
HAL Id: hal-02454426
https://hal.science/hal-02454426v1

Preprint submitted on 24 Jan 2020 (v1), last revised 6 Apr 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ARTful: A specification for user-defined schedulers
targeting multiple HPC runtime systems

Alexandre Santana, Vinicius Freitas, Marcio Castro, Laércio Lima Pilla,
Jean-François Méhaut

To cite this version:
Alexandre Santana, Vinicius Freitas, Marcio Castro, Laércio Lima Pilla, Jean-François Méhaut. ART-
ful: A specification for user-defined schedulers targeting multiple HPC runtime systems. 2020. �hal-
02454426v1�

https://hal.science/hal-02454426v1
https://hal.archives-ouvertes.fr

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

ARTful: A specification for user-defined schedulers targeting
multiple HPC runtime systems

Alexandre Santana1 | Vinicius Freitas1 | Márcio Castro1 | Laércio L. Pilla*2 | Jean-François Méhaut3

1Federal University of Santa Catarina
(UFSC), Florianópolis, Brazil

2LRI, Univ. Paris-Saclay – CNRS, Orsay,
France

3Univ. Grenoble Alpes, Inria, CNRS,
Grenoble INP, LIG, Grenoble, France

Correspondence
*Laércio Lima Pilla, Laboratoire de
Recherche en Informatique, Bât 650 Ada
Lovelace, Université Paris-Saclay, 91405
Orsay, France Email: pilla@lri.fr

Abstract

Application performance, developer productivity, and portability to multiple compu-
tational environments are some of the desired traits in High Performance Computing
(HPC) applications. The evolution of programming models and runtime systems
are crucial aspects on enabling applications to run faster on new architectures with-
out requiring large reimplementation efforts. Runtime systems are central software
entities in this software stack and have the role of scheduling and distributing the
application workload among the processing units. However, most runtime library
implementations offer little support for user-defined scheduling and provide only a
limited set of scheduling policies. Extensions to provide better scheduling options
usually require modifications to the runtime library and are hard to maintain across
the rapidly evolving HPC domain. In this paper, we propose a set of ARTful specifi-
cations for abstracting system-specific scheduling functionalities and achieve global
scheduler implementations that can be tested in isolation from the runtime and
reused in multiple system libraries. We also showcase an implementation of our
ARTful specifications as MOGSLib, a metaprogramming-oriented library that inte-
grates generic global schedulers that can be specialized to function both as Charm++
load balancers and OpenMP loop schedulers. We analyze the overhead of schedulers
implemented in MOGSLib in comparison to system native solutions and discuss the
qualitative benefits of developing system-independent global schedulers. We show
that our implementations can sometimes perform scheduling decisions even faster
than their original implementations with negligible overhead in the execution times
of synthetic applications and molecular dynamics kernels.

KEYWORDS:
scheduling; runtime systems; portability; code complexity; component; self-adaptable

1 INTRODUCTION

Applications for High Performance Computing (HPC) environments are built atop of long lasting standards created by the
collaborative efforts of industry and academy. Achieving performance without totally sacrificing portability in HPC systems
is only possible due to tools like OpenMP1, MPI2 and BLAS3. One of the reasons behind HPC applications’ complexity is
the expression and distribution of their parallel tasks. Indeed, developers have a wide array of parallel programming libraries

2 Santana, A. ET AL

to transform serial applications into parallel or distributed solutions. However, these tools alone do not provide out-of-the-box
performance to all problems or systems.

Resource management is paramount to both portability and performance of parallel applications. It can be used to achieve
predictable application performance regardless of the execution environment4. The management of the distribution of applica-
tions tasks over the available resources is done by global schedulers. They serve the purpose of mitigating the effects of load
imbalance, costly communications or data transfers, resource variations, and others that can affect application performance.
Nevertheless, each application, system, and even parallel programming model proposes new challenges for the design of sche-
duling algorithms5. Most, if not all, parallel programming libraries have at least some software mechanism to handle global
scheduling, but only a few offer integrated development support for user-defined schedulers6,7.

Future generation systems are bound to be composed of increasing numbers of compute nodes while showcasing different
and diverse hardware architectures4. It is likely that these systems will build upon current software tools for exposing these
resources to applications. As system diversity increases, most of the additional complexity to orchestrate these resources will be
absorbed by runtime libraries. Standards evolve too slowly to accommodate the increasing pace of technological advances and,
even today, integrating novel scheduling solutions to these libraries relies on unofficial and hard to maintain initiatives8. Indeed,
efforts to create standards for user-defined scheduling can be observed in OpenMP9,10. While such propositions have proven
useful for discussing the future of HPC standards, no studies have implanted these mechanisms into existing runtime libraries.

Scheduling algorithms are bound to be used in different layers of future systems. Ideally, their codes should be reusable among
similar runtime libraries, and be adaptable and scalable to different contexts, as this would lead to better productivity when
transcribing schedulers between runtime systems, writing new runtime systems that need schedulers, or showing the benefits of a
new scheduling algorithm in comparison to the state of the art, among others. Although we see developments using components
to reduce application complexity in related scenarios11,12, we still lack standard solutions for reusable global schedulers.

In order to overcome these issues, we propose a set of specifications (ARTful) to shift scheduling solutions from their current
orientation to specific runtime libraries to more adaptable and generic solutions. Using our ARTful specifications, we imple-
mented a global scheduling library and a set of schedulers, and implanted them on two different runtime libraries, enabling us to
compare our schedulers with their equivalent runtime-native counterparts. This work iterates over our previous study over the
software relationship between global schedulers and the runtime system13 and proposes the following contributions:

1. A core set of specifications to compose generic and reusable global schedulers based on Abstraction, Reusability, and
Testability (ART) principles;

2. A streamlined development and integration process for user-defined scheduling solutions into multiple runtime systems;

3. The construction of a reference implementation of system-independent global schedulers based on compile-time special-
ization techniques; and

4. A set of experiments using two runtime systems that include extensions to original global scheduling algorithms (OpenMP
multi-loop support).

The remainder of this paper is organized as follows. Section 2 further describes the problems in global scheduling software
and denotes related work targeting modularity and composability on HPC environments. Next, in Section 3, we present our
ARTful specifications. In Section 4, we explain how we implemented the proposed ARTful specifications in a library based on
compile-time specialization techniques. We then discuss our experiments and results in Section 5. Finally, we conclude this
work in Section 6.

2 BACKGROUND ON GLOBAL SCHEDULING

2.1 Definitions
Global scheduling may be described as the problem of defining where to run a task, leaving the decision of when to run a
task to local scheduling14. This definition is broad enough to encompass different scheduling activities, such as load balancing,
topology mapping, and loop scheduling. A common component in these activities is the scheduling policy, an algorithm to
decide the mapping of tasks to resources given a specific objective. In its core, a scheduling policy can be regarded as a function
that decides the output by solely analyzing its input. For instance, Algorithm 1 illustrates the Longest Processing Time first

Santana, A. ET AL 3

(LPT) scheduling policy, a list scheduling algorithm that tries to minimize the load of the most loaded resource (makespan) by
mapping tasks in order from most to least loaded (longest to shortest processing time).

Algorithm 1 The Longest Processing Time first (LPT) scheduling policy.
1: procedure LPT(Tasks T , Task loads (processing times) LT , Resources R)
2: LR ← 0 ⊳ The resources start with no load
3: T ′ ← T ⊳ List of tasks to be mapped
4: M ← ∅ ⊳ The mapping of tasks to resources starts empty
5: while T ′ ≠ ∅ do ⊳ While there are tasks left to map
6: t ← argmaxt′∈T ′ LT (t′) ⊳ Take the unmapped task with the largest load (longest processing time)
7: r ← argminr′∈R LR(r′) ⊳ Take the resource with the smallest load
8: M(t) ← r ⊳ Map the task to the resource
9: LR(r) ← LR(r) + LT (t) ⊳ Update the load of the resource

10: T ′ ← T ′ ⧵ {t} ⊳ Remove the task from the set of tasks to be mapped
11: end while
12: return M ⊳ Return the computed mapping of tasks to resources
13: end procedure

As we can notice, the scheduling policy itself does not care: (i) if the tasks are actually objects, threads, processes, loop
iterations, or others; (ii) if the resources are cores, processors, compute nodes, or others; nor (iii) if the processing times were
measured, estimated, given by a user, or come from somewhere else. All of these details and some more related to the environ-
ment where scheduling happens are represent by the scheduling context. By combining a scheduling context and one or more
scheduling policies, we are able to create a global scheduler to provide scheduling decisions in a runtime system.

2.2 Current state of global scheduling software in runtime systems
Scheduling solutions are commonly implemented at runtime level and are present in popular libraries such as StarPU7 and
Charm++6. Standards like OpenMP1 even describe the common scheduling solutions that must be implemented in a given
compliant library. The global scheduling software in these runtime systems is depicted in Figure 1.

The relationship between the runtime components and an instance of a global scheduler native to the runtime, illustrated in
Figure 1, shows that the scheduler is contained within the library codebase, and that it accesses runtime data structures and
functionalities within the runtime directly. Although data structures and functionalities may be placed in a scheduling API (such
as in Charm++), they can only be reused by different scheduling policies in the context of the same runtime system. This
direct relationship creates an implicit mutual dependence between the two components. On the scheduler side, it depends on the
runtime library syntax to fetch its input data and apply its decision. Moreover, the runtime library depends on the scheduler to
employ these data structures and functionalities so the system, as a whole, can achieve its performance goals.

