
HAL Id: hal-02454441
https://hal.science/hal-02454441v1

Submitted on 24 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Instabilities in oblique shock wave/laminar
boundary-layer interactions

Florian Guiho, Frédéric Alizard, Jean-Christophe Robinet

To cite this version:
Florian Guiho, Frédéric Alizard, Jean-Christophe Robinet. Instabilities in oblique shock wave/laminar
boundary-layer interactions. Journal of Fluid Mechanics, 2016, 789, pp.1-35. �10.1017/jfm.2015.729�.
�hal-02454441�

https://hal.science/hal-02454441v1
https://hal.archives-ouvertes.fr


1

Instabilities in oblique shock wave/laminar
boundary-layer interactions

F. Guiho1,2, F. Alizard3 and J.-Ch. Robinet1,†
1DynFluid Lab., Arts and Métiers ParisTech, 151, Bd. de l’Hôpital, 75013, Paris, France

2CNES, Direction des lanceurs, 52, rue Jacques Hillairet, 75012, Paris, France
3DynFluid Lab., CNAM, 151, Bd. de l’Hôpital, 75013, Paris, France

The interaction of an oblique shock wave and a laminar boundary layer developing
over a flat plate is investigated by means of numerical simulation and global
linear-stability analysis. Under the selected flow conditions (free-stream Mach
numbers, Reynolds numbers and shock-wave angles), the incoming boundary layer
undergoes separation due to the adverse pressure gradient. For a wide range of flow
parameters, the oblique shock wave/boundary-layer interaction (OSWBLI) is seen to
be globally stable. We show that the onset of two-dimensional large-scale structures
is generated by selective noise amplification that is described for each frequency,
in a linear framework, by wave-packet trains composed of several global modes. A
detailed analysis of both the eigenspectrum and eigenfunctions gives some insight into
the relationship between spatial scales (shape and localization) and frequencies. In
particular, OSWBLI exhibits a universal behaviour. The lowest frequencies correspond
to structures mainly located near the separated shock that emit radiation in the form
of Mach waves and are scaled by the interaction length. The medium frequencies
are associated with structures mainly localized in the shear layer and are scaled by
the displacement thickness at the impact. The linear process by which OSWBLI
selects frequencies is analysed by means of the global resolvent. It shows that
unsteadiness are mainly associated with instabilities arising from the shear layer. For
the lower frequency range, there is no particular selectivity in a linear framework.
Two-dimensional numerical simulations show that the linear behaviour is modified
for moderate forcing amplitudes by nonlinear mechanisms leading to a significant
amplification of low frequencies. Finally, based on the present results, we draw some
hypotheses concerning the onset of unsteadiness observed in shock wave/turbulent
boundary-layer interactions.
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1. Introduction
An accurate comprehension of shock wave/turbulent boundary-layer interaction

is needed in many aerospace and aeronautical applications to predict flows around
transonic airfoils, supersonic air intakes or deflected control surfaces of vehicles
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at transonic or supersonic speeds. These interactions can lead to an increase of
drag, flow separation being one of the primary causes of performance degradation.
Moreover, shock wave/turbulent boundary-layer interaction (SWTBLI) generally
produces low-frequency unsteadiness of the shock system. This unsteadiness produces
strong constraints on the structure due to the induced noise and the local heat transfer.
It is well known that the flow separation may be at the origin of this unsteadiness
and for a supersonic flow it takes a particular form when the separation is induced
by a shock wave.

A considerable amount of experimental work has been undertaken on SWTBLI
to investigate the steady and unsteady aspects. Experimental research into shock
wave/boundary-layer interaction started in the mid-1940s with the work of Ackeret,
Feldmann & Rott (1947) and has since remained a very active field. Since then,
several experiments have been performed to investigate the shock wave/boundary-layer
interactions in detail. Detailed investigations of the phenomenon and its dependence
on flow and boundary-layer parameters are described in Délery & Marvin (1986)
and Dolling (2001). Recent works, initiated by the SUPERSONIC GROUP of the
IUSTI Laboratory, have characterized the space–time dynamics of an oblique
shock wave/turbulent boundary-layer interaction (OSWTBLI) (Dupont et al. 2005;
Dupont, Haddad & Debiève 2006) and, in particular, have tried to understand the
physical origin of the low-frequency unsteadiness (Dussauge, Dupont & Debiève
2006). More specifically Dupont et al. (2005) have shown, when the interaction
is strong enough, that the OSWBLI is the seat of low-frequency unsteadiness,
characterized by self-sustained oscillations of the separated shock around a Strouhal
number StLint = 0.03 (see also Dussauge et al. 2006 and Humble, Sacarano & van
Oudheusden 2009). Furthermore, Dupont et al. (2006), Souverein et al. (2010),
Souverein, Bakker & Dupont (2013) and Jaunet, Debieve & Dupont (2014), have
shown that the low-frequency dynamics, for a wide set of OSWBLI, is scaled by
the interaction length Lint. In a more general way, the characteristic frequency of the
turbulence in the incoming boundary layer is O(U∞/δ99), whereas the low-frequency
unsteadiness is O(0.01U∞/δ99). This result suggests a robust and general mechanism
to explain the low-frequency dynamics. For several years, scenarios attempting to
model this low-frequency dynamics have been proposed. The first of them is related
to the interaction of large structures upstream of the boundary layer, with the shock
leading to low-frequency response of the shock itself (Ganapathisubramani, Clemens
& Dolling 2007). However, Dussauge & Piponniau (2008) have shown, in oblique
shock reflection, that the influence of downstream conditions, especially in the
recirculation zone, is more significant than the upstream conditions with respect
to low frequencies. Pirozzoli & Grasso (2006) suggested that the low-frequency
dynamics results from an acoustic feedback loop between the acoustic emission of
turbulent structures through the incident shock and the foot of the separated shock.
This scenario can be assessed by a linear stability analysis as it involves a pressure
feedback loop. Piponniau et al. (2009) used a qualitative model to find the order of
the magnitude of the Strouhal number for the low-frequency dynamics. This model
is based on a mass balance of the system ‘shear-layer/separated zone’ where the
coherent structures in the shear layer feed the recirculation zone which increases up
to a critical size beyond which it empties. The latter mechanism causes the breathing
of the separated zone and consequently the movement of the reflected shock. The
latter scenario was formulated more recently by Touber & Sandham (2011) showing
that the separated shock foot acts as a low-pass filter with respect to white noise.
This result is in qualitative agreement with the results of Ribner (1953) and Robinet
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& Casalis (2001) where shock response is proportional to the frequency content of
the initial forcing. If the separated shock is forced by white noise, the response of
the shock corresponds to a low-pass filter. Regarding the mechanisms responsible for
the low-frequency dynamics, the reader will find a recent synthesis in Morgan et al.
(2013) and Clemens & Narayanaswamy (2014).

From a numerical point of view, the first LES on OSWBLI were performed
by Garnier, Sagaut & Deville (2002) and Pirozzoli & Grasso (2006) where mean
and fluctuating velocity components were found to be in satisfactory agreement
with the experimental data of Deleuze (1995) and Laurent (1996). However, these
numerical simulations were integrated over a time range which was too short to
allow an analysis of the low-frequency dynamics. The LES simulations computed by
Touber & Sandham (2009a,b) allowed this analysis for the first time, showing a very
good agreement with IUSTI experiments (Dupont et al. 2006, 2008) for moderate
interaction (σ = 8◦). In particular, this study has shown that the low-frequency
dynamics is broadband in nature. Recent numerical simulations have improved the
statistical convergence to better determine some of physical properties of the shock
wave/boundary-layer interaction (Pirozzoli & Bernardini 2011), see Priebe, Wu &
Martin (2009), for reflected shock and Wu & Martin (2008), for compression ramp.
Priebe & Martin (2012) and Aubard, Gloerfelt & Robinet (2013) have studied the
physical mechanisms that drive the shock motion. In their simulations, the flow
undergoes low-frequency unsteadiness that leads to flow topology modifications in the
interaction region, including the break-up of the recirculation bubble and the shedding
of vortical structures. In addition, the development of energetic turbulent structures in
the shear layer is observed to be modulated at low frequency and this could imply a
modulation of the shear-layer entrainment rate which is consistent with the scenario
of Piponniau et al. (2009). Grilli et al. (2011) analysed the flow dynamics by a
dynamic mode decomposition (DMD) and have shown that low-frequency modes are
mainly associated with the dynamics of the separation bubble. Priebe & Martin (2012)
assume that this low-frequency dynamics could be the signature of a globally unstable
mode. This hypothesis is to our knowledge not proven and serves as motivation for
this present paper.

