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Abstract 

 Posterior parietal cortex (PPC) is thought to encode and represent the number of objects 

in a visual scene (i.e. numerosity). Whether this representation is shared for simultaneous and 

sequential stimuli (i.e. mode independency) is debated. We tested the existence of a common 

neural substrate for the encoding of these modes using fMRI. While both modes elicited 

overlapping BOLD response in occipital areas, only simultaneous numerosities significantly 

activated PPC. Unique activation for sequential numerosities was found in bilateral temporal 

areas. Multi-voxel pattern analysis revealed numerosity selectivity in PPC only for 

simultaneous numerosities and revealed differential encoding of presentation modes. Voxel-

wise numerosity tuning functions for simultaneous numerosities in occipital and parietal ROIs 

revealed increasing numerosity selectivity along an occipito-to-parietal gradient. Our results 

suggest that the parietal cortex is involved in the extraction of spatial but not temporal 

numerosity and question the idea of commonly used cortical circuits for a mode-independent 

numerosity representation.  
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Humans as well as other animals are endowed with a system that allows them to approximately 

estimate the number of items in a visual scene (i.e. the numerosity). In humans, the horizontal 

portion of the intraparietal sulcus (hIPS) in posterior parietal cortex (PPC) is claimed to be the 

neural substrate of this approximate number system (Dehaene et al., 2004). Yet, whether 

numerical information from different formats (e.g. Arabic numerals vs. non-symbolic dot 

arrays), modes (simultaneous: items spread in space or sequential: items spread in time) or 

modalities (e.g. visual or auditory) converge on a unitary, abstract representation in hIPS is 

debated (Cohen Kadosh and Walsh, 2009). 

Evidence from behavioral and neuroimaging studies in humans comes together with 

monkey neurophysiology findings in support of an abstract number representation. Human 

imaging studies repeatedly revealed BOLD increase in bilateral hIPS in numerical tasks 

employing different presentation formats (Eger et al., 2009; Piazza et al., 2007), modes (Castelli 

et al., 2006; Piazza et al., 2006; Dormal et al., 2010) and modalities (Eger et al., 2003). 

Electrophysiology studies reported number-selective neurons in the ventral intraparietal sulcus 

(VIP) –the putative IPS homolog- of non-human primates (NHP) that code for numerosities 

from 1-5 independent of presentation mode (Nieder et al., 2006) and modality (Nieder, 2012). 

Behaviorally, numerosity adaptation across modalities in humans supports the idea of a 

generalized sense of numbers (Arrighi et al., 2014).  

On the other hand, several findings question the idea that identical PPC circuits integrate 

numerosity information both across space and time, as suggested by Dehaene and Changeux 

(1993). First, being part of the dorsal stream, PPC plays a pivotal role in the processing of 

spatial information (Kravitz et al., 2011). In line with this, two studies (Shafritz, Gore, & 

Marois, 2002;  Xu and Chun, 2006)) reported that the BOLD signal in IPS increases when an 

increasing number of objects are presented over space (simultaneously). However, no change 

in parietal activity was reported when a variable number of items were presented in the same 
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location (Shafritz, Gore, & Marois, 2002;  Xu and Chun, 2006), suggesting that PPC integrates 

numerical information over space but not across time. Second, evidence for shared numerosity 

tuning for different presentation formats and modes predominantly comes from 

electrophysiological studies in non-human primates and small numerosities from 1 to 5 (Nieder 

et al., 2006; Nieder and Miller, 2004; Tudusciuc and Nieder, 2007). Only few studies tested the 

notion of a mode independent numerosity representation in humans (Castelli et al., 2006; 

Dormal et al., 2006; Piazza et al., 2006). Yet, none of these studies provided conclusive 

evidence due to confounds between numerosity and frequency (Dormal et al., 2010) or duration, 

or increased risk for false positive results from non-corrected data (Castelli et al., 2006). In light 

of these findings, it is still to be investigated if identical neural circuits in PPC contribute to the 

encoding of both sequential and simultaneous numerosities in a way that goes beyond common 

task activation. 

 Extant computational models of numerosity perception diverge on the notion of a 

labeled-line coding of numerosity (quantity is coded by the location of the activation in a 

population of linearly ordered neurons) but agree on a summation-coding instance (more 

quantity is coded by larger summed activity) and the idea that numerosity is abstracted from 

low-level visual features during encoding. Two prominent computational models of 

simultaneous numerosity extraction propose a hierarchy of number-sensitive and number-

selective processing steps (Dehaene and Changeux, 1993; Verguts and Fias, 2004). First, spatial 

location of objects is coded in an object-location map. The activity in these units changes 

monotonically with increasing number of objects, reflecting summation coding. The summed 

activation is then fed into the next instance that contains number-selective units. Activity of 

these units decreases monotonically as numerical distance between preferred and actual 

numerosity increases. This dovetails with number-selective neurons in monkey area VIP 

(Nieder and Miller, 2004). Importantly, this model suggests that as one moves up in the 
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processing hierarchy, the importance of visual features like object-size and location should 

decrease and the importance of numerosity should increase. In humans, Roggeman et al. (2011) 

found a hierarchical organization along the occipital-to-parietal pathway for numerosities in the 

subitizing range (i.e. 1 to 5), in line with this computational model. BOLD signal in superior 

occipital cortex and the adjacent transition region between occipital and parietal cortex 

monotonically increased with numerosity. Areas in posterior superior parietal lobule (PSPL) 

and IPS, on the other hand, exhibited numerosity tuning such that BOLD signal decreased as 

numerical distance between preferred and presented numerosities increased. A more recent 

model of spatial numerosity perception used deep networks with two hidden layers that were 

trained to reproduce visual input numerosities (Stoianov and Zorzi, 2012). As in Dehaene and 

Changeux (1993) and Verguts and Fias (2004), the response of units in hidden layer two was 

unaffected by non-numerical features of the stimuli such as size or density of the input images, 

thereby providing a computational instantiation of a visual sense of numbers (Anobile et al., 

2016; Burr and Ross, 2008), that emerged during unsupervised learning.  

While computational studies foresee that simultaneous numerosity perception should be 

independent of visual features of the stimuli, Gebuis and Reynvoet (2012a, 2012b) reported that 

the performance in numerical comparison tasks depends on the congruity of numerosity with 

visual features like object size, convex hull and total area occupied. In line with this, monkey 

electrophysiology and human imaging suggest that object size and numerosity representations 

are intermingled in PPC (Harvey et al., 2013; Tudusciuc and Nieder, 2007). Although most 

studies try to control for non-numerical features using multiple stimulus sets with different 

visual features (see Dehaene, Izard, and Piazza 2005 for a discussion), it is very difficult, if not 

impossible, to decorrelate numerosity from all other sensory features (see Leibovich et al. 2016 

for a discussion). Hence, more empirical data is needed to investigate whether previously 

observed numerosity tuning in simultaneous mode reflects the abstract numerosity information 
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from a visual scene or results from the weighted integration of several non-numerical 

dimensions like area, density and dot-size by Gebuis, Cohen Kadosh, and Gevers (2016).  