Scheduling
Policy

Global Scheduler

Runtime System

Functionalities

Data
Structures

Scheduling API

FIGURE 1 Anatomy of the scheduling solutions native to current runtime systems. Schedulers tend to reside inside the runtime
system (RTS), and their direct use of RTS functionalities and data structures undermines portability.

4 Santana, A. ET AL

This interaction between schedulers and runtime systems has negative effects on portability and productivity. Portability is
affected by the difficulty to adapt and reuse a scheduler implemented in one runtime system to another, as this requires the
reimplementation of accesses to data structures, function calls, and others. Productivity is affected by this too, but also by the
time it takes to write a new scheduler in this scenario, and by the additional efforts to test and debug the scheduling codes that
have to be, in many cases, integrated directly into runtime system. In a more extreme case, a runtime system’s code may need
to be modified in order to integrate new global schedulers because it may lack an interface for such additions15.

The current lack of scheduler portability is aggravated when taking into account the large array of mechanisms being developed
in modern scheduling solutions. Nevertheless, these same mechanisms enable solutions capable of evaluating the topology
affinity16,17, controlling processor frequencies18, assessing dynamic workloads15, data locality19 and others in a multitude of
systems. The inclusion of new technologies will require further specialization to scheduling solutions and eventually require
more portability efforts if not explicitly managed.

2.3 Related work
Our work targets the problem of global scheduling in HPC runtime systems, particularly aiming for system-independent solutions
with better quality of software. Although our discussion employs some concepts found in runtime systems like StarPU and
Charm++, the fundamental objectives of this work are different from the objectives of these runtime systems. When analyzing
the state of the art, we considered related work that have as primary goals the improvement of modularity, reusability, and
interoperability in parallel environments.

On the topic of component-based approaches for modularity, Aumage et al.12 proposed the combination of task-based
decomposition with component-based software models. Their model uses explicit definitions of data transmission to create
dependencies and components to define the tasks to be executed. They successfully abstracted segments of code from real appli-
cations into a component system over the StarPU runtime system. Through their proposed component system (COMET), users
can develop the parallel segments of an application as components that will be later mapped to tasks and executed by the StarPU
system. Nevertheless, this was planned for the computations of the applications and not to the schedulers.

Grossman et al.11 proposed that, through a better description of a component’s connections, parallel libraries can be composed
to collaborate instead of competing for resources. They employ modern language facets such as lambda functions and asyn-
chronous calls to propose a novel modular runtime system that connects components through lambda functions. Their objective
is to create a decomposed runtime system that enables different scheduling models, as opposed to creating a specific software
for scheduling which constitutes the main difference when compared to our work.

Efforts to propose a way of introducing user-defined scheduling in OpenMP also relate to our work as our approach enables
this feature. Kale et al.9 propose the extension of the OpenMP standard with directives to enable users to declare and define
their own strategies to schedule parallel loop iterations. Their work promotes the discussion by proposing a software interface
to loop schedulers and leveraging which features would OpenMP library providers support. Meanwhile, Bak et al.10 propose
an API for user-defined schedulers in OpenMP. Our work analyzes the practical aspects of implementing schedulers decoupled
from the runtime system. We envision that our work fills the transition gap of current global scheduler development and the
adoption of standards such as the one discussed in these works. Among other differences, our work aims to enable a way for
scheduling solutions to abstract the system-specific scheduling mechanisms found within runtime libraries.

The demand for variety and user-defined scheduling is also a studied topic in the scope of real-time operating system. Similarly
to HPC runtime systems, the kernel must abstract basic functionalities to applications and scheduling is one of them. Mollison
and Anderson20 proposed user-defined schedulers that could be implemented with limited changes to the kernel and be used
in multiple operating systems kernels. They applied a common higher level API to enable the user to manipulate schedulers
independently of the underlying kernel. Those higher level directives are translated by a driver and forwarded to the kernel
and C POSIX library function calls. Their solution enables schedulers to be developed out of the kernel-space with abstract
implementations for base functions which involves thread locking, synchronization and other functionalities. It is important to
emphasize that the overhead of the technique was acceptable even on real-time constraints, which is the most critical metric for
schedulers in real-time operating systems.

Our goal is to enable the reuse of scheduling policies in different HPC contexts by providing a way to express the relationship
between these two entities. We refrain from altering the relationship between those components in favor of compatibility. We
also recognize that each individual runtime library have its own scheduling needs that might not necessarily be aligned to the
goals of other libraries. Furthermore, we aim to provide a compatibility layer for the inclusion of new scheduling solutions that

Santana, A. ET AL 5

have been conceived for different systems with a common subset of characteristics. We provide a set of specifications with these
objectives in mind in Section 3.

At a software level, we propose that global schedulers expose their requirements to runtime libraries using software indirection
layers (e.g., inheritance, lambdas, components and templates) instead of implicitly conforming to the library’s constraints. This
allows the expression of a behavior that can be specialized to a different set of components and heuristics, hence new scheduling
contexts. Although different indirection layer implementations may be employed, we aim for a compile-time approach using
metaprogramming as it yields low runtime overhead. We explain our software implementation in Section 4.

3 THE ARTFUL SCHEDULER SPECIFICATIONS

The ARTful scheduler specifications provide guidelines for the development of portable global schedulers originated from our
experience creating a global scheduling library (more details in Section 4). ART is an acronym for Abstraction, Reusability
and Testability which are the main design pillars behind the specifications. Our approach to obtain reusability is based on the
premise that it is possible to implement a scheduling policy agnostic to one or more target runtime libraries. Indeed, by achieving
this goal, the specifications also provide support for user-defined scheduling solutions in these runtimes. Furthermore, this
reusability should not come at the price of the degradation of scheduler performance, otherwise specialized solutions would still
be preferred by users and developers.

We present our specifications as a set of software abstractions that encapsulates the necessary concepts for achieving runtime
library-independent global schedulers. The ARTful specifications are described in the following sections and are constituted by
the following abstractions: (i) the scheduling policy; (ii) the global scheduler; (iii) the scheduling context and (iv) the runtime
library adapter.

3.1 ARTful abstractions overview
The anatomy of an ARTful scheduling solution is presented in Figure 2. It is based on a set of abstractions to define a different
approach to integrate global schedulers in runtime libraries. The specifications require limited additions to the runtime library
codebase and do not impose alterations to its native functionalities or how those are presented to the user. Instead, the support
for ARTful schedulers is similar to a runtime library extension.

Scheduling
Policy

Global
Scheduler

Scheduling
Context

Requires
functionalitiesEmploys

Functionalities

Data structures

Global Scheduler Library

Runtime
Adapter

Direct
access

Runtime System

Initializes
referencesForwards

control

FIGURE 2 The ARTful scheduling solution anatomy. The components of the scheduling library can be reused in different
scenarios. Changes to the runtime system are limited to a runtime adapter.

A comparison between Figures 2 and 1 reveals several benefits of ARTful schedulers. Firstly, we are able to extract the main
global scheduling software from runtime libraries, creating the opportunity to reuse it with different runtimes. Furthermore,
the only necessary addition to a runtime library is the runtime adapter component, meaning that new schedulers, with similar
dependencies, can be used without any other changes to the runtime system. Besides that, we can notice that the global scheduling

6 Santana, A. ET AL

library is now split into scheduling policy, global scheduler, and scheduling context components. These components can
be developed by different stakeholders (e.g scheduling context might be provided by the maintainers of the runtime system),
reused in different situations (e.g reuse scheduler on a new context), tested independently, and composed to fit the scheduling
requirements of different runtime libraries.

When using ARTful schedulers, the runtime library starts scheduling by calling the runtime adapter. Once called, the adapter
delegates the scheduling decision to a global scheduler external to the runtime codebase. As the adapter is an internal component
of the runtime library, it can access other data structures and functions in its namespace. The adapter proceeds to expose these
mechanisms, rather than employing them, to the ARTful components outside of the runtime scope. Indeed, this is mandatory to
achieve portable implementations while retaining the original behavior of native solutions. A more detailed description of each
other abstraction presented in Figure 2 is given in the upcoming sections.

In a nutshell, each ARTful component and its specifications are designed to represent one stakeholder of the scheduling solu-
tion software stack and its needs. The author of a scheduling policy is interested in describing its algorithm unbounded by current
technologies or implementation details. Runtime system and architecture providers aim to express a context optimized for a
set of applications along with tools to better distribute their workload (e.g schedulers and/or scheduling APIs). Global sched-
uler developers evaluate the existing policies and propose adaptations so that these policies can fit the current technologies and
implementations. Furthermore, the runtime adapter originates from the segregation of a scheduling solution into the aforemen-
tioned components. Equipped with a clear distinction of responsibilities and a defined interface, different software developers
can work independently on each of these components. Indeed, this scenario promotes the use of software engineering techniques
to enable the reuse not only within a component codebase (e.g a scheduling context composed of several other abstractions) but
also among the component implementations (e.g a scheduling context that serves several global schedulers).

It is important to notice that different software modeling techniques can be employed to construct the runtime adapter. In
fact, the implementation is highly reliant on how the host runtime system software is structured. We discuss the runtime adapter
broad specifications in Section 3.5 and discuss our implementation for OpenMP and Charm++ libraries later in Section 4.4.

3.2 Scheduling policy abstraction
At the core of any global scheduler are the algorithms that define the mapping of tasks to resources. These algorithms are referred
to as scheduling policies and they are found in different flavors of goals and heuristics. A given policy may require input data to
analyze the platform distributed topology17, power consumption data from each of its processors21, the workload of each work
unit22, the memory architecture of the machine23, or others. This diversity makes the task of describing a unified interface for
this entity almost impossible without sacrificing either simplicity or flexibility.