The linear stability analysis of a laminar or transitional shock wave/boundary-layer
interaction has been poorly studied until now when compared with supersonic
boundary-layer flows. Most of the studies were carried out using local approaches
where the flow is assumed to be weakly non-parallel. These approaches have mainly
shown that shock wave/boundary-layer interaction develops convective instabilities
in the interaction region over a wide range of Strouhal numbers (0 < f δ?/U∞ < 1).
On these instability waves the compressibility has a stabilizing effect and in the
supersonic regime the most unstable waves are three-dimensional (Mack 1969).
Some examples of linear stability studies for hypersonic shock wave/boundary-layer
interaction flows are given by Pagella, Rist & Wagner (2000, 2002), Bedarev et al.
(2002) and Balakumar, Zhao & Atkins (2005). Although a local stability approach
gives results that appear consistent with some experimental observations, due to
the strong non-parallelism of the flow, local approaches are limited to the study
of medium and high-frequency instabilities. The low-frequency dynamics analysis
requires a global approach.

The notion of global instability was originally formulated for quasi-parallel flows. In
this framework, the flow is globally unstable if there is a sufficiently large absolute
instability region in the flow (Huerre & Monkewitz 1990; Monkewitz, Huerre &
Chomaz 1993). Examples of recent applications in the compressible regime can be
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found in Méliga, Sipp & Chomaz (2008) and Weiss et al. (2009). The study of the
linear stability for open and highly non-parallel flows was performed for the first time
by Jackson (1987) and Zebib (1987) around a cylinder in incompressible regime. This
method has undergone development during the past 20 years and has been applied
to many flows (Theofilis 2003, 2011). The compressible regime, and particularly
the supersonic regime, has been less studied. Shear-driven cavity flows (Theofilis &
Colonius 2003, 2004; Bres & Colonius 2008; Yamouni, Sipp & Jacquin 2013), jet
flows (Garnaud et al. 2013) and afterbody flows (Méliga, Sipp & Chomaz 2010)
are examples of flows studied by global stability analysis in the subsonic regime. In
supersonic regime, Nichols & Lele (2011) and Beneddine, Mettot & Sipp (2015) have
studied the stability of supersonic cold or underexpanded screeching jets, respectively.
Furthermore, an analysis of swept flow around a parabolic body was also performed
by Mack, Schmid & Sesterhenn (2008), Mack & Schmid (2011a,b). Regarding
the laminar shock wave/boundary-layer interaction, only a few studies have been
performed. The first global stability analysis was carried out by Robinet (2007) and
showed that a separated flow in the supersonic regime can develop a three-dimensional
steady global instability close to that observed in subsonic regime (Theofilis, Hein &
Dallmann 2000). However, this analysis is incomplete because convective instabilities
developing in the separated zone have not been taken into account. These instabilities
are important because they are responsible of the transition to turbulence. Touber
& Sandham (2009b) and Pirozzoli et al. (2010) analysed the linear stability of an
averaged flow from a LES simulation. They have shown that the low-frequency modes
correspond to the breathing of the separated zone. More recently, Sansica, Sandham
& Hu (2014) have investigated the dynamics of a transitional OSWBLI by direct and
linearized numerical simulations. They have shown that the dynamics of OSWBLI at
M∞ = 1.5 is mainly governed by medium-frequency dynamics and that the amplitude
of low-frequency response evolves quadratically with respect to the amplitude of the
forcing, suggesting a nonlinear response to this frequency range.

Almost all the results mentioned above relate to the dynamics of a turbulent SWBLI.
A few studies (Boin et al. 2006; Robinet 2007; Sansica et al. 2014) have addressed
the case of a laminar or transitional SWBLI and they show that there is some analogy
between laminar and turbulent dynamics, especially in the separation bubble. In this
work, we propose to study the global stability of an interaction between an oblique
shock wave and a laminar boundary layer developing on a flat plate. Several cases for
different incident angles, Reynolds and Mach numbers will be discussed starting from
the Degrez, Boccadoro & Wendt (1987) configuration. To keep the computational cost
affordable, a two-dimensional OSWBLI is addressed both for the base flow and for
the perturbation. We will focus on the low and medium-frequency dynamics through a
linear stability analysis. A detailed analysis is realized on the different scales in time
and space driving these instabilities. The global response of OSWBLI to a harmonic
forcing is then discussed by computing the global resolvent in order to clarify some
of the results given by the stability analysis. These results are then compared with
the linear and nonlinear response of the flow to a localized forcing (upstream and
downstream).

The paper is structured as follows. In § 2, the problem formulation is given, the flow
configurations are specified and the theoretical background to the stability analysis
is presented. The numerical procedure used to perform these analyses is detailed
in § 3 where we will show how a standard CFD numerical code can be used to
extract eigenmodes. In § 4, different types of laminar interactions will be considered;
moreover, we will examine the influence of the angle of the incident shock and
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FIGURE 1. The computational domain and a schematic representation of oblique shock
wave/boundary-layer interaction.

Parameters Laminar cases

Free-stream Mach number M∞ ∈ [2.10; 3.00]
Free-stream stagnation temperature Ti,∞ = 287 K
Free-stream stagnation pressure Pi,∞ = 1.07× 104 Pa
Reynolds number Reδ? ∈ [1010; 2700]
Incident shock angle θ ∈ [22.2◦; 32◦]
Shock generator angle β ∈ [3.81◦; 6.00◦]

TABLE 1. Flow parameters for laminar OSWBLIs.

Reynolds and Mach numbers on the linear stability of OSWBLI. We will show that
the flow is globally stable and its dynamics is similar to a selective noise amplifier
problem whose receptivity is mainly at medium frequency and localized in the
interaction region. Nonlinear dynamics will be also analysed through two-dimensional
Navier–Stokes (N–S) simulations. In § 5, we discuss the results and their implications,
especially for fully-turbulent shock wave/boundary-layer interactions.

2. Simulation set-up and governing equations
2.1. Flow configuration

In the present study, an oblique shock wave/laminar-boundary-layer interaction is
considered. The flow configuration is displayed in figure 1. To enable a comprehensive
analysis of the unsteadiness of the structures developing in such a flow, a set of flow
cases are run with parameters referenced in table 1. Hereafter, the coordinate system
is the following: x is oriented in the streamwise direction and y is associated with the
direction normal to the wall. Also Lsep and Lint the separation and interaction lengths,
respectively.

2.2. Governing equations
The two-dimensional compressible Navier–Stokes equations for a compressible
perfect gas are considered. These equations govern the evolution of the system state
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q= [ρ, ρu, ρE]T in the conservative form, where ρ, u and E are the fluid density, the
velocity vector and the total energy, respectively. Written in non-dimensional form,
these equations are

∂ρ

∂t
+∇ · (ρu)= 0, (2.1a)

∂

∂t
(ρu)+∇ ·

[
ρu⊗ u+ pI− 1

Re
τ

]
= 0, (2.1b)

∂

∂t
(ρE)+∇ ·

[
(ρE+ p)u− 1

Re
τ � u+ κ

(γ − 1)ReM2∞
∇T
]
= 0. (2.1c)

For an ideal and Newtonian fluid, the non-dimensional pressure p and energy E are
related to the temperature through the equation of state for an ideal gas.

p= 1
γM2∞

ρT, E= T
γ (γ − 1)M2∞

+ 1
2

u · u, (2.2a,b)

τ is the viscous stress tensor and is written as

τ =µ [∇⊗ u+ (∇⊗ u)T − 2
3(∇ · u)I

]
. (2.3)

The dynamics viscosity µ(T) is computed using Sutherland’s law, i.e.,

µ(T)= T3/2 1+ Ts/T∞
T + Ts/T∞

, (2.4)

where Ts= 110.4 K. The coefficient of heat conductivity κ(T) is given in terms of the
Prandtl number κ(T) = µ(T)/Pr. Here, M∞ is the free-stream Mach number at the
inflow and Reδ? is the Reynolds number based on the free-stream velocity downstream
of the separated shock, Ue, and the boundary layer displacement thickness at the
theoretical position where the incident shock impinges the boundary-layer, δ?. The
time scales are normalized with δ?/Ue and pressure with ρ∞U2

e . Finally, the specific
heat capacity ratio is equal to γ = 1.4 and the Prandtl number is taken as Pr= 0.72.

In the following, the system (2.1) can be recast in the formal conservative form:

∂q
∂t
=R(q), (2.5)

where R is the differential nonlinear Navier–Stokes operator.

2.3. Compressible global stability analysis
Linear stability analysis assumes the existence of an equilibrium solution to the system
(2.5) referred to as the base flow and defined by R(qb)= 0. In the following, the base
flow is assumed to be two-dimensional qb(x, y). Using the standard small-perturbation
technique, the instantaneous flow is decomposed into a base flow and a small
disturbance:

q(x, y, t)= qb(x, y)+ εq′(x, y, t), ε� 1. (2.6)

The resulting equations are further simplified by considering that the perturbation
is infinitesimal, i.e. the nonlinear fluctuating terms are neglected. Finally, the
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compressible Navier–Stokes equations are transformed into linear partial differential
equations

∂q′

∂t
=J q′, (2.7)

where the vector q′ = (ρ ′, ρ ′ub + ρbu′, ρ ′Eb + ρbE′)T represents the conservative
variables for the perturbation and J = ∂R/∂q|qb

is the Jacobian operator which
corresponds to the linearization of the Navier–Stokes operator R around the base
flow qb.