For sequential numerosities, on the other hand, researchers assume the involvement of 

an accumulator that reflects increasing numerosity with increasing activity, potentially assisted 

by mechanisms that keep track of the serial position of an item in a sequence (Dormal et al. 

2010; Nieder, Diester, and Tudusciuc 2006). A vast number of NHP perceptual decision-

making studies found activity in lateral intraparietal area (LIP) to be closely correlated with 

evidence accumulation over time (Hanks et al., 2015; Shadlen and Newsome, 2001), even if 

their functional significance remains unclear since inactivation of these circuits does not affect 

decision-making performance (Katz et al., 2016). Whether in humans the accumulator instance 

for sequential mode coincides with the computational mechanisms for the encoding of 

simultaneous numerosities remains an open question.  

The use of study designs that fail to disentangle domain-general processes (e.g. response 

selection) from numerosity processing further undermines the soundness of existing evidence 

for a mode-independent numerosity representation in PPC. It has long been known that the 

parietal cortex is involved in various aspects of task related processing ranging from working 

memory and attention to response selection (Dean et al., 2013; Koenigs et al., 2009; Malhotra 

et al., 2009; Shomstein, 2012). Hence, common BOLD increase in numerical tasks does not 

necessarily imply that the underlying representation for different formats and modes is the 

same. Yet, human imaging studies using multi-voxel pattern analysis (MVPA) endorse 

simultaneous numerosity encoding independent of response/task related processing (Bulthé et 

al., 2014; Castaldi et al., 2016; Dormal et al., 2010; Eger et al., 2013, 2009).  Based on BOLD 

signal patterns from PPC these authors were able to decode the numerosities seen by the 

participants using MVPA. These results contrast with human imaging studies showing that 

parietal BOLD increase disappeared when response and task related factors are well controlled 
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in numerical tasks (Cavdaroglu et al., 2015; Göbel et al., 2004; Shuman and Kanwisher, 2004). 

Taken together, it still remains elusive whether identical PPC circuits integrate numerosity 

information in the absence of domain-general task requirements.  

In this study, we investigated the neural basis of simultaneous and sequential numerosity 

perception to answer the questions outlined above. Specifically, we tested how simultaneous 

and sequential numerosities are encoded in the absence of response/task related processing 

using a task that probed comparison of numerosities only at random points throughout the 

experiment (Fig. 1). We used MVPA to inquire if there is a common coding scheme for 

simultaneous and sequential numerosities, which was not employed by previous studies 

investigating mode-independence.  In addition, we used numerosities larger than four to see 

whether the previously reported gradient can also be observed for numerosities outside the 

subitizing range. This is important, since accumulating evidence suggests that subitizing and 

estimation of numerosities outside the subitizing range are two distinct processes, potentially 

hinging on different neural architectures (Burr, Turi, and Anobile 2010; Revkin et al. 2008; 

Piazza et al. 2002; Giovanni Anobile et al. 2012; Piazza et al. 2011). Last but not least, in 

simultaneous mode, we tested how encoding of non-numerical visual features in the occipito-

parietal pathway changes along with numerosity using MVPA to study the specificity of 

previously reported PPC tuning for numerosities. 

Materials and Methods 

Participants 

Twenty healthy right-handed participants underwent fMRI scanning after giving written 

informed consent. Three of them were excluded from further analysis due to excessive motion 

(more than the size of one voxel between subsequent volumes) or abortion of the experiment. 

The data from the remaining seventeen participants were analyzed subsequently (8 males, mean 
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age 27.35, SD = 4.64). All had normal or corrected-to-normal vision and reported no history of 

neurological or psychiatric diseases. The study was approved by Bernstein Center for Advanced 

Neuroimaging (BCAN, Nr. 165) and the Ethical committee of Humboldt Universität zu Berlin. 

Participants were reimbursed 24 €. 

Stimuli 

Participants were engaged in a non-symbolic numerosity processing task. The numerosities 

were presented on a black background using white dots. Spatial enumeration was probed by 

presenting simultaneous numerosities, presented as spatially scattered set of dots (dot clouds). 

Temporal enumeration was probed by presenting sequential numerosities. These were scattered 

over time by repeatedly flashing (on-off) a single white dot in the center of the screen. Four 

numerosities (5, 7, 11, and 16) outside the subitizing range were used. These numerosities were 

chosen as they had approximately equal distance from each other on logarithmic scale. 

Simultaneous numerosities were created using a set of Matlab scripts as described in Dehaene 

et al. (2005). The scripts were adapted such that the sensory properties of dot arrays (i.e. convex 

hull, density, diameter and total area) were written out during stimulus creation. Sequential 

numerosities were created using the method described in Cavdaroglu et al., (2015). 

More specifically, non-numerical sensory features of simultaneous numerosities (i.e. 

dot-arrays) were controlled by two sets. In one set, the dot-size was kept constant whereas in 

the other set total area was kept constant. This way, the intensive (e.g. dot size and inter-item 

spacing) and extensive (e.g. total luminance and total area) features of stimuli were balanced 

over the whole stimulus set (see Dehaene et al., 2005 for a discussion).  

The non-numerical features of sequential numerosities (”flickers”) were controlled in 

four sets. Single dot duration and total duration increased with numerosity in set 1 and decreased 

with numerosity in set 4. The interval between dots (ISI) increased with numerosity in set 2 and 

decreased with numerosity in set 3. Frequency (numerosity divided by total duration) increased 
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with numerosity in sets 3 and 4 and decreased with numerosity in sets 1 and 2. Hence, 

participants could not rely on a single sensory cue (i.e. duration, frequency or ISI) to extract 

numerosity. The individual dots were presented for a maximum duration of 270ms to prevent 

counting. Only in set 4 we used dot durations longer than 270ms as well. It was not possible to 

create a set of trials where total duration decreases with numerosity otherwise. This threshold 

was chosen based on previous studies which showed that participants cannot rely on verbal 

strategies (e.g. counting) within this time frame (e.g. Piazza et al., 2006; Tokita and Ishiguchi, 

2011). Random jitters were introduced in sequential numerosities to prevent periodicity that 

may lead to the perception of rhythms. The length of the jitter depended on the single dot 

duration. It was calculated such that after the subtraction of that jitter, the duration of the single 

dot was 40ms (i.e. jitter = [dot duration − 40ms]). This procedure guaranteed that 1) each 

individual dot remained distinguishable from the previous or subsequent dot and 2) when the 

duration of a single dot was longer than 270ms, participants could not reliably count because 

the remaining stimuli in the sequence would still appear at a sufficiently high presentation rate 

to prevent counting. The size of dots was constant for a given numerosity sequence and was 

chosen randomly such that it matched the total area occupied by each dot-array in simultaneous 

stimuli. This ensured balanced illumination between simultaneous and sequential numerosities.          

