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Reset PID design for motion systems with Stribeck friction
R. Beerens1, A. Bisoffi2, L. Zaccarian3, H. Nijmeijer1, W.P.M.H. Heemels1, N. van de Wouw1,4

Abstract—We present a reset control approach to achieve
setpoint regulation of a motion system with a Proportional-
Integral-Derivative (PID) based controller, subject to Coulomb
friction and a velocity-weakening (Stribeck) contribution. While
classical PID control results in persistent oscillations (hunting),
the proposed reset mechanism induces asymptotic stability of
the setpoint, and significant overshoot reduction. Moreover,
robustness to unknown Coulomb friction levels, and unknown
Stribeck contributions is guaranteed. The closed-loop dynamics
are formulated in a hybrid systems framework, using a novel
hybrid description of the Coulomb friction element, and asymp-
totic stability of the setpoint is proven accordingly. The working
principle of the controller is demonstrated experimentally on
a motion stage of an electron microscope, showing superior
performance over classical PID control.

I. INTRODUCTION

Friction is a performance-limiting factor in many high-
precision motion systems, as it limits the achievable posi-
tioning accuracy and settling times. Many different control
techniques for frictional motion systems exist in the literature.
A branch of control solutions relies on developing as-accurate-
as-possible friction models, used for online compensation in
a control loop, see, e.g., [5], [16], [24]. These model-based
friction compensation methods are typically prone to model
mismatches due to, e.g., unreliable friction measurements,
or time-varying or uncertain friction characteristics. These
techniques, therefore, may suffer from over- or undercom-
pensation of friction, thereby resulting in loss of stability of
the setpoint [31], and thus limiting the achievable position-
ing accuracy. Adaptive control methods (see, e.g., [3], [12])
provide some robustness to time-varying friction characteris-
tics, but model mismatches (and the associated performance
limitations) still remain. Non-model-based control schemes
have also been proposed, examples of which are impulsive
control (see, e.g., [28], [36]), dithering-based techniques (see,
eg., [22]), sliding-mode control (see, e.g., [7]), or switched
control [27]. These non-model-based controllers, however, em-
ploy high-frequency control signals, risking excitation of high-
frequency dynamics. Moreover, tuning and implementation of
such controllers is not straightforward.
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Despite the availability of a wide range of (nonlinear)
control techniques for frictional systems, linear controllers are
still used in the vast majority of industrial motion systems
due to the existence of intuitive design and tuning tools.
In industry, the classical proportional-integral-derivative (PID)
controller is commonly used for motion systems with friction.
In particular, integral action is capable of compensating for
unknown static friction, due to the build up of control force
from integrating the position error. However, PID control
suffers from two distinct performance limitations when applied
to frictional motion systems. First, the use of a classical PID
controller in combination with static (Coulomb) friction results
in long settling times (see, e.g., [11, Remark 3]) adversely
affecting the machine throughput. This limitation has been
addressed in [8], where a reset integrator is proposed that
significantly improves the transient performance and decreases
settling times for motion systems with Coulomb friction. Sec-
ond, a PID-controlled motion system suffering from friction
including the velocity-weakening (i.e., Stribeck) effect does
not achieve stability of the setpoint, so that the achievable
positioning accuracy is limited. More specifically, while the
integrator action compensates for the static part of the friction,
overcompensation of friction occurs as the velocity increases,
due to the velocity-weakening effect. As a result, the system
overshoots the setpoint and ends up in persistent stick-slip
oscillations (called hunting), see, e.g., [4], [20], compromising
stability of the setpoint.

In this paper, we address the setpoint stabilization problem
of a PID-controlled motion system with Stribeck friction. In
particular, we propose a reset integral controller that achieves
asymptotic stability of the setpoint, despite the presence of
unknown static (Coulomb) friction, and an unknown velocity-
weakening (Stribeck) effect in the friction characteristic. By
building upon the well-known PID controller, we aim at
lowering the threshold for control practitioners to use non-
linear control strategies in the industry. The proposed reset
enhancements can be used as an augmentation of any classical,
loop-shaped PID controller.

Reset and hybrid controllers have been an active field of
research in the past decades. Their development started with
the Clegg integrator [14] and the first order reset element [21].
Since then, reset controllers have mainly been used to improve
the performance of linear motion systems, see, e.g., [1], [25].
Specific examples are the hybrid integrator-gain system [15],
improving the tracking performance while minimizing the
high-frequency content in the control signal. Overshoot reduc-
tion of linear systems using hybrid control is presented, e.g.,
in [9], [39]. Analysis and design tools for reset controllers
are presented in [26], [38] and in the recent overviews [6],
[30]. In the context of frictional systems, reset control has
been applied in [8], where transient performance of PID-based
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motion systems with Coulomb friction is improved. Reset
controllers have already been applied to improve performance
of motion systems, but, to the best of our knowledge, not yet
for stabilization of nonlinear frictional motion systems.

The contributions of this paper are as follows. The first
one is the design of a novel reset controller for systems
with Stribeck friction, aiming at asymptotically stabilizing a
constant setpoint. The second contribution is the development
of a hybrid formulation of the closed-loop system, where the
Stribeck friction element is captured by a hybrid bisimulation
model (in the sense of [37, Def. 2.5]), instead of the commonly
used set-valued force law (see, e.g., [2, Sec. 1.3]). The latter
model builds upon our previous work in [10], where we now
include the Stribeck effect and a radically different two-phase
resetting law. The third contribution is a proof of asymptotic
stability, and the fourth contribution is an experimental demon-
stration of the effectiveness of the proposed controller on an
industrial high-precision positioning system.

The paper is organized as follows. In Section II, we present
our reset PID controller design. In Section III, we formulate
the reset closed loop as a hybrid system, state the main stability
result, and exploit intrinsic robustness properties to obtain
a suitable experimental implementation. In Section IV, we
experimentally validate the proposed reset controller on a high-
accuracy industrial positioning system. The second part of the
paper is devoted to nontrivial derivations necessary to prove
the main stability result. In Section V, we establish bounded-
ness of solutions and semiglobal dwell-time properties, which
lead to building the hybrid bisimulation model. With it, we
prove our main result in Section VI.
Notation: Given x ∈ Rn, |x| is its Euclidean norm. B is
the closed unit ball, of appropriate dimensions, in the Eu-
clidean norm. sign(·) denotes the classical sign function, i.e.,
sign(y) := y/|y| for y 6= 0 and sign(0) := 0. Sign(·) (with
an upper-case S) denotes the set-valued sign function, i.e.,
Sign(y) := {sign(y)} for y 6= 0, and Sign(y) := [−1, 1] for
y = 0. For c > 0, the deadzone function y 7→ dzc(y) is defined
as: dzc(y) := 0 if |y| ≤ c, dzc(y) := y − c sign(y) if |y| > c.
For column vectors x1 ∈ Rd1 , . . . , xm ∈ Rdm , the notation
(x1, . . . , xm) is equivalent to [x>1 . . . x

>
m]>. e3 := (0, 0, 1) is

the third unit vector generating R3. ∧, ∨, =⇒ denote the
logical conjunction, disjunction, implication.

For a hybrid solution ψ [18, Def. 2.6] with hybrid time
domain domψ [18, Def. 2.3], the function j(·) is defined
as j(t) := min(t,k)∈domψ k. Function j(·) depends on the
specific solution ψ that it addresses, but with a slight abuse
of notation we use a unified symbol j(·) because the solution
under consideration is always clear from the context. A hybrid
solution is maximal if it cannot be extended [18, Def. 2.7], and
is complete if its domain is unbounded (in the t- or j-direction)
[18, p. 30]. For a hybrid system H and a set S, ψ ∈ SH(x)
(respectively, ψ ∈ SH(S)) means that ψ is a maximal solution
to H with ψ(0, 0) = x (respectively, ψ(0, 0) ∈ S), and SH is
the set of all maximal solutions to H.

II. SYSTEM DESCRIPTION AND CONTROLLER DESIGN

A single-degree-of-freedom mass m sliding on a horizontal
plane with position z1 and velocity z2 is subject to a control

input ū and a friction force belonging to a set Ψ(z2), governed
by the dynamics

ż1 = z2, ż2 ∈
1

m
(Ψ(z2) + ū) . (1)

The friction characteristic is modeled by the next set-valued
mapping of the velocity:

z2 ⇒ Ψ(z2) := −F̄s Sign(z2)− αz2 + f̄(z2), (2)

where F̄s is the static friction, αz2 the viscous friction
contribution (with α ≥ 0 the viscous friction coefficient),
and f̄ a nonlinear velocity-dependent friction contribution,
encompassing the Stribeck effect.

For a reference position r ∈ R, our goal is formulated next.

Problem 1. Design a reset PID controller for ū in (1)-(2)
that globally asymptotically stabilizes the setpoint (z1, z2) =
(r, 0), in the presence of an unknown static friction F̄s and
an unknown velocity-dependent friction contribution f̄ .

The need for integrator action in Problem 1 is motivated by
the fact that it is able to compensate for an unknown static fric-
tion force F̄s. However, due to overcompensation of friction in
the subsequent slip phase (caused by the velocity-weakening
effect), persistent oscillations emerge so that asymptotic sta-
bility of the setpoint is not achieved with a classical PID
controller. Enhancing the classical PID controller with resets
instead results in asymptotic stability of the setpoint, as we
will show in this paper.

A. Classical PID controller

Consider a classical PID controller for input ū in (1), i.e.,

ū = −k̄p(z1 − r)− k̄dz2 − k̄iz3, ż3 = z1 − r, (3)

where z3 is the PID controller state, and k̄p, k̄d, k̄i represent
the proportional, derivative, and integral gains, respectively. As
in [8], [11], we use mass-normalized parameters and shifted
state variables that facilitate later the construction of Lyapunov
functions for the stability analysis:

kp :=
k̄p
m , kd := k̄d+α

m , ki := k̄i
m , Fs := F̄s

m , f := f̄
m , (4)

x̂ :=

σ̂φ̂
v̂

 :=

 −ki(z1 − r)
−kp(z1 − r)− kiz3

z2

 . (5)

Using (4) and (5), model (1)-(3) corresponds to

˙̂x =

 ˙̂σ
˙̂
φ
˙̂v

 ∈
 −kiv̂

σ̂ − kpv̂
φ̂− kdv̂ − Fs Sign(v̂) + f(v̂)

 (6)

=

0 0 −ki
1 0 −kp
0 1 −kd

σ̂φ̂
v̂

− e3(Fs Sign(v̂)−f(v̂))

=: Ax̂− e3(Fs Sign(v̂)− f(v̂)) =: F̂x(x̂).

Note that σ̂ is a generalized position error, and φ̂ is the
controller state encompassing the proportional and integral
control actions.
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Fig. 1. Example of a friction force satisfying Assumption 1. Total friction
( ), static contribution Fs ( ), velocity-dependent contribution f ( ).

Let us now adopt the following assumptions on the velocity-
dependent friction characteristic f and the controller gains.

Assumption 1. Function f : R→ R satisfies the following:
(i) |f(v̂)| ≤ Fs for all v̂;

(ii) v̂f(v̂) ≥ 0 for all v̂;
(iii) f is globally Lipschitz with Lipschitz constant L > 0;
(iv) for some εv > 0 and L2 ∈ (kd, L], f(v̂) = L2v̂ for all
|v̂| ≤ εv .

A possible f satisfying Assumption 1 is depicted in Fig. 1.
Items (i)-(iii) are clearly not restrictive for typical friction laws.
For item (iv), we emphasize that εv can be selected arbitrarily
small. As a result, item (iv) is hardly restrictive.

In the new coordinates x̂, a solution is said to be in a stick
or slip phase when it belongs, respectively, to the sets

Estick := {x̂ ∈ R3 : v̂ = 0, |φ̂| ≤ Fs}, Eslip := R3\Estick. (7)

Indeed, from Assumption 1, when v̂ = 0, until |φ̂| < Fs, the
only possible evolution in (6) is with ˙̂v = 0 (a stick phase).

Assumption 2. The control gains kp, kd, ki satisfy kp > 0,
ki > 0, kpkd > ki.

The selection of gains as in Assumption 2 is equivalent to the
origin being globally asymptotically stable for the closed-loop
(6) in the frictionless case (i.e., Fs = 0 and f(v̂) = 0 for all v̂)
by the Routh-Hurwitz criterion, and is therefore not restrictive.

The next lemma splits the differential inclusion (6) into three
cases that simplify its analysis.

Lemma 1. Consider model (6) under Assumptions 1-2 and
the initial conditions in Table I. The following hold.
(i) For each initial condition x̂0 ∈ R3, there exists a unique
solution x̂ to (6) with x̂(0) = x̂0, which is also complete.
(ii) For each initial condition x̂0 = (σ̂0, φ̂0, v̂0) satisfying (8),

TABLE I
INITIAL CONDITIONS CONSIDERED IN LEMMA 1.

(v̂0 > 0) ∨ (v̂0 = 0 ∧ φ̂0 > Fs)

∨ (v̂0 = 0 ∧ φ̂0 = Fs ∧ σ̂0 > 0)
(8)

(v̂0 = 0 ∧ σ̂0 > 0 ∧ φ̂0 ∈ [−Fs, Fs))
∨ (v̂0 = 0 ∧ σ̂0 = 0 ∧ φ̂0 ∈ [−Fs, Fs])
∨ (v̂0 = 0 ∧ σ̂0 < 0 ∧ φ̂0 ∈ (−Fs, Fs])

(9)

(v̂0 < 0) ∨ (v̂0 = 0 ∧ φ̂0 < −Fs)
∨ (v̂0 = 0 ∧ φ̂0 = −Fs ∧ σ̂0 < 0)

(10)

there exists T > 0 such that the unique solution x̂ to (6) with
x̂(0) = x̂0 coincides over [0, T ] with the unique solution x̃ to

˙̃x = Ax̃− e3(Fs − f(ṽ)), x̃(0) = x̂0, (11)

which satisfies ṽ(t) > 0 for all t ∈ (0, T ].
(iii) For each initial condition x̂0 = (σ̂0, φ̂0, v̂0) satisfying (9),
there exists T > 0 such that the unique solution x̂ to (6) with
x̂(0) = x̂0 coincides over [0, T ] with the unique solution x̃ to

˙̃x :=

[
˙̃σ
˙̃
φ
˙̃v

]
=
[

0
σ̃
0

]
, x̃(0) = x̂0, (12)

which satisfies ṽ(t) = 0 for all t ∈ [0, T ].
(iv) For each x̂0 = (σ̂0, φ̂0, v̂0) satisfying (10), there exists
T > 0 such that the unique solution x̂ to (6) with x̂(0) = x̂0

coincides over [0, T ] with the unique solution x̃ to

˙̃x = Ax̃− e3(−Fs − f(ṽ)), x̃(0) = x̂0, (13)

which satisfies ṽ(t) < 0 for all t ∈ (0, T ].

Proof. Let us prove each item separately.
Item (i). As for completeness of solutions from each x̂0 ∈

R3, note first that the set-valued mapping F̂x is outer semicon-
tinuous, locally bounded, and such that, for each x̂ ∈ R3, F̂(x̂)
is nonempty and convex. Then, results such as [18, Prop. 6.10]
guarantee completeness of maximal solutions because no finite
escape times can occur for (6).

We prove then uniqueness of complete solutions from x̂0.
With L in Assumption 1(iii), define fL(v̂) := Lv̂ − f(v̂) and
note that fL is nondecreasing. Indeed, for v̂1 < v̂2, −L(v̂2 −
v̂1) ≤ f(v̂2) − f(v̂1) ≤ L(v̂2 − v̂1) from Assumption 1(iii),
hence Lv̂1 − f(v̂1) ≤ Lv̂2 − f(v̂2), so that v̂1 < v̂2 implies
fL(v̂1) := Lv̂1−f(v̂1) ≤ Lv̂2−f(v̂2) =: fL(v̂2). By defining

ΨL(v̂) := Fs Sign(v̂) + fL(v̂), (14)

(6) is equivalently rewritten as

˙̂x ∈

0 0 −ki
1 0 −kp
0 1 L− kd

 x̂−
0

0
1

ΨL(v̂)

=: ALx̂− e3ΨL(v̂).

(15)

Consider two complete solutions x̂a = (σ̂a, φ̂a, v̂a) and
x̂b = (σ̂b, φ̂b, v̂b) with the same initial condition x̂0, i.e.,
x̂a(0) = x̂b(0) = x̂0, and we show now that x̂a(t) = x̂b(t)
for all t ≥ 0. Define η = (η1, η2, η3) := x̂a − x̂b, so that
η(0) = 0. The solutions x̂a and x̂b are complete, so we
have by (15) that for almost all t ≥ 0, η̇(t) ∈ ALη(t) −
e3 (ΨL(v̂a(t))−ΨL(v̂b(t))) . With λ denoting the maximum
singular value of AL, we have for almost all t ≥ 0,

d
dt
|η(t)|2

2 ∈ η(t)>ALη(t) + η3(t) (ΨL(v̂b(t))−ΨL(v̂a(t)))

=⇒ d
dt
|η(t)|2

2 ≤ λ|η(t)|2 +N(t), (16)

where

N(t) := max
fb∈ΨL(v̂a(t)−η3(t))

fa∈ΨL(v̂a(t))

η3(t) (fb − fa) . (17)
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By (14), note that N(t) in (17) can be rewritten equivalently
as

N(t) = max
f ′
b∈Fs Sign(v̂a(t)−η3(t))

f ′
a∈Fs Sign(v̂a(t))

η3(t)
(
f ′b − f ′a

+ fL
(
v̂a(t)− η3(t)

)
− fL

(
v̂a(t)

))
.