∂ρ ′

∂t
+∇ · (ρ ′ub + ρbu′)= 0, (2.8a)

∂

∂t
(ρ ′ub + ρbu′)+∇ ·

(
ρbu′ ⊗ ub + ρbub ⊗ u′ + ρ ′ub ⊗ ub + p′I− 1

Re
τ ′
)
= 0, (2.8b)

∂

∂t
(ρ ′Eb + ρbE′)+∇ ·

[
(ρbEb + pb)u′ + (ρbE′ + ρ ′Eb + p′)ub − 1

Re
τ ′ � ub

− 1
Re

τb � u′ + κ ′

(γ − 1)ReM2∞
∇Tb + κb

(γ − 1)ReM2∞
∇T ′

]
= 0, (2.8c)

where the perturbed stress tensor is given by

τ ′ =µb
[
(∇⊗ u′ +∇⊗ u′T)− 2

3(∇ · u
′)I
]+µ′ [(∇⊗ ub +∇⊗ uT

b )− 2
3(∇ · ub)I

]
.

(2.9)
The perturbed pressure, total energy, dynamic viscosity and heat conductivity
coefficient are written

p′ = 1
γM2∞

(ρbT ′ + ρ ′Tb), E′ = T ′

γ (γ − 1)M2∞
+ ub · u′, µ′ = ∂µb

∂Tb
T ′, λ′ = µ

′

Pr
.

(2.10a−d)

3. Numerical strategy
3.1. Navier–Stokes solver and boundary conditions

All numerical simulations in this paper were run with an in-house CFD solver
named PHOENIX, both to compute the base flow and to solve the linearized and
the full Navier–Stokes equations. The numerical method implemented in our solver
is based on the finite-volume approach and on a cell-centred discretization. The
code solves the compressible Navier–Stokes equations on multi-block structured grids
and these equations are discretized in space using an upwind scheme. Roe’s flux
difference splitting scheme (Roe 1981) is employed to obtain advective fluxes at
the cell interface for all N–S equations. The MUSCL approach extends the spatial
accuracy to third order. All viscous terms are centrally differentiated. For unsteady
computations, the dual time stepping method, proposed by Jameson (1991), was used
to tackle the lack of numerical efficiency of the global time stepping approach. The
derivative with respect to the physical time is discretized by a second-order formula.
The use of an implicit scheme with respect to the dual time provides fast convergence
to the time-accurate solution. Between each time step, the solution is advanced in a
dual time and acceleration strategies developed for steady problems can be used to
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speed up the convergence in fictitious time. The implicit time-integration procedure
leads to a system which can be solved directly or iteratively. The direct inversion can
be memory intensive and computationally expensive. Therefore, an implicit relaxation
procedure is preferred and the point Jacobi relaxation algorithm was chosen. The
initialization of the derivative with respect to the physical time was performed with
a first-order formula.

The boundary conditions applied to the computational domain are no-slip
velocity, adiabatic temperature and pressure extrapolation at the wall. The steady
two-dimensional Navier–Stokes solution is imposed at the inflow. To minimize the
reflection of waves into the domain at the outflow and at the upper boundary, a
characteristic method is used for the conservative variables. The oblique shock is
imposed by the Rankine–Hugoniot jump relations at the top boundary.

3.2. Linearization of discrete Navier–Stokes equations
Equations (2.8) are discretized with the same type of scheme as the nonlinear N–S
equations (2.1). However, the spatial schemes as well as boundary conditions have
to be adapted to the new set of equations (2.8). To achieve such a task, the different
schemes and boundary conditions are built by considering the flux function associated
with the linearized equations (2.8). The Roe scheme is adopted in this study. As
suggested by Crouch, Garbaruk & Magidov (2007), the Roe scheme adapted for the
linearized compressible N–S variables is based on the Jacobian matrix of the new
flux function associated with the linearized equations, as discussed above. The latter
matrix being only a function of the base flow, there is no need for a Roe average.
In addition, the boundary conditions are also only driven by the base flow, yielding
similar modifications of our CFD solver. Finally the semi-discrete system can be
written as

dq′

dt
= Jq′, (3.1)

where J is (n× n) Jacobian matrix and n= dim(q′)× nx × ny.

3.3. Stability algorithm
To determine the eigenmodes of discrete linearized Navier–Stokes equations (3.1) the
solution is sought under the form of a normal mode q′(x, t)= q̂(x) exp(λt), the problem
(3.1) becomes an eigenproblem Jq̂ = λq̂ where λ = σ + iω is the eigenvalue and q̂
is the eigenvector. The sign of the leading eigenvalue’s real part σ then determines
whether the fixed point qb is linearly stable or unstable, whereas its imaginary part
ω characterizes the stationary or oscillatory nature of the associated eigenvector. To
solve this eigenproblem, two types of methods can be used: (i) methods where the
Jacobian matrix is explicitly formed or (ii) methods wherein the matrix is not directly
and fully calculated, these methods are known as matrix-free methods. In the present
configuration, the size of our problem (J would be approximately a 105× 105 matrix)
is not limiting and both methods are possible. The matrix-free method is selected
where snapshots of the solution of (3.1) are used to approximate the Jacobian matrix.
In the compressible regime, this method has a number of advantages because it is
written in a fully-discrete formalism allowing to better take into account the complex
boundary conditions such as the presence or the emission of acoustic waves while
maintaining an accurate description of the hydrodynamic instability. Using a snapshot
method based on the discrete equation (3.1), we solve the following eigenvalue
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problem M(1ts)q′ = λ̂q′, where M(1ts)= exp(J1ts) is the exponential propagator of
the system (3.1). It appears at first sight that this so-called time stepper approach
(Edwards et al. 1994; Bagheri et al. 2009) does not really simplify the initial problem
of memory footprint. Indeed, not only is exp(J1ts) a matrix of very large dimensions,
but it is well known that computing a matrix exponential can be quite a challenging
computational task. The most interesting feature of such a time-stepper approach
however is that, though exp(J1ts) is as computationally expensive to construct
explicitly as the Jacobian J, the action of this exponential propagator on a vector q′0
can easily be approximated by simply time marching the linearized Navier–Stokes
equations (3.1) with q′0 as the initial condition. The eigenmodes of M are the same as
those of the matrix J if 1ts is chosen in accordance with the Nyquist criterion. The
dataset length Ns1ts is sufficient to capture the slowest frequency of the system by a
factor 20 (see table 2). The iterative technique is based on the orthogonal projection
of the large matrix M onto a lower-dimensional Krylov subspace which is spanned by
snapshots taken from the flow field q′ separated by a constant time interval 1ts. The
resulting system is a significantly smaller system and can be solved using classical
direct or iterative methods:

Km(M, q′0)= span[q′0,Mq′0,M2q′0, . . . ,Mm−1q′0] = span[q′0, q′1, q′2, . . . , q′m−1]. (3.2)

To increase the conditioning of the Krylov basis, a Gram–Schmidt orthogonalisation
process is used. The exponential propagator matrix exp(J1ts) is then projected on this
unitary basis U:

MUk =UkHk + rkeT
k , (3.3)

where Uk is an orthonormal set of vectors, Hk a k × k upper Hessenberg matrix
and rkeT

k is the residual vector indicating how far from an invariant subspace of
M is Uk. Because of its relatively small dimension, the eigenpairs (λ̂H, X) of the
Hessenberg matrix can be directly computed which are a good approximation to
those of M . Since this Hessenberg matrix is a low-dimensional approximation of the
exponential propagator M = exp(J1ts), these Ritz pairs are linked to the eigenpairs
of the Jacobian matrix J by:

λ' log(λ̂H)

1ts
,

q̂'UkX.



 (3.4)

The easiest way to solve the eigenvalue problem for a matrix-free method is (i) to
force the system (3.1) by an impulse-shaped parietal forcing; (ii) to generate the set
of snapshots; and (iii) to solve the eigenproblem by an Arnoldi method. Although this
method is used to calculate with good accuracy the unstable modes, the stable part of
the spectrum is more difficult to obtain. When the flow is globally stable (selective
noise amplifier behaviour) this problem becomes critical. The origin of the problem
is two-fold. For the open flows, the linearized evolution operator is often highly non-
normal, the eigenvalues are then highly sensitive to perturbations (Trefethen & Embree
2005; Schmid 2007). In addition, a snapshot method, which is similar to a signal
processing method, is ill conditioned for temporally stable flows because over time the
modes fade, making it more difficult to extract their frequency content. To solve this
problem, the computation of the matrix H from numerical simulations is accomplished
by an in-house Arnoldi method (Arnoldi 1951; Lehoucq, Sorensen & Yang 1997;
Barkley, Blackburn & Sherwin 2008) directly integrated into the temporal loop of our
CFD solver (see Loiseau et al. 2014).
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1t CFL 1ts Ns ‖Mq′j − λ̂Hq′j‖< εev

1.5× 10−7 1 401t 400 10−6

TABLE 2. Numerical set-up for the different stability computations. 1t is the time stepping
used in linearized Navier–Stokes solver, 1ts is the time between two consecutive snapshots,
Ns is the number of snapshots, εev is the minimal eigenvalues convergence.