Stimuli were generated and presented using Matlab (MathWorks) and Psychtoolbox 

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) and were projected with an LCD projector 

(60 Hz frame rate) onto a translucent screen in the bore of the scanner and viewed through a 

mirror mounted on the head coil. The duration of each dot and ISI in sequential stimuli was 

calculated as multiples of the refresh rate of the monitor (60Hz) and the presentation of all the 

dots was synchronized with vertical refresh of the projector.  

Experimental Task and Design 

To separate decision and response related activations from numerosity perception, 

participants responded only in one third of trials (henceforth ‘response trials’). In response 
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trials, two numerosities from the same mode (simultaneous or sequential) were presented one 

after the other (see Fig. 1).   Participants indicated via left (first) or right (second) button press 

which of the two sequentially presented numerosities was numerically larger. The numerosities 

in a given response trial differed by 25% to balance difficulty across numerosities. That is, 

while the first numerosity in a given response trial was drawn from the set comprising  5, 7, 11 

or 16, the second numerosity in that trial could be either 25% smaller or larger than the first 

numerosity. For example, when the first numerosity in a given trial was a temporally scattered 

sequence of 7 dots flashed in the center of the screen (i.e. sequential numerosity 7), the second 

numerosity in that trial would have comprised either 5 or 9 dots flashed in the center of the 

screen. In the remaining two thirds of trials, no response was required (henceforth ‘non-

response trials’).  

Upon presentation of a given numerosity, the participants did not know whether they 

would have to make a comparison with that numerosity later. This information was conveyed 

via the color of the fixation cross only after they were exposed to the numerosity. If the color 

of the fixation cross that followed the numerosity changed from red to blue (i.e. response trial), 

participants had to compare it with the upcoming numerosity. If the fixation-cross remained red 

until the next numerosity appeared, they were instructed to forget the previous numerosity and 

concentrate on the new one (i.e. non-response trials, a new trial begins if the color of the 

fixation-cross remains red). This way, we encouraged participants to pay attention to the 

numerical dimension of stimuli throughout the experiment without having any comparison or 

response related confounds in numerosity perception in non-response trials (Fig. 1).  

 

<< Figure 1 >> 

 

The experiment had a fast event-related design. The timing of stimuli was optimized 

using simulation with fMRI design software (efMRI V9) and a stochastic design 
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(http://archive.is/rhI2t). This type of design allows for shorter scanning periods with greater 

statistical power than deterministic designs (i.e. fixed ISI) or purely random ISIs (Dale, 1999; 

Friston et al., 1999). The order of conditions and the length of the inter-stimulus interval (ISI) 

were determined using an exponential function (Dale, 1999). Specifically, the ISI was 

randomized from an exponential distribution, taking into account the minimum ISI of 4000ms, 

maximum ISI of 9000ms and an average ISI of 6000ms (Friston et al., 1999). The time of the 

jittered fixation-cross was adjusted accordingly. Double-Gamma HRF emulation was used to 

emulate the SPM hemodynamic response function (HRF). Five conditions were passed into the 

software to get the optimized presentation time for simultaneous non-response, simultaneous 

response, sequential non-response, sequential response and null event (i.e. fixation) trials. Trials 

were randomly distributed between four numerosities used in the experiment (i.e. 5, 7, 11, and 

16) within each condition.  

 The duration of null events was fixed at 1.4s, which was the average duration of all 

trials. Simultaneous numerosities were presented for 200ms to avoid eye movements and 

counting. Sequential numerosities had a total duration between 630 and 4870ms. The duration 

of the fixation-cross (i.e. ISI) after each response trial varied between 4071 and 8872ms, and 

was identical for sequential and simultaneous numerosities. The duration of the fixation-cross 

between the first and second numerosity in response trials was chosen randomly from ISI 

durations used in between each stimulus trial. The experiment consisted of eight blocks in total. 

In each block, there were sixty-four non-response trials (half simultaneous), thirty-two response 

trials (half simultaneous) and eight null events which lasted in total around ~9mins. Hence, the 

total duration of the main fMRI task was ~72mins.       

In non-response trials, an equal number of trials were drawn from each stimulus set. 

That is, in one block, there were sixteen numerosities from each simultaneous set and eight 

numerosities from each sequential set (i.e. 16 × 2 sets = 32 simultaneous numerosities and 8 × 

4 sets = 32 sequential numerosities). In response-trials, an equal number of trials were drawn 
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from each stimulus set. Importantly, the first and second numerosities were always drawn from 

different sets to make sure that participants could not rely on non-numerical sensory features 

while they were comparing the two numerosities. Furthermore, both response and non-response 

trials had an equal amount of trials per numerosity and an equal number of stimuli were drawn 

from each set. 

 

Localizer Task 

To independently determine functional ROIs for multivariate analysis, a 12 minutes functional 

localizer was created using Psychtoolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) and 

presented after the numerical task. The task is an adapted version of the localizer described in 

Cavdaroglu et al. (2015) with an additional visual motion localizer appended. It consisted of 

reading, date recall, mental subtraction, object grasping, house roof color naming, saccade 

formation, motion and rest conditions.   

Reading, subtraction and date recall conditions were presented using an optimized rapid 

event related design (see Cavdaroglu et al., 2015 for all the details about timing). Ten simple 

sentences (“Bears are fond of salmon and honey”), subtraction problem sentences (“Calculate 

eleven minus five”) (translated from Pinel et al., 2007) and novel date recall sentences (“The 

date of New Year's Eve is ____”), were intermixed with ten rest periods, for a total of 40 trials. 

In all three conditions, participants were instructed to silently read the sentences and mentally 

generate an answer when necessary (subtraction and date recall) without giving an explicit 

response. In the rest condition, a blank screen with a central fixation dot was presented.  

Object grasping, saccades and roof color naming blocks were presented using an 

optimized epoch design. Black and white illustrations of graspable objects (e.g. scissor, cup; 

courtesy of Philippe Pinel), multidirectional (360°) saccade targets and photographs of houses 

with different roof colors, were presented. In object grasping trials, participants were instructed 

to mentally imagine grasping the objects with their dominant (right) hand. In saccade trials, 
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three saccades were made through following a saccade target (+). In house roof color naming, 

participants were instructed to silently name the roof color. All trials were alternated with 

jittered fixation trials, with a minimum ISI of 4000ms. 