Whether v̂a(t) and v̂a(t)−η3(t) are positive, zero, or negative,
inspection of all cases reveals that N(t) ≤ 0 for all t ≥ 0
because we established above that fL is nondecreasing. As a
result, (16) satisfies d

dt
|η(t)|2

2 ≤ λ|η(t)|2, for almost all t ≥ 0.
Then, η(0) = 0 implies η(t) = 0 for all t ≥ 0 by standard
comparison theorems (e.g., [23, Lem. 3.4]).
Item (ii). The proof of this item and the following ones is based
on the proof of [11, Claim 1]. We only consider v̂0 = 0, φ̂0 >
Fs because the other cases are handled similarly. From (11)
we have ˙̃v = φ̃ − kdṽ − Fs + f(ṽ) with ṽ0 = 0, φ̃0 > Fs
so that ˙̃v(0) > 0. Hence, there exists T > 0 such that for
all t ∈ (0, T ], ṽ(t) > 0 and Fs Sign(ṽ(t)) = {Fs}. Therefore,
this unique solution x̃ to (11) substituted in (6) satisfies indeed
˙̃x(t) ∈ F̂x(x̃(t)) for almost all t ∈ [0, T ].
Item (iii). We only consider v̂0 = 0, σ̂0 > 0, φ̂0 ∈ [−Fs, Fs)
because the other cases are handled similarly. The explicit
solution to (12) is then σ̃(t) = σ̂0 > 0, φ̃(t) = φ̂0+σ̂0t, ṽ(t) =

0 on the interval [0, T ] := [0, Fs−φ̂0

σ̂0
]. This unique solution x̃

to (12) substituted in (6) satisfies indeed ˙̃x(t) ∈ F̂x(x̃(t)) for
almost all t ∈ [0, T ] because for all t ∈ [0, T ] a value of
Sign(0) can be selected such that 0 ∈ φ̂0 + σ̂0t− Fs Sign(0).
Item (iv). This item is proven as item (ii).

B. Reset controller design

In order to solve Problem 1, we replace the integrator in (3)
and (6) with a reset integrator. The integrator performs two
types of resets whose design is best explained in the original
coordinates z (instead of x̂). The key mechanism of these
resets is to enforce that the integrator control force (given by
k̄iz3) always points in the direction of the setpoint, namely

z3(z1 − r) ≥ 0, (18)

which imposes an initialization constraint on the integrator
state z3 and is then satisfied along all hybrid solutions of the
resulting closed loop. Due to the phase lag associated with
a linear integrator, property (18) cannot be achieved with a
classical PID controller, see, e.g., [33, §1.3].

To obtain well-defined reset conditions ensuring (18), we
augment the PID controller dynamics with an extra boolean
state b̂ ∈ {−1, 1}, characterizing whether the mass moves
towards the setpoint (b̂ = 1), or away from the setpoint
(b̂ = −1, typically occurring after an overshoot of the position
error). More precisely, b̂ always satisfies

b̂z2(z1 − r) ≤ 0, (19)

along the hybrid solutions. To ensure (19) (and also (18)) our
two types of resets are triggered by a zero crossing of each
one of the two factors in (19). The first reset is triggered by

the zero-crossing of the position error z1−r (marking the start
of an overshoot of the position error) and is given by

(z1 − r = 0 ∧ b̂ = 1) =⇒ (z+
3 = −z3, b̂+ = −b̂). (20a)

Besides the fact that the reset in (20a) is required to obtain
stability of the setpoint, it also induces significant overshoot
reduction, as illustrated in Section II-C.

The second reset yields a change of the integrator state z3

to zero, when the velocity z2 hits zero after an overshoot, i.e.,

(z2 = 0 ∧ b̂ = −1) =⇒ (z+
3 = 0, b̂+ = −b̂). (20b)

The reset in (20b) is required to obtain asymptotic stability of
the setpoint. Indeed, if it were absent, this would not allow
the integrator state z3 to decrease in absolute value, since
(18) forces z3 and z1 − r in (3) to always have the same
sign (and ż3 = z1 − r from (3)). A (sufficiently) large initial
condition for z3 would then hinder asymptotic stability of the
setpoint. In summary, the resulting closed-loop system with
the proposed reset PID controller is given by (1)-(3), with the
resetting laws (20).

C. Illustrative example

We will illustrate the working principle of the proposed
reset controller by means of a simulation example, using a
numerical time-stepping scheme [2, Chap. 10].

First consider system (1)-(3), where only a classical PID
controller (3) is employed. The mass m is unitary, the static
friction is F̄s = 0.981 N, the viscous friction coefficient α is
zero, and the velocity-dependent friction contribution is

f̄(z2) =

{
L2z2, |z2| ≤ εv
(F̄s − F̄c)κz2/(1 + κ|z2|)−1, |z2| > εv,

with Coulomb friction level F̄c = F̄s/3, κ = 20 s/m the
Stribeck shape parameter, L2 = 12.8 Ns/m, and εv = 10−3

m/s, satisfying Assumption 1. We take k̄p = 18 N/m, k̄d =
2 Ns/m, and k̄i = 30 N/(ms), satisfying Assumption 2. The
constant setpoint is r = 0, and the initial conditions are
z1(0) = −0.05 m, z2(0) = 0 m/s, z3(0) = 0 ms. The position
response is presented in the top plot of Fig. 2 ( ), where
persistent oscillations (hunting) are evident.

Now consider the reset closed loop (1)-(3), (20). The reset
controller achieves, first, asymptotic stability of the setpoint
(z1, z2) = (r, 0) (as we will prove later on), and, second,
a significant overshoot reduction as compared to the classical
PID response, see the top plot of Fig. 2 ( ). Controller resets
according to (20a) (i.e., at a zero-crossing of the position error)
and according to (20b) (i.e., when the velocity hits zero after
the previous reset has occurred) are indicated in the insets.
The arising (discontinuous) control force is presented in the
middle plot of Fig. 2.

The bottom plot of Fig. 2 is an anticipation for the specific
property, established in the next section, that the state φ̂ in
(5) never becomes zero when the reset mechanism is active,
whereas it keeps crossing zero for the classical PID (the
logarithm of |φ̂| goes to −∞). Notice that φ̂ is reset according
to (20b) at increasingly smaller values (φ̂+ = −kp(z1 − r))
as the state approaches the settling condition z1 − r = 0 and
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Fig. 2. Simulated response of the position z1 (top), the control force ū
(middle), and the absolute value of state φ̂ in (5) in logarithmic scale (bottom)
for the classical ( ) and reset ( ) PID control schemes.

z2 = 0, which is to be expected due to homogeneity of the
reset law. Nevertheless, φ̂ never reaches zero (as rigorously
established in Proposition 2 of the next section).

III. MAIN RESULT

A. Hybrid model formulation and stability theorem
To state our main result, we write the reset closed loop (1)-

(3), (20) using the hybrid formalism of [18]. The resulting
hybrid system, denoted by Ĥ, has an augmented state vector ξ̂
ranging in a constrained set comprising a correct initialization
of the logic variable b̂ and the continuous controller state φ̂:

ξ̂ := (x̂, b̂) := (σ̂, φ̂, v̂, b̂) ∈ Ξ̂ (21a)

Ξ̂ :={(x̂, b̂) ∈ R3×{−1, 1} : b̂v̂σ̂ ≥ 0, σ̂φ̂ ≥ kp
ki
σ̂2, b̂v̂φ̂ ≥ 0}.

In Ξ̂, the first constraint (inherited from (19)) imposes that b̂v̂
and σ̂ never have opposite signs, while the second constraint
(inherited from (18)) imposes that σ̂ and φ̂ never have opposite
signs. With these two constraints in place, one should impose
that also b̂v̂ and φ̂ never have opposite signs, as ensured by
the third constraint characterizing Ξ̂. 1

More specifically, using (4) and (5) to represent (1)-(3),
the corresponding closed-loop model (6) augmented with the
resets (20) follows the hybrid dynamics

Ĥ :


˙̂
ξ ∈ F̂(ξ̂), ξ̂ ∈ Ĉ := Ξ̂

ξ̂+ =

{
ĝσ(ξ̂), if ξ̂ ∈ D̂σ
ĝv(ξ̂), if ξ̂ ∈ D̂v,

ξ̂ ∈ D̂ := D̂σ ∪ D̂v

(21b)

(21c)

1Note that the first two constraints in Ξ̂ do not imply b̂v̂φ̂ ≥ 0, because
with σ̂ = 0 the first two constrains are satisfied for any (even opposite and
nonzero) selections of b̂v̂ and φ̂.

Herein, the flow map is given by

F̂(ξ̂) :=


−kiv̂
σ̂ − kpv̂

φ̂− kdv̂ − Fs Sign(v̂) + f(v̂)
0

 =

[
F̂x(x̂)

0

]
,

(21d)
and the jump maps and jump sets are given by

ĝσ(ξ̂) :=

[
σ̂
−φ̂
v̂
−b̂

]
, ĝv(ξ̂) :=

 σ̂
kp
ki
σ̂

v̂
−b̂

 , (21e)

D̂σ := {ξ̂ ∈ Ξ̂ : σ̂ = 0, b̂ = 1}, (21f)

D̂v := {ξ̂ ∈ Ξ̂ : v̂ = 0, b̂ = −1}, (21g)

where we emphasize that D̂σ and D̂v are disjoint, because
they correspond to the two different values of b̂. ĝσ and D̂σ
correspond to the resetting mechanism in (20a), and ĝv and
D̂v to that in (20b).

Based on formulation (21) of the hybrid closed loop (1)-(3),
(20), we focus for stability of the setpoint on the compact set
defined by all possible equilibria of the flow map (21d):

Â := {ξ̂ ∈ Ξ̂ : σ̂ = 0, |φ̂| ≤ Fs, v̂ = 0}. (22)

Our main result, proven in Section VI-C is stated next.

Theorem 1. Under Assumptions 1-2, the set Â in (22) is
globally asymptotically stable (GAS) for Ĥ in (21).

Let us now discuss two distinct features of our reset PID
controller (in Proposition 1 and 2 below) that are instrumental
for practical implementation of the controller. First, the set
Ξ̂ in (21a), where solutions are allowed to evolve, is only a
subset of R3 × {−1, 1} (just as a bouncing ball [18, Ex. 1.1]
evolving only in the half-space above the ground). Despite
this fact (and just as in a bouncing ball), maximal solutions
are complete because D̂σ and D̂v lay at the boundary of Ξ̂
and allow solutions to jump, so that they can be indefinitely
extended, as formalized next.

Proposition 1. Hybrid system (21) satisfies the hybrid basic
conditions of [18, Assumption 6.5]. Moreover, under Assump-
tions 1-2, all maximal solutions are complete.

Proof. Verifying the hybrid basic conditions of [18, Assump-
tion 6.5] is straightforward from closedness of sets Ĉ, D̂σ and
D̂v , and the regularity properties of F̂ , ĝσ and ĝv .

To prove completeness of maximal solutions, first we show
that for each ξ̂0 = (σ̂0, φ̂0, v̂0, b̂0) ∈ Ĉ ∪ D̂ there exists a
nontrivial solution ξ̂ to Ĥ starting from ξ̂0 (i.e., dom ξ̂ contains
at least one point different from (0, 0)). For convenience, we
rephrase the conditions in Ĉ = Ξ̂ in (21a) as

h1(ξ̂) := b̂v̂σ̂ ≥ 0,

h2(ξ̂) := σ̂φ̂− kp
ki
σ̂2 ≥ 0,

h3(ξ̂) := b̂v̂φ̂ ≥ 0.

We divide into the cases b̂0 = 1 and b̂0 = −1.
For b̂0 = 1, a nontrivial solution exists for ξ̂0 ∈ D̂σ , where

σ̂0 = 0. We then need to show that for each ξ̂0 ∈ Ĉ\D̂σ ,
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there exists a nontrivial flowing solution (i.e., an absolutely
continuous function ξ̂ : [0, T ] → R4 with T > 0 satisfying
˙̂
ξ(t) ∈ F̂(ξ̂(t)) for almost all t ∈ [0, T ], such that ξ̂(0) = ξ̂0
and ξ̂(t) ∈ Ĉ for all t ∈ (0, T ]). We then list all possible cases
for ξ̂0 ∈ Ĉ\D̂σ , and show that there exists a nontrivial flowing
solution starting from each of these cases.
1) σ̂0 > 0, v̂0 > 0, φ̂0 >

kp
ki
σ̂0 or σ̂0 < 0, v̂0 < 0, φ̂0 <

kp
ki
σ̂0:

a nontrivial flowing solution defined as above exists because
these points belong to the interior of Ĉ.
2) σ̂0 > 0, v̂0 > 0, φ̂0 =

kp
ki
σ̂0 or σ̂0 < 0, v̂0 < 0, φ̂0 =

kp
ki
σ̂0:

in the former case, we need to verify that the corresponding
flowing solution belongs to Ĉ in (21b). Since σ̂0 > 0, v̂0 > 0,
and φ̂0 > 0, it holds h1(ξ̂(t)) > 0 and h3(ξ̂(t)) > 0 for
t ∈ [0, T ] with T > 0. Since φ̂0 =

kp
ki
σ̂0, h2(ξ̂(0)) = 0 and

it is sufficient to verify that ḣ2(ξ̂(0)) > 0 to conclude the
existence of a nontrivial flowing solution. Indeed, ḣ2(ξ̂(0)) =
−kiv̂0φ̂0 + σ̂0(σ̂0 − kpv̂0) − 2

kp
ki
σ̂0(−kiv̂0) = σ̂2

0 > 0. The
latter case follows analogously.
3) σ̂0 > 0, v̂0 = 0, φ̂0 >

kp
ki
σ̂0 or σ̂0 < 0, v̂0 = 0, φ̂0 <

kp
ki
σ̂0: in the former case, σ̂0 > 0, v̂0 = 0, φ̂0 >

kp
ki
σ̂0 > 0

can only correspond to an initial condition in (8) or (9) in
Lemma 1, which both give rise to v̂(t) ≥ 0 for all t ∈ [0, T ]
by Lemma 1, items (ii) and (iii). Then, it holds h1(ξ̂(t)) ≥ 0
and h3(ξ̂(t)) ≥ 0 for t ∈ [0, T ] with T > 0 (by shrinking
T > 0 if needed). Moreover, h2(ξ̂(0)) > 0 and a nontrivial
flowing solution exists. The latter case follows analogously.
4) σ̂0 > 0, v̂0 = 0, φ̂0 =

kp
ki
σ̂0 or σ̂0 < 0, v̂0 = 0, φ̂0 =

kp
ki
σ̂0: similar to item 3) above. In particular, h2(ξ̂(0)) = 0

and ḣ2(ξ̂(0)) = −kiv̂0φ̂0 + σ̂0(σ̂0−kpv̂0)−2
kp
ki
σ̂0(−kiv̂0) =

σ̂2
0 > 0, so it also holds h2(ξ̂(t)) ≥ 0 for t ∈ [0, T ] with
T > 0.

For b̂0 = −1, a nontrivial solution exists for ξ̂0 ∈ D̂v , where
v̂0 = 0. We then list all possible cases for ξ̂0 ∈ Ĉ\D̂v , and
show that there exists a nontrivial flowing solution from each
of theses cases.
1) v̂0 > 0, σ̂0 < 0, φ̂0 <

kp
ki
σ̂0 or v̂0 < 0, σ̂0 > 0, φ̂0 >

kp
ki
σ̂0:

a nontrivial flowing solution exists because these points belong
to the interior of Ĉ.
2) v̂0 > 0, σ̂0 < 0, φ̂0 =

kp
ki
σ̂0 or v̂0 < 0, σ̂0 > 0, φ̂0 =

kp
ki
σ̂0:

in the former case, since v̂0 > 0, σ̂0 < 0, and φ̂0 < 0, it holds
that h1(ξ̂(t)) > 0 and h3(ξ̂(t)) > 0 for t ∈ [0, T ] with T > 0.
Since φ̂0 =

kp
ki
σ̂0, h2(ξ̂(0)) = 0 and it is sufficient to verify

that ḣ2(ξ̂(0)) > 0 to conclude the existence of a nontrivial
flowing solution. Indeed, ḣ2(ξ̂(0)) = σ̂2

0 > 0. The latter case
follows analogously.
3) v̂0 > 0, σ̂0 = 0, φ̂0 < 0 or v̂0 < 0, σ̂0 = 0, φ̂0 > 0:
in the former case, since v̂0 > 0 and φ̂0 < 0, it holds that
h3(ξ̂(t)) > 0 for t ∈ [0, T ] with T > 0. Moreover, from
˙̂σ = −kiv̂ and v̂0 > 0, we have that σ̂(t) < 0 for all t ∈ (0, T ]
(shrink T if necessary), so that h1(ξ̂(t)) ≥ 0 for all t ∈ [0, T ]
with T > 0. Since σ̂0 = 0, h2(ξ̂(0)) = 0 and it is sufficient
to verify that ḣ2(ξ̂(0)) > 0 to conclude the existence of a
nontrivial flowing solution. Indeed, ḣ2(ξ̂(0)) = −kiv̂0φ̂0 > 0.
The latter case follows analogously.
4) v̂0 > 0, σ̂0 = 0, φ̂0 = 0 or v̂0 < 0, σ̂0 = 0, φ̂0 = 0: in
the former case, h1(ξ̂(0)) = h2(ξ̂(0)) = h3(ξ̂(0)) = 0. From

˙̂σ = −kiv̂, ˙̂
φ = σ̂ − kpv̂ and σ̂0 = 0, v̂0 > 0, we have that

σ̂(t) < 0 and φ̂(t) < 0 for all t ∈ (0, T ], so that h1(ξ̂(t)) > 0
and h3(ξ̂(t)) > 0 for all t ∈ [0, T ] with T > 0. As for
h2, we take into account that σ̂(t) < 0 for all t ∈ (0, T ],
so we can consider, instead of h2, the simplified constraint
h̃2(ξ̂) := φ̂− kp

ki
σ̂ ≤ 0. ˙̃

h2(ξ̂) := σ̂− kpv̂− kp
ki

(−kiv̂) = σ̂ so

that ˙̃
h2(ξ̂(0)) = 0, and ¨̃

h2(ξ̂) = −kiv̂ so that ¨̃
h2(ξ̂(0)) < 0,

as we needed to prove. The latter case follows analogously.

