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Abstract

Global schedulers are components in parallel runtime libraries that distribute the ap-
plication’s workload across physical resources. More often than not, applications showcase
dynamic load imbalance and require customized scheduling solutions to avoid wasting re-
sources. Some libraries lack support for user-defined schedulers and developers resort to
unofficial extensions that are harder to reuse and maintain. We propose a global sched-
uler software design, entitled ARTful model, to create user-defined solutions with minimal
alterations in the runtime library. Our model uses a component-based design to sepa-
rate components from the runtime library and the scheduling policy implementation. The
ARTful model describes the interface of a portable scheduler library, allowing policies to op-
erate on different runtime libraries. We study the overhead induced by our design through
our ARTful library implementation MOGSLib using workload-aware scheduling policies.
We experiment with two different policies from OpenMP and Charm++ runtime systems,
also presenting evaluations of the policies outside of their original library context. We ob-
serve that our portable schedulers can sometimes perform decisions faster than their native
counterparts with negligible overhead in the execution times of synthetic applications and
molecular dynamics kernels.

1 Introduction
High Performance Computing (HPC) applications are built atop of long-lasting standards cre-
ated by the collaborative efforts of industry and academia such as OpenMP [9], MPI [28] and
BLAS [6]. Thanks to these standard libraries, HPC applications may achieve better performance
and portability across different platforms. However, these tools alone do not provide the best
performance out-of-the-box to all problems and/or systems.

Resource management is paramount to both portability and performance of parallel applica-
tions. A well-known technique to improve resource management is global scheduling, which aims
at (re-)distributing tasks of parallel applications over physical resources, allowing predictable
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application performance in different systems [10]. Although a multitude of scheduling solutions
have been proposed [26], most runtime libraries have limited support for user-defined sched-
ulers [2, 3]. Additionally, to the best of our knowledge, there is no interoperability between
solutions implemented in current runtime libraries.

Future predictions suggest a larger, more diverse HPC ecosystem, with novel hardware ar-
chitectures [10]. The success of future exascale computers relies, partially, on existing tools for
resource mapping and application scheduling. As diversity increases, most of the complexity
to orchestrate these resources will be absorbed by standards implemented in runtime libraries.
However, even today, integrating novel scheduling solutions to these libraries relies on unofficial
and hard to maintain initiatives [15]. Indeed, efforts to create standards for user-defined sche-
duling can already be observed in OpenMP [14, 5]. While such propositions have been proven
useful for discussing the future of HPC standards, there is a lack of efforts to implement these
mechanisms into existing runtime libraries.

We propose a framework to create user-defined scheduling solutions that are portable by
design, the ARTful scheduler library model. ARTful abstracts scheduling policies and their func-
tional requirements as components [18], loosely connected by blackboard entities that compose
the library interface. The model disconnects the runtime library scheduling features from the
policy algorithm, exposing dependencies as component requests. ARTful allows portable sched-
ulers to specialize to the runtime library, allowing a single user-defined policy implementation
to operate on different runtime libraries. We conceive that ARTful is helpful for teams develop-
ing runtime libraries, researchers that want to integrate their scheduling algorithms to different
runtimes, users that require different schedulers for different situations, among others.

Besides explaining the ideas behind the ARTful scheduler library model, we provide ex-
periments to analyze the model overhead when compared to native solutions in OpenMP and
Charm++ runtime libraries. In addition, we analyze how scheduling policies can be adapted
to, and how they perform, outside of their original libraries. The ARTful model stems from our
previous work on MOGSLib, a portable scheduler library [25]. We continue our previous work
by adding new contributions in the form of the following topics:

1. The ARTful scheduler library model based on the software architecture implemented in our
portable scheduler library;

2. New scheduling overhead experiments using molecular dynamics benchmarks comparing
our portable schedulers with runtime native solutions;

3. The first experimental analysis of libGOMP and Charm++ scheduling solutions applied
outside of their intended context.

The remainder of this paper is organized as follows. Section 2 describes the background in
global scheduling software development as well as our research problem. Next, in Section 3, we
present the ARTful scheduler library model. In Section 4, we briefly explain how we implemented
the ARTful model in our library. We then discuss our experiments and results in Section 5 and
conclude our work in Section 6.

2 Problem Definition
Global scheduling may be described as the problem of defining where to run a set of tasks,
leaving the decision of when to run them to local scheduling [7]. This definition is broad enough
to encompass different scheduling activities in modern parallel programming models such as load
balancing, topology mapping and loop scheduling.
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1: procedure LPT(Tasks T , Task loads (processing times) LT , Resources R)
2: LR ← 0 . The resources start with no load
3: T ′ ← T . List of tasks to be mapped
4: M ← ∅ . The mapping of tasks to resources starts empty
5: while T ′ 6= ∅ do . While there are tasks left to map
6: t← argmaxt′∈T ′ LT (t

′) . Take the unmapped task with the largest load (largest
processing time)

7: r ← argminr′∈R LR(r
′) . Take the resource with the smallest load

8: M(t)← r . Map the task to the resource
9: LR(r)← LR(r) + LT (t) . Update the load of the resource

10: T ′ ← T ′ \ {t} . Remove the task from the set of tasks to be mapped
11: end while
12: return M . Return the computed mapping of tasks to resources
13: end procedure

Algorithm 1: The Largest Processing Time first (LPT) scheduling policy.

The scheduling policy is an algorithm for deciding the mapping of tasks to resources,
given specific objectives. Scheduling policies are unbounded by technological aspects of runtime
libraries, system architecture, and parallel programming models. To emphasize this concept, we
present the Largest Processing Time First (LPT) scheduling policy [11] in Algorithm 1. This list
scheduling algorithm tries to reduce the makespan by iteratively taking an unmapped task with
the largest load and mapping it to the resource with the smallest load.