The visual motion localizer was added as we found increases in the BOLD signal in MT 

during processing of non-symbolic numerosities in a previous experiment (Cavdaroglu et al., 

2015). The motion localizer was based on the MT localizer described in Takemura et al. (2012). 

Two hundred white dots (0.25°) were presented on a black background with a circular aperture 

of 20° diameter centered at the fixation point. In a 12s motion block, the dots moved inwards 

and outwards at a speed of 8°/s. The motion block was followed by a 12s stationary block. Each 

dot lasted for 10 frames and it was replaced at a random position once the life time ended. 

Moreover, the dots that crossed the borders of the circle during outward motion were replaced 

at random locations within the circle as well as the dots that reached the central fixation during 

inward motion. Nine pairs of motion and non-motion blocks were run in total. 

 

fMRI data acquisition 

Functional images were acquired at the Berlin Center for Advanced Neuroimaging (BCAN) 

with a 3T Siemens TIM Trio scanner (Siemens, Erlangen), using a 12-channel head coil. Before 

the experiment, a T1-weighted image (MPRAGE) was collected as high-resolution anatomical 

reference (TR = 1900ms, TE = 2.52ms, flip angle = 9°, FOV = 256mm × 256mm × 192mm, 

resolution = 1mm). T2* -weighted gradient-echo echo-planar images were collected during the 

experiment (TR = 2500ms, TE = 25ms, flip angle = 82°, FOV = 190mm × 190mm, resolution 

= 2.5mm, slices = 42 slices with a 20% distance factor; interleaved acquisition order). Finally, 

T2*-weighted gradient-echo echo-planar images were collected during the localizer task (TR = 

2000ms, TE = 30ms, flip angle = 78°, FoV = 192mm × 192mm, resolution = 3mm, slices = 33 

with a 25% distance; descending acquisition order). The first two images in each series served 

to guarantee stable magnetization and were not recorded. After the acquisition of the anatomical 
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image as well as before the localizer, a magnetic field mapping sequence was run to correct for 

inhomogeneities in the magnetic field (TR = 400ms, TE = 5.19ms/7.65ms, flip angle = 60°, 

FOV = 192mm × 192mm, resolution = 3mm, slice gap = 25%, slices = 33). 

 

fMRI data analysis 

Images were analyzed using Statistical Parametric Mapping software (SPM8; Wellcome Trust 

Centre for Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm/). Functional images were first 

reoriented to the anatomical reference and then corrected for inhomogeneities in the magnetic 

field. Subsequent preprocessing included slice-timing correction (where middle image in the 

time series was taken as the reference), spatial realignment and unwarping, co-registration to 

the unwarped mean image, segmentation, normalization to standard Montreal Neurological 

Institute (MNI) space and smoothing (FWMH = 6 × 6 × 6mm).  

After preprocessing, a general linear mode (GLM) based on numerosity was defined 

using a canonical hemodynamic response function. The numerosity model included a regressor 

for each numerosity (5, 7, 11 and 16); separately for simultaneous/sequential modes and 

response/non-response trials as well as a regressor for null events. In response trials, the first 

and second numerosities were also modeled separately. Thus, the numerosity-GLM had 33 

regressors in total along with 6 movement parameters from preprocessing to capture signal 

variations due to head motion. The event-related numerosity regressors were locked to the onset 

of the numerosity presentation. The null events were used as baseline for the contrasts in 

univariate analysis. 

All the contrasts reported in this paper were corrected with FDR at p = .05 on cluster 

level, p = .001 on voxel level with minimum cluster size 15 using xjView 

(http://www.alivelearn.net/xjview). 

Unsmoothed images from the preprocessed data were used for multivariate analysis to 

preserve the maximal amount of spatial information. Pattern classification was performed using 
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linear support vector machines (SVM) on The Decoding Toolbox (Hebart et al., 2015) with 

regularization parameter [C] set to 1 (LIBSVM 3.12, Chang and Lin, 2011). A one-block-out 

cross validation scheme was employed. That is, one experimental block was left as the test data 

and the remaining seven blocks were used to train the classifier. The left-out block was iterated 

over all eight blocks and an average decoding accuracy estimate was obtained at the end.  

To investigate how numerosity-specific the pattern recognition results were in 

simultaneous trials, the stimuli were re-organized for each sensory feature (i.e. convex hull, 

density, diameter and total area) such that there were four categories for the respective sensory 

feature. That is, instead of labeling the dot arrays based on the number of dots (i.e. 5, 7, 11 and 

16), we labeled them with the corresponding category (e.g. based on how big the total area is) 

in four different models that were based on the convex hull, total area, density or diameter of 

the dots in the stimulus. Since perfect balancing of the number of trials in each category was 

not possible in all cases, we corrected for the remaining numerical imbalances between different 

categories by using the balanced accuracies (that are provided by The Decoding Toolbox) 

during the statistical testing of multivariate analysis results for sensory features. 

 

Analysis of the localizer data and ROI extraction 

Preprocessing of the localizer data was identical to the functional data besides the reference 

slice used for slice-timing correction (first image) and the order of slice-timing correction and 

spatial alignment (here, spatial alignment and unwarping was performed before slice-timing 

correction due to differences in slice acquisition order). After preprocessing, the localizer task 

was modeled by a canonical hemodynamic response function and a GLM was defined that 

included a regressor for each condition (houses, objects, dates, reading, subtraction, saccades, 

motion and fixation) and 6 motion parameters from preprocessing to capture signal variations 

due to head motion.  
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 For MVPA, bilateral parietal ROIs were extracted from the combination of F-contrast 

(main task) on a subject-by-subject basis and subtraction minus reading contrast (localizer task) 

on group level within a mask of parietal cortex (WFU PickAtlas, Maldjian et al., 2004, 2003). 

Within these masks, the 500 most active voxels were chosen as subjective ROIs (Fig. 1B). The 

group level ‘subtraction minus reading’ contrast was used, as there were not enough voxels for 

most subjects on individual level.  

 Finally, to investigate how the representation of numerosity and other sensory features 

evolve along the visual hierarchy, we created two ROIs separating striate from extrastriate areas 

of the visual cortex. The first visual ROI was a combination of ‘houses minus rest’ contrast 

(localizer task) on subject-by-subject basis within a mask of ‘occipital cortex minus striate 

cortex’ (Anatomy Toolbox, Eickhoff et al., 2007, 2006, 2005; Fig. 1B). The second visual ROI 

was a combination of ‘houses minus rest contrast’ (localizer task) on a subject-by-subject basis 

within a mask of striate cortex (V1, WFU atlas, Maldjian et al., 2004, 2003; Fig. 1B). Hence, 

the first visual ROI included the extrastriate areas whereas the second visual ROI included only 

the striate cortex. For both ROIs, the 500 most active voxels within these masks were chosen 

as subjective ROIs. 