Second, we show that solutions are complete through [17,
Thm. S3]. Ĥ satisfies the Basic Assumptions of [17, p. 43].
[18, Thm. S3, case (b)] cannot occur because the flow map is
a linear system with bounded input. [18, Thm. S3, case (c)]
cannot occur because ĝσ(D̂σ)∪ ĝv(D̂v) ⊂ Ĉ ∪ D̂ (as it can be
verified through (21e), (21f), (21g)). Then only [18, Thm. S3,
case (a)] remains, i.e., each solution ξ̂ is complete.

A relevant property enjoyed by the solutions of (21) is that
the transformed controller state φ̂ never reaches zero, unless it
is initialized at zero or reaches the attractor Â in finite time.
This fact, useful in Section IV, was illustrated in Section II-C
by the bottom plot of Fig. 2 and is formalized next.

Proposition 2. For Ĥ in (21), all solutions ξ̂ starting in

Ξ̂0 := {ξ̂ ∈ Ξ̂ : φ̂ 6= 0} (23)

and never reaching Â, satisfy φ̂(t, j) 6= 0 for all (t, j) ∈
dom ξ̂.

Proof. The proof amounts to showing that no solution evolv-
ing in Ξ̂0 can reach a point where φ̂ = 0 after either jumping
or flowing, unless it reaches Â.

Consider solutions flowing in Ĉ := Ξ̂. If a solution reaches
φ̂ = 0 while flowing in Ĉ, there necessarily exists a reverse
solution starting at ξ̂0 = (σ̂0, φ0, v̂0, b̂0) = (0, 0, v̂0, b̂0) ∈ Ξ̂
(with σ̂0 = 0 because of constraint σ̂φ̂ ≥ kp

ki
σ̂2 and v̂0 6= 0

otherwise the solution would be in Â, which is ruled out
by assumption) and flowing in backward time according to
−F̂(ξ̂) (in (21d)) while remaining in Ξ̂. However such a
reverse solution does not exist as we show next for v̂0 > 0
(the case v̂0 < 0 is analogous). Since v̂0 > 0, v̂ remains
positive for a small enough backward time interval and the
backward dynamics ˙̂σ = kiv̂ > 0 implies that σ̂ is also
positive in that interval. Hence, constraint σ̂φ̂ ≥ kp

ki
σ̂2 in

(21a) becomes h(ξ̂) := φ̂− kp
ki
σ̂ ≥ 0 for all such (sufficiently

small) times. Let us note that h(ξ̂0) = 0 and that in backward
time ḣ(ξ̂) = −σ̂ + kpv̂ − kp

ki
(kiv̂) = −σ̂, which is strictly

negative for all such (sufficiently small) nonzero times. Then,
h(ξ̂) would become negative and the candidate solution would
not remain in Ξ̂, therefore its existence is ruled out.

Bearing in mind that solutions cannot reach φ̂ = 0 while
flowing, unless they reach Â, we consider then jumps in (21e).
No jump from Ξ̂0 ∩ D̂v can give φ̂+ =

kp
ki
σ̂ = 0, otherwise

from the condition v̂ = 0 in D̂v we would obtain ξ̂+ ∈ Â,
which is ruled out by assumption. For jumps from Ξ̂0 ∩ D̂v ,
the conclusion is obvious since φ̂+ = −φ̂.
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B. Robustness properties and experimental implementation

The regularity properties established in Proposition 1, to-
gether with the fact that set Â in (22) is compact, enable
applying the robustness results in [18, Ch. 7]. In particu-
lar, the GAS result of Theorem 1 implies robust uniform
global stability and uniform global attractivity of Â. Among
other things, the semiglobal practical robustness of stability
established in [18, Lemma 7.20] reveals that one should
expect a graceful performance degradation in the presence of
uncertainties and unmodeled phenomena. Robustness results
are especially relevant in view of the next proposition, which
provides insight about the behavior of solutions to (21).

Proposition 3. Each solution ξ̂ to (21) is such that:
(i) if it reaches Â in finite time, then it remains in Â forever
(namely, Â is strongly forward invariant [18, Def. 6.25]);
(ii) if it never reaches Â (namely, ξ̂(t, j) /∈ Â for all (t, j) ∈
dom(ξ̂)), then it evolves forever in the t direction (namely,
supt dom ξ̂ = +∞).

Proof. Item (i) follows2 by inspecting all possible solutions
starting in Â, which may flow in Ĉ or jump from D̂σ or D̂v .
When flowing in Ĉ∩Â, Lemma 1(iii) guarantees that σ̂, φ̂, and
v̂ stay constant. Across jumps we have ĝσ(Â) ⊂ Â; ĝv(Â) ⊂
Â, which proves item (i). Proving item (ii) requires nontrivial
derivations and is done at the end of Section V-B.

Remark 1. An important consequence of item (ii) Propo-
sition 3 is that no Zeno solutions emerge from model (21)
as long as solutions are not in Â. The absence of Zeno
solutions is key to well representing the core continuous-time
behavior of the plant. Just as in a bouncing ball [18, Ex. 1.1],
however, Zeno solutions emerge inside Â, and it is expected
that frequent and ineffective controller resets occur in practical
implementations (due to measurement noise) when the closed
loop evolution gets close to Â. To avoid ineffective resets, it is
then reasonable and advisable to disable the controller resets
whenever the velocity v̂ and position error σ̂ are small enough.
In particular, resets should be disabled after resetting from D̂v
because map ĝv in (21e) ensures that φ̂ is reset to a small
value too whenever σ̂ is small. A small value of φ̂ yields a
small value of the control force, compared to the friction force,
which generates robustness against other force disturbances. y

Remark 2. Due to the regularity properties of the hybrid
model, we expect solutions to remain close to nominal ones in
the presence of perturbations (as in noisy environments). The
presence of measurements noise may hinder the detection of
the zero crossings of σ̂ (for jumping from D̂σ) or the zero
crossing of v̂ (for jumping from D̂v). An elegant and effective
solution for the robust detection of zero crossing stems from
Proposition 2 combined with the observations in Remark 1,
ensuring that the resetting mechanism is only active outside
Â. In particular, Proposition 2 ensures that as long as we pick
initial conditions in Ξ̂0 (that is, from (23), we do not initialize

2Note that item (i) of Proposition 3 is also implied by the stability of
Â established in Theorem 1, but since this item is instrumental to proving
Theorem 1 in Section VI-C, we pursue a different proof to avoid circularity.

Fig. 3. Experimental setup of a nano-positioning motion stage, representative
for a sample manipulation stage in an electron microscope [35].

φ̂ = −kp(z1 − r) − kiz3 at zero3), φ̂ never reaches zero.
Then, exploiting the inequalities characterizing Ξ̂ in (21a), we
discuss below that solutions starting in Ξ̂0 remain unchanged
if the zero-measure sets D̂σ and D̂v are exchanged for the sets

D̄σ := {ξ̂ : σ̂φ̂ ≤ 0, b̂ = 1} (24)

D̄v := {ξ̂ : v̂φ̂ ≥ 0, b̂ = −1}, (25)

which satisfy D̄σ ∩ Ξ̂0 = D̂σ ∩ Ξ̂0 and D̄v ∩ Ξ̂0 = D̂v ∩ Ξ̂0.
Since φ̂ is never zero during the transient from Proposition 2,
the conditions (24), (25) are effective at robustly detecting
the zero crossings of σ̂ and v̂, respectively. In fact, a reset
condition similar to (25) has already been successfully used
in [8] to robustly detect a zero crossing of the velocity. y

IV. EXPERIMENTAL CASE STUDY

We demonstrate the working principle and the effective-
ness of the proposed reset controller on an industrial high-
precision motion platform consisting of a sample manipulation
stage of an electron microscope [35]. First, we show that
employing a classical (linear) PID controller indeed leads to
persistent oscillations (hunting), as pointed out in Section I.
Second, we implement the proposed reset controller using
the sets (24), (25) introduced in Remark 2 to robustly detect
the zero crossings of the position error and velocity. We
illustrate 1) the asymptotic stability properties of the reset
controller in the presence of friction with unknown static
and velocity-dependent contributions (including the Stribeck
effect) as established in Theorem 1, and 2) that the overshoot
is reduced with respect to the classical PID controller.

A. Experimental setup

The considered experimental setup is shown in Fig. 3. It
consists of a Maxon RE25 DC servo motor 1 connected to

3When starting the controller with a nonzero position error z1 − r 6= 0
(which is typically the case), the requirement φ̂ 6= 0 is easily ensured by
initializing the integrator state z3 at zero.
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a spindle 2 via a coupling 3 that is stiff in the rotational
direction, while being flexible in the translational direction.
The spindle drives a nut 4 , transforming the rotary motion of
the spindle to a translational motion of the attached carriage
5 , with a ratio of 7.96 · 10−5 m/rad. The position of the

carriage is measured by a linear Renishaw encoder 6 with
a resolution of 1 nm (and a peak noise level of 4 nm). The
carriage is connected to the fixed world with a leaf spring
7 , eliminating backlash in the spindle-nut connection. The

desired position accuracy to be achieved is 10 nm, as specified
by the manufacturer.

For frequencies up to 200 Hz, the system dynamics can
be well described by (1), for which Theorem 1 applies when
using our reset PID controller. In this case, z1 represents the
position of the carriage. The mass m = 172.6 kg represents
the transformed inertia of the motor and the spindle (with an
equivalent mass of 171 kg), plus the mass of the carriage
(1.6 kg). The friction force is mainly induced by the bearings
supporting the motor axis and the spindle (see 8 in Fig. 3),
by the contact between the spindle and the nut, and, to a lesser
extent, by the contact between the carriage and the guidance.
The contact between the spindle and the nut is lubricated,
which induces the Stribeck effect. Since the system is rigid
and behaves like a single mass for frequencies up to 200 Hz,
these friction forces can be summed up to provide a single net
friction characteristic Ψ in (1).

Remark 3. The experimental setup is the same as the setup
used in [8, Sec. 5], where Coulomb and viscous friction was
dominantly present. For the experiments in this paper, a dif-
ferent carriage position and spindle orientation, and different
lubrication conditions result in a significant Stribeck effect
instead, as illustrated by the experiments. y

B. Classical PID
Experiments with a classical PID controller (3) have been

performed, with controller gains k̄p = 107 N/m, k̄d = 2 · 103

Ns/m, and k̄i = 108 N/(ms), satisfying Assumption 2. Indeed,
from (4) the conditions in Assumption 2 are equivalent to k̄p >
0, k̄i > 0, and k̄p(k̄d+α)

m > k̄i. The last holds because α > 0

and the gains above satisfy k̄pk̄d
m > k̄i. The position response

and the corresponding control force are visualized in the top
and middle plots of Fig. 4 for three different experiments.
Persistent oscillations, and thus the lack of stability of the
setpoint, are clearly visible, and confirm the presence of a
significant Stribeck effect. The bottom plot of Fig. 4 shows
that the controller state φ̂ keeps crossing zero (its logarithm
becomes negatively unbounded), see also the dashed curve of
the lower plot of Fig. 2.

C. Reset PID
We now employ the proposed reset controller, with the same

controller gains as for the classical PID case. We use the reset
conditions in (24), (25) to robustly detect zero crossings of
the position error and the velocity, which are equivalent to the
next conditions in the physical coordinates z

D̄σ = {(z, b̂) : k̄i(z1 − r)(k̄p(z1 − r) + k̄iz3) ≤ 0, b̂ = 1},
(26a)
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Fig. 4. Responses of position (top), control force (middle) and logarithm of
|φ̂| (bottom) for three experiments with a classical PID controller. The desired
accuracy band (( ) in the top plot) is clearly not achieved with the classical
PID controller. The bottom plot shows that φ̂ keeps crossing zero.

D̄v = {(z, b̂) : z2(k̄p(z1 − r) + k̄iz3) ≤ 0, b̂ = −1}. (26b)

We emphasize that these sets are independent of the mass
m, thereby resulting in a simplified implementation. To avoid
ineffective resets triggered by measurement noise according
to Remark 1, a stopping criterion is used that disables resets
when the evolution is close to the setpoint. Specifically, resets
are disabled whenever the position error is within the desired
accuracy band of 10 nm (i.e., |z1 − r| ≤ 10 nm) after a
reset from D̄v , because having a low integral control force
compared to the static friction yields robustness to other force
disturbances.

Consider Fig. 5, reporting in the top and middle plots the
position error and control force for three experiments with
the proposed reset controller. For comparison purposes we
enable the controller resets when the PI control force φ̂ and
the position error σ̂ have the same sign (see (21a)) after the
first zero crossing of the position error. The activation times
are indicated by the vertical dashed lines. From the top plot we
observe that, using the reset enhancements, the system settles
within the desired accuracy band of 10 nm after only two
resets, the first one from D̄σ and the second one from D̄v . The
corresponding control force, displayed in the middle subplot,
is discontinuous due to the controller resets, as highlighted in
the inset. Instead, the classical PID controller does not result
in the desired accuracy (cf. Fig. 4). We also emphasize that
the controller resets from D̄σ suppress overshoot.

For all three experiments, the desired accuracy is achieved
after the first reset from D̄v . According to Remark 1, the
resets are then deactivated (see the vertical dotted lines in
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Fig. 5. Responses of position (top), control force (middle) and logarithm of
|φ̂| (bottom) for three experiments with the reset PID controller. The bottom
plot shows that φ̂ never becomes zero when using resets.

the bottom plot). Then, the reset PID is active in the time
intervals between the dashed and dotted vertical lines reported
in the bottom plot and those intervals correspond to the
darker strokes in that same plot. We note, as indicated in
Remark 2, that the reset conditions in the jump sets D̄σ and D̄v
correctly trigger the controller resets despite the presence of
measurement noise. Indeed, as established in Proposition 2,
φ̂ never becomes zero while the resets are active (cf. the
simulation results in the bottom plot of Fig. 2).

Let us now analyze the response at the nanometer scale.
Consider the position error response as a result of the con-
troller resets in more detail, using Fig. 6. In this figure, a time
interval where b̂ = −1 is indicated in gray; its boundaries
then indicate two reset instants. Similarly, the white areas
correspond to intervals where b̂ = 1. First, consider the upper
left subplot, which shows a zoomed view of the position error
of the blue response of Fig. 5. As soon as the error crosses
zero at about 17.5 s, a controller reset from D̄σ is triggered,
which toggles the sign of z3. As a result of stiffness-like effects
in the friction characteristic (see [8, Sec. 5], [5, Sec. 2.1])
combined with the sudden (large) change of the control force,
a “jump” of the position error is observed, which prevents the
system from actually overshooting the setpoint. Despite this
unmodeled effect, the hysteresis mechanism embedded in b̂
prevents an immediate reset from happening again, thus il-
lustrating the robustness properties discussed in Section III-B.
Later, at about 17.6 s, a reset from D̄v occurs, which resets
z3 to zero. Once again, due to the stiffness effects, a “jump”
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Fig. 6. Zoomed view of a position response (top left), and controller reset
conditions (top right and lower left, ( )). The lower left subplot also depicts
the velocity signal ( ).

of the position error occurs (but lower in magnitude, due to
the smaller discontinuity in the control force as compared to
the previous reset from D̄σ). We then observe that the position
error crosses zero slowly as a result of frictional creep effects
(see [8, Sec. 5.4] and [32]), see the inset in the top subplot
of Fig. 5. However, the position error remains well within the
desired accuracy band of 10 nm, so further resets are disabled
according to our stopping criterion.

Next, we analyze the reset conditions in (26a) and (26b)
depicted in the upper right and lower left plots of Fig. 6 as a
function of time for the blue response in Fig. 5. From the upper
right plot, it is evident that indeed a reset from D̄σ in (26a)
occurs at about 17.5 s when b̂ = 1 and k̄i(z1 − r)(k̄p(z1 −
r)+ k̄iz3) ≤ 0, which is satisfied as soon as the position error
crosses zero (see also Fig. 5). Because overshoot is prevented
due to the frictional stiffness effects, the reset condition k̄i(z1−
r)(k̄p(z1−r)+k̄iz3) ≤ 0 remains true after the reset. However,
b̂ = −1 prevents further resets, which shows that the proposed
reset controller exhibits further robustness characteristics with
respect to such small-scale frictional effects. Consider then the
lower left plot, and recall that a reset from D̄v in (26b) should
occur whenever b̂ = −1 (satisfied because of the occurrence
of the previous reset from D̄σ), and when the velocity hits
zero. Detecting the latter is successfully done by evaluating
the inequality −z2(k̄p(z1 − r) + k̄iz3) ≥ 0 (see also (25) and
Remark 2), even though the velocity signal experiences some
lag due to the online, noise-reducing low-pass filtering. Since
the error z1 − r is now within the desired accuracy band, the
stopping criterion prevents further resets.

In summary, the use of the proposed reset control strategy
results in a high setpoint-accuracy, in contrast to the use of
a classical PID controller, which results in persistent oscilla-
tions. Moreover, overshoot is suppressed, and the controller
reset conditions rely only on measurable signals, causing the
controller to reset at the correct instants, despite the presence
of measurement noise.
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V. SEMIGLOBAL PROPERTIES AND BISIMULATION MODEL

In this section we establish a few important stepping stones
towards proving Theorem 1. We first show in Section V-A
that solutions to (21) are uniformly globally bounded, which
enables proving a semiglobal dwell-time property of solutions
in Section V-B. Finally, we define a semiglobal bisimulation
model (in the sense of [37, Def. 2.5]) in Section V-C. This
model allows proving Theorem 1 in the next Section VI.