The ARTful specifications for defining a scheduling policy refrain from creating a common description of a scheduler in terms
of steps or input. Instead, we propose to define this entity in terms of their most common characteristic — the task mapping
output — and define rules to guarantee the support of algorithm diversity. The following are the ARTful specifications for the
implementation of a scheduling policy as a software component in the global scheduler assembly:

ARTful Scheduling Policy specification

SP-1 It must have only one procedure in its public interface.

SP-2 It must not record state.

SP-3 The output of its procedure must be a global schedule.

SP-4 A given policy must be allowed to define its own input parameters tuple.

SP-5 A given policy must have flexible data types to account for runtime library variations.

SP-1, SP-2 and SP-3 characterize the scheduling policy component as an entity with a single purpose in the global scheduler
assembly. They characterize this abstraction as a black box that can be easily tested by employing inputs with predictable
outputs. SP-3 and SP-4 account for the well-defined objective of the component and the component’s flexibility to define multiple
approaches, respectively. In special, SP-4 guarantees that novel policies can conform to this specifications regardless of new

Santana, A. ET AL 7

technologies. Finally, SP-5 is a prerequisite for implementation portability. It is not uncommon that runtime libraries use different
data types to represent common concepts such as the workload of a task and communication information. A crucial step in
portability is assuring that these data types can be adapted when applying the scheduler to a context with different data type
definitions. These specifications can be achieved in most general purpose programming languages and are enough to describe a
generic scheduling policy.

3.3 Global scheduler abstraction
If the policies define the algorithmic approach to solve the mapping problem, the global scheduler abstraction defines the shape
of the scheduling solution. The ARTful global scheduler specifications ensure that there is a syntactic agreement between a
scheduling context and a scheduling policy. The global scheduler entity expresses which operations must be provided in any
given context for supporting its scheduling policies. It must manipulate the scheduling context to gather input and operations to
fulfill the requirements of the scheduling policy. The ARTful specifications for this entity are as follows:

ARTful Global Scheduler specification

GS-1 It must have only one procedure in its public interface.

GS-2 Its procedure must output a global schedule.

GS-3 Its procedure must employ at least one scheduling policy.

GS-4 All global schedulers must share a common procedure signature.

GS-5 The global scheduler must create an interface for manipulating the scheduling context.

GS-6 The global scheduler must be able to work on any scheduling context that fulfills its interface.

GS-1, GS-2 and GS-3 define the abstraction’s goals as a scheduling policy software container. GS-4 creates a common syntax
for calling global schedulers which enables the construction of selection procedures for selecting the appropriate scheduler (e.g.,
lambdas, function pointers and templates). GS-5 defines the relationship between global scheduler and the scheduling context.
This is an important step as it states that the global scheduler developer has the freedom of creating its own specifications for
a scheduling context implementation. It allows the development responsibilities to be split into two different stakeholders, the
scheduler implementation provider and the context implementation provider. Finally, GS-6 enforces that it is the responsibility
of the global scheduler developer to design an interface that is expressive enough to provide portability (e.g., make use of
appropriate function decorators and attributes).

3.4 Scheduling context abstraction
The scheduling context abstraction represents the environment where the scheduling solution is inserted into. It encompasses
any software or hardware abstraction that might affect the behavior of the solution. This might reflect to runtime library func-
tionalities, parallel programming model abstractions, hardware architectural characteristics (e.g NUMA, DVFS) and others. The
scheduling context implementation must be flexible enough to represent environments where: (i) the user can provide schedu-
ling input24; (ii) the application is instrumented to assist the scheduler25,26; or (iii) libraries allows for complex functionalities,
such as communicating with other scheduling endpoints27.

A given implementation of a scheduling context is specialized for the environment it represents and, most notably, to one
target runtime system. As such, it should be paired to and employ the functionalities and data structures exposed by a ARTful
runtime library adapter. Ultimately, the scheduling context plays the role of linking the global scheduler to the semantics of the
other HPC software components. We can take into consideration the Charm++ system as an example. Charm++ instruments
the applications, so it can calculate the processing time of each individual application task. The system exposes this information
for its load balancers, which are expected to employ them as load estimations for the tasks in the next application iteration cycle.
Indeed, Charm++ depends on its schedulers to make use of this functionality, otherwise it would not be possible to achieve its

8 Santana, A. ET AL

adaptive runtime status. These features are fundamental to Charm++’s scheduling scheme and might be absent or irrelevant on
other runtime libraries and even optional in future versions of Charm++. Portable scheduling policies must be isolated from
specialized behaviors such as this one, otherwise they become dependent on its semantics (i.e., they require an instrumented
application). The explicit definition of a scheduling context abstraction relieves the scheduling policy from these issues by taking
the role of situating the policy in the appropriate context. This ARTful abstraction has the following specifications:

ARTful Scheduling Context specification

SC-1 It encapsulates every context-sensitive feature required by a runtime library scheduler.

SC-2 It implements all the interface requirements defined by one or multiple global schedulers.

SC-3 It can be attached to any global scheduler with compatible requirements.

SC-4 It generates errors if attached to a global scheduler with incompatible requirements.

SC-5 It is accessible within the application and user code.

SC-1 states that the scheduling context is the ARTful component responsible form encapsulating the global scheduler transfor-
mations to a given runtime system. SC-2 reinforces the role of this abstraction as a functionality provider for global schedulers.
Without following an interface defined by a global scheduler, a context implementation has no purpose. SC-3 and SC-4 are meant
to guarantee the correct software relationship between scheduler and context implementations. Also, SC-4 states that an error
must be issued if an incorrect composition is made as to avoid implementations that fail silently. Finally, SC-5 guarantees that
users can access the context instances in the application code. This characteristic allows schedulers to access data from multiple
sources regardless of which entities are managing it. As a consequence, users can define scheduler functionalities within sche-
duling contexts without the need of extending the runtime API, allowing the use of user-defined procedures in runtime systems
that have no native support for such features.

3.5 Runtime library adapter abstraction
The ARTful runtime adapter is an entity responsible for connecting the other abstractions to a runtime library. Regardless of
the support for extending the set of policies in a system, we still have not found HPC runtimes without some internal scheduling
module. As such, a runtime adapter can be inserted into the runtime library as a novel user-defined scheduler either by hacking
the library or, when available, by making use of the system’s development support to schedulers (such as an interface or a
scheduling framework). An implementation of this concept is equivalent to a global scheduler native to the runtime system that,
instead of making a scheduling decision itself, forwards this responsibility to a decoupled ARTful global scheduler. Additionally,
the adapter has the role of initializing references to the runtime library data structures, so that those can be exposed to the ARTful
scheduling context.

It would be too time-consuming or even impossible to create a unified specification for this component. Each runtime portrays
a unique design to express its global schedulers and, if creating a common interface for all of them would be feasible, portable
solutions would already exist. Nonetheless, runtime adapters must adhere to the system’s routines while portraying the following
behavior for ARTful scheduling solutions:

ARTful Runtime Adapter specification

RA-1 It must act as a native scheduler in the runtime system that presents a set of ARTful schedulers.

RA-2 It initializes references to system data structures within ARTful scheduling contexts.

RA-3 It forwards the schedule decision responsibility to an ARTful global scheduler instance.

RA-4 It employs the computed schedule using the runtime system semantics.

Santana, A. ET AL 9

RA-1 defines a runtime adapter that integrates with one runtime system and interfaces all scheduling decisions. RA-2 states
that a runtime adapter shields a scheduling context from some interactions with the runtime system by setting itself the references
to data structures and functionalities of interest. RA-3 explains that runtime adapters have no responsibilities related to actually
computing a schedule, leaving that to global schedulers. Nevertheless, RA-4 sets their responsibility of using the runtime system
to enforce the computed schedule.

In cases where a scheduling framework is provided (e.g., Charm++ and StarPU), the runtime adapter looks like a usual user-
defined scheduler. By contrast, other systems (e.g., OpenMP runtimes) must rely on alterations in the runtime library functions
for expanding the system’s global scheduler pool. However, since the adapter yields control to ARTful global schedulers, a
single adapter can be used to extend the runtime system with multiple scheduling policies. This is an advantage over the current
development process where, for each new scheduler addition, more code must be added inside a runtime system.

4 MOGSLIB AS AN IMPLEMENTATION OF ARTFUL SCHEDULER SPECIFICATIONS

We developed the Metaprogramming-oriented Global Scheduling Library (MOGSLib)13 to evaluate the performance impact of
ARTful global schedulers when employed in real runtime systems. MOGSLib is implemented using object-oriented and template
metaprogramming directives of the C++14 language. The ARTful abstractions are encapsulated in classes and configured through
template parameters, allowing for components to be specialized during compilation. With the objective of reducing the overall
number of lines and code, MOGSLib implementations use the standard template library (STL1) algorithms and data structures
whenever possible. As of now, MOGSLib supports the creation of global schedulers that can be specialized into centralized load
balancers for Charm++ and dynamic loop schedulers for LibGOMP (GNU’s OpenMP runtime). Each component in MOGSLib
can be individually validated using unitary tests through googletest28 before being integrated into the runtime system. In the
remainder of this section, we present how ARTful components are implemented in MOGSLib and how they are connected to
two runtime systems.