θ (deg.) M δ? (m) Reδ∗ Lint/δ
∗ Lsep/δ

∗ Lsep/H Cases

30.8 — — — 36.7 68 35.77 A
31.4 2.15 8.4× 10−4 1050 50.4 92 30.00 B
32.0 — — — 64.1 108 25.98 C

30.8 2.10 8.0× 10−4 1010 19.9 37 46.34 D
2.20 8.7× 10−4 1090 53.6 93 29.34 E

30.8 2.15 1.56× 10−3 1950 70.1 109 36.08 F
22.2 3.00 2.15× 10−3 2700 25.0 62 23.00 G

TABLE 3. Flow parameters for the OSWBLI.

4. Laminar OSWBLI cases
4.1. Base flows

Seven flow cases will be considered hereafter, referenced A–G in table 3. For all flow
cases, a preliminary laminar boundary-layer flow computation without an impinging
shock is carried out. Then we denote by δ? the displacement thickness at the position
of impact of the incident shock. For flow case A, the flow conditions are matched
to the experimental and numerical investigation of Degrez et al. (1987). The free-
stream Mach number is M∞ = 2.15 and the angle of the incident shock measured
clockwise from the horizontal axis is θ = 30.8◦ (corresponding to a flow deflection
angle of 3.81◦). The Reynolds number based on δ? is fixed to Reδ? = 1050. The
computational domain D has dimensions [x0/δ

?; xn/δ
?] × [y0/δ

?; yn/δ
?] = [0; 400] ×

[0; 80] in the streamwise and wall-normal directions, respectively. The total number
of points that are clustered in the normal-to-wall direction, as well as in the interaction
region, is (Nx×Ny)= (560× 100). Numerical validations (not shown here for the sake
of conciseness) have proven that this guarantees grid independency. The dual time step
is switched off and the CFL (Courant–Friedrichs–Lewy) number is held to 10.

After having reached a steady state for the laminar boundary-layer flow, the incident
shock is introduced at the inflow condition through the Rankine–Hugoniot relations.
The latter shock impinges the boundary-layer, which creates a separated flow. It thus
leads to compression waves behind the bubble which coalesce to form the reflected
or separated shock. The converged base flow is shown in figure 2(a) in terms of
streamwise velocity fields and streamlines. Comparisons with both experimental
and numerical results given by Degrez et al. (1987) are displayed in figure 3. The
latter figure shows that our simulation is in good agreement with the mean-flow
characteristics reported by Degrez et al. (1987), both in terms of friction coefficient
and wall pressure measurements.

In order to investigate the influence of various physical parameters (bubble shapes,
M∞ and Reδ?) on stability properties, equilibrium states associated with B–G are also
computed (see figure 2b–d).
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FIGURE 2. (Colour online) Streamlines and streamwise velocity component of the
computed steady base flow for different values for Reynolds and Mach numbers and
incident angles. The incident shock (1), the reflected shock (2), the expansion fan (3) and
compression waves (4) are also represented. (a) Reδ? = 1050, M∞ = 2.15 and θ = 30.8◦,
(b) Reδ? = 1050, M∞ = 2.15 and θ = 32◦, (c) Reδ? = 1090, M∞ = 2.20 and θ = 30.8◦,
(d) Reδ? = 1950, M∞ = 2.15 and θ = 30.8◦.
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FIGURE 3. Flow case A. (a) Friction coefficient and (b) wall pressure distribution
normalized by P∞ shown as a function of the streamwise position scaled by δ?. Full
line: our computation. Full circle, the results given by Degrez et al. (1987). (a) The
dashed-line is associated with the friction coefficient of the laminar boundary layer without
the impinging incident shock.

Figure 4(a,b) show the distribution of skin-friction coefficients and dimensionless
pressure, respectively, as a function of the streamwise position x for θ varying from
30.8◦ to 32.5◦ when the Reynolds number and the Mach number are fixed to 1050
and 2.15, respectively. It is observed that when the incident angle increases, the
interaction zone increases almost linearly. Figure 4(a) also shows that for an angle
close to 32.5◦ (computed for the same flow conditions in terms of Mach and Reynolds
numbers), there is a critical point (around x/δ? ' 99.2) where the skin-friction
coefficient becomes positive. In an incompressible regime, Theofilis et al. (2000)
and Rodriguez & Theofilis (2010) have shown that the latter behaviour is associated
with a bifurcation of the flow towards a three-dimensional state. This behaviour has
also been observed for supersonic separated flows by Boin et al. (2006) and Robinet
(2007). Hence, the figure 4(a) suggests that θ = 32.5◦ is a relevant upper limit when
considering a two-dimensional equilibrium state. Figure 4(b) shows that the pressure
ratio reaches the value provided by the Rankine–Hugoniot relationship downstream of
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FIGURE 4. (Colour online) M∞ = 2.15, Reδ? = 1050. Distributions of (a) skin-friction
coefficient and (b) dimensionless pressure with the streamwise position. The values
provided by the Rankine–Hugoniot relationship are also provided as horizontal full lines
labelled R–H. Full line: θ = 30.8◦, long dashed line: θ = 31.4◦, dash-dot line: θ = 32◦ and
dashed line: θ = 32.5◦.
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FIGURE 5. Case A: linear dynamics of the wavepacket resulting from an impulsive
perturbation localized at (a) t = 64 δ?/Ue, (b) t = 91 δ?/Ue, (c) t = 119 δ?/Ue, (d) t =
146 δ?/Ue, (e) t = 174 δ?/Ue and ( f ) t = 202 δ?/Ue. The shaded contours represent the
pressure fluctuations. The line contours represent the spanwise vorticity component of the
velocity fluctuation fields.

the reflected shock for the different incident angles θ studied. Hereafter, the stability
analysis will be limited to the incident angles θ 6 32◦. Similar behaviour is observed
when the Reynolds number and/or Mach number are increased.

4.2. Global mode analysis and linear dynamics
4.2.1. Linear impulse response

According to Huerre & Monkewitz (1990), the onset of unsteadiness in open flows
may be classified into two categories. In particular, the flow behaves either as a
noise amplifier or an oscillator. To emphasize the specificity of the OSWBLI, we first
consider its response to a localized impulse placed close to the inlet. The space and
time behaviour of the resulting wavepacket is illustrated in figures 5–7.

Figures 5 and 6 show multiple snapshots of the wavepacket at different times. In
these figures, the linear response of the flow exhibits a transient temporal growth
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FIGURE 6. (Colour online) Case A: the spanwise vorticity component of the velocity
fluctuation fields associated with the linear dynamics of the wavepacket shown in figure 5
represented for (a) t= 91 δ?/Ue, (b) t= 119 δ?/Ue, (c) t= 146 δ?/Ue, (d) t= 174 δ?/Ue.
The separation line is depicted by the dashed lines. Negative values in blue; positive values
in red.
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FIGURE 7. Case A: Space–time diagram for the linear dynamics resulting from an
impulsive perturbation localized at x/δ? = 20. The vertical axis is the dimensionless
time. The horizontal axis is the dimensionless streamwise position. The shaded contours
represent the kinetic energy associated with the velocity fluctuation fields. The bold
vertical lines are associated with the separation point and point of reattachment.

when evolving downstream along the flat plate, characteristic of noise amplifier
dynamics. In figure 6, the spanwise vorticity component of the velocity fluctuation
field is shown in the vicinity of the separation line for different times. In particular,
the wavepacket takes the form of vortices that evolve into a single row of alternating
sign structures along the separation line. These vortices are reminiscent of ones
that develop in a mixing layer under the action of a Kelvin–Helmholtz convective
instability mechanism. In addition, while the wavepackets grow along the shear
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FIGURE 8. M∞= 2.15, θ = 30.8◦ and Reδ? = 1050 (Case A): global spectrum showing the
temporal amplification rate σδ?/Ue versus the Strouhal number St= (ωδ?/Ue)/2π. Where
δ? and Ue are the displacement thickness taken at the impact of the oblique shock and
the external velocity downstream of separated shock. Each region shows the least stable
eigenvalues belonging to region I: supersonic Kelvin–Helmholtz modes (circles), region II:
subsonic Kelvin–Helmholtz modes (stars), region III: boundary-layer modes (crosses) and
region IV: acoustic modes (+).

layer, we observe the emission of acoustic waves radiated into the expansion fan
when the latter crosses the impact point of the incident shock. The wavepacket
dynamics is also illustrated through the space–time diagram shown in figure 7 where
the distribution of the integrated kinetic energy along the wall normal direction
E(x, t) = ∫ Ly

y=0 ρ(u
2 + v2 + w2) dy (where Ly is associated with the upper limit along

the direction normal to the wall) is represented as a function of the streamwise
position and time. Figure 7 shows that the upstream front velocity of the wavepacket
decreases slowly after the impact point of the incident shock and accelerates again
when it reaches the attached zone. Then, it leaves smoothly the computational domain
and the flow relaxes to its equilibrium state. In addition, figure 7 clearly illustrates the
non-parallel and dispersive effects of the wavepacket space–time dynamics. Cossu &
Chomaz (1997) have demonstrated that the convective nature of the wavepacket can
be interpreted as a consequence of the streamwise non-normality of global modes (see
Chomaz (2005) for a recent review). In this context, the noise amplifier behaviour
can be captured by a suitable superposition of global modes that lead to transient
energy growth. To illustrate the observed wavepacket behaviour, the global modes,
temporal and spatial scales, are investigated in the next section which in turn will
allow for an interpretation of both numerical and experimental observations of shock
wave/boundary-layer interaction dynamics.