The LPT algorithm does not define implementation aspects like: (i) what is a task (e.g.,
object, thread, process or loop iteration); (ii) what is a resource (e.g., core, processor or compute
node); or (iii) how a workload is measured (e.g., static model or introspection). These charac-
teristics denote how and where policies are implemented, being important practical aspects of
the taxonomy of scheduling problems and solutions [17]. In this work, we explore this disparity
between the general concept and a specialized definition of scheduling policies. We denote these
practical definitions as being part of a scheduling context, a component that specializes a
scheduling policy to a scheduling problem through runtime library or user-defined components.

Parallel runtime libraries like StarPU [3] and Charm++ [2] support scheduling solutions as
software modules. They expose data structures and endpoints to decouple the scheduling service
from other runtime features. This design minimizes the implementation effort of scheduling
strategies at the cost of explicit software dependencies with regards to the runtime interface.
We refer to these as native schedulers because they fulfill the library scheduling needs, are
implemented with native components, and frequently reside in the same codebase as the whole
library itself.

The dependency between runtime library and native scheduler is bi-directional. The library
relies on specialized schedulers to expose its execution model. For instance, Charm++ applica-
tions decompose the application domain into a number of chares (i.e. Charm++ notation for
tasks) far greater than the number of processors. This strategy, known as over-decomposition,
requires the runtime system to re-distribute chares and avoid load imbalance. This task is es-
pecially difficult with an application-agnostic framework that may host irregular workloads or
communication patterns. Nonetheless, Charm++ and other similar libraries, achieve scalable
high performance due to a combination of introspection and dynamic global scheduling. In other
words, Charm++ relies on schedulers to consume data from its introspective analysis tools to
secure an efficient adaptive execution model. It is important to notice that these requirements
are closely related to our definition of the scheduling context, in the sense that they define how
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(i.e., use introspection data as input) and where (i.e., compilation unit linked to the Charm++
scheduler module) to implement the scheduling policy algorithm.

State-of-the-art scheduling solutions for HPC applications evaluate topology affinity [24, 13],
decide processor frequencies [21], assess dynamic workloads [23], data locality [27] and others.
As system architectures transit to the exascale era, new strategies will emerge to handle load
imbalance in different levels of the system. Therefore, it is increasingly important to design
schedulers in such a way that enables: (i) source code reuse without performance penalties; (ii)
individual testing, and (iii) a structured runtime integration process.

2.1 Related work
Popular parallel programming models, such as StarPU [3] and Charm++ [2], implement global
schedulers as runtime services encapsulated within the library. These systems support new
policies by enforcing a common interface on the scheduler components. New policies are compiled
alongside the runtime library and act as native schedulers. Some standards like OpenMP [9]
describe a minimal set of standard-compliant global schedulers (e.g., static and dynamic). Recent
works [14, 5] identify the problem of the limited set of schedulers in standard OpenMP. These
works proposed different ways to extend the standard to allow user-defined loop schedulers.

On the topic of component-based approaches for modularity, Aumage et al. [4] proposed the
combination of task-based decomposition with component-based software models. Their model
uses explicit definitions of data transmission to create dependencies and components to define the
tasks to be executed. They successfully abstracted segments of code from real applications into
a component system over the StarPU runtime system. This work showcases the importance of
providing interfaces for high performance tools to assist the expression and reuse of user-defined
components.

Grossman et al. [12] designed a runtime system that allows parallel libraries to co-exist
through resource scheduling. In this work, the authors modeled solver libraries as components
and proposed a communication interface so libraries can collaborate instead of competing for
resources. Their solution uses lambda functions for communication, resulting in low overheads
and an extensible interface for new resource scheduling strategies.

The demand for variety and user-defined scheduling is also a studied topic in the scope of
the real-time operating system. Similar to HPC runtime systems, the kernel must abstract
basic functionalities to applications, and scheduling is one of them. Mollison and Anderson [20]
proposed user-defined schedulers that could be implemented with limited changes to the kernel
and be used in multiple operating system kernels. They applied a common higher-level API
to enable the user to manipulate schedulers independently from the underlying kernel. Those
higher level directives are translated by a driver and forwarded to the kernel and C POSIX
library function calls. Their solution enables schedulers to be developed out of the kernel-space
with abstract implementations for base functions that involve thread locking, synchronization,
and other functionalities. It is important to emphasize that the overhead of the technique was
acceptable even on real-time constraints, which is the most critical metric for schedulers in real-
time operating systems.

3 ARTful scheduler software model
We observe that native global schedulers in different runtime libraries have a common program
flow composed of three steps: (1) requirements resolution; (2) task-to-resource mapping compu-
tation; and (3) task assignment/migration.
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Step 1 is characterized by interactions where the policy acquires input data from software
entities in the scheduling context. Some libraries facilitate these interactions providing software
endpoints for obtaining workload prediction, communication matrix, or topology input data and
communication services for distributed schedulers. In Step 2, the scheduling policy calculates
the task-to-resource mapping using the data collected from the scheduling context. Then, the
scheduler enacts the workload distribution in Step 3, often by yielding the control back to the
runtime library and returning a schedule.

Our model, entitled ARTful scheduler library software model, aims to isolate the activities of
the scheduling policy (Steps 1 and 2) and the scheduling context (Steps 1 and 3). The isolation
characterizes two practical scheduler development phases, algorithm implementation and context
specialization. Separated by design, artifacts from these phases can live on different codebases,
the runtime library and a portable scheduling policy library. We discuss in Section 3.1 how
to separate the activities using a component-based model. Then, we detail the entities in the
portable policy library interface in Section 3.2.

3.1 Component model for scheduler requirements
The ARTful model relies on a component-based approach to represent scheduling requirements.
More specifically, ARTful components are lightweight adapters to functionalities already pro-
vided by other entities in the scheduling context. They encapsulate common interactions between
the policy (e.g., algorithm) and runtime or user-defined interfaces (e.g., system features). This
portability strategy is common among HPC libraries like BLAS [6] and oneAPI [1], where math-
ematical entities (e.g., matrices and tensors) and manipulation routines are specified through a
set of standard function interfaces and structures.