A. Uniform global boundedness

Consider the discontinuous Lyapunov-like function

W (ξ̂) =

[
σ̂
v̂

]> [ kd
ki

−1

−1 kp

] [
σ̂
v̂

]
+ min
F∈Fs Sign(v̂)

(b̂φ̂−F )2, (27)

which was used (with b̂ = 1) in [11, Eq. (13)] and [8, Eq. (14)]
to prove global attractivity in the case of only Coulomb
friction.

Due to its discontinuity, W cannot be used to establish
stability, but can be used to prove boundedness of solutions
to (21). In particular, for W in (27) it holds that the matrix[
kd
ki
−1

−1 kp

]
is positive definite (by Assumption 2), and that 4

for b̂ ∈ {−1, 1}, φ̂2

2 − F 2
s ≤ minF∈Fs Sign(v̂)(b̂φ̂ − F )2 ≤

2φ̂2 + 2F 2
s . By these inequalities, we construct the bounds

W (ξ̂) ≤ c̄W |x̂|2 + 2F 2
s , |x̂|2 ≤ cWW (ξ̂) + cWF

2
s , (28)

for some scalars c̄W ≥ 1, cW ≥ 1. Bounds (28) show that
boundedness of W (ξ̂) is equivalent to boundedness of |x̂|.

In the presence of Coulomb friction, function W was shown
to enjoy useful non-increase properties in [8], [11]. These
properties were key to proving global attractivity. However,
these non-increase properties are destroyed here due to the
velocity-weakening (Stribeck) contribution f in (21d), which
was not considered in [8], [11]. In particular, by defining

c3 := 2(kpkd − ki) > 0 (29)

(c3 > 0 by Assumption 2), the next lemma provides some
useful characterization of the increase/decrease properties of
W . Its proof is given in Appendix A.

Lemma 2. Under Assumptions 1-2, W in (27) with c3 in (29)
enjoys the following properties along dynamics (21).
1) For each p ∈ {σ, v}, we have

W (gp(ξ̂))−W (ξ̂) ≤ 0 ∀ξ̂ ∈ Dp. (30)

2) For all ξ̂ = (σ̂, φ̂, v̂, b̂) ∈ SĤ and each flowing interval
Ij := {t : (t, j) ∈ dom ξ̂} with b̂(tj , j) = −1,

W (ξ̂(t2, j))−W (ξ̂(t1, j)) ≤
∫ t2

t1

−c3v̂(t, j)2dt, (31)

for all t1, t2 ∈ Ij with t1 ≤ t2.
3) There exists a scalar W̄ > 0 such that each solution

ξ̂ = (σ̂, φ̂, v̂, b̂) ∈ SĤ satisfying ξ̂(tj , j − 1) ∈ D̂v , jumping

4The derivation of the next inequalities is as follows. φ̂2

2
−

F 2
s ≤ dz2Fs

(φ̂) = dz2Fs
(b̂φ̂) = minF∈[−Fs,Fs](b̂φ̂ − F )2 ≤

minF∈Fs Sign(v̂)(b̂φ̂− F )2 ≤ minF=Fs sign(v̂)(b̂φ̂− F )2 ≤ 2φ̂2 + 2F 2
s .

to ξ̂(tj , j) = ĝv(ξ̂(tj , j − 1)) and then flowing up to
ξ̂(tj+1, j) ∈ D̂σ satisfies:

W (ξ̂(tj , j))≥ W̄ =⇒ W (ξ̂(tj+1, j))≤W (ξ̂(tj , j)). (32)

While not being suitable for proving attractivity, function W
in (27) and Lemma 2 are useful to prove in the next proposition
that solutions to (21) are bounded.

Proposition 4. Under Assumptions 1-2, for each compact set
K, there exists M > 0 such that each solution ξ̂ ∈ SĤ(K)

satisfies ξ̂(t, j) ∈MB for all (t, j) ∈ dom ξ̂.

Proof. Consider dynamics (21) and notice that the state b̂ is
bounded because it evolves in a bounded set. Focusing the
attention on the remaining states x̂ = (σ̂, φ̂, v̂), their flow
obeys the (flow) dynamics in (6) where A is Hurwitz due to
Assumption 2, and the term multiplying e3 is bounded by Fs,
due to Assumption 1. In particular, from standard bounded-
input bounded-output (BIBO) results for linear systems, there
exist scalars kA ≥ 1 and hA > 0 such that any solution
ξ̂ = (x̂, b̂) satisfies 5

|x̂(t, j)|2 ≤ kA|x̂(tj , j)|2 + hA, ∀t ∈ [tj , tj+1], (33)

where t0 = 0, tj (with j ≥ 1) denotes a jump time, and
possibly tj+1 = +∞ with the last flowing interval being open
and unbounded. Consider now a solution to (21) which may:
a) flow forever (i.e., experiences no jumps), in which case
bound (33) with j = 0 provides the desired global bound; b)
exhibit one jump only, in which case the desired global bound
is obtained by concatenating twice bound (33); c) flow and/or
jump multiple times, in which case the solution alternately
jumps from D̂σ and D̂v (due to the toggling nature of b̂).
Hence, the solution jumps from D̂v at either t1 or (at most) at
t2. Consider the scenario of a first jump happening from D̂σ
at time (t1, 0), which leads to |x̂(t1, 1)|2 = |x̂(t1, 0)|2 due to
ĝσ in (21e), and then a second jump from D̂v at time (t2, 1),
which leads to |x̂(t2, 2)|2 ≤ |x̂(t2, 1)|2 due to ĝv in (21e)
and D̂v in (21g) (indeed, |φ̂(t2, 2)| = kp

ki
|σ̂(t2, 1)| ≤ |φ̂(t2, 1)|

from constraint σ̂φ̂ ≥ kp
ki
σ̂2 ≥ 0 in D̂v , which is equivalent to

|σ̂||φ̂| ≥ kp
ki
|σ̂|2). For this described scenario, concatenating

bounds yields

max
(t,j)∈dom ξ̂,t+j≤t2+2

|x̂(t, j)|2 ≤ k̄A|x̂(0, 0)|2 + h̄A, (34)

where we used k̄A := k2
A ≥ kA ≥ 1, h̄A := hA(1 + kA) ≥

hA. This described scenario can be viewed as the worst-case-
scenario, because bound (34) also applies to the other scenario
where the jump from D̂σ does not occur and the jump from
D̂v occurs at t1, because k̄A ≥ kA and h̄A ≥ hA. Then, we
can consider only this described worst-case-scenario without
loss of generality. Inequality (34) hence establishes a uniform
bound for all solutions, until a first jump from D̂v .

To complete the proof we must establish a uniform bound
on solutions performing a jump from ξ̂(t2, 1) ∈ D̂v . To this
end, we use bounds (28) with (33) to arrive at

W (ξ̂(t, j)) ≤ kWW (ξ̂(tj , j)) + hW , ∀t ∈ [tj , tj+1], (35)

5Note that classical BIBO bounds involve the norm not squared, but those
easily extend to (33) by using (k|x0|+ h)2 ≤ 2k2|x0|2 + 2h2.
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along any flowing solution, where kW := c̄W cW kA ≥ 1 (since
c̄W ≥ 1, cW ≥ 1, and kA ≥ 1) and hW := c̄W (kAcWF

2
s +

hA) + 2F 2
s > 0.

We are now ready to complete bound (34) beyond hybrid
time (t2, 2). We can focus on solutions exhibiting infinitely
many jumps without loss of generality, by noting that the
analysis also applies to solutions that eventually stop jumping,
because the last bound established below in (38)-(39) will
hold on the last (unbounded) flowing interval. Given any such
solution ξ̂ that keeps exhibiting jumps, denote

W0 := W (ξ̂(t2, 2)) ≤ c̄W (k̄A|x̂(0, 0)|2 + h̄A) + 2F 2
s , (36)

where we combined (34) and (28). Due to the toggling nature
of b̂ in dynamics (21), jumps must occur alternatively from
D̂v at times (t2, 1), (t4, 3) and so on (i.e., at jump times
t2, t4, . . . with even indices), and from D̂σ at jump times with
odd indices. We proceed by induction. Assume that at time
(t2i, 2i) (after a jump from D̂v) we have

W (ξ̂(t2i, 2i)) ≤ max{kW W̄ + hW ,W0}, (37)

which is true for i = 1 (the base case of induction), because
of (36). As for the induction step, (35) yields for j = 2i

W (ξ̂(t, 2i)) ≤ kWW (ξ̂(t2i, 2i))+hW , ∀t ∈ [t2i, t2i+1]. (38)

We obtain that W (ξ̂(t2i+1, 2i)) ≤ max{kW W̄ +
hW ,W (ξ̂(t2i, 2i))} because for W (ξ̂(t2i, 2i)) < W̄ ,
it holds that W (ξ̂(t2i+1, 2i)) ≤ kW W̄ + hW
(by (38)), and for W (ξ̂(t2i, 2i)) ≥ W̄ , it holds that
W (ξ̂(t2i+1, 2i)) ≤ W (ξ̂(t2i, 2i)) (by (32) in Lemma 2).
Then, W (ξ̂(t2i+1, 2i)) ≤ max{kW W̄ + hW ,W (ξ̂(t2i, 2i))}
can be propagated to the subsequent time interval using the
nonincreasing properties of W established in (30) and (31)
of Lemma 2, as follows:

W (ξ̂(t, 2i+ 1)) ≤ max{kW W̄ + hW ,W (ξ̂(t2i, 2i))},
∀t ∈ [t2i+1, t2(i+1)].

(39)

Finally, using again the nonincrease property in (30) and bound
(37) for j = 2i, we obtain

W (ξ̂(t2(i+1), 2(i+ 1))) ≤ max{kW W̄ + hW ,W (ξ̂(t2i, 2i))}
≤ max{kW W̄ + hW ,W0},

which corresponds to (37), completes the induction proof, and
establishes then that (37) holds for all i ≥ 1.

Summarizing, we combine bounds (38) and (39) (and then
use kW ≥ 1, hW > 0, (37), and finally (36)) to obtain for all
(t, j) ∈ dom ξ̂ with t+ j ≥ t2 + 2,

W (ξ̂(t, j)) ≤ max{kW (kW W̄ + hW ) + hW ,

kW
(
c̄W (k̄A|x̂(0, 0)|2 + h̄A) + 2F 2

s

)
+ hW }.

In other words, W remains uniformly bounded, so does x̂
(by (28)), and ξ̂ (since b̂ evolves in {−1, 1}), and the proof
of uniform boundedness of solutions is completed.

B. Semiglobal dwell time

We establish now a second useful property of solutions
of Ĥ, whose stick-to-slip transitions must occur at instants
of time separated by a guaranteed dwell-time. This peculiar
dwell time is uniform in any compact set of initial conditions,
therefore it is semiglobal.

To formalize our dwell-time result, define the sets

Ŝ1 := {ξ̂ ∈ Ξ̂ : φ̂ ≥ Fs, v̂ = 0, b̂ = 1},
Ŝ−1 := {ξ̂ ∈ Ξ̂ : φ̂ ≤−Fs, v̂ = 0, b̂ = 1},
Ŝ0 := {ξ̂ ∈ Ξ̂ : φ̂ =

kp
ki
σ̂, |φ̂| < Fs, v̂ = 0, b̂ = 1}.

(40)

The first two intuitively associated with stick-to-slip transi-
tions, see also (7) and the third one completing the image
of D̂v through ĝv . We show in the next proposition that any
solution visiting these sets enjoys a uniform semiglobal dwell
time before its velocity changes sign, unless it reaches the
attractor Â, where it will remain due to Proposition 3(i).

Proposition 5. Let Assumptions 1-2 hold. For each compact
set K, there exists δ(K) > 0 such that each solution ξ̂ =
(σ̂, φ̂, v̂, b̂) ∈ SĤ(K) with ξ̂(t, j) ∈ Ŝ1 ∪ Ŝ−1 ∪ Ŝ0, satisfies
either
(i) ξ̂(t′, j′) ∈ Â for some t′ ∈ [t, t+ δ(K)], or
(ii) if (i) does not hold, then for each τ ∈ [t, t + δ(K)] we
have (τ, j(τ)) ∈ dom ξ̂ and

ξ̂(t, j) ∈ Ŝ1 =⇒ v̂(τ, j(τ)) ≥ 0,

ξ̂(t, j) ∈ Ŝ−1 =⇒ v̂(τ, j(τ)) ≤ 0,

for all such τ ∈ [t, t+ δ(K)].

To the end of proving Proposition 5, we state the following
lemma, where L2 is defined in Assumption 1(iv), and whose
proof is given in Appendix B.

Lemma 3. Let Assumptions 1-2 hold.
(a) For each M > 0, there exists δ0(M) > 0 such that

for each initial condition x̃0 = (σ̃0, φ̃0, 0) ∈ MB, the unique
solution x̃ (with x̃(0) = x̃0) to (11) coincides over [0, δ0(M)]
with the unique solution x̌ (with x̌(0) = x̃0) to

˙̌x = Ax̌− e3(Fs − L2v̌). (41)

(b) There exists δ1 > 0 such that for each initial condition
x̌0 = (σ̌0, φ̌0, 0) with

σ̌0 ≥ 0, φ̌0 ≥ Fs,
[
σ̌0

φ̌0

]
6=
[

0
Fs

]
(42)

(σ̌0 ≤ 0, φ̌0 ≤ −Fs,
[
σ̌0

φ̌0

]
6=
[

0
−Fs

]
, respectively), the unique

solution x̌ (with x̌(0) = x̌0) to (41) satisfies for all t ∈ (0, δ1],
v̌(t) > 0 and φ̌(t) > Fs (v̌(t) < 0 and φ̌(t) < −Fs,
respectively).

Proof of Proposition 5. Consider first the case ξ̂(t, j) ∈ Ŝ1.
If ξ̂(t, j) = (0, Fs, 0, 1) ∈ Ŝ1, ξ̂(t, j) = (0, Fs, 0, 1) ∈ Â,

and the solution satisfies case (i) of the lemma. We consider
then ξ̂(t, j) 6= (0, Fs, 0, 1) in the rest of the proof.

By Proposition 4, for each compact set K, there exists M >
0 such that for all (t, j) ∈ dom ξ̂ when ξ̂(t, j) ∈ Ŝ1, ξ̂(t, j) ∈
Ŝ1∩MB. Define δ′(K) := min{δ0(M), δ1} > 0, with δ0(M)
and δ1 as in Lemma 3.
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Evolution with only flow.
Suppose ξ̂ = (x̂, b̂) with ξ̂(t, j) ∈ Ŝ1\{(0, Fs, 0, 1)} ∩MB
flows on [t, t+ δ′(K)].

Since ξ̂(t, j) ∈ Ŝ1\{(0, Fs, 0, 1)} ∩ MB, it holds that
x̂(t, j) = (σ̂(t, j), φ̂(t, j), 0) ∈ MB. Then, Lemma 3(a)
ensures that the unique solution x̃ (with x̃(t) = x̂(t, j))
to (11) coincides over the interval [t, t + δ′(K)] with the
unique solution x̌ (with x̌(t) = x̂(t, j)) to (41), which is such
that v̌(τ) > 0 and φ̌(τ) > Fs for all τ ∈ (t, t + δ′(K)]
by Lemma 3(b) because x̌(t) = x̂(t, j) satisfies (42) (by
combining conditions φ̂ ≥ Fs and σ̂φ̂ ≥ kp

ki
σ̂2 ≥ 0 in Ŝ1).

Since ξ̂ flows according to (21d), its component x̂ satisfies
(6). Solutions to (6) are unique by Lemma 1(i). Since x̃
satisfies the conditions in (8) for all τ ∈ [t, t + δ′(K)],
the component x̂ of ξ̂ must coincide with x̃ on the interval
[t, t + δ′(K)]. Hence, (τ, j(τ)) ∈ dom ξ̂, v̂(τ, j(τ)) ≥ 0 and
φ̂(τ, j(τ)) ≥ Fs for all τ ∈ [t, t + δ′(K)], so the solution ξ̂
satisfies case (ii) of the proposition.

Evolution with flow and jumps.
The only other possible evolution of ξ̂ entails a jump from D̂σ
for some τ1 ∈ [t, t+δ′(K)) such that σ̂(τ1, j) = 0 (the solution
ξ̂ cannot jump from D̂v due to b̂(t, j) = 1 and ˙̂

b = 0 in (21d)).
Since [t, τ1] ⊂ [t, t + δ′(K)], we know from “Evolution with
only flow” above that v̂(τ1, j) ≥ 0 and φ̂(τ1, j) ≥ Fs if ξ̂
flows in Ĉ before jumping from D̂σ . Then, by ĝσ in (21e),
σ̂(τ1, j+ 1) = σ̂(τ1, j) = 0, φ̂(τ1, j+ 1) = −φ̂(τ1, j) ≤ −Fs,
v̂(τ1, j + 1) = v̂(τ1, j) ≥ 0, b̂(τ1, j + 1) = −b̂(τ1, j) = −1.
Define τ2 as the time τ2 ≥ τ1 such that

v̂(τ, j+1)> 0 for all τ ∈ (τ1, τ2), and v̂(τ2, j+1)= 0. (43)

Note that τ2 = τ1 is not excluded. The solution ξ̂ can only
flow on (τ1, τ2) since, with b̂(τ1, j+1) = −1, jumps can only
occur from D̂v where v̂ has to be 0. Moreover, from (43), for
all τ ∈ [τ1, τ2]

σ̂(τ, j+1) = σ̂(τ1, j + 1) +

∫ τ

τ1

−kiv̂(τ̃ , j+1)dτ̃ ≤ 0

φ̂(τ, j+1) = φ̂(τ1, j + 1) +

∫ τ

τ1

(σ̂(τ̃ , j+1)− kpv̂(τ̃ , j+1))dτ̃

≤ φ̂(τ1, j + 1) ≤ −Fs,
hence

v̂(τ2, j + 1) = 0, σ̂(τ2, j + 1) ≤ 0,

φ̂(τ2, j + 1) ≤ −Fs,
[
σ̂(τ2,j+1)

φ̂(τ2,j+1)

]
6=
[

0
−Fs

] (44)

where the solution satisfies case (i) of the proposition in case[
σ̂(τ2,j+1)

φ̂(τ2,j+1)

]
=
[

0
−Fs

]
.