4.2.2. Features of the global spectrum
The algorithm outlined in § 3.3 is applied to linear simulations of shock wave/

boundary-layer interaction referenced in table 3. Details on the numerical parameters
are given in table 2. Hereafter, the dimensionless frequency based on δ? and Ue is
given by the Strouhal number St= (ωδ?/Ue)/2π. Figure 8 shows the global spectrum
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FIGURE 9. Case A: representatives global modes of regions I (a–c), II (d), III (e) and IV
( f ), marked with arrows in figure 8. The real part of the normalized perturbation pressure
by the integrated kinetic energy is shown. Contours levels range from −0.5 to 0.5 in steps
of 0.1. In (a), the real part of the spanwise vorticity component in the separated zone is
visualized. Contours levels range from −5 to 5 with a step of 1.

for case A. Additional computations were carried out for different grids (see § A.1)
showing a good approximation of the eigenspectrum for the grid used in this section.
The growth rate of each eigenvalue is negative. This means that all of the modes
are temporally damped consistent with the noise amplifier dynamics observed in
the previous section. In figure 8, we observe that the global modes are grouped
in different regions. Figure 9(a,b) shows the real part of the perturbation pressure
associated with modes labelled (a) and (b) in figure 8. It clearly shows that vortical
structures are mainly localized in the separated area and emit a beam of acoustic
radiation into the far field. From its spanwise vorticity component, we observe that
the latter type of modes display typical features of Kelvin–Helmholtz instabilities
developing along the shear layer. In addition, figure 9(a,b) shows that while the
structures are tilted against the shear behind the impact of the incident shock, they
are reoriented along the shear direction afterwards.

The shear layer generated by the separation is composed of an upper and a lower
stream, referenced hereafter by •1 and •2, respectively. The relative phase velocities
are defined as

Mr,i = |ω/αr −Ui|
ai

, (4.1)

with Ui, ai (i = 1, 2) the streamwise velocity component and the speed of sound
associated with the base flow, respectively. The wavenumber of the mode in a
curvilinear coordinates (s) system attached to the shear layer is αr, its circular
frequency is ω. In particular, as underlined by Cheung & Lele (2009), the instability
waves are classified as subsonic or supersonic if Mr < 1 or Mr > 1, respectively. In a
global modes framework, as recently shown by Song et al. (2013), the wavenumber
can be extracted from the eigenmode by

φ = tan−1

(
v̂i

v̂r

)
, αr = dφ

ds
. (4.2a,b)
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FIGURE 10. Case A: the phase speed Mr,1 (——) and Mr,2 (- - - - -) associated with modes
(a) St≈ 0.02 and (b) St≈ 0.08 shown in figures 9(b) and 9(c), respectively.
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FIGURE 11. The neutrally propagating part of the pressure component associated with the
global mode shown in figure 9( f ).

In figure 10(a,b), we show the relative phase speed of modes labelled (b) and (c)
in figure 9. While the modes have a subsonic phase speed in the lower stream, they
exhibit a supersonic phase speed in the upper stream behind the incident shock. Hence,
the instability waves propagate supersonically with respect to the exterior fluid in the
upper stream and create Mach wave radiation (Tam & Burton 1984) in the localized
region close to the expansion fan. Hence, the modes belonging to region I are referred
to as supersonic Kelvin–Helmholtz modes.

Besides supersonic Kelvin–Helmholtz modes, the flow also contains modes with a
large contribution of the pressure fluctuations in the free stream (region IV) shown in
figure 9( f ). The latter modes travel downstream and emit an acoustic radiation in the
free stream with a downstream directivity. In a global stability framework, as recently
noted by Nichols & Lele (2011), to visualize the neutrally propagating part of the
global acoustic mode travelling downstream, we have to post-multiply the pressure
component by exp(−ki(x − xs)). The transformation ki = −σ/(U∞ + c0) is used to
convert the temporal growth rate σ to the spatial one −ki where c0 and U∞ stand
for the speed of sound and the streamwise velocity in the free stream, respectively.
In figure 11, we show the neutrally propagating part of the global mode labelled ( f )
in figure 9. It exhibits a beam of acoustic radiation that is directive with a shallow
emission angle from a source localized close to the impact of the incident shock.
The latter modes are reminiscent of superdirective global modes observed in a cold
supersonic jet by Nichols & Lele (2011). Different computations were carried out for
different domain sizes in the streamwise direction. The results appear independent of
the domain.

In the intermediate frequencies (regions II and III), we observe in figure 8 that the
spectrum exhibits two distinct kinds of modes. While the least temporally damped
modes are associated with Kelvin–Helmholtz modes that travel with a subsonic
relative phase speed along the shear layer, the second one consists of boundary-layer
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modes as shown in figure 9(e). Hence, the modes associated with regions II and III
are referred to as subsonic Kelvin–Helmholtz modes and boundary-layer modes,
respectively.

The global spectrum shows that a wide range of physical processes exists,
associated with different families of modes that exhibit a distinct characteristic
frequency. In addition, these characteristic frequencies are seen to be independent
of the computational domain size. It is thus clear that, while modes of regions I, II
and III may play an important role on the space–time behaviour of the wavepacket
associated with a linear impulse (discussed in the previous section), radiating modes
of region IV do not seem to be involved in such dynamics.

Finally, one may also remark that the spectrum obtained in the laminar regime
differs from those given by Pirozzoli et al. (2010) and Sartor et al. (2015) associated
with supersonic and transonic turbulent shock wave/boundary-layer interactions,
respectively. For instance, the least damped mode obtained by Pirozzoli et al. (2010)
is non-oscillatory and concentrated in the recirculation zone. The latter authors
suggest that this mode plays a predominant role in the low-frequency dynamics
of this flow. However, such a mode is not observed in the present computation.
Furthermore, the least damped global modes associated with transonic channel flow
over a bump computed recently by Sartor et al. (2015) are acoustic resonance modes
and shock-wave low-frequency modes. Sartor et al. (2015) conclude that the major
part of the stable modes are probably not linked to the unsteady dynamics observed
in turbulent SWBLI. In our case, from observations of the impulse response in the
linear regime, it seems clear that the space–time dynamics of the laminar OSWBLI
is closely associated with global modes.

4.2.3. Scaling analysis
As the above discussion suggests, the linear dynamics of a OSWBLI involves a

wide variety of global modes with various frequencies and spatial scales. Of particular
interest is the dependence of the characteristic frequencies on the representative
spatial scales. For this purpose, we will attempt to define a suitable scaling for
both supersonic and subsonic Kelvin–Helmholtz modes and boundary-layer modes.
This will be done by considering the interaction length (Lint) and the displacement
thickness at the impact (δ?). Trying to unravel the Reynolds and Mach number effects,
we show in figure 12 global spectra associated with flow cases A–E where both the
Reynolds number and the Mach number are kept nearly constant. Hence, in the
latter five cases, we mainly focus on the influence of the bubble shape by means
of minor variations of the Mach number (flow cases D and E) or the angle of the
incident shock (flow cases B and C) around the reference case A. In figure 13, global
spectra for flow cases F and G associated with different Reynolds and Mach numbers
are displayed. In figures 12 and 13 the frequencies and the temporal amplification
rates are scaled either by Lint or δ?. Figure 12 gives some evidence that the driving
mechanism for the unsteadiness associated with supersonic Kelvin–Helmholtz modes
is based on the characteristic length Lint. In particular, the separation between regions
I and II/III occurs for St× Lint/δ

? ≈ 2.8 for flow cases A–E.
In contrast to the latter modes, both the subsonic Kelvin–Helmholtz modes and

boundary-layer modes appear to scale with the local scale δ? for a given couple
of Reynolds and Mach numbers. In particular, for cases A–E, the least damped
mode associated with region II oscillates with a frequency St ≈ 0.145. In addition,
as expected, a slight increase in M∞ and/or θ leads to an increase in the temporal
amplification rates of mode II. Furthermore, when considering flow cases A and F,