The ARTful model defines the software structure of scheduling requirement concepts, com-
mon data types and routines employed on scheduling policies across runtime libraries. Software
entities that provide access to a scheduler requirement k are described by a tuple of parameters
known as the scheduling concept descriptor Dk = (Ik, Ok, Pk, Ck). The tuple Dk is associated
to a single scheduling concept but can be used to describe many different implementations (i.e.,
software components [18]). The software interface Ik is a set of functions to access the data or
routine that the concept represents. The origin Ok is a flag to indicate whether the functionality
is provided by the runtime library or user-defined components. The descriptor parameter set
Pk describes the component implementation-specific characteristics relevant to the concept. It
can characterize, for instance, how the data was gathered, how it is presented in memory, or
other aspects that may assist in characterizing a scheduling solution. The check function Ck

defines a process to compare two concept descriptors. It compares the Pk parameter values of
each instance and returns true if both descriptors detail compatible concept implementations
(i.e., interchangeable). A software component that implements a concept must be described by
the concept descriptor and is called an ARTful component.

In this work, we experiment with workload-aware scheduling policies from Charm++ and
OpenMP. These policies depend on workload predictions for each of the application tasks and
may also require the workloads associated with the processing units (e.g, the measured system
noise in a core). The workload prediction w is a common requirement concept across scheduling
solutions, often stored in memory as an array of numbers with abstract unit. We define Pw as a
pair of values (S,M), describing the subject and model type respectively. The subject S states
the meaning of the workload values (it can be the application tasks or the system processing
units). The M parameter describes the workload model type, which can be either dynamic,
when obtained via introspection, or static when the values stem from offline analysis. As the M
parameter usually does not affect the policy algorithm behavior, we also allow it to assume the
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1 class WorkloadDataIface {
2 virtual double * values () const = 0;
3 virtual int size () const = 0;
4 };
5
6 class WorkloadDataDesc {
7 typedef WorkloadDataIface iface ;
8
9 enum Subject { tasks , pus };

10 enum Model { is_static , is_dynamic , any };
11
12 const Subject subject ;
13 const Model model ;
14
15 WorkloadDataDesc ( Subject s, Model m) : subject (s), model (m) {}
16
17 bool compare ( const WorkloadDataDesc & o) const {
18 return subject == o. subject &&
19 ( model == any && o. model != any ||
20 model == o. model );
21 }
22 };

Algorithm 2: A C++ component descriptor and interface implementation for the workload pre-
diction dependency concept. The WorkloadDataDesc class describes implementations in terms
of the workload model type and what it represents, tasks or processing units. The Workload-
DataIface class describes the component interface, the methods available to scheduling policies
to access the workload predictions in a context.

value any, a value signaling that this parameter is irrelevant to the policy. The origin Ow is only
defined by component implementations and are ignored when designing concept descriptors. We
define Iw as a function having no parameters and returning a list of numbers. The comparison
function Cw checks the parameters S and M of two component descriptors. It returns true when
the subject S and model type M are the same on both components, with the exception that one
of the components is allowed to have any as the model type and match with other M values.

The code in Listing 2 showcases a possible implementation of the workload prediction con-
cept using C++ classes. The implementation allows scheduling policies to describe a workload
prediction data requirement through an instance of the class WorkloadDataDesc. The expressed
requirement can be compared with other concept descriptors, enabling component implemen-
tations to be matched against the policy requirement request. Furthermore, components that
perform the workload prediction concept implement its interface, represented by the virtual class
WorkloadDataIface. In other words, the scheduling policy requires only a pointer to an object
of this class to access its functionalities, never relying on the actual software entities that provide
the functionality. Registering components, passing references, managing policy requests, and
others, is carried out by entities in the ARTful library interface.

3.2 ARTful interface
The ARTful interface is composed of two components, the scheduler context and the scheduling
policy handlers. Both entities embody the blackboard design pattern, employed in systems
composed of heterogeneous and independent software modules, and responsible for coordinating
component interactions. Handlers are responsible for registering, indexing, and fetching concept
and scheduling policies components, respectively. Together, these entities abstract and isolate
the scheduling policy and the scheduling context.

The scheduler context handler uses concept descriptors to register and index ARTful compo-
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nent instances. The handler requires a concept descriptor instance when both registering and
fetching components. Furthermore, runtime and user components must be registered into the
scheduling context handler so they can be used to serve scheduling policy requests. The latter
are fulfilled using the comparison function Ck against the registered components for the concept
k. If a match is possible, the handler returns a reference to the ARTful component to the policy.
The handler raises an error if the match is impossible, signaling that the context cannot fulfill the
scheduling policy requirements. The components with origin Ok in the runtime library are com-
pared first, allowing precedence to the native functionalities of the runtime library. At the same
time, this scheme allows user-defined components to extend the runtime library functionalities
where no component with that origin would be registered.

Component Implementation Map

Scheduling Policy
Algorithm

Workload Dynamic

Dynamic

PUs

Tasks

Any

Any

Scheduling Context
Handler Workload

StaticTasksWorkload

TasksWorkload

PUsWorkload

Requirements

1. Expose Requirements

2. Select Components

3. Link

Figure 1: The three-step conversation between the scheduling policy and the scheduling context
handler. The relationship between both components is characterized by the policy exposing
its requirements in terms of component descriptions. The context handler answers the request
selecting the components that best match the description, favoring components registered by the
runtime library.

Figure 1 exemplifies the relationship between context, policy, and the scheduling context han-
dler. In this example, we continue our example of a workload-aware scheduler framework in the
Charm++ system. The library uses introspection to monitor the time spent computing appli-
cation tasks and background tasks, creating dynamic workload prediction models for tasks and
processing units. The extra static workload component is added to showcase that other compo-
nents, specially user-defined ones, can still be registered in the library interface without conflicts.
The exemplified policy requires workload input data for processing units and application tasks.
The model type is irrelevant for this policy, so it assumes the value any. The policy exposes these
requirements in Step 1 by signaling the scheduler context handler. The handler evaluates the
descriptive parameters of its components during Step 2 using the comparison function. Finally,
in Step 3, the handler links the components to the scheduling policy, passing a reference that
the policy can use to compute its algorithm.