4.1 MOGSLib scheduling policies
We focus on the class of centralized, workload-aware scheduling policies in this work. More specifically, we work with variations
over the LPT scheduling policy (Algorithm 1 in Section 2.1). This class of scheduler makes its decisions based on knowledge
over all available application and platform workload data. They are of interest to our study because (i) they are very common
choices in runtime systems, (ii) they achieve quasi-linear mapping decision times with little variance, (iii) they do not require
many other features or information, making it easier to focus on the important aspects of their implementation.

The scheduling policies of interest in this work are named BinLPT22 and GreedyLB29. Each policy was originally specialized
to function in its respective runtime system, which results in some differences between them. For instance, BinLPT schedules
loop iterations to OpenMP threads, while GreedyLB schedules Charm++ chares to operating system threads or processes.
Nevertheless, we will refer to loop iterations and chares as tasks, and to threads and processes as processing units (PUs), the
latter representing resources.

BinLPT partitions the tasks in chunks (contiguous lists of tasks) through a greedy bin packing heuristic to obtain better cache
locality for each PU. Later, it schedules the chunks into processing units using the LPT rule. BinLPT was designed as a loop
scheduling policy for the shared memory OpenMP runtime, and it was implemented in an enhanced version of LibGOMP15. The
library is customized to portray the BinLPT policy and a few extra functions so that users can register parallel loops and inform
their iterations’ workload. Our new BinLPT implementation is contained within MOGSLib and the extra required functions
are implemented within the scheduling context data structures in MOGSLib, which diminishes the amount of code added to
LibGOMP.

GreedyLB utilizes a max-heap to order tasks by their workload and a min-heap to order PUs by their current load. The
policy iteratively designates the task atop of the max-heap to the processor atop of the min-heap until the task heap gets empty.
GreedyLB is implemented in Charm++’s load balancing framework. It uses the system’s load balancer database (LBDB) to
gather dynamic data about the application and processing unit’s workloads. Our version in MOGSLib preserves every aspect of
this policy, but the access to the system’s structures is abstracted by context data structures in order to conform to the ARTful
specifications.

1The C++ STL reference can be found at https://en.cppreference.com/w/cpp/container.

https://en.cppreference.com/w/cpp/container

10 Santana, A. ET AL

Algorithm 2 The LPT scheduling policy and its template structure interface in MOGSLib.

1 template < typename Id , typename Workload >
2 struct LPT
3 {
4 public :
5 using Out = vector <Id >;
6 static void map(Out &map , vector <Workload > tasks , Id npus)
7 {
8 auto tasks = create_workload_heap <true >(task_loads); // max -heap of tasks
9 vector <Workloads > pu_loads (npus); // Allocate zero - initialized entries

10 auto pus = create_workload_heap <false >(pu_loads); // min -heap of resources
11
12 while (! tasks.empty ()) // While there are tasks left to map
13 {
14 auto &task = tasks.front (); // Take the unmapped task with the largest load
15 auto &pu = pus.front (); // Take the resource with the smallest load
16
17 map[task.id] = pu.id; // Map the task to the resource
18 pu.load += task.load; // Update the load of the resource
19
20 // Remove the task from the set of tasks to be mapped
21 pop_heap (tasks.begin (), tasks.end (), Compare <Workload , true >());
22 tasks. pop_back ();
23 // Update the resources ’ heap
24 pop_heap (pus.begin (), pus.end (), Compare <Workload , false >());
25 push_heap (pus.begin (), pus.end (), Compare <Workload , false >());
26 }
27 }
28 };

In MOGSLib, every scheduling policy is implemented as C++ static functions within template structures in order to follow
our ARTful specifications (Section 3.2, SP-1 and SP-2). The template parameters are used to abstract system-sensitive data types
allowing the policies to work with generic definitions of workload and identifiers data types (SP-5). In Charm++, workload
is defined by a system type, LBRealType, that represents the execution walltime (in seconds) of a task in the previous appli-
cation iteration. In LibGOMP, the workload data is informed by the user and represents an arbitrary numeric unit originally
implemented as integers.

Algorithm 2 displays the template structure signature of a generic LPT policy in MOGSLib. In MOGSLib, every policy
structure must declare its only public procedure as a static function called map (line 6). The first parameter is used as the
procedure’s global schedule output (SP-3), while the remaining parameters must represent the policy’s requirements (SP-4). As
such, the LPT policy requirements, as represented in the algorithm, are: (i) a collection with the tasks’ workload values and (ii)
the processing unit count. With the correct definition of the LPT structure template parameters, this policy implementation can
be used in any runtime system capable of fulfilling the policy’s requirements.

The map function itself follows a structure very similar to the LPT scheduling policy from Algorithm 1 (Section 2.1). The
main difference between this code and the original algorithm is that we use efficient max- and min-heaps to store the loads of
tasks and resources, respectively, while the original algorithm represents tasks and resources with sets, and it obtains the task and
resource of interest with “arg max” and “arg min” operations. Finally, MOGSLib’s organization streamlines the development
and integration of schedulers by enabling developers to write scheduling policies once and in a runtime system-independent
manner, to test their algorithms in isolation, and to express the context requirements for reusing a given implementation in other
systems.

4.2 MOGSLib scheduling contexts
The scheduling context is the next abstraction to be developed (if not yet available) in the creation of new scheduler following
a bottom-up process. The implementation of a scheduling context depends on the global schedulers they will be used with, as
suggested by the ARTful specifications SC-2 and SC-3 (Section 3.4). For instance, GreedyLB requires the number of PUs in
the platform and the workload of each task in the application. These are the bare minimum requirements of workload-aware
schedulers, so a generic context structure interface can be expressed in MOGSLib as illustrated in lines 1–8 in Algorithm 3.
Meanwhile, BinLPT requires one additional information, which is the maximum number of chunks to be created, which can be

Santana, A. ET AL 11

Algorithm 3 The scheduling context interfaces required by GreedyLB and BinLPT in MOGSLib.

1 template < typename tId , typename tLoad >
2 struct WorkloadCtx
3 {
4 using Id = tId;
5 using Load = tLoad;
6 Id npus () { /* ... */ }
7 vector <Load > workloads () { /* ... */ }
8 };
9

10 template < typename tId , typename tLoad >
11 struct BinLPTCtx : public WorkloadCtx <tId , tLoad >
12 {
13 Id chunks () { /* ... */ }
14 };

obtained from OpenMP internal data structures. A compliant interface for the BinLPT scheduling context (which will encapsu-
late every context-sensitive featured required as per SC-1) can be defined by extending the default WorkloadCtx as depicted in
lines 10–14 in Algorithm 3.

Scheduling context structures must fulfill the global scheduler class requirements at the same time they help achieve the
scheduling objectives of the runtime system where they act. For instance, Charm++ applications may contain unmigratable
tasks (rigid jobs) and the platform may have unavailable PUs which cannot receive new tasks. Charm++ load balancers must
filter the related input data to ignore these elements in the platform and avoid illegal mappings. Additionally, Charm++ also
instruments the application in order to obtain dynamic workload measurements of each task. These measurements are the reason
behind Charm++ adaptive scheduling solutions, meaning that workload-aware strategies in this system should employ these
metrics as to conform to Charm++’s objectives.

Algorithm 4 showcases the scheduling context structure for centralized workload-aware schedulers in Charm++
(CharmCentralizedWL). The context uses Charm++’s LBDB to query the workloads of tasks and PUs. This database in
Charm++ is a reference to a system-specific data structure that is accessible in the system’s global namespace. It can be accessed
in MOGSLib context structures through a pointer (line 3) that must be set up by an ARTful system adapter.

The scheduling context structure in Algorithm 4 is responsible for filtering the unavailable PUs (lines 9–14), unmigratable
tasks (lines 16–20), and calculate the workload of the tasks (line 22) following Charm++’s semantics. These functionalities are
implicitly delivered to the workload-aware global schedulers through their requirements, the npus (lines 25–29) and workloads
(lines 31–36) functions. Since these steps are required for many Charm++ load balancers, this context integrates some Charm++
constraints into the scheduler and improves the software quality by avoiding code replication throughout scheduling policies.

In the case of LibGOMP, the automatic definition of task workloads is originally not present. The authors of BinLPT extended
the OpenMP specifications to portray a new API function call named omp_set_workload, so that the workload could be
informed by the user to the loop schedulers in the runtime system. We recreated this feature in MOGSLib within the OpenMP
context structure, depicted in Algorithm 5, without the need of extending LibGOMP’s API. In the LibGOMPWorkload context
structure, the number of PUs in the environment is determined by the OpenMP API function omp_max_threads (lines 5–8).
The number of chunks must be gathered from the runtime system’s internal structure, which is set up by an ARTful system
adapter (abstracted in lines 15–18). Finally, the workload of each task is informed by the user, who can access and manipulate
the workloads public variable (line 3). More details on how a user can access an instance of this structure are discussed in
Section 4.5.

In a later work by the authors of BinLPT15, their custom version of LibGOMP was once again extended. A new feature called
multiloop support was added to allow the runtime to associate a schedule calculated by BinLPT to a parallel loop. The runtime
can then use the previously calculated schedule when executing the same loop again. Multiloop is used to reduce the scheduler
overhead by conditionally avoiding new calculations based on user-defined criteria. This feature is specially useful in iterative
applications that display little variation from one iteration to another.

This multiloop feature is not native to LibGOMP nor to the OpenMP specifications. It has been developed in this custom
version of LibGOMP and is currently available only for the BinLPT scheduler. However, we envision that this is a context-
sensitive scheduling functionality that could be applied to other library implementations of OpenMP and loop schedulers. We
implemented this feature in MOGSLib within a specialized scheduling context structure that extends the default behavior of

12 Santana, A. ET AL

Algorithm 4 MOGSLib’s scheduling context implementation for centralized, workload-aware Charm++ load balancers.