18 F. Guiho, F. Alizard and J.-Ch. Robinet

0 10 15 20
–50

–40

–30

–20

–10

0 0.1 0.2 0.3

0 0.1 0.2 0.3

–0.8

–0.6

–0.4

–40

–30

–20

–10

–0.8

–0.6

–0.4

5

0 10 15 205

(a)

(c)

(b)

(d)

FIGURE 12. Global spectra showing the temporal amplification rate versus the Strouhal
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FIGURE 13. Global spectra showing the temporal amplification rate versus the Strouhal
number. (a,c) The frequencies and the growth rate are scaled by Lint and Ue. (b,d) The
frequencies and the growth rate are scaled by δ? and Ue.u,t andq are associated with
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we may observe that a large increase of the Reynolds number leads to decrease
the dominant frequencies associated with region II, when the latter are made
dimensionless by δ? (see figure 13b). In contrast, the separation between subsonic and
supersonic Kelvin–Helmholtz modes is not affected (see figure 13a). When focusing
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FIGURE 14. (Colour online) Distribution of integrated kinetic energy along the wall
normal direction as a function of the streamwise position for frequencies associated
with global modes for (a,b): flow case A and (c) flow case C. (a) Regions I, II, IV
are considered. (b) Regions I, III and IV are considered. The horizontal lines denotes
the position associated with the separation between modes of regions I and II/III and
separation between modes of regions II/III and region IV. Vertical lines denote the
separation and the reattachment points.

on the Mach number effect, figure 13(d) shows that an increase in Mach number
leads to higher frequencies for the subsonic Kelvin–Helmholtz waves. In addition,
the modes belonging to region I are displaced further to the lower frequency range
when scaled by Ue and Lint as shown in figure 13(c). The latter remark seems to
show that the gap between the lowest frequencies and those associated with subsonic
Kelvin–Helmholtz modes widens with an increase of the Mach number. However,
it is clear that making definite statements regarding Reynolds and Mach number
effects is a hard task, mainly due to the difficulty of changing the two parameters
separately. To give further insight into the observed scaling, we provide in figure 14
the distribution of the integrated kinetic energy along the wall-normal direction for
each global mode as a function of the streamwise coordinate for flow cases A and
C. It is interesting to note that the energy associated with the region I frequencies
(i.e. supersonic Kelvin–Helmholtz modes) are mainly localized in the separation zone;
whereas frequencies for region II (i.e. subsonic Kelvin–Helmholtz modes) are strongly
concentrated near the reattachment point. This behaviour tends to be more pronounced
with an increase of the separation zone as observed in figure 14(c). It thus provides
more evidence that frequencies for region I are driven by a scale proportional to
the separation or interaction length whereas frequencies for region II are governed
by a local scale δ?. Finally, one may also remark that figure 14(a,b) clearly show
the spatial separation between subsonic Kelvin–Helmholtz modes and boundary-layer
modes. In particular, the latter modes are spatially amplified in the attached region
downstream of the bubble.
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4.3. Linear regime: noise amplifier dynamics and receptivity
In the previous sections, we have shown that OSWBLI is globally stable for a
wide range of angles of the incident shock, and of Reynolds and Mach numbers.
The flow behaviour will thus depend on the receptivity (i.e. associated with both
the level and the shape of the external noise; and the way it affects the flow)
and a frequency-selective noise amplification of the external perturbation due to
non-orthogonal interactions between the modes (see Schmid (2007) for a review).

To give insight into the selection frequency process of such a flow, we investigate
the linear flow response to a white noise excitation (i.e. the linear version of the CFD
code is used). For this purpose, a spatially localized forcing near the wall is chosen
as actuator. In particular, the latter has a Gaussian envelope:

v′f (x
?, y?)= Af exp

[
−
(

x? − x?f
ξx

)2

−
(

y? − y?f
ξy

)2
]
·Wv(t), (4.3)

where x?f = xf /δ
? and y?f = xf /δ

? fix the forcing location and Af accounts for its
magnitude. Its spatial extent along the flat plate is controlled with ξx and ξy. Wv(t)
is a white noise signal varying between [−0.5; 0.5]. The actuator is placed at two
locations: one starting upstream of the separation point and a second one localized
at the centre of the recirculation zone (referenced as F1 and F2 respectively). Four
pressure probes are placed at several abscissa to measure the response of the flow.
The various parameters are specified in table 4. The flow response is investigated
through the analysis of frequency-weighted power spectral densities (WPSDs) at
various pressure measurement points. The power spectral density (PSD) is estimated
using the overlapping segments technique. Three segments with 50 % overlap are
used over pressure time series data with a total record length 1000. The WPSDs
associated with the flow response at the separation point (P1), far from the wall
close to the separated shock (P2) and inside the bubble (P3) are shown in figures 15
and 16 (for F1 and F2, respectively) as a function of the non-dimensional frequency
St. The choice of the position of the probe P2 allows us to evaluate the influence of
the separation shock with respect to the interaction zone. For the upstream broadband
white noise forcing, F1, the WPSDs exhibit a broadband amplification frequency
centred at a non-dimensional frequency in the range of St ∈ [0.05; 0.5] for P1 and
P3. This selectivity is mainly due to the shear layer. Similar results are obtained for
P4 (not shown here). In addition, figure 15(b) shows that the measurement associated
with probe P2 exhibits a low-frequency broadband energy content. In this position,
the linearized dynamics presents no particular selectivity and beyond St ≈ 0.1, all
frequencies are attenuated. Different grids has been tested, showing that these features
are independent of the numerical choices.

For the internal broadband white noise forcing, F2, the WPSDs have a low-
frequency broadband content with no particular selectivity for P1 and P2. P3 and
P4 display a selective-frequency response similar to the F1 case. In addition, it is
interesting to note that when the forcing is localized near the separation point, the
amplitude of the response is larger than the one associated with forcing F2 (i.e. inside
the bubble). These results are in agreement with those of Sansica et al. (2014), only
the frequency range involved is different and can be largely explained by an effect of
the Mach number (1.5 in their case). To characterize the spatial shape of structures for
a single frequency associated with the response to a white noise forcing, 10 000 every
1tδ?/Ue = 0.148 of streamwise velocity and pressure fluctuation snapshots are stored
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FIGURE 15. M∞ = 2.15, θ = 30.8◦ and Reδ? = 1050 (Case A). Linear regime. Frequency
response to upstream broadband white noise forcing (F1) at the (a) separating point;
(b) separated shock; (c) downstream position. The WPSDs normalized by the forcing
amplitude are represented as a function of the dimensionless frequency (St). (a) P1 –
separating point, (b) P2 – separated shock, (c) P3 – separated zone.

and Fourier transformed. In figure 17(a,b), Fourier modes corresponding to St≈ 0.145
and St ≈ 0.056 are represented for case A. On the one hand, figure 17(a) shows
that most amplified frequencies are associated with not radiating Kelvin–Helmholtz
modes reminiscent of subsonic Kelvin–Helmholtz global modes. On the other hand,
low-frequency Fourier modes exhibit a spatial amplification of vortices along the
separated zone with emission of an acoustic wave into the expansion fan, similar
to supersonic Kelvin–Helmholtz global modes. To further illustrate this, the Fourier
modes are projected into a set of global modes using an orthogonal projection that
relies on Gram–Schmidt orthonormalization. The procedure is detailed in Song et al.
(2013). Hence, a single Fourier mode may be decomposed as

qFourier(x, y)=
N∑

i=1

Wiq̂i(x, y), (4.4)
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FIGURE 16. M∞ = 2.15, θ = 30.8◦ and Reδ? = 1050 (Case A). Linear regime. Frequency
response to internal broadband white noise forcing (F2) at the (a) separating point;
(b) separated shock; (c) downstream position. The WPSDs normalized by the forcing
amplitude are represented as a function of the dimensionless frequency (St). (a) P1 –
separating point, (b) P2 – separated shock, (c) P4 – downstream point.

with Wi being the coefficient of projection onto the global mode q̂i. Hereafter, N=100
global modes are considered. The weighted spectra are shown in figure 18(a,b). The
figures show that, while the Fourier mode associated with St≈ 0.145 involves mainly
global modes associated with regions II and III, the global modes of region I
concentrate more energy for the Fourier mode corresponding to St≈ 0.056, consistent
with the acoustic radiation observed in figure 17(a). Consequently, it is clear from
figure 17(a,b) that Fourier modes may be considered to be a train of wavepackets
beating to a single frequency given by the Fourier transform. In particular, the latter
wavepackets are composed of many frequency components, each of them being
associated with a global mode. In addition, figure 17(a,b) also show the consequence
of dispersive effects associated with boundary-layer modes and Kelvin–Helmholtz
modes (region I, II and III, respectively) that travel with different phase velocities. In
particular, one may observe that the wavepacket spreads out for low frequencies
in comparison to medium frequencies (as depicted in figure 17a,b). From the
discussion above, it seems clear that OSWBLI filters and amplifies a specific range
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FIGURE 17. M∞ = 2.15, θ = 30.8◦ and Reδ? = 1050 (Case A). Linear regime. Fourier
analysis: contours of the pressure fluctuations for (a) mode with St ≈ 0.145 (i.e. St ×
Lint/δ