The ARTful model abstracts scheduling policies as special components. Unlike the scheduler
requirements, the policies do not require a component descriptor. Instead, all policies share the
same component interface. This interface takes as input a reference to the scheduler context
handler, computes the resource map, and returns it as the output. An ARTful scheduler library
must therefore define a standard representation for the context handler, the resource map out-
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put, and compose these definitions into a unified scheduling policy interface. We explain our
approach to defining these points in Section 4, where we discuss our implementation library
named MOGSLib.

The scheduling policy handler allows the runtime library to call the scheduling algorithms.
Unlike native runtime schedulers, ARTful scheduling policies do not share the same codebase as
the runtime. The policy handler registers scheduling policies defined by the user associates them
with a name, and provides an interface for the runtime library to access them. In a way, runtime
libraries with more than one scheduling solution already contain a policy handler that functions
in a similar fashion.

ARTful Interface

Runtime Library

Native Scheduler Scheduling API

Runtime Execution Model

Scheduling Policy
Handler

Scheduling Context 
Handler

User Scheduler Library

User-defined
Scheduling Policy

User-defined
Component

Call

Delegate

Step 1

Step 2 Step 3 Step 4.b

Step 4.a

Step 5.a

Step 5.b

Figure 2: The program flow of an ARTful scheduler library attached to a runtime library to
provide portable scheduling solutions

Figure 2 summarizes the program flow of an ARTful scheduler library. In Step 1, the native
runtime scheduling module calls the scheduling policy handler in the ARTful library interface. It
passes a policy identifier to the handler to invoke a policy to compute the resource mapping. We
assume that the components, policies, and requirement concepts have already been registered to
the interface in a previous step. The policy handler finds and calls the scheduling policy in Step
2, passing a reference to the scheduling context handler. Then, in Step 3, the policy interacts with
the context handler to obtain components that fulfill its requirements. Step 4 is characterized
by the fulfillment of the policy requirements, either by components registered by the runtime
library (Step 4.a) or by user-defined components that represent the same concept (Step 4.b). In
Step 5, the mapping of tasks to resources is computed by the policy component (Step 5.a) and it
then returns control to the runtime library (Step 5.b). Although different ARTful libraries share
the same behavior, they may not contain interchangeable concepts, components, or policies. In
order to support compatible library implementations, the ARTful model must define the same
sets of scheduling policy identifiers and requirement concepts. The model isolates development
and integration activities, allowing teams to discuss concepts in scheduling solutions as contracts
between policy and the features in a runtime library. Ultimately, ARTful is a framework to
define standards and implement portable scheduling solutions based on concepts leveraged by
research/development teams.
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4 MOGSLib: An ARTful scheduler library
We developed the Metaprogramming-oriented Global Scheduling Library (MOGSLib) in a pre-
vious work [25]. MOGSLib accomplishes a unified development process for workload-aware sche-
duling policies that operate on both libGOMP (the popular OpenMP implementation provided
by GNU compilers) and Charm++ runtime libraries. MOGSLib is implemented using object-
oriented and template metaprogramming directives of the C++14 language. The library interface
is created during compilation through template specialization and compile-time parameters, al-
lowing the ARTful abstractions to adjust to the scheduling context at this time. The library
defined the concept of workload prediction data, with implementations to the Charm++ library
and a user-defined implementation to present libGOMP schedulers with static workload models.
In the remainder of this section, we briefly present how ARTful components are implemented in
MOGSLib and how they are connected to the Charm++ and libGOMP runtime libraries.

4.1 MOGSLib scheduling policies
We focus on the class of centralized, workload-aware scheduling policies in this work. More
specifically, we work with variations over the LPT scheduling policy (Algorithm 1 in Section 2).
This class of scheduler makes its decisions based on knowledge over all available application and
platform workload data. They are of interest to our study because (i) they are very common
choices in runtime systems, (ii) they achieve quasi-linear mapping decision times with little
variance, (iii) they do not require many other features or information, making it easier to focus
on the important aspects of their implementation.

The scheduling policies of interest in this work are named BinLPT [22] and GreedyLB [29].
These policies, implemented as native scheduling solutions, handle different abstractions for
tasks and resources. BinLPT is an unofficial libGOMP extension targeting applications with
static workload imbalance, and it schedules loop iterations to OpenMP threads. GreedyLB is
the default dynamic workload scheduler in the Charm++ system and maps chares to operating
system processes or threads. Both policies are greedy workload-aware strategies, made different
by how they pre-process their workload input data. With respect to integration, BinLPT makes
part of an unofficial and enhanced version of LibGOMP [23]. GreedyLB is developed using
Charm++ load balancer framework and makes part of the runtime official codebase.

MOGSLib scheduling policies are developed to schedule the generic concepts of tasks and
processing units (PUs). BinLPT and GreedyLB are implemented as scheduling policy com-
ponents that depend on the workload prediction requirement concept. MOGSLib codebase en-
compasses all user-defined components, including scheduling policies and requirement concept
implementations. This enables unitary testing and benchmarking, using testing component im-
plementations, therefore allowing tests to be carried out before and after integration to the
runtime, and without changes to the scheduling policy. The components are implemented as
classes and the scheduling functionality can be accessed through a unified interface.

4.2 MOGSLib scheduling contexts
The development of ARTful libraries, like MOGSLib, must leverage runtime system features
of their target libraries. As previously mentioned, runtime features are frequently required in
practical scheduling solution development. Specialized component implementations contemplate
this scenario, linking the runtime features to the required concepts. The design allows native and
portable policies to be equivalent in practice, obtaining the same data, from the same sources,
after the same pre-processing steps.
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Sometimes libraries have unique characteristics unrelated to requirement concepts. For in-
stance, Charm++ applications may contain unmigratable tasks. The system also allows PUs
to become unavailable during runtime. Often, Charm++ scheduling policies add the load of
unmigratable tasks to the background noise of the PU workload. In such cases, unavailable PUs
and unmigratable tasks are removed from scheduling decisions to avoid producing illegal resource
scheduling. These pre-processing steps are implemented by Charm++ load balancer developers,
adding these checks when the target application may expose these features.