1 struct CharmCentralizedWL : public WorkloadCtx <unsigned , LBRealType >
2 {
3 LDStats *lbdb = RTS :: Charm :: lbdb_ref ;
4
5 private :
6 vector <Id > PUs , chares ;
7 vector <Load > workloads ;
8
9 void filterPUs ()

10 {
11 PUs.clear ();
12 for(Id i = 0; i < lbdb -> nprocs (); ++i)
13 if(lbdb ->procs[i]. available) PUs. push_back (i);
14 }
15
16 void filterChares ()
17 {
18 for(auto i = 0; i < lbdb -> n_objs ; ++i)
19 if(lbdb -> objData [i]. migratable) chares . push_back (i);
20 }
21
22 void calculateWorkloads () { /* Omitted for simplicity */ }
23
24 public :
25 Id npus ()
26 {
27 filterPUs ();
28 return PUs.size ();
29 }
30
31 vector <Load > workloads ()
32 {
33 filterChares ();
34 calculateWorkloads ();
35 return workloads ;
36 }
37 };

the LibGOMP scheduling context. Due to the ARTful specifications, this feature is available for all schedulers in MOGSLib
when associated to this context. We strongly believe user-defined functionalities should not be implemented within runtime
system libraries, as they create unnecessary complexity to an already extensive codebase. The ARTful specifications allow
implementations to both expand the scope of a scheduling technique and incur in less alterations to the runtime system library.

4.3 MOGSLib global schedulers
In MOGSLib, global scheduler components are implemented as C++ template classes. This is inspired by both Charm++ and
StarPU, where schedulers are represented by classes. By comparison, the template parameter is exclusive to the MOGSLib
implementation, being used to both abstract and bind the class declaration to an external data type (the scheduling context)
respecting GS-6 (Section 3.3). Through this, a global scheduler class can only be realized when paired with a definition of a
scheduling context data type. The global scheduler class can then use the scheduling context data type to access information and
functions in order to fulfill its scheduling policies requirements and call them to calculate a schedule.

Algorithm 6 showcases the implementation of an ARTful global scheduler abstraction that employs the previously described
LPT scheduling policy. In lines 1–2, the template class is declared along with its template parameter, representing the scheduling
context Ctx. The template data type is used in lines 4–5 to query concrete data types for the task/processing units identifiers Id
and the tasks’ workload data type Load (GS-5). The ARTful global scheduler public procedure to decide a schedule (GS-1) is
the work function (lines 10–20) which takes one reference to an instance of its scheduling context data type. The syntax to call
the work function is the same for any scheduler class as the parameter for this function is tied to the template class definition
(GS-4). The work function manipulates the context instance to call functions that must be present in its implementation. This is
observed in lines 12–13, where the scheduling context is queried to obtain the tasks’ workload and the PU count, respectively.

Santana, A. ET AL 13

Algorithm 5 MOGSLib’s scheduling context implementation for workload-aware loop schedulers in LibGOMP.

1 struct LibGOMPWorkload : public BinLPTCtx <unsigned , unsigned >
2 {
3 vector <Load > workloads ;
4
5 Id npus ()
6 {
7 return omp_max_threads ();
8 }
9

10 vector <Load > workloads ()
11 {
12 return workloads ;
13 }
14
15 Id chunks ()
16 {
17 return RTS :: OpenMP :: chunks ;
18 }
19 };

Ultimately, following GS-3, the global schedule decision is forwarded to the ARTful scheduling policy (lines 15–17) and the
output is passed on to the scheduling context in line 19 (GS-2).

The C++ language allows any data type to be passed as a template parameter, and this is true for MOGSLib global scheduler
classes too. However, the compilation will only succeed as long as the template parameters has definitions for all types and
functions required within the global scheduler class (ARTful Scheduling Context specification SC-4). This purposefully creates a
binding between the two classes where the global scheduler expresses its dependencies and the scheduling contexts fulfills them.
Therefore, the global scheduler class is capable of abstracting the runtime system at the same time it express its dependencies
in a small segment of code, which also makes it possible to reuse a global scheduler in a different runtime system by changing
only its context.

4.4 MOGSLib runtime library adapters
In order to expose MOGSLib components to the runtime system, we need to create a native global scheduler that acts as a proxy
in the runtime system (RA-1, Section 3.5). The adapter serves as a layer of abstraction, isolating the system from the schedulers
and vice versa. Each adapter must be developed within the runtime system and, once it is available, multiple MOGSLib global

Algorithm 6 A MOGSLib global scheduler that employs the LPT scheduling policy.

1 template < typename Ctx >
2 class LPTScheduler
3 {
4 using Id = typename Ctx ::Id;
5 using Workload = typename Ctx :: Load;
6
7 using P = LPT <Id , Workload >;
8 using Out = typename P:: Out;
9

10 void work(Ctx& ctx)
11 {
12 auto workloads = ctx. workloads ();
13 auto npus = ctx.npus ();
14
15 Out out = Out ();
16 out. resize (size(workloads));
17 P:: map(out , workloads , npus);
18
19 ctx. set_schedule (out);
20 }
21 };

14 Santana, A. ET AL

schedulers can be exposed through a single adapter. Indeed, an immediate benefit of this design is the reduction of the total code
alterations in the runtime system library needed to implement multiple user-defined scheduling solutions.

In Charm++, the development of user-defined centralized load balancers is achieved by extending its BaseLB class. Scheduler
developers must encapsulate the policy logic and interaction with the system within the derived class and provide an imple-
mentation to a virtual work function. Indeed, our MOGSLib runtime adapter for Charm++, named MOGSLibLB, follows this
standard approach to integrate new scheduling solutions in Charm++. Algorithm 7 showcases the work function of our runtime
adapter that can be used for centralized, workload-aware scheduling policies. It initializes a static reference to the system’s load
balancing database (line 3), enabling MOGSLib scheduling contexts to manipulate it as previously seen in Algorithm 4 (RA-2).
Later, it calls a function pointer in MOGSLib API, selected_scheduler, that decides which scheduler class will be executed.
This function’s default behavior is to call the first scheduler class informed in the precompilation script, however, user functions
can be assigned to this pointer for deciding the scheduler. In line 6, the control is forwarded to the work method of the selected
ARTful global scheduler class in MOGSLib, which will calculate the schedule using the data in the scheduling context (RA-3).
Finally, the adapter assigns the schedule using Charm++’s API (lines 11–13) in accordance with RA-4.

Algorithm 7 Main function (work) in MOGSLib’s runtime adapter for Charm++ centralized load balancers.

1 void MOGSLibLB :: work(LDStats * stats)
2 {
3 MOGSLib :: RTS :: Charm :: lbdb_ref = stats;
4
5 auto strategy = MOGSLIB :: API :: selected_scheduler ();
6 auto map = MOGSLib :: API :: work(strategy);
7
8 auto & chare_ids = MOGSLib :: RTS :: Charm :: chare_ids ;
9 auto & pu_ids = MOGSLib :: RTS :: Charm :: pu_ids ;

10
11 auto i = 0;
12 for(auto chare : chare_ids)
13 stats -> assign (chare , pu_ids [map[i ++]]);
14 }

The development of user-defined loop schedulers for LibGOMP is different. Without explicit support from the library, users
must manually integrate new policies by modifying internal structures that handle the loop scheduling. These structures are
presented as a set of functions responsible for passing control from the runtime system to the selected scheduling policy when
a parallel loop is detected. The creation of a MOGSLib adapter for LibGOMP is achieved through the modifications in two
LibGOMP functions, gomp_loop_runtime_start and gomp_loop_init. The first function is executed when the application
reaches an OpenMP parallel for construct and it decides which policy will execute. In order to add MOGSLib as a loop
scheduler, a new option is added to the gomp_loop_runtime_start internal decision mechanism, the mogslib policy. The
other function, gomp_loop_init, is called before the parallel loop starts and it is where static loop schedulers decide their
schedule. This function is altered to call MOGSLib and apply its calculated schedule when the mogslib policy is chosen.
Another function is also added to the LibGOMP implementation, the gomp_iter_mogslib_next. The gomp_iter_*_next
functions are called when a thread finishes performing its work pool. The added function in the adapter serves the purpose of
dynamically stealing chunks from other threads as to minimize the dynamic overhead of static scheduling.

The aforementioned MOGSLib runtime adapter is based on the adaptations required to execute the BinLPT scheduler22. As
such, MOGSLib schedulers exposed to LibGOMP through this adapter apply a static schedule and portray a dynamic balancing
phase where chunks are stolen from overloaded threads. In contrast to other OpenMP user-defined schedulers, these alterations
are enough so that LibGOMP can call any policy developed within MOGSLib, avoiding extra costs of integrating different
strategies to the library.

4.5 MOGSLib assembling tools
The ARTful specifications guides the development of generic components that can be composed to form a specialized global
scheduler. Indeed, a global scheduler library that follows the ARTful specifications is comprised of multiple separate components

Santana, A. ET AL 15

Schedulers Contexts

LPT

Numa+LPT

CommAware

Charm LPT

OpenMP Workload

OpenMP HwLoc
+ Workload

Charm Comm

Test DummyComm

Adapters

Charm Centralized

OpenMP
on-demand

Charm Distributed

Testing Benchmark

BinLPT

(a) Before compilation.

MOGSLib Library Codebase

LPT Scheduler

CommAware
Scheduler

Charm LPT Context

Charm Comm
Context

Charm Library Codebase

Charm
Centralized

MOGSLibLB

(b) After compilation.