? = 5.52) and (b) mode with St ≈ 0.056 (i.e. St × Lint/δ
? = 2.05). In the subfigures,

the corresponding spanwise vorticity is represented.
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FIGURE 18. M∞=2.15, θ =30.8◦ and Reδ? =1050 (Case A). Linear regime. Contributions
of individual global modes to (a) the single Fourier mode associated with St≈ 0.145 (see
figure 17a) and (b) the single Fourier mode associated with St ≈ 0.056 (see figure 17b).
The circles are proportional to the corresponding expansion coefficients associated with
the projection of the Fourier modes (referenced as Wi in (4.4)).

of frequencies, characteristic of a selective noise amplifier (Sipp et al. 2010) and also
give a physical explanation of individual global modes as a wavepacket component.
The Fourier analysis shows that actuation in the vicinity of the separation provides
a more efficient response for the most amplified frequencies than an actuation inside
the separation zone. Hence, one may conclude that subsonic Kelvin–Helmholtz
global modes have greater receptivity near the separation point whereas supersonic
Kelvin–Helmholtz global modes are more receptive to a forcing localized inside the
bubble. In addition, the predominance of supersonic Kelvin–Helmholtz global modes
for Fourier modes with St≈ 0.056 provide physical insight useful to the interpretation
of the amplification of lower frequencies measured with P2 as shown in figures 15(b)
and 16(b). Indeed, in the region near the probe P2, the flow is mainly driven by
acoustic disturbances which are associated with supersonic Kelvin–Helmholtz modes.
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FIGURE 19. Distribution of the global resolvent as a function of the dimensionless
frequency St for case A (full line) and case C (dashed lines). The maximum amplitude
of R is defined up to a multiplicative constant.

The frequency selection observed in figures 15(a,c) and 16(a,c), can be explained in
a global framework through the analysis of the global resolvent, R(ω) (see Sipp et al.
(2010) for the technical details). The latter quantity represents the maximum response
of the flow due to a harmonic forcing at a frequency ω and is strongly associated
with the non-orthogonality of the global modes. R(ω) can be approximated by using
the Hessenberg matrix from the Arnoldi algorithm (see Toh & Trefethen 1996). The
relevancy of our approach is discussed in § A.2. In figure 19, the distribution of R
is shown as a function of the non-dimensional frequency St for flow cases A and C.
Apart from the amplification of a wide range of frequencies in between, the latter
curve exhibits a maximum for St ≈ 0.145 consistent with the linear simulation. In
addition, the most amplified Strouhal number is seen to be not affected by an increase
of θ from 30.8◦ to 32◦. This result is in agreement with the scaling for the global
spectra analysed in the previous section.

4.4. Influence of nonlinearities
To give insight into the influence of nonlinearities, we investigate the nonlinear
response to a white noise forcing for case A. For that purpose, the same forcing
as the one described in the previous section is used. Besides the linear regime,
different simulations with various amplitudes are carried out. In particular, Af = 10−8

and Af = 10−4 are considered for F1 and Af = 10−6 is considered for F2. In
figure 20, the WPSDs associated with F1 are reported for the probes P1 and P2.
It is interesting to note that the frequency selection observed in the linear regime
is not strongly affected by nonlinearities. In particular, WPSDs associated with the
probe P1 exhibit an energy peak close to St ≈ 0.14 and a wide range of amplified
frequencies between St ≈ 0.05 and St ≈ 0.5 for both Af = 10−8 and Af = 10−4, in
agreement with the linear frequency response. However, the figure 20 also shows
that low frequencies are energetically more significant when the forcing amplitude
is increased for both P1 and P2. This suggests a stronger selectivity of the lower
frequency when nonlinearities have a significant contribution. These results are
compatible with the results obtained by Sansica et al. (2014). However, in their
work, the influence of nonlinearity is more pronounced because the interaction zone
is larger which yields intense nonlinear dynamics of the shear layer. The WPSDs
associated with F2 are displayed in figure 21. In (a), the figure shows that the
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FIGURE 20. (Colour online) M∞ = 2.15, θ = 30.8◦ and Reδ? = 1050 (Case A). Frequency
response to upstream broadband white noise forcing for nonlinear Navier–Stokes equations.
(a) P1 – separating point, (b) P2 – separated shock.
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FIGURE 21. (Colour online) M∞ = 2.15, θ = 30.8◦ and Reδ? = 1050 (Case A). Frequency
response to internal broadband white noise forcing for nonlinear Navier–Stokes equations.
(a) P2 – separated shock, (b) P4 – downstream.

frequency response associated with pressure measurements in P2 are not affected
by nonlinearities. Similar results are obtained for P1. In (b), one may observe an
increase of the energy content over the low frequencies when increasing the forcing
amplitude inside the recirculation zone. On the one hand, this suggests that the
nonlinear receptivity to frequencies associated with regions I and II (see spectrum 8)
exhibit a similar behaviour as the one discussed in the section devoted to the linear
regime. In particular, while the nonlinear receptivity of frequencies for region II are
localized near the separation point, frequencies for region I have a greater receptivity
to a forcing inside the recirculation zone. On the other hand, it is clear from the
figure 21(b) that nonlinearities tend to increase this behaviour. Finally, in figure 22,
the Fourier mode associated with St = 0.02 (St × Lint/δ

? ≈ 0.73) is represented. As
for the linear regime, we may observe that its spatial support is mainly localized in
the separated region. This indicates that nonlinearities tend to favour the emergence
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FIGURE 22. Case A: nonlinear regime. Fourier mode for St = 0.02. (a) The pressure
component. (b) The spanwise vorticity component. The black solid line denotes a
streamline above the separation line.

of low-frequency modes strongly associated with the recirculation zone. We can also
remark that no acoustic radiation is observed in figure 22(a). This thus provides
evidence that the mechanism associated with the nonlinear Fourier mode shown in
figure 21 is distinct from the one linked to the supersonic Kelvin–Helmholtz modes
observed in the linear regime.

5. Discussion and conclusion
The interaction between an oblique impinging shock wave and laminar boundary

layer developing on a flat plate has been analysed using a linear stability approach
and numerical simulations. This study was carried out for different values of the
incident shock angle, Reynolds and Mach numbers. The stability analysis has shown
that OSWBLIs are globally stable for this range of parameters. In particular, the
global spectrum involves a wide variety of global modes that are identified and
catalogued. Kelvin–Helmholtz modes, describing the perturbation dynamics along
the shear layer, are observed to fall into two categories: one where Mach-waves
are radiated in the free stream (called supersonic Kelvin–Helmholtz modes) and one
that is characterized by waves that propagate with a subsonic relative phase velocity
(called subsonic Kelvin–Helmholtz modes). Boundary-layer modes are also identified,
dominated by structures mainly located in the attached region. Finally, global modes
dominated by acoustic waves (i.e. propagating at the speed of sound) in the free
stream are also found. In addition, when the Reynolds and Mach numbers are kept
almost constant (M∞≈ 2.15 and Reδ? ≈ 1000), it is seen that characteristic frequencies
for subsonic and supersonic Kelvin–Helmholtz modes exhibit a universal behaviour
when using a scaling based either on the interaction length or the displacement
thickness at the impact of the incident shock, not dependent on the bubble’s shape.
This scaling is seen to be Reynolds number and/or Mach number dependent but
further investigations at various Mach numbers and Reynolds numbers are needed
in order to make a firm statement on this point. The main consequence is that the
OSWBLI behaves as a selective noise amplifier and its dynamics is driven mainly by
receptivity mechanisms and a non-modal transient response. To further illustrate this
behaviour, we have exploited the global modes and carried out numerical simulations
of forced OSWBLI for the case M∞ = 2.15 and Reδ? = 1050 (also referred to as
the Degrez’s case). The global stability analysis has revealed that the spatial scales
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responsible for the Strouhal number range St ∈ [0.05, 0.5] are localized mainly in
the interaction zone. The lower the frequency, the more the perturbations at the
origin of these frequencies are located in the separated shock and shear-layer foots.
The global resolvent has shown that the frequency response is multi-modal with a
selectivity around St ∈ [0.05, 0.5] and a peak close to 0.14 (we recall that St is based
on δ? and Ue). No particular selectivity is observed at low frequency. In order to
clarify the receptivity mechanisms, Degrez’s case has been locally forced upstream
(respectively downstream) to the OSWBLI. The linear and nonlinear response of
the flow has been analysed at some chosen points. The linear forcing confirmed the
stability analysis results and the most amplified frequencies exhibit good agreement
with the shape of the global resolvent. Nonlinear dynamics has shown two different
response families. For the medium and high frequencies, St∈ [0.05, 0.5], the nonlinear
dynamics is qualitatively close to the linear response. It corresponds to the dynamics
of the shear layer, where Kelvin–Helmholtz-type instabilities develop. In contrast,
the low-frequency dynamics, St ∈ [5 × 10−4, 0.05], is qualitatively different to the
linearized one. When the amplitude of the forcing or the interaction intensity are
strong enough, the amplitude of the response is higher in comparison with the linear
dynamics. An underlying nonlinear mechanism appears to be responsible for this
behaviour. Sansica et al. (2014) indicate that this low-frequency response can be
driven by the nonlinearities of the shear layer at the reattachment point. Such a
mechanism has already been found for separated subsonic flows where self-sustained
low-frequency oscillations are observed for a large separation zone (Dovgal, Kozlov
& Michalke 1994; Ehrenstein & Gallaire 2008).