We rule out the possibility that ξ̂ flows from (44) at (τ2, j+
1). Indeed, if ξ̂ flowed, there exist T > 0 by Lemma 1(iv)
such that the component x̂ of ξ̂ coincides over [τ2, τ2 + T ]
with the unique solution x̃ to (13) with x̃(τ2) = x̂(τ2, j + 1),
which satisfies ṽ(τ) < 0 for all τ ∈ (τ2, τ2 + T ]. Such
a flowing evolution, however, is not possible because the
condition b̂v̂φ̂ ≥ 0 would be violated on (τ2, τ2 + T ] (shrink
T if needed) since b̂(τ2, j + 1) = −1. Then, completeness of
maximal solutions in Proposition 1 concludes that the only
possible evolution from (44) at (τ2, j+ 1) is a jump from D̂v .

Now consider two cases for σ̂(τ2, j+1) in (44) by defining

σ̂th :=
Fs
2

ki
kp

> 0 and δ′′ :=
Fs

2σ̂th
=
kp
ki

> 0, (45)

thanks to Assumption 2.
Evolution with flow and jumps: σ̂(τ2, j + 1) ∈ [−σ̂th, 0].

By ĝv in (21e), σ̂(τ2, j+2) = σ̂(τ2, j+1) ∈ [−σ̂th, 0], φ̂(τ2, j+
2) =

kp
ki
σ̂(τ2, j + 1) ∈

[
−Fs

2 , 0
]

and b̂(τ2, j + 2) = 1. If
σ̂(τ2, j + 2) = 0, then the solution satisfies case (i) of the
proposition. Otherwise, no jump can occur over [τ2, τ2 + δ′′)
with δ′′ in (45), and v̂(τ, j+2) = 0 for all τ ∈ [τ2, τ2 +δ′′] by
Lemma 1(iii). Then, (τ, j(τ)) ∈ dom ξ̂ and v̂(τ, j(τ)) ≥ 0 for
all τ ∈ [t, τ2 + δ′′] (with τ2 ≥ t from before), so the solution
satisfies case (ii) of the proposition.

Evolution with flow and jumps: σ̂(τ2, j+ 1) ∈ (−∞,−σ̂th).
Recall that σ̂(τ1, j + 1) = 0 and note that for all τ ∈ [τ1, τ2],

| ˙̂σ(τ, j + 1)| ≤ | ˙̂x(τ, j + 1)| ≤ |A|M + Fs,

from (21d), Assumption 1, and Proposition 4. Hence, from
σ̂(τ2, j+1) = σ̂(τ1, j+1)+

∫ τ2
τ1

˙̂σ(τ, j+1)dτ =
∫ τ2
τ1

˙̂σ(τ, j+
1)dτ , we have

|σ̂(τ2, j + 1)| ≤ (|A|M + Fs)(τ2 − τ1). (46)

Since |σ̂(τ2, j + 1)| ≥ σ̂th, (46) implies

(|A|M + Fs)(τ2 − τ1) ≥ σ̂th

⇐⇒ τ2 − τ1 >
σ̂th

|A|M + Fs
=: δ′′′(K) > 0.

Then, (τ, j(τ)) ∈ dom ξ̂ and v̂(τ, j(τ)) ≥ 0 for all τ ∈ [t, τ1+
δ′′′(K)] (with τ1 ≥ t from before), so the solution satisfies case
(ii) of the proposition.

The proof of the case ξ̂(t, j) ∈ Ŝ1 is completed by selecting
δ(K) := min{δ′(K), δ′′, δ′′′(K)} > 0. The case ξ̂(t, j) ∈ Ŝ−1

follows parallel arguments and is omitted.
Consider now the case ξ̂(t, j) ∈ Ŝ0, which is only sketched

because the proof is similar in nature to the previous one but
simpler. In this case two things may happen: either |φ̂| = kp

ki
|σ̂|

is smaller than Fs

2 and then the solution must remain in a stick
phase from where it cannot jump (because jumps only from
D̂σ are allowed with b̂ = 1, and these jumps would bring the
solution to Â, which is ruled out by assumption); or otherwise
|φ̂| = kp

ki
|σ̂| is not smaller than Fs

2 , which implies that no jump
can happen before some uniform amount of time because |σ̂|
is bounded away from zero and σ̇ is bounded. �

Based on the previous results we are now ready to complete
the missing proof of item (ii) of Proposition 3.
Proof of item (ii) of Proposition 3. The proof uses Propo-
sitions 1 and 5. In particular, each solution starts in some
compact set K and after any jump from D̂v it lands in the
set Ŝ1 ∪ Ŝ−1 ∪ Ŝ0. From this set, Proposition 5 implies that it
flows for some uniform time interval δ(K) (unless it reaches
Â and nothing needs to be proven). Due to the hysteresis
mechanism enforced by the toggling b̂, jumps are alternating
from D̂v and D̂σ and the guaranteed flow δ(K) after each
jump from D̂v implies that these solutions (which are complete
due to Proposition 1) flow forever. Similarly, any solution
performing a finite number of jumps, must flow forever due
to Proposition 1. �
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σ

φ

v Cslip

D0
σ

φ

vq = 0

Cslip

q = −1 q = 1

D0 D1

D−1
σ

φ

v

Cstick
v = 0

−Fs

Fs Fs

Dσ

Dσ

Dv

−Fs

Fig. 7. Projections to the (σ, φ, v) space of the flow and jump sets in (47f),
indicating the sector condition σφ ≥ kp

ki
σ2.

C. Semiglobal bisimulation model

Based on the results of Section V-B and inspired by the
proof given in [10] for the case of only Coulomb friction, we
now introduce a hybrid model being semiglobally bisimilar to
(21), in the sense of [37, Def. 2.5] (see also [29]). This model
is the key tool used in Section VI to prove Theorem 1. More
specifically, recalling the (arbitrarily large) compact set K
discussed in Section V-B (see Proposition 5), the bisimulation
model is parametric in δ > 0 (where parameter δ captures the
δ(K) of Section V-B) and from Proposition 5 we can prove
that its outputs are semiglobally coincident with the solutions
to (21). This bisimilarity property allows proving Theorem 1,
because for each δ > 0, the bisimulation model admits an
intuitive and elegant Lyapunov function certifying asymptotic
stability. Based on the hybrid description of Coulomb friction
presented in [10], we now present the bisimulation model Hδ
parameterized by δ > 0. The overall state of Hδ is

ξ := (σ, φ, v, b, q, τ) ∈ Ξ,

Ξ :=
{
ξ ∈ R3 × {−1, 1} × {−1, 0, 1} × [0, 2δ] :

qv ≥ 0, bqσ ≥ 0, σφ ≥ kp
ki
σ2, bqφ ≥ 0

}
.

(47a)

With respect to the state ξ̂ of Ĥ in (21), we add the logical
state q ∈ {−1, 0, 1} (whose sign is never opposite to the sign
of v due to the constraints in Ξ), and the timer τ , ranging in
the compact set [0, 2δ]. The constrained dynamics of Hδ are

Hδ :


ξ̇ = F(ξ), ξ ∈ Cslip ∪ Cstick

ξ+ ∈ G(ξ), ξ ∈
⋃

p∈{σ,v,0,1,−1}

Dp.

(47b)

(47c)

The flow and jump maps F and G of Hδ are defined as

F(ξ) :=


−kiv
σ − kpv

−kdv + |q|φ− q(Fs − |f(v)|)
0
0

1− dz1(τ/δ)

 , (47d)

G(ξ) :=
⋃

p∈{σ,v,0,1,−1} : ξ∈Dp

{gp(ξ)}, (47e)

gσ(ξ) :=
[
σ −φ v −b q τ

]>
,

gv(ξ) :=
[
σ

kp
ki
σ v −b q τ

]>
,

g0(ξ) :=
[
σ φ v b 0 τ

]>
,

g1(ξ) :=
[
σ φ v b 1 0

]>
,

q = 1

b = 1

q = 1

b = −1

q = −1
b = 1

q = −1
b = −1

q = 0 Dσ
D0

D0
Dσ D0 D0

τ +

=
0

τ
+
=
0

Dv

τ ∈
[δ
, 2
δ]
τ ∈

[δ, 2δ]

D1D−1

Fig. 8. Hybrid-automaton illustration of (47).

g−1(ξ) :=
[
σ φ v b −1 0

]>
.

The flow and jump sets of Hδ are defined as

Cslip := {ξ ∈ Ξ: |q| = 1},
Cstick := {ξ ∈ Ξ: v = 0, |φ| ≤ Fs, q = 0},
Dσ := {ξ ∈ Ξ: σ = 0, b = 1, |q| = 1},
Dv := {ξ ∈ Ξ: v = 0, b = −1, q = 0}, (47f)
D0 := {ξ ∈ Ξ: v = 0, |q| = 1},
D1 := {ξ ∈ Ξ: v = 0, φ ≥ Fs, b = 1, q = 0, τ ∈ [δ, 2δ]},
D−1 := {ξ ∈ Ξ: v = 0, φ ≤ −Fs, b = 1, q = 0, τ ∈ [δ, 2δ]},

and are visualized in Fig. 7. Based on (47f), we define

C := Cslip ∪ Cstick, D := Dσ ∪ Dv ∪ D0 ∪ D1 ∪ D−1. (47g)

A hybrid automaton corresponding to Hδ is in Fig. 8.
We establish in Proposition 6 below thatHδ in (47) captures

all solutions to the original closed-loop model Ĥ in (21) in
a semiglobal fashion, which verifies the semiglobal bisimu-
lation between the two models Hδ and Ĥ. Importantly, the
next proposition allows extending semiglobally the stability
properties of Hδ to Ĥ. For a hybrid solution ψ, we use in the
proposition the notation j(t) := min

(t,k)∈domψ
k. With a slight

abuse of notation we use a unified symbol j(·) because the
solution under consideration is always clear from the context.

Proposition 6. Let Assumptions 1-2 hold. For each com-
pact set K and the corresponding δ(K) > 0 characterized
in Proposition 5, for each solution ξ̂ = (σ̂, φ̂, v̂, b̂) to Ĥ
with ξ̂(0, 0) = ξ̂0 ∈ K, there exist q0, τ0 and a solution
ξ = (σ, φ, v, b, q, τ) to Hδ(K) starting at ξ(0, 0) = (ξ̂0, q0, τ0),
such that

σ̂(t, j(t)) = σ(t, j(t)), φ̂(t, j(t)) = φ(t, j(t)),

v̂(t, j(t)) = v(t, j(t)), b̂(t, j(t)) = b(t, j(t)),
(48)

for all t ≥ 0 such that ξ̂(t, j(t)) 6∈ Â.

Proof. First note that strong forward invariance of Â as per
Proposition 3(i) implies that for any solution ξ̂, property
ξ̂(t, j(t)) 6∈ Â implies ξ̂(s, j(s)) 6∈ Â for all s ≤ t. Hence,
the semiglobal dwell time conclusions of Proposition 5 apply
for the considered time instants t in (48).

It is apparent that the timer τ (i) does not affect the flow
or jump maps of components (σ, φ, v, b, q) in (47d) and (47e);
(ii) it may inhibit jumps only from D1 or D−1, see (47g) and
the graphical representation in Fig. 8. Due to this reason, we
begin by selecting τ0 = δ(K), so that no jumps are inhibited at
(0, 0). In fact, sets D1 and D−1 are suitable liftings to higher
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dimensional spaces (involving the extra variables q and τ ) of,
respectively, the sets Ŝ1 and Ŝ−1 defined in (40).

As a consequence, we may prove the bisimulation property
(48) without focusing on the timer τ , because the fact that
ξ̂ = (σ̂, φ̂, v̂, b̂) and the components (σ, φ, v, b) of a solution ξ
coincide over a time interval implies, by the semiglobal dwell
time of ξ̂ in Proposition 5, that the condition on τ enforced in
D1 and D−1 is always satisfied (since the velocity v̂ will not
change its sign for a time interval of length at least δ(K)). This
is done in the next lemma, whose proof amounts to checking
all the possible (nonunique) evolutions of Ĥ and of Hδ(K),
and is given in Appendix C.

Lemma 4. Under Assumptions 1-2, for each solution ξ̂ =
(σ̂, φ̂, v̂, b̂) to Ĥ with ξ̂(0, 0) = ξ̂0 ∈ K, there exists q0 such
that some solution ξ to Hδ(K) with D1 and D−1 replaced by

D̄1 := {ξ ∈ Ξ: v = 0, φ ≥ Fs, b = 1, q = 0}, (49a)
D̄−1 := {ξ ∈ Ξ: v = 0, φ ≤ −Fs, b = 1, q = 0}, (49b)

(namely, without any τ -induced jump inhibition), starting at
ξ(0, 0) = (ξ̂0, q0, δ(K)) satisfies (48) for all t ≥ 0 such that
ξ̂(t, j(t)) 6∈ Â.

The solution ξ characterized in Lemma 4 never reaches D̄1

or D̄−1 with τ < δ(K), otherwise the solution ξ̂ would belong
to Ŝ1 or Ŝ−1 in (40), contradicting Proposition 5. Thus, ξ is
also a solution to Hδ(K) and this completes the proof.

VI. STABILITY ANALYSIS

For the bisimulation model Hδ of Section V-C, we construct
in Section VI-A a weak Lyapunov function V . Based on
V , GAS of Hδ is proven in the subsequent Section VI-B.
Finally, in Section VI-C, the semiglobal bisimulation result of
Proposition 6 is used to prove Theorem 1.

A. Lipschitz Lyapunov function for the bisimulation model

To prove suitable stability properties of Hδ in (47), we
introduce the following lifting of the attractor Â in (22) as

A := {ξ ∈ Ξ : σ = v = 0, φ ∈ Fs Sign(bq)}, (50)

where the extra variables q and τ can be selected arbitrarily
within the set Ξ.

The advantage of introducing Hδ resides in the next locally
Lipschitz Lyapunov function

V (ξ) :=

[
σ
v

]> [ kd
ki

−1

−1 kp

] [
σ
v

]
+ |q|(φ− bqFs)2

+ (1− |q|)dz2
Fs

(φ) + 2
kp
ki
Fs
(
bqσ + (1− |q|)|σ|

)
,

(51)

where the first three terms can be seen as a smooth version
of the discontinuous Lyapunov-like function (27) and the last
nonsmooth nonnegative term ensures a desirable non-increase
property along dynamics (47). To deal with the nonsmooth (but
Lipschitz) expression |σ| in the last term, we use the Clarke
generalized gradient ∂V (y) of V at y (see [13, Ch. 2]).

The next proposition establishes useful properties required
of a hybrid Lyapunov function, that is, positive definiteness

with respect to A and radial unboundedness, non-increase
along flow in C, and non-increase across jumps from D. These
properties establish what we could not prove in Lemma 2 for
function W in (27), where (31) was only guaranteed when
flowing with b̂ = −1.

Proposition 7. Under Assumptions 1-2, the Lyapunov function
V in (51) satisfies the next properties along dynamics (47).

(i) V is positive definite with respect to A in C ∪ D and
radially unbounded relative to C ∪ D.

(ii) With c3 > 0 in (29), we have

V ◦(ξ) := max
ν∈∂V (ξ)

〈ν,F(ξ)〉 ≤ −c3v2 ≤ 0, ∀ξ ∈ C. (52)

(iii) For each p ∈ {σ, v, 1,−1, 0}, we have

∆Vp(ξ) := V (gp(ξ))− V (ξ) ≤ 0, ∀ξ ∈ Dp. (53)

Proof. We prove the lemma item by item.
Item (i). Positive definiteness with respect to A in C ∪ D

follows by verifying that for each ξ ∈ C ∪ D, V (ξ) ≥ 0 and
V (ξ) = 0 if and only if ξ ∈ A. To see this, for each ξ ∈ C∪D,
V is a sum of nonnegative terms in (51) since the 2 × 2
matrix is positive definite from Assumption 2, and bqσ ≥ 0
in C ∪ D (see Ξ in (47a)). Moreover, for each ξ ∈ C ∪ D,
V (ξ) = 0 if and only if ξ ∈ A because ξ ∈ A implies
that V (ξ) = |q|(φ − bqFs)

2 = 0 and V (ξ) = 0 implies
that all the nonnegative terms of the sum in (51) must be
zero, hence σ = v = 0 and for |q| = 1, φ = bqFs and for
q = 0, φ ∈ [−Fs, Fs], and the last two cases imply together
φ ∈ Fs Sign(bq). Radial unboundedness must be checked
only in the σ, v and φ components because b, q and τ are
bounded in C ∪D ⊂ Ξ. To this end, non-negativity of the last

two terms in (51) and positive definiteness of
[
kd
ki
−1

−1 kp

]
(from

Assumption 2) show the result.
Item (ii) For the derivation of V ◦, we use d

dφ

(
dz2
Fs

(φ)
)

=
2dzFs(φ), and ∂(|σ|) = Sign(σ). From (47d),

V ◦(ξ) = 2
kd
ki
σσ̇ − 2vσ̇ − 2σv̇ + 2kpvv̇ + 2|q|(φ− bqFs)φ̇

+ 2(1− |q|)dzFs(φ)φ̇+ 2
kp
ki
Fsbqσ̇

+ max
ς∈Sign(σ)

(
2
kp
ki
Fs(1− |q|)ςσ̇

)
= 2

kd
ki
σ(−kiv)− 2v(−kiv)− 2σ

(
− kdv + |q|φ− q(Fs

− |f(v)|)
)

+ 2kpv
(
− kdv + |q|φ− q(Fs − |f(v)|)

)
+ 2|q|(φ− bqFs)(σ − kpv) + 2(1− |q|)dzFs(φ)(σ − kpv)

+ 2
kp
ki
Fsbq(−kiv) + max

ς∈Sign(σ)

(
2
kp
ki
Fs(1− |q|)ς(−kiv)

)
,

where the deadzone term is zero because |q| = 1 in Cslip,
and q = 0 and |φ| ≤ Fs in Cstick. Similarly, the term in
the maximum is zero because because |q| = 1 in Cslip, and
q = 0 and v = 0 in Cstick. Since |q|q = q for ξ ∈ Ξ, some
computations yield

V ◦(ξ) =−2c3v
2 + 2qσ(Fs−|f(v)|)− 2Fsbqσ

− 2kpqv(Fs−|f(v)|)
≤−2c3v

2 + 2qσ(Fs−|f(v)|)− 2Fsbqσ ≤−2c3v
2 ≤ 0
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where the first inequality follows from qv ≥ 0 in C and
Fs − |f(v)| ≥ 0 for all v by Assumption 1(i), and the second
inequality follows from bqσ ≥ 0 in C and 2qσ(Fs−|f(v)|)−
2Fsbqσ ≤ 2|q||σ|(Fs−|f(v)|)−2Fs|q||σ| = −2|q||σ||f(v)| ≤
0.