 

Tuning Curves 

Similar to the analysis of single neuron numerosity tuning (e.g. Nieder, 2012; Viswanathan & 

Nieder, 2013), we determined for each participant which numerosity a given voxel responded 

to maximally by searching for the maximal beta weight from the above described model 

containing all numerosities in simultaneous mode. Since one of the aims of this study was to 

analyze whether the extraction of numerosities outside subitizing range is organized along an 

occipital-to-parietal gradient, we defined six non-overlapping ROIs in each hemisphere that 

covered the entire dorsal pathway from striate to parietal areas (see left inset in Fig. 2D). All 

ROIs were boxes including 768 voxels (640 mm³), collapsed across the two hemispheres. The 
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lower three ROIs had an extension of 16 x 12 x 4 voxels centered on the following coordinates 

(x, y , z; from occipital to parietal): (0, -90, 6), (0, -90, 18), (0, -80, 30). The upper three ROIs 

had an extension of 8 x 12 x 4 voxels in each hemisphere, centered on the following coordinates 

(x, y , z; from occipital to parietal): ( ±15, -70, 42), (±20, -60, 54), (±25, -50, 66).  

Along this gradient, we computed the voxel-wise tuning functions and averaged across 

numerosities to determine the average numerosity tuning at each level of the gradient (see 

Serences et al., 2009 for an example). That is, we centered the numerosity-specific tuning 

curves on the preferred numerosity and pooled across preferred numerosities. For example, the 

BOLD response for numerosity 7 in voxels that respond maximally to numerosity 5 

(approximate log distance: 0.15) is pooled with responses to numerosity 16 in voxels that 

respond maximally to numerosity 11 (approximate log distance: 0.16). The resulting 

numerosity tuning functions indicate the degree to which voxels in each ROI change their 

response as a function of numerical distance between preferred and presented numerosity. For 

each ROI, we computed two linear regressions on the numerosity tuning functions, one for 

negative numerical deviations from the preferred numerosity and one for positive. In a last step, 

we averaged the two regression coefficients to compute an intuitive measure of numerosity 

filter precision along the ROI gradient. All tuning curve analyses are based on 14 participants 

only, since we excluded participants who did not show at least one activated voxel in every 

ROI. 

Results 

Behavioral Results 

The mean accuracy was 79.46% (SD 8.52%) for simultaneous response trials and 72.67% (SD 

6.75%) for sequential response trials. In both modes, participants performed significantly above 

chance (t(16) = 14.238, p < .001 for simultaneous and t(16) = 13.852, p < .001 for sequential). We 

submitted behavioral accuracies to a repeated measures ANOVA with factors mode 
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(simultaneous, sequential) and numerosity (5, 7, 11 and 16) and found a main effect of mode 

(Fig. 2, F(1,16) = 13.761, p = .002), numerosity (F(1,16) = 16.271, p < .001) as well as an interaction 

between mode and numerosity (F(1,16) = 5.034, p = .004). Post-hoc tests revealed that in 

simultaneous trials, the comparison accuracy for numerosity 7 was significantly higher than the 

accuracy for numerosity 16 (t(1,16) = 5.22, p = .001; Bonferroni corrected). In sequential trials, 

comparison accuracies for numerosity 7 and 11 were significantly higher than for numerosity 

5 (t(16) = 5.912, p = .009; t(16) = 5.748, p < .001 respectively; Bonferroni corrected) and the 

accuracy for 11 was significantly higher than 16 (t(16) = 4.188, p = .005; Bonferroni corrected). 

Participants were significantly more accurate in simultaneous compared to sequential response 

trials (t(16) = 4.485, p < .001). 

 

fMRI Results 

Univariate analysis 

The BOLD signal during non-response trials was captured by contrasting all numerosities 

against baseline, irrespective of numerosity and separately for simultaneous and sequential 

trials. For simultaneous numerosities in non-response trials, BOLD signal increased 

significantly in bilateral visual areas, bilateral intraparietal lobule, left-hemispheric superior 

parietal lobule and bilateral frontal gyrus (purple color in Fig. 2A and supplementary table 1). 

For sequential numerosities in non-response trials, BOLD signal increased significantly in 

bilateral primary visual areas, right-hemispheric superior temporal sulcus, left insula and 

precentral gyrus, and right-hemispheric BA 44 (orange color in Fig. 2A and supplementary 

table  1). Only in the frontal cortex (BA 44) and visual cortex (V5 and Area 18) did the BOLD 

signal increased when we inclusively masked simultaneous and sequential non-response trials 

(yellow areas in Fig. 2A, supplementary table 2).  

 

<< Figure 2 >> 
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Since previous studies found parietal involvement during sequential numerosity 

processing, the absence of parietal activation may simply be due to a lack of statistical power. 

To increase statistical power for sequential numerosities, we included 13 participants (healthy 

adults; 4 males; mean age = 26.3 ±6.29 years) from a previous experiment who performed the 

same task on the same visual sequential numerosity stimuli (for more details see Cavdaroglu et 

al., 2015). While activity in occipital areas remains stable across the two studies, no parietal 

activation can be observed for sequential numerosities in the absence of active response 

preparation despite considerably increased statistical power (cf. Supplementary Fig. 1). No such 

analysis was done for simultaneous numerosities since participants in the previous study 

(Cavdaroglu et al., 2015) were presented with auditory numerosities instead. 

To further probe brain areas that were more activated for sequential or simultaneous 

numerosities, respectively, we contrasted both modes against each other. Simultaneous 

numerosities evoked more activity in bilateral parietal cortex, bilateral area V3v, and right 

middle occipital gyrus (purple in Fig. 2B). Areas that were more active during encoding of 

sequential numerosities include bilateral occipital cortex (middle occipital gyrus, left area 18 

and area 4p), middle cingulate cortex, left insula and bilateral precentral sulcus (orange in Fig. 

2B). Peak coordinates and cluster sizes are reported in supplementary table 3.  

The BOLD signal for response trials was captured by contrasting the second numerosity 

in response trials against non-response trials separately for simultaneous and sequential 

numerosities. As the comparison (and response) came right after the presentation of the second 

numerosity, this contrast included comparison/response related activity. We observed the 

classic fronto-parietal task-positive network (Fox et al., 2005); see supplementary Fig. 2A) . 

The BOLD signal increased prominently in the parietal cortex (as well as other areas) for 

response trials both in simultaneous and sequential mode   
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In order to investigate the areas that show summation coding like activity, we subtracted 

the BOLD signal for smaller numerosities (5 and 7) from the BOLD signal for larger 

numerosities (11 and 16). Only visual cortex exhibited summation coding like activity for both 

simultaneous and sequential numerosities (Fig. 2E).  