MOGSLib abstracts access to Charm++’s load balancing database (LBDB) using an inter-
nal class. This class contains Charm++ commonly used routines to filter unmigratable PUs and
unavailable tasks from the scheduler input. The same class serves as an implementation basis
for the components covering the concepts of PU and task workload input data. In this scenario,
ARTful improves reusability, allowing any workload-aware policy to benefit from Charm++ data
without duplicating LBDB manipulation routines. Code complexity is also reduced, freeing pol-
icy developers from considering Charm++ semantics during scheduling algorithm development.
MOGSLib workload components for Charm++ expose template parameters that control whether
or not these pre-processing routines should be called. Despite this feature being unrelated to
the ARTful model, it showcases how the design allows for small quality improvements even on
consolidated runtime systems with frameworks for developing their own scheduling solutions.

There will also be cases where a concept is not covered by the library features. For instance,
OpenMP lacks support for user-defined schedulers. BinLPT’s authors extended libGOMP with
their new scheduler by diving into the library’s code and adding new control paths to invoke
the policy [23]. Adding any new scheduling algorithm would incur more alterations, decreasing
the maintainability of the unofficial library. However, supporting new schedulers in this scenario
requires even more changes as new data types are included in the decision. They had to extend
the library API to add omp set workload, a function to convey the workload input data from
the user level to the runtime. In the ARTful model, these unsupported features are covered
as user-defined components disassociated from the runtime library. Schedulers and concept
implementation extensions can be incorporated into the runtime library, requiring no further
changes to it. A single modification to call the ARTful interface and to interpret its output is
enough to support multiple policies and user-defined features.

4.3 MOGSLib integration with runtime libraries
ARTful libraries containing scheduling policies must be integrated into the runtime system. This
can be realized by some form of the adapter design pattern to exchange information. There are
two features to cover when integrating an ARTful library into a runtime library. First, specialized
components must be registered into the ARTful interface so they are available for the policies.
Then, the runtime library must call the library, and enact the schedule based on the policy
output. This process varies greatly depending on the characteristics of the runtime library.

In Charm++, user-defined centralized load balancers are developed by extending the C++
BaseLB class. The policy logic is called through the virtual work function, a universal interface
for Charm++ load balancers. MOGSLib is made available in the system through a custom
load balancer, MOGSLibLB. Algorithm 3 showcases the work function of MOGSLibLB. It starts by
initializing a static reference to the system’s load balancing database (line 3). The reference is
passed to the abstraction that handles the LBDB manipulation and provides the workload input
data concepts. In line 5, the library gets the selected scheduling policy identifier, which can be
informed statically through MOGSLib compilation, an environment variable, or a user-defined
function. In line 6, the ARTful scheduling policy handler is called to pass control to the policy
identified by the token strategy, obtained in the previous line. Finally, MOGSLibLB collects the
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library output and uses Charm++’s API (lines 11–13) to enact the schedule decision.

1 void MOGSLibLB :: work( LDStats * stats )
2 {
3 MOGSLib :: RTS :: Charm :: lbdb_ref = stats ;
4
5 auto strategy = MOGSLIB :: API :: selected_scheduler ();
6 auto map = MOGSLib :: API :: work( strategy );
7
8 auto & chare_ids = MOGSLib :: RTS :: Charm :: chare_ids ;
9 auto & pu_ids = MOGSLib :: RTS :: Charm :: pu_ids ;

10
11 auto i = 0;
12 for(auto chare : chare_ids )
13 stats -> assign (chare , pu_ids [map[i ++]]);
14 }

Algorithm 3: Charm++ MOGSLibLB work implementation, directing the schedule decision to the
ARTful scheduling policies.

The development of user-defined loop schedulers for LibGOMP is different. Without explicit
support from the library, users must manually integrate new policies by modifying internal
structures that handle the loop scheduling. These structures are presented as a set of functions
responsible for passing control from the runtime system to the selected scheduling policy when
a parallel loop is detected. Moreover, the alterations to support MOGSLib and the changes to
add BinLPT are mostly the same [22], save for the endpoints to support workload input data.

LibGOMP uses two functions, gomp loop runtime start and gomp loop init, to decide a
schedule. The former function is called when the application reaches an OpenMP parallel for
construct and it is responsible for deciding which policy to execute. A new option is added to this
internal decision mechanism enabling a new policy that we called mogslib. The gomp loop init
function happens before the parallel loop starts, and it contains the logic to decide the sched-
ule. At this point, we added MOGSLib calls to obtain the library output in a similar fashion
to lines 5-6 in Algorithm 3. Another function added to the LibGOMP implementation, the
gomp iter mogslib next, was added. This function is called when a thread finishes perform-
ing its work pool and it behaves by stealing chunks of iterations from other threads when idle,
minimizing the dynamic overhead of static scheduling.

5 Experiments
A common drawback of portable software is the overhead introduced by the portability mecha-
nisms. Overhead is a critical metric for scheduling solutions in HPC as some runtime libraries
halt processing units while computing a schedule. In this section, we refer to the time a policy
takes to compute a schedule as its scheduling overhead. Our experiments are set to compare
native and portable policies and evaluate potential overheads induced by the ARTful model. We
also analyze the sum of the scheduling overhead across the execution of benchmarks to depict
local and global overhead values. Finally, we illustrate the use of scheduling algorithms developed
for one runtime system in another runtime system to evaluate software portability.

MOGSLib encapsulates the ARTful scheduling policies while Charm++ and libGOMP sys-
tems expose their native solutions. On Charm++, the GreedyLB load balancer is compared with
MOGSLibLB, both employing the same policy. We first compare the schedulers using a synthetic
benchmark (lb test) and then a molecular dynamics benchmark (LeanMD). On LibGOMP, we
use a synthetic benchmark (SchedCost) and a molecular dynamics benchmark (LavaMD) to com-
pare both versions of the BinLPT loop scheduler. Finally, we include experiments using GreedyLB
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in the context of OpenMP, comparing it to the native dynamic scheduler, and using BinLPT in
the context of Charm++, comparing it to the use of no scheduler and with GreedyLB.

