

n2
ỸijỸk`. (20)

So,

n4VP{ij}V = σ2
ij

2(n− 2) + 2(n− 4)
∑
k/∈(i,j)

(pi,k + pj,k)− 8
∑

k<l/∈(i,j)

pk`

2

, (21)

n4VP{ij,ik}V = 4(n− 4)2σ2
ijσ

2
ik, and n4VP{ij,kl}V = 64σ2

ijσ
2
k`, (22)

and the variance of V follows by summing over all indexes.
As for the asymptotic normality, we consider V − EV = V ∗ − EpV + V − V ∗, with
V ∗ = P∅V +

∑
1≤i<j≤n P{ij}V . In order to show that that V ∗ − EpV is asymptotically

normal, we apply Theorem 1 to the projections P{ij}Wp0 (which stand for the Xnu) by
using Remark 1 and Assumption 1. The an{ij} = Θ(1) expressed in (19) stand for anu.
Since B2

n = Vp (V ∗ − EpV ) = Θ(n2), we conclude that the Lindeberg condition is fulfilled
because, for any ε, each anu becomes smaller than εBn when n goes to infinity. Now
we consider V − V ∗ as the linear combination of the projections P{ij,ik}V and P{ij,kl}V .
We notice that an{ij,ik} and an{ij,kl} given in (20) equal Θ(n−1) and Θ(n−2) respectively,
and thus that Vp (V − V ∗) = Θ(n). We conclude to the asymptotic normality of V by
combining the one of V ∗ − EV and the fact that Vp (V − V ∗) /VpV

∗ → 0 as n→∞.

A.2 Degree variance test power

Lemma 1 Under model ER and Assumption 1, the degree variance is asymptotically
normal:

(V − Ep̂V ) /Sp̂V
D−→ N (0, 1).

Proof. The proof relies on the concentration of p̂ around p and on Slutsky’s lemma (see,
e.g., Theorem 4.4, p.27 in Billingsley Billingsley (1968)). First, write the statistic based
on V as

V − Ep̂V
Sp̂V

=
SpV
Sp̂V

(
V − EpV

SpV
+

EpV − Ep̂V
SpV

)
.
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Then note that, under ER(p), (p̂−p) = ΘP (n−1), so (p̂q̂−pq) = ΘP(n−2), where q̂ stands
for 1− p̂. According to the moments given in Corollary 1, we have that EpV = Θ(n)pq and
VpV = Θ(1)pq + Θ(n)p2q2. This entails that EpV − Ep̂V = ΘP(n−1) and Vp̂V − VpV =
ΘP(n−2), so SpV /Sp̂V converges in probability to 1 and (EpV − Ep̂V )/SpV converges in
probability to 0. The result then follows from Slutsky’s lemma, used twice. �

Lemma 2 We have

(V − Ep̂V ) /Sp̂V − (V − Ep̄V ) /Sp̄V
P−→ 0,

where p = [n(n− 1)]−1
∑

i 6=jpij.

The proof of this Lemma is similar to this of Lemma 1 and results from the concentration
of p̂ around p.

A.3 Proof of Corollary 5

The proof follows the line of this of Proposition 1 under Assumption 1. We begin with the
asymptotic normality of V ∗ − EpV . Since

∑
k/∈(i,j) pik = Θ(n1−a−b) and

∑
k<l/∈(i,j) pk` =

Θ(n2−a−b), we see that an{ij} = Θ(n−(a+b)) if a + b < 1 and Θ(n−1) if a + b > 1 (an{ij}
are given in assertion (19)). Therefore, we have VpP{ij}V = Θ

(
n−3a−2b

)
if a + b < 1

and Θ (n−a−2) if a + b > 1. Combining this with the number of non-zero terms which
is Θ(n2−b), we get that B2

n = Θ
(
n2−3(a+b)

)
if a + b < 1 and Θ

(
n−(a+b)

)
if a + b > 1.