FIGURE 3 Hypothetical interaction among MOGSLib components before and after the compilation process.

as depicted in Figure 3. However, there must be a streamlined way to compose the abstractions and attach them to the runtime
system, so they can perform as native global schedulers without requiring additional efforts from developers.

MOGSLib scheduling solutions are configured by a combination of a global scheduler class, a scheduling context structure
and a runtime adapter. Some abstractions may not fit together and a solution is only valid if a global scheduler template class
can be compiled given a scheduling context structure template parameter. This validation at compile time is available due to
the relationship between the two classes discussed in Section 4.3. MOGSLib uses a precompilation script to query the user
about the data types that will be composed into a set of global schedulers. The user must inform the path of at least three C++
header files with the template definitions of: (i) an ARTful global scheduler class; (ii) an ARTful scheduling structure; and (iii)
the ARTful runtime adapter implementation for the desired system. This information enables MOGSLib to create the necessary
links between the data structures and create a static library API that exposes its global schedulers. The generated library API is
a C++ header file which must be attached and compiled alongside the runtime system or application.

An overview of the library after the precompilation and compilation process is depicted in Figure 3(b). In this figure,
MOGSLib exposes two hypothetical strategies, the LPT and CommAware scheduling policies. Those policies are each sup-
ported by different contexts: (i) CharmLPT, a structure that queries the workload of the tasks from Charm++ LBDB and (ii)
CharmComm, a structure that queries the LBDB to gather the tasks’ communication data. Both of these scheduling solutions are
available in Charm++ through a runtime adapter class CharmCentralized, which makes Charm++ functionalities available
in MOGSLib context structures.

After the development of ARTful schedulers using MOGSLib, the only thing remaining is for the user to employ them
to improve application performance. As the overhead of using a scheduling library external to the runtime system can be
intimidating for new users, we explore different experimental scenarios in the next section to demystify this.

5 EXPERIMENTS WITH MOGSLIB SCHEDULERS AND NATIVE COUNTERPARTS

We organized a set of experiments in order to quantify the effects of our global scheduling library MOGSLib (based on our
ARTful specifications) instead of the global schedulers native to runtime systems. The objective of these experiments are: (i)
to measure the scheduling overhead (i.e., the time it takes to compute a schedule during the execution of an application) with
and without using MOGSLib for the same scheduling algorithms; and (ii) to measure the impact on the total execution time of
applications when using MOGSLib or the equivalent schedulers native to the runtime systems.

The experiments include the use of MOGSLib in two different scenarios: one with Charm++ and the other with LibGOMP.
On Charm++, we compare the implementation of GreedyLB in MOGSLib to its original Charm++ version using a synthetic
benchmark (lb_test) and a molecular dynamics benchmark (LeanMD). Meanwhile, for LibGOMP, we compare the implemen-
tation of BinLPT in MOGSLib and its original version using a synthetic benchmark (SchedCost based on characteristics of
LULESH30) and a molecular dynamics benchmark (LavaMD). Additionally, we evaluate the performance of the multiloop fea-
ture introduced by BinLPT. Finally, these experiments include variations in the number of tasks to be scheduled (problem size)
because they directly affect the execution time of global schedulers.

16 Santana, A. ET AL

All comparisons where based on a confidence threshold of 95% (significance of 5%) for the different statistical methods used.
We start our evaluations by checking if the samples follow normal distributions (Kolmogorov-Smirnov test) and if they have
the same variance (F test). If we do not reject the null hypothesis in any tests (i.e., all p-values > 0.05), then we use parametric
methods for our comparisons (Welch Two Sample t-test), or else we have to use nonparametric methods (Mann-Whitney U test).
For both kinds of methods, a p-value < 0.05 means that we reject the null hypothesis that the compared versions perform the
same (in other words, they perform differently).

The execution platform for all experiments is the Ecotype cluster from the Grid5000 distributed environment2. All Charm++
tests are deployed on four nodes whereas the OpenMP tests run over a single shared memory node. Each node in Ecotype includes
two Intel Xeon E5-2630L v4@1.80GHz processors (10 cores per CPU with hyper-threading) and 128GB of DDR3 memory.
They are interconnected using a Gigabit Ethernet network @10Gbps. The nodes run the Debian 9 operating system and the
compiler used throughout the experiments is g++ v7.3.0. We used Charm++ v6.9.03 and the custom version of LibGOMP used
in this paper is publicly available online with both the original BinLPT and MOGSLib schedulers4.

In the following sections, we discuss the details and results of the experiments with synthetic benchmarks, with the multiloop
feature, and with the molecular dynamics benchmarks.

5.1 Experiments with synthetic benchmarks
Synthetic benchmarks are best suited for abstracting application details, so we use them to assess the schedule decision cost
(or scheduler overhead) of the schedulers based solely on the volume of data processed (number of tasks). In other words, we
measure the scheduling overhead in all scenarios and analyze the impact of MOGSLib.

5.1.1 lb_test on Charm++
lb_test is a load balancing synthetic benchmark distributed with Charm++ whose tasks perform dummy floating point opera-
tions. It supports multiple configuration parameters, but most of the parameters have no impact on the scheduler overhead. We
fixed the benchmark parameters to simulate tasks in a 2D mesh or ring topology for 150 iterations, and to call a load balancer
every 40 iterations. The tasks were set with fixed workloads that vary from 10�s to 3000�s per iteration, and they run over the
80 available processing units (160 virtual cores over 4 compute nodes). The number of tasks was varied from 800 to 3200 in
steps of 800, and additional scenarios with 8000 and 16000 were tested. For each number of tasks and scheduler version, lb_test
was executed 20 times for a total of 60 load balancing calls.

Figure 4(a) displays the collected scheduler overhead for the different scenarios as boxplots5. The horizontal axis showcases
the different application sizes, each portraying the data for both implementations of the GreedyLB load balancer, and the vertical
axis represents the measured times in milliseconds. As we can see in Figure 4, MOGSLib shows a smaller overhead than its
native counterpart, and the difference seems to be more noticeable as we increase the number of tasks to be scheduled. Indeed,
for all cases, MOGSLib shows a different and smaller time (all Mann-Whitney U tests returned p-values < 0.05). Upon further
investigation, we concluded that the smaller overhead of MOGSLib comes from its smart use of STL algorithms and data
structures.

Figure 4(b) showcases the linear regression of these scenarios as to extrapolate the curve in our analyzed range. This analysis
suggests that MOGSLib version scales better than the native Charm++ version. More specifically, although we see a higher
base overhead, the MOGSLib version has coefficient value 47% smaller for the predicted schedule decision time.

5.1.2 SchedCost on LibGOMP
SchedCost simulates an iterative application where each of its N iterations are composed of one parallel loop as depicted on
Algorithm 8. The schedule decision cost (cost) is calculated in line 10 based on the difference between the time when the first
instruction within the loop is computed (fi in line 7) and the time right before the entering the parallel loop (pi in line 3). The
sum of the schedule decision costs of N iterations represents the total scheduler overhead for the application (line 11).

2Information about Grid5000 is available at https://www.grid5000.fr/mediawiki/index.php/.
3Information about Charm++’s software is available at http://charm.cs.illinois.edu/software.
4Code available on GitHub at https://github.com/alexandrelimassantana/libgomp.
5Boxes extend from the 1st to 3rd quartiles of the samples. Lines represent the median values. Whiskers represent the data within 1.5 IQR from the lower or upper

quartile.

https://www.grid5000.fr/mediawiki/index.php/
http://charm.cs.illinois.edu/software
https://github.com/alexandrelimassantana/libgomp

Santana, A. ET AL 17

●●●●

●●
●
●

●●●

●●

●●

●

●●●●●
●
●

Size = 800 Size = 1600 Size = 2400 Size = 3200 Size = 8000 Size = 16000

M
O

G
S

Li
b

N
at

iv
e

M
O

G
S

Li
b

N
at

iv
e

M
O

G
S

Li
b

N
at

iv
e

M
O

G
S

Li
b

N
at

iv
e

M
O

G
S

Li
b

N
at

iv
e

M
O

G
S

Li
b

N
at

iv
e

0

5

10

15

Scheduler implementations

S
ch

ed
ul

in
g

ov
er

he
ad

 (
m

s)

(a) Scheduling overhead as boxplots.

●
●

●
●●●

●

●

●

●●●

●●●●●●

●●●

●●
●

●
●●

●●●

●●●●●●●●
●
●●●

●●●
●

●●

●

●●

●

●

●

●●●●●●

●
●

●

●●●●

●
●

●●●●●●●

●

●

●

●
●

●
●●

●●
●

●●●●●

●

●

●
●

●●●

●●
●

●●●

●●●

●●●

●●
●

●
●●

●●●

●

●●

●●●

●●●●●●

●●

●
●●●

●
●●

●
●●

●●●●●●

●●●

●
●●

●●●

●●●●●● ●
●●

●

●●
●●●

●●●
●●●

●
●

●

●●●

●
●
●
●
●●
●
●●

●●●
●●●

●●●

●●●

●●

●

●●●

●
●
●

●●●

●
●●

●

●●

●●●

●
●●●●●
●
●●

●●●

●

●●

●

●●

●

●●
●
●●

●

●●

●

●●
●●
●

●
●

●

●

●●

●
●●

●●
●

●

●●

●

●
●
●
●●

●

●

●

●
●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●●●●

●

●●

●

●●
●●
●

0

5

10

15

4000 8000 12000 16000
Problem size (number of tasks)

S
ch

ed
ul

in
g

ov
er

he
ad

 (
m

s)

Implementations

●

●

Native

MOGSLib

(b) Scheduling overhead as points with linear regressions.