All comparisons were based on a confidence threshold of 95% (significance of 5%) for the
different statistical methods used. We start our evaluations by checking if the samples follow
normal distributions (Kolmogorov-Smirnov test) and if they have the same variance (F test). If
we do not reject the null hypothesis in any tests (i.e., all p-values > 0.05), then we use parametric
methods for our comparisons (Welch Two Sample t-test), or else we have to use nonparametric
methods (Mann-Whitney U test). For both kinds of methods, a p-value < 0.05 means that we
reject the null hypothesis that the compared versions perform the same (in other words, they
perform differently).

The execution platform for the experiments in Section 5.1 and 5.2 is the Ecotype cluster from
the Grid5000 distributed environment1. All Charm++ tests are deployed on four nodes whereas
the OpenMP tests run over a single shared memory node. Each node in Ecotype contains two
Intel Xeon E5-2630L, v4@1.80GHz processors (10 cores per CPU with hyper-threading) and
128GB of DDR3 memory, interconnected using a Gigabit Ethernet network @10Gbps. The
nodes run the Debian 9 operating system and the compiler used throughout the experiments is
g++ v7.3.0. Meanwhile, the experiments in Section 5.3 were performed on a Dell Latitude 7390
notebook with an Intel Core i5 8250U processor, 16GB of DDR4 RAM (1»16GB, 2400MHz),
and an Intel PCIe SSD with 512GB of capacity. It runs the Linux Mint operating system (kernel
5.4.0-59) and its compiler is g++ v7.5.0. We used Charm++ v6.9.02, and the custom version
of LibGOMP used in this paper is publicly available online with both the original BinLPT and
MOGSLib schedulers3.

In the following sections, we discuss the details and results of the experiments with synthetic
benchmarks as well as with the molecular dynamics benchmarks.

5.1 Experiments with synthetic benchmarks
Synthetic benchmarks are best suited for abstracting application details, so we use them to assess
the schedule decision cost (or scheduler overhead) of the schedulers based solely on the volume
of data processed (number of tasks). In other words, we measure the scheduling overhead in all
scenarios and analyze the impact of MOGSLib and its implementation of the ARTful model.

5.1.1 lb test on Charm++

lb test is a load balancing synthetic benchmark distributed with Charm++ whose tasks perform
dummy floating-point operations. It supports multiple configuration parameters, but most of
the parameters have no impact on the scheduler overhead. We fixed the benchmark parameters
to simulate tasks in a 2D mesh or ring topology for 150 iterations, and to call a load balancer
every 40 iterations. The tasks were set with fixed workloads that vary from 10µs to 3000µs per
iteration and run over the 80 available processing units (160 virtual cores over 4 compute nodes).
The number of tasks varied from 800 to 3200 in steps of 800, and additional scenarios with 8000
and 16000 were tested. For each number of tasks and scheduler version, lb test was executed 20
times for a total of 60 load balancing calls.

Figure 3 displays the observed scheduler overhead for the different scenarios as boxplots4.
The horizontal axis showcases the different application sizes, each portraying the data for both

1Information about Grid5000 is available at https://www.grid5000.fr/mediawiki/index.php/.
2Information about Charm++’s software is available at http://charm.cs.illinois.edu/software.
3Code available on GitHub at https://github.com/alexandrelimassantana/libgomp.
4Boxes extend from the 1st to 3rd quartiles of the samples. Lines represent the median values. Whiskers

represent the data within 1.5 IQR from the lower or upper quartile.
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implementations of the GreedyLB load balancer, and the vertical axis represents the measured
times in milliseconds. As we can see in Figure 3, MOGSLib shows a smaller overhead than its
native counterpart, and the difference seems to be more noticeable as we increase the number
of tasks to be scheduled. Indeed, for all cases, MOGSLib shows a different and smaller time
(all Mann-Whitney U tests returned p-values < 0.05). Upon further investigation, we concluded
that the smaller overhead of MOGSLib comes from slight variations in implementation, namely,
its smart use of STL algorithms and data structures.
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Figure 3: GreedyLB scheduler overhead on its native form and in MOGSLib for experiments with
lb test.

5.1.2 SchedCost on LibGOMP

SchedCost simulates an iterative application where each of its N iterations is composed of one
parallel loop as depicted in Algorithm 4. The schedule decision cost (cost) is calculated in
line 10 based on the difference between the time when the first instruction within the loop is
computed (fi in line 7) and the time right before the entering the parallel loop (pi in line 3).
The sum of the schedule decision costs of N iterations represents the total scheduler overhead
for the application (line 11).

1void schedcost (int N) {
2 for(int i = 0; i < N; i++) {
3 int pi = TIME ();
4 # pragma omp parallel for
5 for(int j = 0; j < N; j++) {
6 if(j < nthreads )
7 fi[ omp_get_thread_num ()] = TIME ();
8 C[j] = A[j] + B[j];
9 }

10 cost[i] = MAX(fi)-pi;
11 ovh += cost[i];
12 }
13}

Algorithm 4: Computation of the schedule decision cost in OpenMP by SchedCost.

We carefully configured SchedCost parameters to simulate the same volume of input data of
small and medium use cases of the LULESH application [16]. LULESH is an iterative proxy
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hydrodynamics shock application where each iteration contains multiple parallel loops to calcu-
late various particle interactions. LULESH has parallel loops with large iteration counts and the
simulation spans over multiple discrete steps. In this context, the parameters for SchedCost were
derived from the application’s usage guidelines. We considered two scenarios: (i) a small test
case with 937 parallel loop calls with 303 iterations (tasks) each and (ii) a medium use case with
1477 parallel loop calls with 453 iterations each. For each number of tasks and scheduler ver-
sion, SchedCost was executed 100 times in a single shared memory compute node (40 OpenMP
threads).