 

Multivariate analysis 

 

For multivariate analysis, we chose ROIs from PPC, extrastriate cortex and striate cortex based 

on a combination of localizer and task activity (see Methods for details; see Fig. 1B for ROIs). 

To test whether the decoding accuracies in parietal cortex were significantly different from 

chance classification, we ran a permutation analysis with 1000 cycles where the labels of 

training data were shuffled and randomized. We tested the average MVPA accuracies per 

participant against the accuracies from the permutation analyses for both modes (simultaneous 

and sequential). While the decoding accuracy for simultaneous numerosities was significantly 

higher than chance in the parietal ROI (t(16) = 2.25, p = .039), the decoding accuracy for 

sequential numerosities did not reach significance (t(16) = 0.44, p = .66; see Fig. 2C for graphical 

depiction of decoding accuracies and (see Supplementary Fig. 2B for confusion matrices).

   

To test whether the decoding accuracies in visual and parietal cortices were significantly 

different from chance classification, we run a permutation analysis with 1000 cycles where the 

labels of training data were shuffled and randomized. We tested the MVPA accuracies per 

participant against the accuracies from the permutation analyses for all measures (convex hull, 

density, diameter, total area and numerosity) and ROIs (striate, extrastriate, and parietal). As 

one of the stimulus sets for simultaneous numerosities had constant diameter, there was an 

imbalance in the number of trials for that diameter category in MVPA analysis. While half of 

the trials had the same diameter, the other half had four different diameter values where the 
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diameter decreased with increasing numerosity (i.e. the set where total area was constant, hence 

diameter was decreasing with increasing numerosity). To overcome this, we grouped the 

diameters in the set where total area was constant in two categories (number 5 and 7 one 

category as their diameter was closer to each other, 11 and 16 another) and picked equal number 

of trials from the other set where diameter size was constant. Hence, only for diameter, we had 

three categories instead of four. Decoding accuracies for numerosity and diameter were 

significant in all ROIs (numerosity: t(16) = 2.39, p= .03; t(16)  = 2.6, p = .02; t(16) = 2.24, p =.03; 

diameter: t(16) = 5.5, p < .001; t(16) = 4.46, p < .001; t(16) = 3.92, p = .001 for striate, extra-striate 

and parietal respectively; see Fig. 2C for graphical depiction of decoding accuracies and 

supplementary Fig. 2B for confusion matrices). Decoding accuracies for total area and density 

were significant only in striate and extrastriate areas (total area: t(16) = 3.36, p = .004; t(16) = 3.6, 

p = .002; t(16) = 0.667, p = .51; density: t(16) = 3.88, p = .001; t(16) = 3.79, p = .002; t(16) = 1.45, 

p = .167 for striate, extra-striate and parietal respectively). Finally, decoding accuracies for 

convex hull were significant only in the striate visual cortex (t(16) = 4.02, p < .001; t(16) = 1.45, 

p = .17; t(16) = 0.68, p = .51 for striate, extra-striate and parietal respectively). 

 To investigate if any of the ROIs had a mode-independent representation, we tested 

whether the classifier could discriminate presentation modes (simultaneous and sequential). 

Again, we statistically validated the resulting accuracies against the accuracies obtained from 

the permutation analysis with 128 cycles –which was the highest possible amount of 

permutations- where labels of training data were shuffled and randomized. Interestingly, 

decoding accuracies for presentation mode were significantly above chance in all the ROIs 

tested (striate: t(16) = 24.87, p < .001; extrastriate: t(16) = 15.93, p < .001; parietal: t(16) = 5.15, p 

< .001) indicating separate representations for simultaneous and sequential numerosities. 

We observed overlapping activity for simultaneous and sequential numerosities in left 

and right precentral gyrus. The assumption that these regions provide the abstract convergence 

of sequential and simultaneous numerosities stipulates (a) significant activation and (b) 



22 
 

numerosity specificity as tested with MVPA that (c) generalizes across modes (i.e. sequential 

to simultaneous, simultaneous to sequential). However, for none of these regions, we were able 

to significantly decode numerosity (precentral gyrus: p = .4338 for simultaneous, p = .5156 for 

sequential). This contradicts conditions (b) and (c). 

 

Tuning profiles 

Similar to the analysis of single neuron numerosity tuning (e.g. Nieder, 2012; 

Viswanathan & Nieder, 2013), we determined for each participant which numerosity a given 

voxel responded to maximally and computed voxel-wise tuning curves along an occipital-to-

parietal gradient.  First, we observed number-selective voxels at each step within the gradient 

from occipital to parietal cortex (Fig. 2D). We found a significantly positive regression slope 

in all ROIs (all t(13) > 14 with ps < .0001). However, the slopes varied as a function of ROI 

(F(5, 65) = 9.093, p = .0001). Pair-wise comparisons between neighboring ROIs revealed that 

the slope was significantly larger in ROI 3 compared to ROI 2 (t(13) = 2.83, p = .014). Maximal 

slope was observed in ROI 6, where it was larger compared to ROI 5 (t(13) = 2.49, p = .027).  

We found that numerical distance from preferred numerosity (F(3, 39) = 426.27, p < .0001, ε = 

.619) and ROI (F(4, 65) = 4.84, p = .006, ε = .603) had a significant impact on brain activity, 

that significantly interacted with each other (F(15, 195) = 5.59, p = .0003, ε = .324). Within 

each ROI we observed a significant change of activity as numerical distance between preferred 

and actual numerosity increased (all ps < .0001). We found that within all ROIs except ROI 3 

the comparison between numerical distances ±.51 and ±.34 was not significant while all other 

comparisons between adjacent distances were significant (table 4). This implies that in all ROIs 

except ROI 3 the tuning was most marked for numerosities numerically close to the preferred 
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numerosity and became increasingly blurred for non-preferred numerosities deviating 

maximally from the preferred numerosity. 

<< table 4 >> 

 

Discussion 

Whether the parietal cortex hosts a mode-independent semantic representation of numerosity 

has long been debated. Here, we probed sequential (i.e. dots presented over time) and 

simultaneous (i.e. dots presented over space) numerosity perception while recording BOLD 

response. Going beyond previous studies, we tested numerosities outside the subitizing range 

and isolated perception from decision and response-related processes. We found an increase in 

the parietal BOLD signal during the presentation of simultaneous numerosities but not during 

the presentation of sequential numerosities. Using MVPA we successfully trained a classifier 

to decode simultaneous numerosity from the BOLD signal in the parietal cortex, providing 

further confirmation of numerosity selective activity in these areas. No better-than-chance 

classification was observed for sequential numerosities in the same ROIs. These results imply 

distinct underlying coding schemes for sequential and simultaneous numerosities. This idea is 

further supported by significant decoding of the presentation mode (i.e. simultaneous vs. 

sequential) in the parietal ROIs. We used ROI-based MVPA to further explore how the 

encoding of simultaneous numerosity and other visual features (i.e. convex hull, total area, 

density and diameter) evolves from the primary visual cortex to the parietal cortex. While striate 

and extrastriate areas gave rise to successful classification of both non-numerical visual features 

and numerosity, parietal ROIs allowed for decoding of numerosity and dot diameter only, 

suggesting a higher-level representation in the parietal cortex beyond sensory features. We 

found voxel-wise numerosity tuning functions for simultaneous numerosities in occipital and 

parietal ROIs. Numerosity selectivity increased along an occipito-parietal gradient reaching 
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maximal selectivity in parietal areas. We observed overlapping summation coding profiles 

(higher BOLD signal for large numerosities vs. small numerosities) for sequential and 

simultaneous numerosities in low-level visual areas only.   