FIGURE 4 GreedyLB scheduler overhead on its native form and in MOGSLib for experiments with lb_test.

Algorithm 8 Computation of the schedule decision cost in OpenMP by SchedCost.

1 void schedcost (int N) {
2 for(int i = 0; i < N; i++) {
3 int pi = TIME ();
4 # pragma omp parallel for
5 for(int j = 0; j < N; j++) {
6 if(j < nthreads)
7 fi[omp_get_thread_num ()] = TIME ();
8 C[j] = A[j] + B[j];
9 }

10 cost[i] = MAX(fi)-pi;
11 ovh += cost[i];
12 }
13 }

We selected the SchedCost parameters in order to simulate the same volume of input data of a small and medium use case
of the LULESH application30. LULESH is an iterative proxy hydrodynamics shock application where each iteration contains
multiple parallel loops to calculate various particle interactions. LULESH has parallel loops with large iteration counts and the
simulation spans over multiple discrete steps. In this context, the parameters for SchedCost were derived from the application’s
usage guidelines. They showcase two scenarios: (i) a small test case with 937 parallel loop calls with 303 iterations (tasks) each
and (ii) a medium use case with 1477 parallel loop calls with 453 iterations each. For each number of tasks and scheduler version,
SchedCost was executed 100 times in a single shared memory compute node (40 OpenMP threads).

Figure 5 shows the scheduling overhead for different scenarios as boxplots. The horizontal axis showcases the different appli-
cation sizes (small test on the left and medium test on the right), each portraying the data for both implementations of BinLPT,
and the vertical axis represents the accumulated scheduling overhead in milliseconds. The boxplots look mostly like horizon-
tal lines because the measured times were all very close to their median. Also, we can see that the overhead with MOGSLib
is smaller than its native counterpart, and that was confirmed by our statistical analysis (both Mann-Whitney U tests returned
p-values < 0.05).

In our experimental setup, the average scheduling overhead for the small and medium use cases for the BinLPT native sched-
uler are 283 and 1534 ms, respectively. Meanwhile, the MOGSLib implementation achieved average scheduling overheads of
117 and 514 ms. This represents speedups of 2.42 and 2.98 for the small and medium cases. As such, we conclude that the
portability of MOGSLib does not have to worsen the performance of global schedulers on Charm++ and OpenMP.

18 Santana, A. ET AL

●●●●

●●●

●●●

Size = 27000 Size = 91125

M
O

G
S

Li
b

N
at

iv
e

M
O

G
S

Li
b

N
at

iv
e

0

500

1000

1500

Scheduler implementations

S
ch

ed
ul

in
g

ov
er

he
ad

 (
m

s)

FIGURE 5 Boxplot of BinLPT’s scheduling overhead on its native form and in MOGSLib for experiments with SchedCost.

●

●

●

●

Size = 27000 Size = 91125

M
O

G
S

Li
b

N
at

iv
e

M
O

G
S

Li
b

N
at

iv
e

14

16

18

20

22

Multiloop scheduler implementations

A
ve

ra
ge

 s
ch

ed
ul

in
g

co
st

 (
us

)

FIGURE 6 Boxplot of BinLPT’s schedule cost on its native form and in MOGSLib for multiloop experiments with SchedCost.
The vertical axis start at 14 �s to emphasize the difference between scheduler versions.

5.1.3 Multiloop support
After the experiments with BinLPT without the multiloop feature from the previous section, we experimented with this feature
by implementing it out of the runtime library scope as a MOGSLib scheduling context feature. We reused the SchedCost bench-
mark with the same parameters to assess possible performance differences between both implementations. We configured both
schedulers to calculate the schedule once and reuse the same schedule for the remaining loop executions.

Figure 6 presents the schedule cost for different multiloop scenarios as boxplots. It differs from Figure 5 as it is based on
the average cost in microseconds for the scheduler calls on each execution of the benchmark (instead of the accumulated sche-
duling overhead). In this scenario, we discarded the null hypothesis that both implementations achieve the same performance
(Welch’s t-tests returned p-values < 0.05), meaning that the native implementation performs better than the MOGSLib imple-
mentation. Nevertheless, as the difference was around 1 �s on average, we believe that this different is still irrelevant to the
overall performance of applications.

Santana, A. ET AL 19

●

●

●
●

●●

Number of cubes = 512 Number of cubes = 1728

M
O

G
S

Li
b

N
at

iv
e

M
O

G
S

Li
b

N
at

iv
e

100

200

300

Scheduler implementations

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

(a) Times for LeanMD using GreedyLB on Charm++.

16.0

16.5

17.0

17.5

18.0

M
O

G
S

Li
b

N
at

iv
e

Scheduler implementations

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

(b) Times for LavaMD using BinLPT on LibGOMP.

FIGURE 7 Total execution time when using native and MOGSLib schedulers. The vertical axes start at different points to
emphasize the difference between scheduler versions.

5.2 Experiments with molecular dynamics benchmarks
Our analysis with synthetic benchmarks suggested that MOGSLib schedulers perform their decisions similarly or faster than
their versions native to the runtime systems studied. However, this assertion does not mean that MOGSLib can reduce the
application makespan more just by simply employing a different implementation of a scheduling policy. Both versions of a
scheduler compute the exact same schedule and, thus, they should have a similar influence on application performance.

Molecular dynamics benchmarks are known to display dynamic load imbalance due to the way particles disperse and interact
through the simulated 3D space. Therefore, we use these benchmarks to assess the impact of the schedulers on the total execution
time of applications.

5.2.1 LeanMD on Charm++
LeanMD31 is a Charm++ mini-app that calculates the force interactions among particles using the Lennard-Jones potential
computation6. Besides its default parameters, we fixed the benchmark to run for 300 iterations, and to call a load balancer after
20 iterations and every 100 iterations after that. We set a small and a medium use cases by simulating the space with 83 and 123

boxes, respectively. LeanMD was executed 30 times for each number of tasks and scheduler version.
Figure 7(a) portrays the distribution of total execution times for the different scenarios as boxplots. The left boxplot is associ-

ated with the small use case (83 cubes) and the one to the right with the medium use case (123 cubes). The vertical axis represents
the time measured in seconds.

As we can see in this figure, the total execution times with MOGSLib and with the native Charm++ implementation of
GreedyLB are very similar. Indeed, our statistical analysis indicates that we cannot reject the hypothesis that both results originate
from the same distribution — i.e., they perform the same (both Mann-Whitney U tests returned p-values > 0.05). This result
shows us that the MOGSLib implementation, despite the better performance on deciding the schedule shown in Section 5.1.1,
does not tend to affect the total execution time of applications.

5.2.2 LavaMD on LibGOMP
LavaMD32 is a benchmark with an OpenMP version that simulates the pressure-induced solidification of molten tantalum and
uranium atoms7. For these experiments, we recreated a subset of the experiments done by Penna et al.15 where the BinLPT

6LeanMD is available at http://charmplusplus.org/miniApps/.
7LavaMD is available at https://rodinia.cs.virginia.edu/.

http://charmplusplus.org/miniApps/
https://rodinia.cs.virginia.edu/

20 Santana, A. ET AL

scheduling policy was thoroughly evaluated. We configured LavaMD to decompose the 3D domain into 113 cubes. Each cube
contains a random number of particles generated through an exponential distribution with = 0.2. BinLPT was configured to
generate up to 80 chunks of tasks, and each configuration was executed 100 times.

Figure 7(b) portrays the total execution times of LavaMD (in seconds in the vertical axis) with the two implementations of
BinLPT as boxplots. As in the case for LeanMD (Figure 7(a)), the median times for both implementations were very similar
(close to 17 s), and again our statistical analysis indicates that both versions of BinLPT perform the same (Mann-Whitney U test
returns a p-value > 0.05). In other words, the benefits of MOGSLib do not come at a cost of slower scheduling decisions nor
increased application execution times.

6 CONCLUSIONS

In this work, we discussed the current state of scheduling software, and proposed the ARTful scheduling specifications in order to
build more adaptable and generic global schedulers implementations that can be used in multiple runtime systems. Our proposed
design allows for the development of user-defined schedulers that can be specialized to work within different runtime systems.
We envision that this approach can improve the code quality by isolating schedulers from the remainder of the runtime system
library code.

We showcased an implementation of our specifications through MOGSLib, our global scheduler library and development
framework. MOGSLib employs object-oriented and generic metaprogramming directives in order to express schedulers and their
relationship to the runtime system. We recreated two centralized, workload-aware scheduling solutions in MOGSLib (BinLPT
used in OpenMP, and GreedyLB used in Charm++). We integrated these schedulers indirectly to their respective runtime sys-
tems and compared the scheduler overhead of our implementation in comparison to their system native counterparts. Synthetic
benchmark experiments showcased that our implementations can sometimes decide the schedule even faster than their original
implementations. However, these performance variations were not relevant enough to alter the total execution times of molecular
dynamics applications. We envision that libraries like MOGSLib, where components are adapted to work along the remainder
of the software stack, should become a standard in future HPC runtime systems.