Figure 4 shows the scheduling overhead for different scenarios as boxplots. The horizontal
axis showcases the different application sizes (small test on the left and medium test on the right),
each portraying the data for both implementations of BinLPT, and the vertical axis represents
the accumulated scheduling overhead in milliseconds. The boxplots look mostly like horizontal
lines because the measured times were all very close to their median. Also, we can see that
the overhead with MOGSLib is smaller than its native counterpart, confirmed by our statistical
analysis (both Mann-Whitney U tests returned p-values < 0.05).
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Figure 4: Boxplot of BinLPT’s scheduling overhead on its native form and in MOGSLib for
experiments with SchedCost.

The average native BinLPT scheduling overhead is 283 and 1534 ms for the small and medium
use cases, respectively, whereas MOGSLib achieves average scheduling overheads of 117 and
514 ms. This represents speedups of 2.42 and 2.98 for the small and medium cases in this section
of the code. As such, we conclude that the ARTful model, implemented in MOGSLib, does not
introduce notable overhead to workload-aware global schedulers on Charm++ and OpenMP.

5.1.3 Multiloop support

The custom libGOMP library, provided by BinLPT’s authors, contains an extra functionality to
reduce the scheduling overhead in OpenMP applications. This functionality, called multiloop
support, allows the user to re-use a previously calculated schedule in a future execution of the
same loop. The feature assists iterative simulations that display small performance variations
on each simulation step, with scheduling decisions being reused throughout multiple iterations.
As expected, this feature required another set of alterations to the OpenMP runtime and new
unofficial API extensions.
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We implemented the multiloop support in MOGSLib as a library function when attached to
OpenMP. Then, we employed the SchedCost benchmark once again, with the same parameters,
to assess possible performance differences between both implementations. We configured both
schedulers to calculate the schedule once and reuse the same schedule in all remaining loop
executions.

Figure 5 presents the schedule cost for different multiloop scenarios as boxplots. It differs
from Figure 4 as it is based on the average cost in microseconds for the scheduler calls on each ex-
ecution of the benchmark (instead of the accumulated scheduling overhead). In this scenario, we
discarded the null hypothesis that both implementations achieve the same performance (Welch’s
t-tests returned p-values < 0.05), meaning that the native implementation performs better than
the MOGSLib implementation. The origin for this overhead is hard to pinpoint as it is small,
around 1 µs on average, when compared to the application execution time. We attempted to
recreate all the aspects of the original implementation, except from the software organization
where MOGSLib uses C++ classes to store data whereas libGOMP uses plain variables. We
envision that this overhead penalty comes from the data access routine in the C++ object, being
of static nature and small enough to be considered negligible.
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Figure 5: Boxplot of BinLPT’s schedule cost on its native form and in MOGSLib for multiloop
experiments with SchedCost. The vertical axis starts at 14 µs to emphasize the difference between
scheduler versions.

5.2 Molecular dynamics benchmarks
The synthetic benchmark experiments suggest that MOGSLib performs decisions similarly or
faster than native schedulers. However, this assertion does not mean that MOGSLib can reduce
the application makespan with identical policies. Both versions of a scheduler compute the same
schedule and, thus, they should have a similar influence on application performance. Molecular
dynamics benchmarks are known to display dynamic load imbalance due to the way particles
disperse and interact through the simulated 3D space. Therefore, we use these benchmarks to
assess the impact, if any, of the schedulers on the total execution time of applications.
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5.2.1 LeanMD on Charm++

LeanMD [19] is a Charm++ application that calculates the force interactions among particles
using the Lennard-Jones potential computation5. We fixed the benchmark to run for 300 itera-
tions, and to call a load balancer after 20 iterations, repeating the call every 100 thereafter. We
simulated three-dimensional spaces with small (83 cubes) and medium (123 cubes) input sizes.
LeanMD was executed 30 times for each configuration of input size and scheduler version.

Figure 6(a) portrays the distribution of total execution times for the different scenarios as
boxplots. The left boxplot is associated with the small use case (83 cubes) and the one to the
right with the medium use case (123 cubes). The vertical axis represents the time measured in
seconds.
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(a) Times for LeanMD using GreedyLB on Charm++.

16.0

16.5

17.0

17.5

18.0

M
O

G
S

Li
b

N
at

iv
e

Scheduler implementations

To
ta

l e
xe

cu
tio

n 
tim

e 
(s

)

(b) Times for LavaMD using BinLPT on LibGOMP.

Figure 6: Total execution time when using native and MOGSLib schedulers. The vertical axes
start at different points to emphasize the difference between scheduler versions.

As we can see in this figure, the total execution times with MOGSLib and with the native
Charm++ implementation of GreedyLB are very similar. Indeed, our statistical analysis indicates

5LeanMD is available at http://charmplusplus.org/miniApps/.
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that we cannot reject the hypothesis that both results originate from the same distribution —
i.e., they perform the same (both Mann-Whitney U tests returned p-values > 0.05). This result
shows us that the MOGSLib implementation, despite the better performance when deciding the
schedule shown in Section 5.1.1, does not tend to affect the total execution time of applications.

5.2.2 LavaMD on LibGOMP

LavaMD [8] is a benchmark with an OpenMP version that simulates the pressure-induced solid-
ification of molten tantalum and uranium atoms6. For these experiments, we recreated a subset
of the experiments done by Penna et al. [23] where the BinLPT scheduling policy was thoroughly
evaluated. We configured LavaMD to decompose the 3D domain into 113 cubes. Each cube con-
tains a random number of particles generated through an exponential distribution with γ = 0.2.
BinLPT was configured to generate up to 80 chunks of tasks, and each configuration was executed
100 times.

Figure 6(b) portrays the total execution times of LavaMD (in seconds in the vertical axis)
with the two implementations of BinLPT as boxplots. As in the case for LeanMD (Figure 6(a)),
the median times for both implementations were very similar (close to 17 s), and again our
statistical analysis indicates that both versions of BinLPT perform the same (Mann-Whitney U
test returns a p-value > 0.05). In other words, the benefits of MOGSLib do not come at a cost
of slower scheduling decisions nor increased application execution times.