 Previous human neuroimaging found an occipital-parietal gradient for numerosities in 

the subitizing range that associated occipital areas with a location map, occipito-parietal areas 

with summation coding and superior parietal areas and IPS with number-selective coding 

(Roggeman et al., 2011). Our results complement these in several ways. First, we found 

selectivity in PPC for simultaneous numerosities outside subitizing range and independent from 

response requirements. This suggests that the number-selective coding scheme that is at the top 

of the model of Dehaene and Changeux (1993) may generalize to larger numerosities. Note that 

at the time when proposing their model, Dehaene and Changeux (1993) did not consider 

subitizing to be a different process from estimation (Revkin et al., 2008). Hence, our results 

provide the first empirical extrapolation of this model to larger numerosities in the light of 

recent evidence that imply a procedural distinction between small and large numerosities 

(Anobile et al., 2014; Revkin et al., 2008). Second, unlike striate and extrastriate areas, parietal 

cortex did not allow for the decoding of non-numerical stimulus features such as density or 

convex hull, supporting the notion of a high-level abstract number code in IPS. This notion is 

in line with recent neuroimaging findings that observed number-selective activity patterns in 

IPS in both adults (Bulthé et al., 2015; Castaldi et al., 2016; Eger et al., 2013) and adolescents 

(Wilkey et al., 2017). With respect to the question whether (Bulthé et al., 2015; Eger et al., 

2013) or not (Castaldi et al., 2016) striate and extrastriate areas allow numerosity decoding, our 

results suggest that numerosity is represented in the striate and extrastriate areas as well as 

parietal cortex. At the same time, non-numerical stimulus features such as density and convex 

hull were decodable only in striate and extrastriate areas but not in parietal cortex. Together, 

this underlines the idea that numerosity (a) can be conceived of as a primary visual feature that 
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influences activity patterns during early processing steps in the visual system and (b) that 

numerosity is abtracted away from these physical features of the visual scene as activity travels 

up towards IPS. The interaction between numerical and non-numerical information along the 

visual processing hierarchy remains an important question to unravel in the future.  

Finally, unlike Roggeman et al. (2011) we did not observe areas in the occipito-parietal 

transition zone that exhibit a summation coding scheme for simultaneous numerosities. 

However, contrasting large with small simultaneous numerosities revealed summation coding 

in low-level visual areas, close to the occipital pole. These voxels partially overlapped with 

voxels that were more active for large sequential numerosities compared to small sequential 

numerosities. Sequential summation coding was also observed in occipital areas along the 

calcarine sulcus and in superior occipital areas, most likely reflecting longer stimulation during 

larger numerosities. Hence, it remains an open question to what extent previously observed 

priority maps in superior posterior parietal cortex (Knops et al., 2014) contribute to a summation 

mechanism during numerosity extraction, as suggested by prominent computational models 

(Dehaene and Changeux, 1993; Verguts and Fias, 2004).   

Monkey area VIP has been shown to contain (a) distinct neuronal circuits for the coding 

of simultaneous and sequential numerosities and (b) overlapping neural circuits for the 

maintenance of numerosities from either mode (Nieder et al., 2006). Furthermore, a recent 

fMRI study revealed adaptation for sequential numerosities in human IPS (Wang et al., 2015). 

Although our results seem to contradict these findings, it should be noted that both studies 

employed small numerosities (1-4 and 2-6 respectively). Moreover, fMRI adaptation and 

primate neurophysiology can measure neural activity on sub-voxel level whereas GLM and 

MVPA measure the activity from tens or hundreds of voxels that contain millions of neurons 

(Logothetis, 2008). While primate neurophysiology studies measure spiking activity from 

single neurons, fMRI BOLD signal correlates better with local field potentials (Goense & 
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Logothetis, 2008). These render a one-to-one mapping between MVPA analysis and adaptation 

studies or neurophysiology difficult. We observed overlapping activity in prefrontal cortex. 

This may be interpreted as the neural instantiation of a high-level integration of numerosity 

information across modes and modalities that has been observed on the behavioral level 

(Arrighi et al., 2014). In order to claim that these regions were actually providing the abstract 

convergence of sequential and simultaneous numerosities would require (a) significant 

activation and (b) numerosity specificity as tested with MVPA that (c) generalizes across modes 

(i.e. sequential to simultaneous & simultaneous to sequential). However, for none of these 

regions, we were able to significantly decode numerosity. This contradicts conditions (b) and 

(c). Hence we do not consider these regions to contribute to numerosity coding in our 

experiment. Alternatively, areas in premotor cortex and inferior frontal gyrus have recently 

been suggested to be involved in the maintenance of sensory information (frequency) across 

different modalities (tactile and visual) in working memory (Spitzer et al., 2014). These authors 

suggest that the role of frontal areas goes well beyond executive control functions but is more 

closely associated to the sensory content in working memory. Hence, these areas may provide 

a more abstract convergence zone for numerosity information in working memory. It remains 

unclear, however, why Wu et al. (2018) observed a parametric modulation of activity in 

precentral areas, while we did not observe a systematic modulation of activity as a function of 

numerosity. Our finding makes sense under the assumption that participants did not maintain 

the raw primary percept in WM but rather retained the abstract numerosity information. The 

present study was not designed to distinguish between encoding and working memory 

maintenance, and our data to not allow disentangling these processes. Future studies with a 

more stringent design are needed to clarify differential roles of prefrontal and parietal areas 

during encoding and working memory maintenance, and how this is associated with supramodal 

integration that is observed in behavior. 
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One may argue that encoding of sequential information is associated with higher 

working memory demands compared to the processing of simultaneous numerosities and that 

the long inter-stimulus interval in the current study particularly affects the maintenance of 

sequential numerosities. The fact that participants were overall performing better in response 

trials for simultaneous numerosities compared to sequential numerosities may be interpreted in 

this vein. On the neural level, higher working memory demands should lead to higher activity 

in working memory related areas. Working memory is usually associated with activity in a 

frontoparietal network, comprising parietal and prefrontal areas (e.g., Li et al., 2014; Ma et al., 

2014; Xu and Chun, 2006). Our results fit nicely with previous results (Xu and Chun, 2006), 

that showed that even with much shorter ISIs (i.e. 1000 - 1200 ms), superior parietal activity in 

a working memory task showed significantly smaller modulation of activity as a function of set 

size in response to sequential presentation at a center location (comparable to the present study) 

compared to sequential off-center presentation (cf. Fig. 2 in Xu and Chun, 2006). Inferior 

parietal cortex did not exhibit any modulation of activity as a function of set size with sequential 

presentation at center. Alternatively, the difference between sequential and simultaneous 

numerosities may result from higher encoding demands for sequential numerosities. However, 

even if encoding sequential numerosity information is more demanding compared to 

simultaneous encoding, this is not associated with higher parietal activity for sequential 

numerosities. This further undermines the idea that parietal areas play a pivotal role during the 

encoding of sequential numerosities. 