Item (iii). In (53), we address separately each p correspond-
ing to a jump from Dp with jump map gp.
(Jump p = σ) For each ξ ∈ Dσ , |q| = |q+| = 1 and σ = 0, so

∆Vσ(ξ) = (φ+ − b+qFs)2 − (φ− bqFs)2

= (−φ+ bqFs)
2 − (φ− bqFs)2 = 0.

(Jump p = v) For each ξ ∈ Dv , q = q+ = 0, so

∆Vv(ξ) = dz2
Fs

(φ+)− dz2
Fs

(φ) = dz2
Fs

(|φ+|)− dz2
Fs

(|φ|) ≤ 0

because |φ+| = kp
ki
|σ| ≤ |φ| from constraint σφ ≥ kp

ki
σ2 ≥ 0

in Dv , which is equivalent to |σ||φ| ≥ kp
ki
|σ|2.

(Jump p ∈ {1,−1}) For each ξ ∈ D−1 or ξ ∈ D1, b = b+ = 1,
q = 0 and |q+| = 1, so

∆Vi(ξ) = (φ−bq+Fs)
2− dz2

Fs
(φ)+ 2

kp
ki
Fsbq

+σ − 2
kp
ki
Fs|σ|

≤ (φ−q+Fs)
2− dz2

Fs
(φ) = 0.

where the inequality holds since bq+σ ≤ |σ| and the last
equality holds since q+φ ≥ Fs.
(Jump p = 0) For each ξ ∈ D0, |q| = 1 and q+ = 0, so

∆V0(ξ) = dz2
Fs

(φ)− (φ− bqFs)2 + 2
kp
ki
Fs|σ| − 2

kp
ki
Fsbqσ

= dz2
Fs

(φ)− (φ− bqFs)2 ≤ 0,

where the last equality holds since bqσ = |σ| (by bqσ ≥ 0,
|b| = 1, and |q| = 1 in D0) and the inequality holds since
(φ− bqFs)2 ≥ dz2

Fs
(φ).

B. Global asymptotic stability of the bisimulation model

Proposition 7 of the previous section shows that function
V in (51) is a weak Lyapunov function certifying stability
of A in (50) for Hδ . To establish global attractivity (thus,
global asymptotic stability), we exploit the hybrid invariance
principle in [34, Thm. 1] in the next proposition.

Proposition 8. Under Assumptions 1-2, for each δ > 0, the
set A in (50) is globally asymptotically stable for Hδ in (47).

Proof. The proof is based on [34, Thm. 1]. The set A in (50)
is compact and Hδ in (47) satisfies the hybrid basic conditions
in [18, Assumption 6.5]. We check the other assumptions
of [34, Thm. 1] below.
(i) G(D ∩ A) ⊂ A for G in (47c). Indeed, gσ(Dσ ∩ A) ⊂
gσ(A) ⊂ A, gv(Dv ∩ A) ⊂ A, g0(D0 ∩ A) ⊂ g0(A) ⊂ A,
g1(D1 ∩ A) ⊂ A, and g−1(D−1 ∩ A) ⊂ A.
(ii) Conditions on V . The Lyapunov function V satisfies
C ∪D ⊂ domV , is continuous in C ∪D and locally Lipschitz
near each point in C, and is positive definite with respect to
A in C ∪ D and radially unbounded relative to C ∪ D by
Proposition 7, item (i). The Lyapunov nonincrease conditions
have been established in Proposition 7, items (ii)-(iii).
(iii) No complete solution keeps V constant and nonzero.

q = 1

b = 1

q = 1

b = −1

q = −1
b = 1

q = −1
b = −1

q = 0 Dσ
D0

D0
Dσ D0 D0

Dv

Fig. 9. The auxiliary version of the hybrid automaton in Fig. 8 used in the
proof of Proposition 8.

We preliminarily show that the dwell time enforced by the
timer τ in Hδ and the logical variables imply that complete
solutions exhibit an infinite amount of flow. To this end, on
the automaton of Fig. 8, we need to remove the jumps from
D1 or D−1 (which are only enabled if τ ≥ δ). The remaining
jumps are those in Fig. 9, revealing that when τ < δ, after
at most two jumps it must hold that q = 0. From q = 0, the
only possible jump is from Dv (where b = −1), which maps
to b = 1, so that at most one jump from Dv is possible. In
summary, at most three jumps can happen when τ < δ and the
solution would not be complete. This proves that all complete
solutions exhibit an infinite amount of flow.

Suppose now by contradiction that there exists a complete
solution ξbad to Hδ that keeps V constant and nonzero. Being
complete, this solution exhibits an infinite amount of flow,
which should happen outside A (otherwise V would be zero).
Moreover, ξbad must start with a zero initial velocity v, which
should remain zero all along the solution, because v remains
constant across any possible jump and any flowing solution
from v 6= 0 will cause a decrease of V from item (ii) of
Proposition 7.

Such a flowing solution with v ≡ 0 cannot flow in Cslip\A.
Indeed, f(v) = L2v for all |v| ≤ εv by Assumption 1(iv). We
have then from (47d) that the first three components of F are

for q = 1 :

[
−kiv
σ−kpv

−kdv+φ−Fs+L2v

]
=: AL2

[
σ

φ−Fs
v

]
,

for q = −1 :

[
−kiv
σ−kpv

−kdv+φ+Fs+L2v

]
=: AL2

[
σ

φ+Fs
v

]
,

with AL2
:=

[
0 0 −ki
1 0 −kp
0 1 −kd+L2

]
. Since the pair ([ 0 0 1 ] , AL2

) is

observable, the only solutions (σ, φ, v) compatible with v ≡ 0
are constant and correspond to the points where v = 0 and[ q
b
σ
φ

]
=

[
1
1
0
Fs

]
and

[ q
b
σ
φ

]
=

[ −1
1
0
−Fs

]
where the value of b is

imposed by the constraint bqφ ≥ 0 in Cslip. By (50), both
points belong to A so ξbad cannot evolve there.

We conclude by showing that ξbad cannot flow indefinitely
in Cstick\A. Indeed, the first three components of F in (47d)
are (0, σ, 0), with σ being nonzero (otherwise, ξbad would
be in A). With such indefinite flowing, φ would grow un-
bounded and this contradicts |φ| ≤ Fs (required in Cstick\A).
In particular, any such ξbad must eventually reach a point
where (v, σ, φ, b) = (0, σ, sign(σ)Fs, 1) (possibly after a jump
from Dv), from where it must jump from D1 or D−1 to a
point where |q+| = 1, σ+ = σ is nonzero, and b+ = 1.
Any subsequent flow (which must happen because an infinite
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amount of flow occurs), must occur in Cslip\A and is ruled out
by the previous analysis. Hence, the proof is complete.

C. Proof of Theorem 1

We are now able to prove Theorem 1, because the
semiglobal bisimilarity properties of Proposition 6 allow ex-
tending the stability results of Proposition 8 to system Ĥ in
(21), provided solutions are bounded as per Proposition 4.

First, define

Â6 := {(σ̂, φ̂, v̂, b̂, q, τ) : σ̂ = v̂ = 0, |φ̂| ≤ Fs,
b̂ ∈ {−1, 1}, q ∈ {−1, 0, 1}, τ ∈ [0, 2δ]},

which extends Â ⊂ R4 in (22) to the new directions q and τ ,
so that Â6 ⊂ R6. It holds that Â6 ⊃ A with A in (50). Then,
for each ξ = (ξ̂, q, τ) ∈ Ξ,

|ξ|A := inf
y∈A
|ξ−y| ≥ inf

y∈Â6

|ξ−y| = inf
y∈Â6

|(ξ̂, q, τ)−y| = |ξ̂|Â.

(54)
We need to show stability and global attractivity of Â, where
the latter entails by [18, Def. 7.1] that for each solution ξ̂ to
Ĥ, ξ̂ is bounded and satisfies

lim
t+j→∞

|ξ̂(t, j)|Â = 0, (55)

since maximal solutions are complete by Proposition 1.
Boundedness of solutions is guaranteed by Proposition 4.
Proposition 6 guarantees that for each compact set K and
the corresponding δ(K) > 0, each solution ξ̂ to Ĥ with
ξ̂(0, 0) ∈ K coincides with the (x, b) components of some
solution ξ to Hδ(K) for all t ≥ 0 such that ξ̂(t, j(t)) 6∈ Â,
i.e., from (48), for any such t it holds that ξ(t, j(t)) =(
ξ̂(t, j(t)), q(t, j(t)), τ(t, j(t))

)
for all t ≥ 0 such that

ξ̂(t, j(t)) 6∈ Â. Then, (54) implies that

|ξ(t, j(t))|A ≥ |ξ̂(t, j(t))|Â (56)

for all t ≥ 0 such that ξ̂(t, j(t)) 6∈ Â. If there exists
t′ ≥ 0 such that ξ̂(t′, j(t′)) ∈ Â, then (55) is proven by
Proposition 3(i). If instead ξ̂(t, j(t)) /∈ Â for all t in the
domain of ξ̂, then supt ξ̂ = +∞ by Proposition 3(ii) and
then supt ξ = +∞ as well by (48). Moreover, Proposition 8
implies limt→∞ |ξ(t, j(t))|A = 0 and then (56) also implies
limt→∞ |ξ̂(t, j(t))|Â = 0, which also proves (55), namely
global attractivity of Â.

Since A is compact and both Hδ and Ĥ satisfy the hybrid
basic conditions [18, Assumption 6.5], global asymptotic
stability of A for Hδ in Proposition 8 implies uniform global
stability and uniform global attractivity by [18, Thm. 7.12].
Hence, Â is uniformly globally attractive. Since Â is also
strongly forward invariant by Proposition 3(i), then Â is stable
by [18, Prop. 7.5], which together with its global attractivity
implies its global asymptotic stability.

VII. CONCLUSIONS

We proposed a novel reset integrator control strategy
for motion systems with unknown Coulomb and velocity-
dependent friction (including the Stribeck effect) that achieves

global asymptotic stability of the setpoint, and reduces over-
shoot with respect to the classical PID controller. The closed-
loop system dynamics is formulated as a hybrid system,
using a hybrid description of the Coulomb friction element,
and global asymptotic stability of the setpoint is proven.
The working principle and effectiveness of the controller
are experimentally demonstrated in a case study on a high-
precision positioning application.

APPENDIX A
PROOF OF LEMMA 2

We prove the lemma item by item.
Proof of item 1. For all ξ̂ ∈ D̂σ , we have

W (gσ(ξ̂))−W (ξ̂) =

min
F∈Fs Sign(v̂)

((b̂φ̂)+ − F )2 − min
F∈Fs Sign(v̂)

(b̂φ̂− F )2 = 0,

because (b̂φ̂)+ = b̂φ̂. For all ξ̂ ∈ D̂v , we have

W (gv(ξ̂))−W (ξ̂) =

min
F∈Fs Sign(0)

((b̂φ̂)+ − F )2 − min
F∈Fs Sign(0)

(b̂φ̂− F )2

= min
F∈[−Fs,Fs]

(
kp
ki
σ̂ − F )2 − min

F∈[−Fs,Fs]
(−φ̂− F )2

= dz2
Fs

(
kp
ki
σ̂)− dz2

Fs
(−φ̂) = dz2

Fs
(
kp
ki
σ̂)− dz2

Fs
(φ̂) ≤ 0,

because |φ̂| ≥ kp
ki
|σ̂| due to the fact that σ̂φ̂ ≥ kp

ki
σ̂2 in D̂v .

Proof of item 2. By Lemma 1, for each initial condition,
the component x̂ of the (unique) flowing solution ξ̂ coincides
with the unique solution x̃ to one of (11)-(13) on a finite time
interval with length T > 0. Because such unique solution to
(11), (12), (13) has respectively ṽ positive, zero, negative over
such interval with length T by Lemma 1, it can be shown
respectively that for all t in such interval

W
( [

x̃(t)
−1

] )
= W1(x̃(t)), W

( [
x̃(t)
−1

] )
= W0(x̃(t)),

W
( [

x̃(t)
−1

] )
= W−1(x̃(t)),

with

W1(x̃) :=

[
σ̃
ṽ

]> [ kd
ki

−1

−1 kp

] [
σ̃
ṽ

]
+ (−φ̃− Fs)2 (57)

W0(x̃) := kd
ki
σ̃2 (58)

W−1(x̃) :=

[
σ̃
ṽ

]> [ kd
ki

−1

−1 kp

] [
σ̃
ṽ

]
+ (−φ̃+ Fs)

2, (59)

in the same way as [11, Claim 1, item 2)].
In the rest of the proof we consider W1 (or W0 or W−1,

respectively) instead of W during the flow of ξ̂ only when
the component x̂ of the solution ξ̂ coincides with the solution
x̃ to (11) (or (12) or (13), respectively). So, we can exploit
the conditions satisfied by ξ̂ while flowing in the flow set Ĉ
in (21b), in particular b̂σ̂v̂ ≥ 0. For b̂ = −1 we have then
σ̃(t)ṽ(t) ≤ 0. When considering the solution x̃ to (11) (resp.
(13)), it holds ṽ(t) > 0 (resp. ṽ(t) < 0), so σ̂(t)v̂(t) ≤ 0
implies σ̃(t) ≤ 0 (resp. σ̃(t) ≥ 0). We use these conditions for
the bounds in the following (60). Some computations yield the
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derivative of W1 along solutions to (11), of W0 along solutions
to (12), and of W−1 along solutions to (13), respectively, as

d
dtW1(x̃(t)) = −c3ṽ(t)2 + 2σ̃(t)(Fs − f(ṽ(t)))

− 2kpṽ(t)(Fs − f(ṽ(t))) + 2Fsσ̃(t)− 2Fskpṽ(t)

≤ −c3ṽ(t)2

d
dtW0(x̃(t)) = 0 ≤ −c3ṽ(t)2 (60)
d
dtW−1(x̃(t)) = −c3ṽ(t)2 − 2σ̃(t)(Fs + f(ṽ(t)))

+ 2kpṽ(t)(Fs + f(ṽ(t)))− 2Fsσ̃(t) + 2Fskpṽ(t)

≤ −c3ṽ(t)2,

where the bounds were justified before (recall |f(ṽ)| ≤ Fs for
all ṽ by Assumption 1(i)) and, as for W0, v̂ is identically zero.
We now use (60) together with the reasoning in [11, Sec. V.A]
as follows: ξ̂ 7→ W (ξ̂) and t 7→ W (ξ̂(t)) are lower semicon-
tinuous by the same argument as in [11, Sec. V.A]. Moreover,
W1(x̃(·)), W0(x̃(·)), and W−1(x̃(·)) are differentiable, thus
W
( [

x̂(·)
−1

] )
is at least differentiable from the right. The lower

right Dini derivative coincides with the right derivative, and
the right derivative is upper bounded on each interval with
length T by −c3v̂(t, j)2 from (60). This allows to invoke [19,
Thm. 9] in the same way as in [11, Fact 1], which leads to (31).