We gradually rewrote MOGSLib to pinpoint what caused the performance gains of our schedulers in comparison to the native
implementations in Section 5.1. Our additional analysis suggests that the performance improvements originate from the use of
the C++ STL algorithms in favor of a custom implementation. When using the original implementations for sorting algorithms
and data structures, both versions of the same scheduler obtained similar performance. Therefore, we consider the use of STL
algorithms as an advantage of MOGSLib schedulers acting as LibGOMP loop schedulers, as LibGOMP is built using the C
language and has no direct access to STL or other modern tools of C++. As the logic of MOGSLib policies are developed in
C++ and linked to LibGOMP, MOGSLib could extend the tools available for developing loop schedulers in LibGOMP. Indeed,
this observation does not hold true for all runtime systems and, in fact, Charm++ load balancers are already developed in C++.
Our conclusion is that MOGSLib is specially well-suited for runtime systems that offer little customization support for the
development of user-defined global schedulers.

Our future work aims towards the integration with new runtime systems, the development of new global schedulers, and
the evolution to handle global schedulers in runtime systems that employ task-based execution models. MOGSLib also can
be expanded to handle distributed scheduling solutions or communication-aware policies. Ultimately, MOGSLib is a work in
progress that represents an alternative take on developing global schedulers that can be expanded in many ways.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a scientific interest group hosted
by INRIA and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.
fr). This work was partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq)
under the Universal Program (grant number 401266/2016-8) and by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior – Brasil (CAPES) under the Capes-PrInt Program (grant number 88881.310783/2018-01).

https://www.grid5000.fr
https://www.grid5000.fr

Santana, A. ET AL 21

References

1. Dagum L, Menon R. OpenMP: an industry standard API for shared-memory programming. IEEE Computational Science
and Engineering 1998; 5(1): 46–55.

2. Walker DW, Dongarra JJ. MPI: A standard message passing interface. Supercomputer 1996; 12: 56–68.

3. Blackford LS, Petitet A, Pozo R, et al. An updated set of basic linear algebra subprograms (BLAS). ACM Transactions on
Mathematical Software 2002; 28(2): 135–151.

4. Dongarra J, Beckman P, Moore T, et al. The international exascale software project roadmap. International Journal of High
Performance Computing Applications 2011; 25(1): 3–60.

5. Thoman P, Dichev K, Heller T, et al. A taxonomy of task-based parallel programming technologies for high-performance
computing. Springer Journal of Supercomputing 2018; 74(4): 1422–1434.

6. Acun B, Langer A, Meneses E, et al. Power, reliability, and performance: One system to rule them all. IEEE Computer
2016; 49(10): 30–37.

7. Augonnet C, Thibault S, Namyst R, Wacrenier PA. StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures. Concurrency and Computation: Practice and Experience 2011; 23: 187–198.

8. Kale V, Gropp WD. A user-defined schedule for OpenMP. In: . 11. Proceedings of the 2017 Conference on OpenMP. ; 2017;
Stonybrook, New York, USA: 2017.

9. Kale V, Iwainsky C, Klemm M, Müller Kordörfer JH, Ciorba FM. Towards A Standard Interface for User-Defined
Scheduling in OpenMP. In: Proceedings of the International Workshop on OpenMP (iWomp). ; 2019; Auckland.

10. Bak S, Guo Y, Balaji P, Sarkar V. Optimized Execution of Parallel Loops via User-Defined Scheduling Policies. In: . 48.
Proceedings of the International Conference on Parallel Processing. ACM; 2019; Kyoto, Japan: 38:1–38:10

11. Grossman M, Kumar V, Vrvilo N, Budimlic Z, Sarkar V. A pluggable framework for composable HPC scheduling libraries.
In: Proceedings of the International Parallel and Distributed Processing Symposium Workshops. IEEE; 2017; Orlando, FL,
US: 723–732.

12. Aumage O, Bigot J, Coullon H, Pérez C, Richard J. Combining both a component model and a task-based model for hpc
applications: a feasibility study on gysela. In: Proceedings of the International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). IEEE/ACM; 2017; Madrid, Spain: 635–644.

13. Santana A, Freitas V, Pilla LL, Castro M, Méhaut JF. Reducing Global Schedulers Complexity through Runtime System
Decoupling. In: Proceedings of the Brazilian Symposium on High Performance Computing Systems (WSCAD). IEEE;
2018; São Paulo, Brazil: 38–44.

14. Casavant TL, Kuhl JG. A taxonomy of scheduling in general-purpose distributed computing systems. IEEE Trans. Softw.
Eng. 1988; 14: 141–154.

15. Penna PH, A. Gomes AT, Castro M, et al. A Comprehensive Performance Evaluation of the BinLPT Workload-aware Loop
Scheduler. Concurrency and Computation: Practice and Experience 2019: e5170. doi: 10.1002/cpe.5170

16. Pilla LL, Ribeiro CP, Coucheney P, et al. A topology-aware load balancing algorithm for clustered hierarchical multi-core
machines. Future Generation Computer Systems 2014; 30: 191–201.

17. Jeannot E, Meneses E, Mercier G, Tessier F, Zheng G. Communication and Topology-aware Load Balancing in Charm++
with TreeMatch. In: Proceedings of the International Conference on Cluster Computing (CLUSTER). IEEE; 2013;
Indianapolis, United States.

18. Padoin EL, Diener M, Navaux POA, Méhaut J. Managing Power Demand and Load Imbalance to Save Energy on Systems
with Heterogeneous CPU Speeds. In: Proceedings of the International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). IEEE; 2019: 72-79

http://dx.doi.org/10.1002/cpe.5170

22 Santana, A. ET AL

19. Unat D, Dubey A, Hoefler T, et al. Trends in data locality abstractions for HPC systems. IEEE Transactions on Parallel and
Distributed Systems 2017; 28(10): 3007–3020.

20. Mollison MS, Anderson JH. Bringing theory into practice: A userspace library for multicore real-time scheduling. In:
Proceedings of the Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE; 2013; Philadelphia,
PA, US: 283–292.

21. Frasca M, Madduri K, Raghavan P. NUMA-aware graph mining techniques for performance and energy efficiency. In:
Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC).
IEEE Computer Society; 2012; Salt Lake City, Utah.

22. Penna P, Castro M, Plentz P, Freitas H, Broquedis F, Méhaut JF. BinLPT: A Novel Workload-Aware Loop Scheduler for
Irregular Parallel Loops. In: Proceedings of the Brazilian Symposium on High Performance Computing Systems. IEEE;
2017; Campinas, Brazil.

23. Durand M, Broquedis F, Gautier T, Raffin B. An efficient openmp loop scheduler for irregular applications on large-scale
numa machines. In: International Workshop on OpenMP (iWomp). Springer; 2013; Camberra, Australia: 141–155.

24. Bhatele A, Fourestier S, Menon H, Kale LV, Pellegrini F. Applying graph partitioning methods in measurement-
based dynamic load balancing. tech. rep., Lawrence Livermore National Laboratory (LLNL), Livermore, CA; Lawrence
Livermore National Laboratory: 2011.

25. Fattebert JL, Richards D, Glosli J. Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain
decompositions. Computer Physics Communications 2012; 183(12): 2608-2615.

26. Mei C, Sun Y, Zheng G, et al. Enabling and Scaling Biomolecular Simulations of 100 Million Atoms on Petascale Machines
with a Multicore-optimized Message-driven Runtime. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE/ACM; 2011; Seattle, USA: 61:1-61:11.

27. Freitas V, Santana A, Castro M, Pilla LL. A Batch Task Migration Approach for Decentralized Global Rescheduling. In:
Proceedings of the International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD).
IEEE Computer Society; 2018; Lyon, France: 1-12.

28. Sen A. A quick introduction to the Google C++ Testing Framework. IBM DeveloperWorks 2010; 20: 1–10.

29. Zheng G, Bhatelé A, Meneses E, Kalé LV. Periodic hierarchical load balancing for large supercomputers. The International
Journal of High Performance Computing Applications 2011; 25(4): 371-385.

30. Karlin I, Bhatele A, Keasler J, et al. Exploring Traditional and Emerging Parallel Programming Models using a Proxy
Application. In: Proceedings of the International Parallel & Distributed Processing Symposium (IPDPS). IEEE; 2013;
Boston, USA.

31. Mehta V. LeanMD: A Charm++ framework for high performance molecular dynamics simulation on large parallel
machines. PhD thesis. University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL 61801-2302;
2004.

32. Che S, Boyer M, Meng J, et al. Rodinia: A benchmark suite for heterogeneous computing. In: Proceedings of the
International Symposium on Workload Characterization (IISWC). IEEE; 2009: 44–54.

How to cite this article: A. Santana, V. Freitas, M. Castro, L. Pilla, and JF. Méhaut (2020), ARTful: A specification for user-
defined schedulers targeting multiple HPC runtime systems, XXXXXXXXXXXXXXXXXX, 20XX;00:1–XX.

	ARTful: A specification for user-defined schedulers targeting multiple HPC runtime systems
	Abstract
	Introduction
	Background on global scheduling
	Definitions
	Current state of global scheduling software in runtime systems
	Related work

	The ARTful scheduler specifications
	ARTful abstractions overview
	Scheduling policy abstraction
	Global scheduler abstraction
	Scheduling context abstraction
	Runtime library adapter abstraction

	MOGSLib as an Implementation of ARTful scheduler specifications
	MOGSLib scheduling policies
	MOGSLib scheduling contexts
	MOGSLib global schedulers
	MOGSLib runtime library adapters
	MOGSLib assembling tools

	Experiments with MOGSLib schedulers and native counterparts
	Experiments with synthetic benchmarks
	lb_test on Charm++
	SchedCost on LibGOMP
	Multiloop support

	Experiments with molecular dynamics benchmarks
	LeanMD on Charm++
	LavaMD on LibGOMP

	Conclusions
	Acknowledgment
	References