Concerning the scenarios discussed in the introduction, none of these can
be definitely ruled out. The selective-amplifier character of the OSWBLI for
two-dimensional disturbances does not exclude a forcing of upstream disturbances
(Ganapathisubramani et al. 2007). However, we have shown that a forcing in the
interaction zone is more effective than an upstream one. Concerning the scenario
linked to an acoustic feedback loop (Pirozzoli & Grasso 2006), we have highlighted
various acoustic emission mechanisms, yet none of them can explain the two orders
of magnitude between the main flow dynamics (vortex shedding or shear-layer
instabilities) and the dynamics of the separated shock. The scenario proposed by
Piponniau et al. (2009) is only indirectly connected to the instabilities of the shear
layer. It postulates that the low frequencies are the result of a rebalancing mechanism
between the loss of mass carried by vortices developing in the shear layer and its
basic state (the equilibrium state of the undisturbed separated zone). At this stage it
is unclear whether the model of Piponniau et al. matches the nonlinear mechanism
observed in this study. As for the Touber’s scenario (Touber & Sandham 2011), it
is not inconsistent with our results. To better discriminate among these scenarios,
it is necessary to further study the different nonlinear mechanisms which may be
responsible for the low-frequency dynamics.

Our analysis seems also to establish a strong coupling between the dynamics of
the separated zone and the low-frequency dynamics. In particular, this link seems to
have a nonlinear origin consistent with the results given by Sansica et al. (2014). An
interesting synthesis of these different scenarios is given by Morgan et al. (2013).

Although this paper focuses on a strictly laminar interaction, some clues can be
given to better understand the turbulent interaction. Numerical simulations realized
by Touber & Sandham (2009b), Priebe & Martin (2012) and Aubard et al. (2013)
highlight a dynamics qualitatively similar to that of a laminar flow. Two frequency
scales appear clearly, StLint ≈ 0.5 and StLint ≈ 0.03, matching the dynamics of the
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shear layer and the shock of separation, respectively. However, some quantitative
differences are observed. The most obvious difference lies in the scale ranges set in.
In the laminar regime, the Strouhal numbers range related to the shear-layer dynamics
is around StLint ≈ 5 while in the turbulent regime is close to StLint ≈ 0.5. This difference
implies that the instabilities in the turbulent OSWBLI have larger wavelengths than
those in the laminar case. This difference can be explained by the different values
of the displacement thickness (or vorticity thickness). For example; a comparison
between Degrez and IUSTI cases gives: (Lint/δ

?)lam ' 36.7 and (Lint/δ
?)tur ' 13.2 and

δ?tur/δ
?
lam ' 5.

Both numerical simulations and experiments of turbulent OSWBLI indicate a
smaller mean separated zone compared to the one observed in a laminar case. With
regards to the convective/absolute transition criterion based on the reversed-flow
velocity (see Hammond & Redekopp 1998), it suggests a convective nature of
instabilities developing in the interaction zone. In addition, the separated zone of
turbulent OSWBLI is continuously forced by turbulent structures. It may thus be
supposed that the origin of low-frequency unsteadiness in the turbulent regime is
also associated with the nonlinear interaction between instability modes arising in the
shear layer, as shown for the laminar case in the present study.

However, based on the assumption that coherent structures are uncorrelated to the
disorganized ones, recent global stability analyses carried out on a mean turbulent
flow (Sartor et al. 2013; Sartor 2014) suggest that low-frequency unsteadiness in
transonic turbulent shock wave/boundary-layer interaction cannot be explained by the
presence of unstable global modes, and is mainly driven by a linear pseudo-resonance
mechanism. Hence, it should be an interesting prospect to perform a similar analysis
for the turbulent OSWBLI to give a more definitive statement.

Furthermore, our analysis is restricted to two-dimensional disturbances. Robinet
(2007) has highlighted that a laminar OSWBLI could become globally unstable with
respect to three-dimensional disturbances, leading to a bifurcation from a 2-D steady
state to a 3-D steady state. However, convective instabilities may induce an abrupt
transition to turbulence and can ‘bypass’ this global mechanism. For supersonic flow,
Mack (1969) has found that the most unstable convective waves are three-dimensional.
Pagella et al. (2002) and Yao et al. (2007) have shown that these instabilities can play
an important role in mechanisms of transition to turbulence in a laminar OSWBLI.
In future work, it would be interesting to study the global stability and receptivity
process of an OSWBLI with respect to 3-D perturbations.
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Appendix A. Numerical validations
A.1. Eigenspectrum

To test the robustness of the eigenspectrum for case A, two other grids are studied
(Nx × Ny)= (650× 100) and Nx × Ny = 900× 200. Figure 23 shows the eigenspectra
obtained with the reference grid (the one used in the paper) and the other resolutions.
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FIGURE 23. M∞ = 2.15, θ = 30.8◦ and Reδ? = 1050 (case A). u (reference grid):
(Nx ×Ny)= (560× 100);p: (Nx ×Ny)= (650× 100); ?: (Nx ×Ny)= (900× 200).

In figure 23, we may observe that results carried out on (Nx × Ny) = (560 × 100)
and (Nx ×Ny)= (650× 100) are almost undistinguishable. However, when comparing
with the finest resolution, significant differences occur for the highest frequencies
(above St ≈ 0.16). This suggests a very slow convergence of the spectrum for this
part of the spectrum. It is also consistent with the fact that higher frequencies are
associated with smaller scales and are better discretized with the finest grid. However,
the characteristic scales (i.e. the frequency peak around St ≈ 0.14 and the separation
between subsonic and supersonic Kelvin–Helmholtz modes around St× Lint/δ

? ≈ 2.8)
are not really modified when increasing the number of grid points from the reference
grid. In addition, modes corresponding to frequencies above St ≈ 0.16 are not quite
involved in the space dynamics of OSWBLI as shown in figure 18 where a projection
of the flow response onto a set of global modes is performed. Hence, the reference
grid can be considered a good compromise between resolution and a reasonable
computational time.

Furthermore, the slow convergence for the global spectrum can be explained by the
ε-pseudospectrum and not only by a lack of spatial resolution. A current definition of
the ε-pseudospectrum is given by

Λε = {ω ∈C : ‖R(ω)‖> ε−1}. (A 1)

The pseudo-spectrum can also be interpreted as ‖R(ω)‖> 1/dist[z, Sp(J)] where z is
a point in complex plane and dist[z, Sp(J)] denotes the distance between z and the
spectrum (Sp) of the Jacobian J. The pseudospectrum gives a measure of the potential
change in the eigenvalues once the Jacobian operator is perturbed by an operator P
of norm ε (see Trefethen & Embree 2005). It yields some useful information about
the robustness of eigenvalues to the numerical parameters. In figure 24, it can be
observed that when the Jacobian operator is disturbed, for example by ε ' 10−6, it
causes a disturbance 1λ of the order of 6 × 10−3 on the eigenvalues of the branch
II. However, this same disturbance causes a 1λ' 8× 10−2 for some eigenvalues of
branch III around St= 0.2. This result shows that the eigenvalues are highly sensitive
to data (physical or numerical origins) disturbances related to the non-normality of the
Jacobian operator. For the eigenvalues of the branch III, this sensitivity is mainly of
numerical origin, these modes are associated with the boundary layer downstream and
are exponentially amplified in the streamwise direction. The envelope of these modes
is not contained in the computational domain (unless we have a very large domain,
which is too expensive numerically), the influence of the downstream boundary
condition is not negligible for these modes.
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FIGURE 24. (Colour online) ε-pseudospectrum for the case A: M∞= 2.15, θ = 30.8◦ and
Reδ? = 1050. The grid used is (Nx ×Ny)= (560× 100) and the domain size is [0; 400] ×
[0; 80].
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FIGURE 25. M∞ = 2.15, θ = 30.8◦ and Reδ? = 1050 (Case A). Dependence on global
resolvent with respect to number of snapshots Ns (Ns = 320: full line, Ns = 360 dashed
line, Ns = 400 dash-dot line) for the reference grid: (Nx ×Ny)= (560× 100).

A.2. Global resolvent
The global resolvent being computed from the pseudospectra (figure 24), it is
important to check that the latter quantity is not dependent on the Krylov subspace
dimension Ns. In figure 25(a), we show that the resolvant curves R(St) computed
with Ns = 320, 360 and 400 are almost undistinguishable.
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