Proof of item 3. Consider an arbitrary solution ξ̂ =
(σ̂, φ̂, v̂, b̂) = (x̂, b̂) ∈ SĤ satisfying ξ̂(tj , j − 1) ∈ D̂v
in (21g), jumping to ξ̂(tj , j) = ĝv(ξ̂(tj , j − 1)) in (21e) and
then flowing up to ξ̂(tj+1, j) ∈ D̂σ in (21f), so that tj+1 > tj
by [18, Def. 2.6]. Moreover, b̂ is constant and equal to 1
along this interval of flow [tj , tj+1]. Using the expression of
F̂x(x̂) in (6), and the fact that matrix A therein is Hurwitz by
Assumption 2, by linearity we may split the arising response
in a homogeneous (or free, or zero-input) response x̂h from
initial condition

x̂0 := x̂(tj , j) = σ̂(tj , j)

[
1
kp
ki
0

]
(61)

(by (21e) and (21g)), and a forced response x̂f from a zero
initial condition caused by the bounded input e3(Fs Sign(v̂)−
f(v̂)) of maximum size Fs (by Assumption 1). Define

V̂ (x̂) := x̂>P̂ x̂ := x̂>

[
kd
ki

0 −1

0 1 0
−1 0 kp

]
x̂,

with P̂ > 0 (by Assumption 2), and satisfying

A>P̂ + P̂A = −
[

0 0 0
0 0 0
0 0 c3

]
,

with c3 > 0 in (29), which provides a weak Lyapunov function
for ˙̂x = Ax̂, due to observability of the pair ([ 0 0 c3 ] , A).
Then, since the solution flows at (tj , j) and tj+1 > tj , V̂
is a weak Lyapunov function for ˙̂x = Ax̂, and the pair
([ 0 0 c3 ] , A) is observable, there exists η ∈ (0, 1) such that

V̂ (x̂h(tj+1)) = η2V̂ (x̂0) = η2σ̂(tj , j)
2V̂

([
1
kp
ki
0

])
, (62)

because V (x̂h(·)) would remain constant on [tj , tj+1] only
for x̂ identically zero, which is excluded by the fact that we
consider |σ̂(tj , j)| sufficiently large through the selection of
W̄ (as argued below in the proof). On the other hand, from

bounded-input bounded-output stability of dynamics (6), we
have that

|x̂(tj+1, j)− x̂h(tj+1)| = |x̂f (tj+1)| ≤ ĥA, (63)

for some ĥA > 0 (cf. (33)). Consider now the homogeneous-
of-degree-1 function

x̂ 7→ Û(x̂) :=

√
V̂ (x̂),

which is globally Lipschitz (namely, |Û(x̂)−Û(x̂h)| ≤ LÛ |x̂−
x̂h| for all x̂, x̂h ∈ R3 and some Lipschitz constant LÛ > 0)
because its gradient is constant along rays starting at the origin.
Using (62) and (63), we have

Û(x̂(tj+1, j)) ≤ Û(x̂h(tj+1)) + LÛ |x̂(tj+1, j)− x̂h(tj+1)|
≤ η|σ̂(tj , j)|Û

(
(1,

kp
ki
, 0)
)

+ LÛ ĥA,

with Û
(
(1,

kp
ki
, 0)
)
> 0. As a consequence we have

V̂ (x̂(tj+1, j)) ≤
(
η|σ̂(tj , j)|Û

(
(1,

kp
ki
, 0)
)

+ LÛ ĥA

)2

= V̂ (x̂0)

(
η +

LÛ ĥA

|σ̂(tj , j)|Û
(
(1,

kp
ki
, 0)
))2

.
(64)

For η ∈ (0, 1) it is possible to select η̃V ∈ (η, 1) and σM1 > 0
sufficiently large such that

η̃V = η +
LÛ ĥA

σM1Û
(
(1,

kp
ki
, 0)
) .

With this equation, we obtain for η̃V ∈ (η, 1)

|σ̂(tj , j)| ≥ σM1 =⇒ V̂ (x̂(tj+1, j)) ≤ η̃2
V V̂ (x̂0). (65)

Consider now function W defined in (27) and relate it to
V̂ through

V̂ (x̂0) = σ̂(tj , j)
2
[

1
kp
ki

]> [ kd
ki

0

0 1

] [
1
kp
ki

]
=
(
kd
ki

+
k2p
k2i

)
σ̂(tj , j)

2.

(66)
Introduce σM2 := ki

kp
Fs max{1, 1

1−
√
η̃V
} > 0 (recall η̃V < 1

and positive). For |σ̂(tj , j)| ≥ σM2, we have

W (ξ̂(tj , j)) =
kd
ki
σ̂(tj , j)

2 +

(
kp
ki
|σ̂(tj , j)| − Fs

)2

≥ kd
ki

(
|σ̂(tj , j)| −

ki
kp
Fs

)2

+
k2
p

k2
i

(
|σ̂(tj , j)| −

ki
kp
Fs

)2

=

(
kd
ki

+
k2
p

k2
i

)
σ̂(tj , j)

2

(
1− kiFs

kp|σ̂(tj , j)|

)2

≥ V̂ (x̂0)η̃V ,

where, in the given order, the first equality follows from (61)
and minF∈[−Fs,Fs](φ̂(tj , j) − F )2 = (|φ̂(tj , j)| − Fs)

2 for
|σ̂(tj , j)| ≥ σM2 ≥ ki

kp
Fs, the first inequality follows from

|σ̂(tj , j)| ≥ σM2 ≥ ki
kp
Fs, the second inequality follows from

the expression of V̂ (x̂0) in (66), and |σ̂(tj , j)| ≥ σM2 ≥
ki
kp
Fs

1
1−
√
η̃V

. Then,

|σ̂(tj , j)| ≥ σM2 =⇒ W (ξ̂(tj , j)) ≥ η̃V V̂ (x̂0). (67)
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Finally, during flow with b̂ = 1, we have b̂v̂σ̂ ≥ 0 and
σ̂φ̂ ≥ kp

ki
σ̂2 (see (21b) and (21a)). Therefore, if σ̂(tj , j) > 0,

we have from b̂v̂σ̂ ≥ 0 that v̂(tj , j) ≥ 0, and since σ̂ or
v̂ cannot be negative on [tj , tj+1] (by absolute continuity of
flowing solutions, this would imply that σ̂ and v̂ have become
simultaneously zero before that, and with σ̂ = v̂ = 0, x̂
would belong to Â or necessarily jump to Â, and remain
there by Proposition 3(i)), then σ̂(t, j) ≥ 0 and v̂(t, j) ≥ 0 for
all t ∈ [tj , tj+1]. Hence, from σ̂φ̂ ≥ kp

ki
σ̂2 and b̂v̂φ̂ ≥ 0,

we have φ̂(t, j) ≥ 0 for all t ∈ [tj , tj+1]. Similarly, for
σ̂(tj , j) < 0 we have v̂(t, j) ≤ 0 and φ̂(t, j) ≤ 0 for all
t ∈ [tj , tj+1]. In both cases (namely with v̂(tj+1, j) ≥ 0,
φ̂(tj+1, j) ≥ 0 and with v̂(tj+1, j) ≤ 0, φ̂(tj+1, j) ≤ 0),
minF∈Fs Sign(v̂(tj+1,j))(φ̂(tj+1, j)− F )2 ≤ φ̂(tj+1, j)

2 + F 2
s ,

6 so that

W (ξ̂(tj+1, j)) ≤ V̂ (x̂(tj+1, j)) + F 2
s . (68)

At (tj , j) we have from (28) the bound

W (ξ̂(tj , j)) ≤ c̄W
∣∣∣∣ [ σ̂(tj ,j)

kp
ki
σ̂(tj ,j)

0

] ∣∣∣∣2 + 2F 2
s

= c̄W

(
1 +

k2p
k2i

)
σ̂(tj , j)

2 + 2F 2
s .

(69)

Take

σM := max{σM1, σM2} > 0,

W̄ := max{c̄W
(

1 +
k2p
k2i

)
σ2
M + 2F 2

s ,
F 2
s

1− η̃V
} > 0,

(70)

which is well defined because η̃V satisfies 0 < η̃V < 1. The
left and right entries in the selection of W̄ allow, respectively,
to prove the following two implications:

W (ξ̂(tj , j)) ≥ W̄ =⇒ |σ̂(tj , j)| ≥ σM (71)

W (ξ̂(tj , j)) ≥ W̄ =⇒ W (ξ̂(tj , j)) ≥ η̃VW (ξ̂(tj , j)) + F 2
s .

(72)

More specifically, (71) holds because, with W (ξ̂(tj , j)) ≥ W̄ ,

the left term in (70) implies W (ξ̂(tj , j)) ≥ c̄W
(

1+
k2p
k2i

)
σ2
M +

2F 2
s and (71) follows by comparison with (69). Instead (72) is

proven by using W (ξ̂(tj , j)) ≥ W̄ ≥ F 2
s

1−η̃V and rearranging.
Finally, W (ξ̂(tj , j)) ≥ W̄ implies

W (ξ̂(tj+1, j))
(68)
≤ V̂ (x̂(tj+1, j)) + F 2

s

(71),(65)
≤ η̃2

V V̂ (x̂0) + F 2
s

(71),(67)
≤ η̃VW (ξ̂(tj , j)) + F 2

s

(72)
≤ W (ξ̂(tj , j)),

as to be proven.

APPENDIX B
PROOF OF LEMMA 3

Let us prove each item separately.
Item (i). (11) can be written as

˙̃x = Ax̃− e3u, with |u| ≤ 2Fs. (73)

6For φ̂(tj+1, j) ≥ 0, (φ̂(tj+1, j)−Fs)2 ≤ φ̂(tj+1, j)
2 +F 2

s and this
gives the bound for the cases v̂(tj+1, j) > 0 and v̂(tj+1, j) = 0.

A is Hurwitz by Assumption 2 and bounded-input-bounded-
output stability holds for (73). Then, for each M > 0 and
x̃0 ∈ MB, there exist M(M) such that |x̃(t)| ≤ M(M) for
all t ≥ 0. So, define

δ0(M) :=
εv

|A|M(M) + 2Fs
> 0, (74)

which is indeed uniform over the initial condition x̂0. Then,
(73) yields for t ≥ 0

| ˙̃v(t)| ≤ | ˙̃x(t)| ≤ |A||x̃(t)|+ 2Fs

≤ |A|M(M) + 2Fs ≤
εv

δ0(M)
.

(75)

So, (75) and ṽ(0) = 0 imply that as long as t ∈ [0, δ0(M)],
|ṽ(t)| ≤ εv . By Assumption 1(iv), (11) boils down to the
differential equation in (41) and solutions with the same initial
condition coincide over [0, δ0(M)].

Item (ii). Define ϕ̌ := φ̌− Fs and rewrite (41) as ˙̌σ
˙̌ϕ
˙̌v

 =

0 0 −ki
1 0 −kp
0 1 −kd + L2

σ̌ϕ̌
v̌


=: AL2 x̌.

(76)

Expand the matrix exponential governing the solution to (76)
from x̌(0) = (σ̌0, φ̌0, 0)

σ̌(t)= σ̌0

(
1+O(t3))+ϕ̌0(−kit

2

2 +O(t3)) (77a)

ϕ̌(t)= σ̌0(t+O(t3))+ϕ̌0(1− kpt
2

2 +O(t3)) (77b)

v̌(t)= σ̌0( t
2

2 +O(t3))+ϕ̌0(t− (kd−L2)t2

2 +O(t3)), (77c)

where O(t3) denotes the terms of order t3 or higher in the
Taylor expansion, and ϕ̌0 ≥ 0 since φ̌0 ≥ Fs by (42). Based
on (77b)-(77c), note that

∃δa > 0: ∀t ∈ (0, δa] t+O(t3) > 0

∃δb > 0: ∀t ∈ (0, δb] 1− kpt
2

2 +O(t3) > 0

∃δc > 0: ∀t ∈ (0, δc]
t2

2 +O(t3) > 0

∃δd > 0: ∀t ∈ (0, δd] t− (kd−L2)t2

2 +O(t3) > 0,

where δa, . . . , δd do not depend on the initial condition σ̌0,
ϕ̌0. Take δ1 := min{δa, δb, δc, δd} > 0. Then, for t ∈ (0, δ1],
v̌(t) > 0 and ϕ̌(t) > 0 (since in (77) at least one among σ̌0

and ϕ̌0 is strictly positive and both are nonnegative by (42)),
i.e., v̌(t) > 0 and φ̌(t) > Fs.

APPENDIX C
PROOF OF LEMMA 4

For each solution ξ̂ to Ĥ with ξ̂(0, 0) = ξ̂0 ∈ K, it is
sufficient to construct a suitable hybrid arc q to obtain a
hybrid arc τ (with dom τ = dom q, τ(0, 0) = δ(K), and
evolving according to flow and jump maps) and a solution
(ξ̂, q, τ) to Hδ(K) for all t ≥ 0 such that ξ̂(t, j(t)) /∈ Â,
modulo a reparametrization of the jump counter of ξ̂ (yielding
possibly different jξ(t) and jξ̂(t) for the same t ≥ 0). Note
that the hybrid arc τ follows immediately from the hybrid
arc q since, with the jump sets D̄1 and D̄−1 in (49a)-(49b),
no other constraints on τ are imposed by flow or jump sets.
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Hence, if we construct such hybrid arc q in the rest of the
proof, (48) holds by construction.

Each solution ξ̂ to (21) can only flow in Ĉ, jump from D̂σ or
jump from D̂v , and in each of these three cases the definition
of hybrid solution in [18, Def. 2.6 and p. 124] implies the
following. If ξ̂ flows in Ĉ, for each j ∈ Z≥0 (i.e., the set of
nonnegative integers) such that Ij := {t : (t, j) ∈ dom ξ̂} has
nonempty interior,

b̂(t, j)v̂(t, j)σ̂(t, j) ≥ 0

σ̂(t, j)φ̂(t, j) ≥ kp
ki
σ̂(t, j)2

b̂(t, j)v̂(t, j)φ̂(t, j) ≥ 0

 for all t ∈ Ij ; (79a)

˙̂
ξ(t, j) ∈ F̂(ξ̂(t, j)) for almost all t ∈ Ij . (79b)

If ξ̂ jumps from D̂σ , for each (t, j) ∈ dom ξ̂ such that (t, j +
1) ∈ dom ξ̂,

σ̂(t, j) = 0, b̂(t, j) = 1, v̂(t, j)φ̂(t, j) ≥ 0; (80a)

σ̂(t, j + 1) = σ̂(t, j), φ̂(t, j + 1) = −φ̂(t, j),

v̂(t, j + 1) = v̂(t, j), b̂(t, j + 1) = −b̂(t, j).
(80b)

If ξ̂ jumps from D̂v , for each (t, j) ∈ dom ξ̂ such that (t, j +
1) ∈ dom ξ̂,

v̂(t, j) = 0, σ̂(t, j)φ̂(t, j) ≥ kp
ki
σ̂(t, j)2, b̂(t, j) = −1; (81a)

σ̂(t, j + 1) = σ̂(t, j), φ̂(t, j + 1) =
kp
ki
σ̂(t, j),

v̂(t, j + 1) = v̂(t, j), b̂(t, j + 1) = −b̂(t, j).
(81b)

Let us then consider the construction of the suitable hybrid
signal q starting from time (0, 0) and separately in these three
cases (79), (80), (81).

Suppose ξ̂ flows in Ĉ on the interval I0 =: [t0, t1] = [0, t1]

with t1 > 0.7 Note that for each ξ̂ ∈ Ξ̂, F̂(ξ̂) =
[
F̂x(x̂)

0

]
, and

the evolution according to F̂x is determined in Lemma 1(ii)-
(iv). For convenience, we report the cases (8)-(10) here as

S1 := {x̂ ∈ R3 : (v̂ > 0) ∨ (v̂ = 0 ∧ φ̂ > Fs)

∨ (v̂ = 0 ∧ φ̂ = Fs ∧ σ̂ > 0)
(82)

S0 := {x̂ ∈ R3 : (v̂ = 0 ∧ σ̂ > 0 ∧ φ̂ ∈ [−Fs, Fs))
∨ (v̂ = 0 ∧ σ̂ = 0 ∧ φ̂ ∈ [−Fs, Fs])
∨ (v̂ = 0 ∧ σ̂ < 0 ∧ φ̂ ∈ (−Fs, Fs])}

(83)

S−1 := {x̂ ∈ R3 : (v̂ < 0) ∨ (v̂ = 0 ∧ φ̂ < −Fs)
∨ (v̂ = 0 ∧ φ̂ = −Fs ∧ σ̂ < 0)}.

(84)

Note that S1, S0, S−1 form a partition of R3 (i.e.,
∪i∈{1,0,−1}Si = R3 and Si∩Sk = ∅ for each i, k ∈ {1, 0,−1}
with i 6= k). For ξ̂(0, 0) = (x̂(0, 0), b̂(0, 0)), assign q(0, 0)
as 1, 0, −1 if x̂(0, 0) belongs respectively to S1, S0, S−1.
Consider t?1 as the smallest time in (0, t1] (t?1 > 0 by Lemma 1)
such that

t?1 = t1, x̂(t, 0) ∈ Sq(0,0) ∀t ∈ [0, t?1], or (85a)

7We consider t1 finite, but the reasoning in this part of the proof readily
extends to the case t1 = +∞, i.e., when ξ̂ only flows.

t?1 < t1, x̂(t, 0) ∈ Sq(0,0) ∀t ∈ [0, t?1), x̂(t?1, 0) /∈ Sq(0,0).
(85b)

Note that no other cases than (85a)-(85b) need considering
since solutions are locally absolutely continuous during flow
by [18, Def. 2.4], the solutions need to hit the set {x̂ ∈
R3 : v̂ = 0} to traverse from Si to Sk (with i, k ∈ {1, 0,−1}
and i 6= k), and the intersections of the sets S−1, S0, S1 with
{x̂ ∈ R3 : v̂ = 0} are as in Fig. 10.

σ̂

φ̂
v̂

σ̂

φ̂
v̂

σ̂

φ̂
v̂

−Fs Fs

Fs Fs

−Fs −Fs

Fig. 10. Intersections of the sets S−1, S0, S1 with {x̂ ∈ R3 : v̂ = 0}. Solid
and dashed lines at the boundary of each set mean respectively that those
points belong and do not belong to that set.