Human neuroimaging suggested overlapping representations of sequential and 

simultaneous numerosities (Castelli et al., 2006; Piazza et al., 2006; Dormal et al., 2010). 

However, these neuroimaging studies were difficult to interpret due to confounds between 

numerical and non-numerical stimulus features in the sequential mode (e.g. Dormal et al., 2010 

used constant duration, confounding numerosity with frequency) and the use of an active 
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comparison task that may in and by itself activate parietal cortex that is part of a domain 

generalized, non-specific network (Hugdahl et al., 2015). Our results question the assumption 

that in the absence of decisional and response-related requirements, numerosities from different 

modes converge on a common, abstract and mode-independent representation in parietal cortex. 

Instead, we show that when isolating sequential numerosity perception from response 

requirement and carefully orthogonalizing temporal and numerical stimulus dimensions, 

parietal BOLD signal remains under threshold for sequential mode, even when pooling across 

different studies to increase statistical power.  

Previous studies suggest an association between numerosity perception and formal math 

competencies (Feigenson et al., 2013). Despite the convergence of numerosity information 

from various modes and modalities that is evident from a number of behavioral studies (Arrighi 

et al., 2014), recent evidence found only spatially distributed numerosities to be associated with 

formal math skills (Anobile et al., 2018). Against this background, our results suggest that it 

may be parietal cortex activity that drives the association between the approximate number 

system and formal math skills. On a functional level, this parallels the idea that structural 

features of parietal cortex correlate with formal math skills (Price et al., 2016)  

To conclude, while the absence of evidence may not be confounded with evidence for 

absence, considering the MVPA results, our study casts some doubt on the idea of a mode-

independent numerosity representation in IPS. As the neural circuits for simultaneous and 

sequential numerosity comparison largely overlap in response trials, our results do not 

contradict with previous studies that used numerical tasks and reported common activation for 

both modes. It remains unclear, however, whether the role of parietal cortex during previous 

studies was to encode numerosity or to contribute to domain-general task components such as 

decision making and response preparation. 
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Table 4 Pairwise comparisons testing whether numerosity tuning is limited to the difference between preferred 

numerosity and directly neighboring numerical distances (last column) or whether numerosity preference extends 

to numerosities with larger numerical distance from preferred numerosity (first and second column). 

 Numerical distances 

 ±0.51 vs. ±0.34 ±0.34 vs. 0.17 0.17 vs. 0 

 t(13)  p  t(13)  p  t(13)  p  

ROI 1 -1.6130  .1307 -3.0407  .0095 -25.4139  < .0001 

ROI 2 -1.3049  .2146 -2.1541  .0506 -31.8596  < .0001 

ROI 3 -1.4337  .1753 -2.4205  .0309 -24.1097  < .0001 

ROI 4 -1.0519  .3120 -2.2468  .0427 -27.1566  < .0001 

ROI 5 -1.6776  .1173 -3.2145  0.0068 -17.1302  .0001 

ROI 6 -1.9087  .0786 -3.1432  0.0078 -17.0212  .0001 

 

Figure Captions 

Figure 1 A. Schema of the experimental procedure. Top panel depicts a response trial. After 

the presentation of the first numerosity (Numerosity 1), the color of the fixation-cross changed 

from red to blue indicating that participants were supposed to compare the numerosity before 

the blue fixation-cross with the numerosity coming after the fixation-cross (Numerosity 2). 

Participants responded by pressing the right or left button while the fixation-cross was green. 

The green fixation-cross was displayed for 2s. After that, a new trial started. Bottom panel 

depicts a non-response trial. The color of the fixation-cross remained red until the next 

numerosity appeared. Once the trial was over, the red fixation-cross was replaced by a new 

numerosity and a new trial started. The inset depicts example numerosity in simultaneous (top) 

and sequential (bottom) mode. Both modes appeared with equal probability (p = .05). B. The 

ROIs used for MVPA. The color coding indicates in how many participants a given voxel was 
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activated. Although individualized ROIs were used for each site (i,e., SC, EC and PC), there 

was a reasonable consistency over participants. 

Figure 2 A. Depiction of areas where the BOLD signal increased significantly for simultaneous 

(purple) and sequential (orange) numerosities in non-response trials. Overlapping activations 

are shown in yellow B. Depiction of areas where there was a greater BOLD increase for 

simultaneous compared to sequential (purple) or sequential compared to simultaneous (orange) 

numerosities. C. Bar graph depicts the average decoding accuracy obtained from the MVPA. 

The graph on the left depicts the results for convex hull, density, area and numerosity, each of 

which had four categories. The chance level was determined by permutation analysis. While 

sensory measures as well as numerosity were decoded significantly from visual ROIs (i,e. SC 

and EC), only the decoding accuracy for numerosity was significant in PC. The graph on the 

right depicts the decoding accuracy for diameter, which had three categories. An equal number 

of trials was chosen per diameter category to have a balanced sample for MVPA. The chance 

level was again determined by permutation analysis. The decoding accuracy for diameter was 

significant both in visual ROIs and PC. D. Normalized beta-weights for all six ROIs (depicted 

on the brain within the inset) as a function of log distance between numerosities in simultaneous 

format. The beta values follow a tuning-profile in all the ROIs but the precision of tuning (i.e., 

slope of the tuning curves) increases as one moves from visual to parietal areas. E. Depiction 

of areas where the BOLD signal increased more for large numerosities (11 and 16) compared 

to small numerosities (5 and 7) for simultaneous and sequential numerosities. Only visual cortex 

exhibited summation coding like activity for both simultaneous and sequential numerosities. 

All activations FDR corrected at p = .05 on cluster level, p = .001 on voxel level, cluster size 

15. Left, top and right views (respectively) of the inflated Human Connectome Project atlas 

(group average S1200) using Connectome Workbench software (Marcus et al., 2011).  
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