5.3 Experiments with reused schedulers in other runtime systems
Our previous results have focused on the effects of moving from native schedulers to ARTful ones
using MOGSLib. We now move our attention to the possibility of using schedulers in a context
that is different from where they were originally implemented. These experiments illustrate
simple cases using BinLPT (originally from OpenMP) in Charm++, and GreedyLB (originally
from Charm++) in OpenMP.

5.3.1 BinLPT in Charm++

Although BinLPT was originally thought for use in OpenMP loops, where data locality can be
improved by keeping chunks of sequential iterations with the same thread, we can employ it on
Charm++ to keep tasks that communicate on a ring pattern close together. We tested this idea
by running lb test (Section 5.1.1) for 20 iterations with calls for a load balancer every 9 iterations.
The 64 tasks were set with fixed workloads that vary from 10µs to 100µs per iteration, and they
use the 8 available virtual cores for execution. In this situation, lb test was executed 100 times
using no load balancer, MOGSLib’s BinLPT (32 chunks), and the native GreedyLB algorithm.

Figure 7(a) displays the total execution times measured for the different schedulers as box-
plots. We can see that lb test has a better performance using BinLPT than the case where no
scheduler is employed, demonstrating that BinLPT can still be useful in other contexts. We can
also see that GreedyLB performs slightly better than BinLPT and the three schedulers perform
differently (all Mann-Whitney U tests returned p-values < 0.05). Nonetheless, BinLPT also has
the objective of preserving locality.

We can check how contiguous the tasks remain after BinLPT’s scheduling decisions by counting
the number of times tasks i and i + 1 are placed on different resources. This is illustrated in
Figure 7(b). As we see in this case, the absence of a scheduler leads to a compact mapping
of tasks, so splits in their contiguous mapping happen only a number of times equal to the

6LavaMD is available at https://rodinia.cs.virginia.edu/.
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number of resources minus one (7 in our case). On the other extreme, GreedyLB cares not for
locality, leading to an average of 55 splits. Finally, BinLPT can balance the benchmark’s load
while limiting the number of splits to an average of 19, preserving some locality for the tasks
communicating in a ring pattern.
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Figure 7: Total execution time and number of splits of contiguous task partitions when using
different schedulers on Charm++.

5.3.2 GreedyLB in OpenMP

As GreedyLB implements a list-scheduling algorithm following the well-known LPT rule, it is
applicable in several contexts. We were able to evaluate its effect in OpenMP by comparing it to
the basic list-scheduling behavior implemented by OpenMP’s dynamic scheduler. We tested this
idea by running SchedCost (Section 5.1.2) with exponential costs for its 64 iterations with loads
measured in millions of operations. Tests were run 100 times using each of the two aforementioned
schedulers.

Figure 8 presents the total execution times of the loops measured for the different schedulers

18



0.500

0.525

0.550

0.575

0.600

M
O

G
S

Li
b 

G
re

ed
y

N
at

iv
e 

D
yn

am
ic

Schedulers

To
ta

l e
xe

cu
tio

n 
tim

e 
(s

)

Figure 8: Boxplot of loop execution times (in seconds) using GreedyLB and dynamic on OpenMP.
The vertical axis starts at 500 ms to emphasize the difference between schedulers.

as boxplots. We can see that the native scheduler achieves a median time of 0.568 seconds,
while GreedyLB outperforms it with a median time of 0.539 seconds (speedup of 1.05). Although
small, their difference is statistically significant (the Mann-Whitney U test returned a p-value
< 0.05). This result illustrates that new load-aware schedulers can be beneficial to OpenMP
even in situations where the overhead of using dynamic would be small.

6 Conclusions
In this work, we discussed the current state of scheduling software in the context of HPC applica-
tions, which is performed mostly by runtime libraries. Due to the large variety of HPC platforms,
portability is given increased value alongside performance (HPC’s most critical metric). In this
context, we observed similarities across scheduling solutions in runtime libraries and proposed
a design to enhance support for user-defined schedulers and implementation portability. The
ARTful scheduler model proposed in this work is based on the idea that scheduling solutions
contain two kinds of components: generic components, that originate from the development of
scheduling policies; and specialized components, that come from the integration with runtime
libraries. ARTful abstracts policies and their requirements into software components that inter-
act indirectly through an interface realized by the blackboard design pattern. Our work defines
how to model ARTful components and how these interact to support the development of a single
user-defined scheduling policy that can be adapted to different runtime systems.

We showcased our implementation of an ARTful library (MOGSLib) to evaluate potential
overheads induced by the portable scheduler design. Our experiments revolve around imple-
menting native scheduling policies from the Charm++ and OpenMP systems using the ARTful
model. These policies are made available in both runtime libraries indirectly, through the ART-
ful interface, where we can compare them with their native counterparts. Synthetic benchmark
experiments showcased that ARTful schedulers can be faster than their native implementations.
However, these performance variations were not relevant enough to improve the total execution
times of molecular dynamics applications.

We conclude that the development of portable scheduling solutions is possible through clas-
sical software engineering techniques. Nonetheless, our experiments still cover a small fraction
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of the design space of scheduling solutions. Our future work aims towards the exploration of
this rich space, evaluating new runtime libraries, new scheduling policies, and other execution
models (e.g., task-based systems). The component-based design of the ARTful model allows
researchers to build their scheduler libraries, allowing custom scheduling features to be inserted
into runtime libraries without altering their codebases. We envision that the ARTful model can
assist practical scheduler development while many libraries still lack the necessary features for
portability or even user-defined policies.
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toni, and Laxmikant V Kalé. Power, reliability, and performance: One system to rule them
all. IEEE Computer, 49(10):30–37, 2016.

[3] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
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Philippe OA Navaux, and Jean-François Méhaut. A topology-aware load balancing algo-
rithm for clustered hierarchical multi-core machines. Future Generation Computer Systems,
30:191–201, 2014.
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