Define q(t, 0) = q(0, 0) for all t ∈ [0, t?1]. We show now
that, under (79),

(ξ̂(t, 0), q(t, 0), τ(t, 0)) ∈ Cslip ∪ Cstick for all t ∈ [0, t?1] (86a)[
˙̂
ξ(t,0)
q̇(t,0)
τ̇(t,0)

]
= F

([
ξ̂(t,0)
q(t,0)
τ(t,0)

])
for almost all t ∈ [0, t?1]. (86b)

Indeed, consider separately the cases q(0, 0) equal to 1, 0, −1
and note that by the definition of t?1 in (85), they imply re-
spectively that v(t, 0) is nonnegative, zero, nonpositive for all
t ∈ [0, t?1]. As for q(0, 0) = 1, we have that for all t ∈ [0, t?1],
q(t, 0) = 1 by our construction, v̂(t, 0) ≥ 0 by the definition
of t?1 in (85), b̂(t, 0)q(t, 0)σ̂(t, 0) ≥ 0, σ̂(t, 0)φ̂(t, 0) ≥
kp
ki
σ̂(t, 0)2, and b̂(t, 0)q(t, 0)φ̂(t, 0) ≥ 0 by (79a) and the

first two relationships (note that from x̂(t, 0) ∈ S1 for all
t ∈ [0, t?1) in (85) and Lemma 1(ii), v̂ cannot be identically
zero on a nonempty time interval contained in [0, t?1)). Then,
for all t ∈ [0, t?1], (ξ̂(t, 0), q(t, 0), τ(t, 0)) ∈ Cslip in (47f), so
(86a) holds true. Moreover, (79b) and Lemma 1(ii) yield that
for almost all t ∈ [0, t?1]

˙̂x(t, 0) = Ax̂(t, 0)− e3(Fs − f(v̂(t, 0)))

˙̂
b(t, 0) = 0,

so that for almost all t ∈ [0, t?1][
˙̂
ξ(t,0)
q̇(t,0)
τ̇(t,0)

]
=


−kiv̂(t,0)

σ̂(t,0)−kpv̂(t,0)

−kdv̂(t,0)+φ̂(t,0)−(Fs−f(v̂(t,0)))
0
0

1−dz1(τ(t,0)/δ(K))

=F
([

ξ̂(t,0)
q(t,0)
τ(t,0)

])

and (86b) holds true as well. As for q(0, 0) = 0, we have
that for all t ∈ [0, t?1], q(t, 0) = 0 by our construction,
v̂(t, 0) = 0 and |φ̂(t, 0)| ≤ Fs by the definition of t?1 in (85),
σ̂(t, 0)φ̂(t, 0) ≥ kp

ki
σ̂(t, 0)2 by (79a). Then, for all t ∈ [0, t?1],

(ξ̂(t, 0), q(t, 0), τ(t, 0)) ∈ Cstick in (47f), so (86a) holds true.
Moreover, (79b) and Lemma 1(iii) yield that for almost all
t ∈ [0, t?1],

˙̂x(t, 0) =
[

0
σ̂(t,0)

0

]
˙̂
b(t, 0) = 0,
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so that for almost all t ∈ [0, t?1],[
˙̂
ξ(t,0)
q̇(t,0)
τ̇(t,0)

]
= F

([ ξ̂(t,0)
q(t,0)
τ(t,0)

])
and (86b) holds true as well. As for q(0, 0) = −1, we follow
similar steps to q(0, 0) = 1.

We now show that given q(t?1, 0) and x̂(t?1, 0) and if t?1 < t1
as in (85b) (this analysis is indeed not needed if (85a) holds),
we can select q so that (ξ̂, q, τ) jumps from D̄1, D0 or D̄−1

(see (49a), (47f), (49b)). Consider all the following possible
cases, whereby we note that, e.g., q(t?1, 0) = 1 and x̂(t?1, 0) ∈
S1 is not a case to consider by the definition of t?1 in (85b).

As for q(t?1, 0) = 1 and x̂(t?1, 0) ∈ S0,
[
ξ̂(t?1 ,0)

q(t?1 ,0)

τ(t?1 ,0)

]
∈ D0

in (47f) since for all t ∈ [0, t?1), x̂(t, 0) ∈ S1, hence we
can deduce b̂(t, 0)σ̂(t, 0) ≥ 0, σ̂(t, 0)φ̂(t, 0) ≥ kp

ki
σ̂(t, 0)2 and

b̂(t, 0)φ̂(t, 0) ≥ 0 from (79a). Moreover,[
ξ(t?1 ,1)

q(t?1 ,1)

τ(t?1 ,1)

]
= g0

([
ξ̂(t?1 ,0)

q(t?1 ,0)

τ(t?1 ,0)

])
=

[
ξ̂(t?1 ,0)

0
τ(t?1 ,0)

]
,

where q(t?1, 1) = 0 allows repeating the reasoning presented
for a flow on [0, t?1]. We also note that both (t?1, 0) and (t?1, 1)
belong to dom ξ = dom q whereas (t?1, 1) does not belong
in general to dom ξ̂, and this corresponds to the necessary
reparameterization of the jump counter of ξ̂ mentioned at the
beginning of the proof of the lemma. Parallel arguments hold
in the case q(t?1, 0) = −1 and x̂(t?1, 0) ∈ S0.

As for q(t?1, 0) = 0 and x̂(t?1, 0) ∈ S1, the definition
of t?1 in (85b), x̂(t?1, 0) ∈ S1 and q(t?1, 0) = 0, and the
local absolute continuity of hybrid solutions along flow [18,
Def. 2.4] imply that v̂(t?1, 0) = 0 and φ̂(t?1, 0) = Fs. The latter
implies σ̂(t?1, 0) ≥ 0 from σ̂(t?1, 0)φ̂(t?1, 0) ≥ kp

ki
σ̂(t?1, 0)2 ≥ 0

in (79a). Moreover, x̂(t?1, 0) ∈ S1 implies b̂(t?1, 0) = 1 from
the fact that ξ̂ flows on [0, t1] with t1 > t?1, and the condition
b̂v̂φ̂ ≥ 0 in (79a) (since φ̂(t?1, 0) = Fs and v̂(t, 0) > 0 for all
t ∈ (t?1, t

?
1+T ′] for some T ′ > 0 by Lemma 1(ii), the condition

b̂v̂φ̂ ≥ 0 gives b̂ ≥ 0). We have then
[
ξ̂(t?1 ,0)

q(t?1 ,0)

τ(t?1 ,0)

]
∈ D̄1 in (49a)

since q(t?1, 0) = 0 in this case, v̂(t?1, 0) = 0 and φ̂(t?1, 0) = Fs
(as just motivated), σ̂(t?1, 0)φ̂(t?1, 0) ≥ kp

ki
σ̂(t?1, 0)2 (by (79a))

and b̂(t?1, 0) = 1 (as just motivated). Moreover,[
ξ(t?1 ,1)

q(t?1 ,1)

τ(t?1 ,1)

]
= g1

([
ξ̂(t?1 ,0)

q(t?1 ,0)

τ(t?1 ,0)

])
=

[
ξ̂(t?1 ,0)

1
0

]
,

where q(t?1, 1) = 1 allows repeating the reasoning presented
for a flow on [0, t?1]. Parallel arguments hold in the case
q(t?1, 0) = 0 and x̂(t?1, 0) ∈ S−1.

As for q(t?1, 0) = −1 and x̂(t?1, 0) ∈ S1,
[
ξ̂(t?1 ,0)

q(t?1 ,0)

τ(t?1 ,0)

]
∈ D0

in (47f) since for all t ∈ [0, t?1), x̂(t, 0) ∈ S−1, hence we
can deduce b̂(t, 0)σ̂(t, 0) ≤ 0, σ̂(t, 0)φ̂(t, 0) ≥ kp

ki
σ̂(t, 0)2 and

b̂(t, 0)φ̂(t, 0) ≤ 0 from (79a). It also holds[
ξ(t?1 ,1)

q(t?1 ,1)

τ(t?1 ,1)

]
= g0

([
ξ̂(t?1 ,0)

q(t?1 ,0)

τ(t?1 ,0)

])
=

[
ξ̂(t?1 ,0)

0
τ(t?1 ,0)

]
.

Similarly to the previous case with q(t?1, 0) = 0 and x̂(t?1, 0) ∈
S1, we have v̂(t?1, 0) = 0 and φ̂(t?1, 0) ≥ Fs. x̂(t?1, 0) ∈ S1

and φ̂(t?1, 0) ≥ Fs imply again b̂(t?1, 0) = 1 from the fact that
ξ̂ flows on [0, t1] with t1 > t?1, and the condition b̂v̂φ̂ ≥ 0

in (79a). Hence,
[
ξ(t?1 ,1)

q(t?1 ,1)

τ(t?1 ,1)

]
∈ D̄1 in (49a) and[

ξ(t?1 ,2)

q(t?1 ,2)

τ(t?1 ,2)

]
= g1

([
ξ(t?1 ,1)

q(t?1 ,1)

τ(t?1 ,1)

])
=

[
ξ̂(t?1 ,0)

1
0

]
,

where q(t?1, 1) = 1 allows repeating the reasoning presented
for a flow on [0, t?1]. Parallel arguments hold in the case
q(t?1, 0) = 1 and x̂(t?1, 0) ∈ S−1. This concludes the exam-
ination of all possible cases.

It is then sufficient to repeat the reasoning presented for a
flow on [0, t?1] and the reasoning presented for jumps from
D̄1, D0, D̄−1 to cover the whole interval I0 by identifying
possibly t?2, t?3, etc.

Suppose ξ̂ jumps from D̂σ at (0, 0). We make the following
observation. If ξ̂ jumps from D̂σ at (0, 0), b̂(0, 1) = −1 so ξ̂
cannot jump from D̂σ at (0, 1). If ξ̂ jumps from D̂v at (0, 1),
then v̂(0, 2) = v̂(0, 1) = 0 (otherwise a jump from D̂v cannot
occur), σ̂(0, 2) = σ̂(0, 1) = σ̂(0, 0) = 0 (otherwise a jump
from D̂σ could not have occurred) and φ̂(0, 2) =

kp
ki
σ̂(0, 1) =

0 due to ĝv in (21e). Then, two consecutive jumps from D̂σ
and D̂v are such that ξ̂(0, 2) ∈ Â and we do not need to prove
anything in this case.

Based on this observation, the only case to consider is when
ξ̂ flows in Ĉ after the jump from D̂σ . If x̂(0, 1) ∈ S1 and ξ̂
flows in Ĉ, v̂(0, 1) = v̂(0, 0) > 0 (indeed, the case with v̂ = 0,
φ̂ = Fs, σ̂ > 0 in S1 is excluded, and the case with v̂ = 0,
φ̂ > Fs in S1 is excluded as well because v̂ would become
positive by Lemma 1(ii), b̂(0, 1) = −1, and the constraint
b̂v̂φ̂ ≥ 0 in (79a) would be violated). If x̂(0, 1) ∈ S1, we need
q(0, 1) to be 1 and this is achieved by selecting q(0, 0) = 1.
Since v̂(0, 0) > 0 (as just motivated), σ̂(0, 0) = 0 (by (80a)),
b̂(0, 0) = 1 (by (80a)), q(0, 0)v̂(0, 0) ≥ 0 and q(0, 0)φ̂(0, 0) ≥

0 (by v̂(0, 0) > 0 and v̂φ̂ ≥ 0 in (80a).
[
ξ̂(0,0)
q(0,0)
τ(0,0)

]
∈ Dσ and[

ξ̂(0,1)
q(0,1)
τ(0,1)

]
= gσ

([
ξ̂(0,0)
q(0,0)
τ(0,0)

])
because the first four components of gσ in (47e) coincide
with ĝσ in (21e), and q(0, 1) = q(0, 0) = 1 as needed.
If x̂(0, 1) ∈ S−1, parallel arguments yield the same
conclusion by selecting q(0, 0) = −1. If x̂(0, 1) ∈ S0,
v̂(0, 1) = v̂(0, 0) = 0 and |φ̂(0, 1)| ≤ Fs. Since σ̂(0, 1) = 0,
ξ̂(0, 1) ∈ Â and we do not need to prove anything in this case8.

Suppose ξ̂ jumps from D̂v at (0, 0). As noted for the case
of ξ̂ jumping from D̂σ , ξ̂(0, 1) cannot jump from D̂v again
and if it jumps from D̂σ , ξ̂(0, 2) ∈ Â. Then, the only case to
consider is when ξ̂ flows in Ĉ after the jump from D̂v . Then,
ξ̂ flows in either S0, S1, or S−1, depending on σ̂(0, 1) (recall
φ̂(0, 1) =

kp
ki
σ̂(0, 1)), and in all cases we select q(0, 0) =

8The lemma requires that (48) is satisfied for all t ≥ 0 such that
ξ̂(t, j(t)) /∈ Â.
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0 in order to jump from the corresponding Dv in (47f). If
x̂(0, 1) ∈ S0, we need q(0, 1) to be 0. Since q(0, 0) = 0,
v̂(0, 0) = 0, σ̂(0, 0)φ̂(0, 0) ≥ kp

ki
σ̂(0, 0)2, b̂(0, 0) = −1 (the

last three by (81a)),
[
ξ̂(0,0)
q(0,0)
τ(0,0)

]
∈ Dv and

[
ξ̂(0,1)
q(0,1)
τ(0,1)

]
= gv

([
ξ̂(0,0)
q(0,0)
τ(0,0)

])
because the first four components of gv coincide with ĝv
in (21e) and q(0, 1) = q(0, 0) = 0 as needed. If x̂(0, 1) ∈ S1,
we need q(0, 2) to be 1, which is achieved by jumping
additionally from D̄1 in (49a). Indeed, we have q(0, 1) = 0,
v̂(0, 1) = 0, σ̂(0, 1)φ̂(0, 1) =

kp
ki
σ̂(0, 1)2 (because φ̂(0, 1) =

kp
ki
σ̂(0, 0) and σ̂(0, 1) = σ̂(0, 0)), φ̂(0, 1) ≥ Fs (because

x̂(0, 1) ∈ Ŝ1), and b̂(0, 1) = −b̂(0, 0) = 1 so that
[
ξ̂(0,1)
q(0,1)
τ(0,1)

]
∈

D̄1 and [
ξ(0,2)
q(0,2)
τ(0,2)

]
= g1

([
ξ̂(0,1)

0
τ(0,1)

])
=

[
ξ̂(0,1)

1
0

]
with q(0, 2) = 1 as needed. The case x̂(0, 1) ∈ S−1 follows
from parallel arguments.

Up to now, we have shown that if ξ̂ flows in Ĉ, jumps
from D̂σ or jumps from D̂v at (0, 0), then the hybrid signal
q can be selected suitably. As we mentioned earlier, we can
discard in the proof without loss of generality the cases of
two consecutive jumps from D̂σ and D̂v , or from D̂v and D̂σ ,
since after these two jumps, ξ̂ would belong to Â. For the
proof, this implies that each jump from D̂σ or from D̂v is
preceded (except at (0, 0), which we have already addressed)
and followed by a flow in Ĉ. In the latter scenario, we have
already shown how to select q so that the appropriate flow for
(ξ̂, q, τ) occurs in H. Hence, if we show that, regardless of
the selection of q dictated by the preceding flow (the former
scenario), a jump from Dσ or from Dv for (ξ̂, q, τ) can be
achieved, then the procedure outlined for ξ̂ flowing in Ĉ,
jumping from D̂σ or from D̂v at (0, 0), can be easily extended
for all t ≥ 0 such that ξ̂(t, j(t)) /∈ Â and the proof of the
lemma is complete. We show then this last point, i.e., that
regardless of the selection of q dictated by the preceding flow,
a jump from Dσ or from Dv for (ξ̂, q, τ) can be achieved.

Suppose ξ̂ jumps from D̂σ at (t, j) after a flow in Ĉ. Note
that because of the extra jumps from D̄1, D0, D̄−1 that may
have appeared so far, we may need to reparametrize the jump
counter as follows. For each (t, j) ∈ dom ξ̂, there exist j? ≥ 0
such that (t, j + j?) ∈ dom q. If |q(t, j + j?)| = 1 from the
preceding flow, a jump from Dσ is achieved since |q(t, j +
j?)| = 1, σ̂(t, j) = 0 and b̂(t, j) = 1 (both by (80a)), q(t, j +
j?)v̂(t, j) ≥ 0 and q(t, j+ j?)φ̂(t, j) ≥ 0 (both since (ξ̂, q, τ)
flowed in Cslip), . If q(t, j + j?) = 0 from the preceding flow,
(ξ̂, q, τ) flowed in Cstick so v̂(t, j) = 0 and |φ̂(t, j)| ≤ Fs.
These two conditions together with σ̂(t, j) = 0 (by (80a)),
imply that ξ̂(t, j) ∈ Â so there is nothing to check.

Suppose ξ̂ jumps from D̂v at (t, j) after a flow in Ĉ. Adopt
the same jump reparametrization through j? described for a
jump from D̂σ at (t, j). If q(t, j+ j?) = 0 from the preceding

flow, a jump from Dv is achieved thanks to (81a). If |q(t, j +
j?)| = 1 from the preceding flow, (ξ̂, q, τ) flowed in Cslip so
that

b̂(t, j)q(t, j + j?)σ̂(t, j) ≥ 0

σ̂(t, j)φ̂(t, j) ≥ kp
ki
σ̂(t, j)2

b̂(t, j)q(t, j + j?)φ̂(t, j) ≥ 0.

(87)

Then, a jump from D0 is possible since |q(t, j + j?)| = 1,
v̂(t, j) = 0 (by (81a)) and (87) holds since (ξ̂, q, τ) flowed
in Cslip. By jumping from D0, ξ̂ does not change and q(t, j +
j? + 1) = 0 so that we fall back to the case q(t, j + j?) = 0
just analyzed.

In summary, for each solution ξ̂ to Ĥ with ξ̂(0, 0) = ξ̂0 ∈ K
that flows in Ĉ, jumps from D̂σ or jumps from D̂v , we have
shown how to construct a suitable hybrid arc q so that (ξ̂, q, τ)
is a solution to Hδ(K) (modulo a reparametrization of the jump
counter of ξ̂) for all t ≥ 0 such that ξ̂(t, j(t)) /∈ Â, hence (48)
holds by construction and the proof is complete.
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