Comparing A2
n(ε) with B2

n, we see that the Lindeberg condition is fulfilled for a+ b < 2.
Now we consider V −V ∗ as the linear combination of the projections P{ij,ik}V and P{ij,kl}V .
We see that an{ij,ik} = Θ(n−1) and an{ij,kl} = Θ(n−2) (an{ij,ik} and an{ij,kl} are given in as-
sertion (20)). Therefore, we have VpP{ij,ik}V = Θ (n−2a−2) and VpP{ij,kl}V = Θ (n−2a−4).
Since the number of non-zero terms in the sums is Θ(n3−2b) and Θ(n4−2b) respectively, we

have therefore Vp

(
Wp0 −W ∗

p0

)
= Θ(n−2(a+b)+1).

We conclude to the asymptotic normality of V by combining the one of V ∗ − EpV under
condition a+ b < 2 and the fact that Vp (V − V ∗) /VpV

∗ → 0 as n→∞.

A.4 Moments of WΦ0 in the proof of Theorem 4

We have

EΦ(M2
1 ) = EΦ

(∑
i<j

Yij
2

)
+ 2EΦ

( ∑
1≤i<j<k≤n

YijYik + YjiYjk + YkiYkj

)

+2EΦ

( ∑
1≤i<j<k<l≤n

YijYk` + YikYj` + Yi`Yjk

)

=
n1

2
φ1 + n2φ2 +

1

4
n3(φ1)2,
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and

EΦ(M1M2) =

(
3

2

)
EΦ

( ∑
1≤i<j<k≤n

Yij
2Yik + Yij

2Yjk + YijYkiYkj

)

+

(
4

1, 1, 2

)
EΦ

( ∑
1≤i<j<k<l≤n

YijYikYi` + YijYkiYk` + YijY`iY`k

)

+

(
5

2

)
EΦ

( ∑
1≤i<j<k<l<m≤n

YijYk`Ykm + YijY`kY`m + YijYmkY`m

)

=

(
n

2, 1, n− 3

)
(2φ2 + φ3) +

(
n

1, 1, 2, n− 4

)
(φ5 + 2φ6) +

(
n

2, 3, n− 5

)
(3φ1φ2)

=
n2

2
(2φ2 + φ3) +

n3

2
(φ5 + 2φ6) +

n4

4
φ1φ2

and

EΦ(M2
2 ) =

∑
1≤i<j<k≤n

EΦ

(
Yij

2Yik
2 + Yji

2Yjk
2 + Yki

2Ykj
2

+2
(
Yij

2YikYjk + YijYik
2Yjk + YijYikYkj

2
) )

+

(
4

2, 1, 1

) ∑
1≤i<j<k<l≤n

EΦ

(
YijYikYjkYj` + YijYikYkjYk` + YijYikY`jY`k

+YjiYjk
2Yj` + YjiYjk

2Yk` + YjiYjkY`jY`k

+YkiYkj
2Yj` + YkiYkj

2Yk` + YkiYkjY`jY`k

)
+

(
5

1, 2, 2

) ∑
1≤i<j<k<l<m≤n

EΦ

(
YijYikYk`Ykm + YijYikY`kY`m + YijYikYmkY`m

+YjiYjkYk`Ykm + YjiYjkY`kY`m + YjiYjkY`kY`m

+YkiYkjYk`Ykm + YkiYkjY`kY`m + YkiYkjYmkY`m

)
+

(
6

3, 3

) ∑
1≤i<j<k<l<m<u≤n

EΦ

(
YijYikY`mY`u+YijYikY`mYmu + YijYikY`uYmu

+YijYjkY`mY`u + YijYjkY`mYmu + YijYjkY`uYmu

+YikYjkY`mY`u + YikYjkY`mYmu + YikYjkY`uYmu

)
=

(
n

3

)
(3φ2 + 6φ3) +

(
n

2, 1, 1, n− 4

)
(4φ4 + 2φ5 + 2φ6 + φ7)

+

(
n

1, 2, 2, n− 5

)
(4φ8 + 4φ10 + φ9) +

(
n

3, 3, n− 6

)
(9φ2

2)

=
n2

6
(3φ2 + 6φ3) +

n3

2
(4φ4 + 2φ5 + 2φ6 + φ7) +

n4

4
(4φ8 + 4φ10 + φ9) +

n5

4
φ2

2.
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