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then the limit lim n→∞ A N f (x) exists for almost all x with respect Haar measure. We show that if G is connected then the limit is G f dλ . In the case where G is the a-adic integers, which is a totally disconnected group, the limit is described in terms of Fourier multipliers which are generalizations of Gauss sums.

INTRODUCTION

Topological groups, having a dense cyclic subgroup have been well studied. For the class of locally compact groups, following D. Van Dantzig, who was the first to study them [vD], these groups are called monothetic. Such groups are fully classified in [HeR]. See also G. Falcone, P. Plaumann and K. Strambach [FPS] and D. Dikranjan and A.G. Bruno [DB]. Some examples are also given by J.W. Nienhuys [Ni].

Following [HeR] we say a topological group G is monothetic if it contains an element α such that the closure of (nα) ∞ n=1 is G. Evidently by approximation, for arbitrary monothetic G, the density and commutativity of (nα) ∞ n=1 implies the commutativity of G. For a finite set of elements α 0 , α 1 , . . . , α k ∈ G set ρ(n) = α k n k + α k-1 n k-1 + . . . + α 1 n + α 0 , for each n ∈ N. Let (p n ) n≥1 the sequence of rational primes. Let λ denote Haar measure on G and let L p (G) denote the L p space of λ -integrable functions on G.

We show the following.

Theorem 1.1. Suppose G is a compact, connected, monothetic group. Then if one of the elements α 1 , . . . , α k ∈ G is a generator and f ∈ L p (G) for p > 1, we have

lim N→∞ 1 N N ∑ n=1 f (x + ρ(p n )) = G f dλ ,
for almost all x with respect to Haar measure on G.

If we drop the requirement that G is connected the situation is different. We now consider a class of totally disconnected monothetic groups of arithmetic character, of which the padic numbers is a special case.

Let a = (a i ) i∈Z denote a doubly infinite sequence of integers each greater than 1. Set Q a := Π i∈Z {0, 1, . . ., a i -1}, i.e. the space of doubly infinite sequences a = (a i ) i∈Z with a i = 0 for i < n o = n o (a) for some n o . Without loss of generality, assume for x, y ∈ Q a that n o (x) = n o (y) = 0 and that x = (x n ) ∞ n=0 and y = (y n ) ∞ n=0 let z = (z n ) ∞ n=0 be defined as follows. Write x 0 + y 0 = t 0 a 0 + z 0 , where z 0 ∈ {0, 1, ..., a 0 -1} and t 0 is a rational integer. Suppose z 0 , • • • , z k and t 0 , • • • ,t k have been defined. Then write x k+1 + y k+1 + t k = t k+1 a k+1 + z k+1 , where z k+1 ∈ {0, 1, ..., a k+1 -1} and t k+1 is a rational integer. We have thus inductively defined the sequence z = (z n ) ∞ n=0 , which we deem to be x + y. The binary operation + which we call addition makes Q a an abelian group.

For each non-negative integer k let

Λ k = {x ∈ Q a : x n = 0 i f n < k}.
These sets form a basis at 0 = (0, 0, • • •) for a topology on Q a . With respect to this topology Q a is compact and the group operations are continuous making Q a a locally-compact σ -compact abelian topological group. A second binary operation called multiplication, denoted by × and compatible with addition is defined as follows. Let u = (1, 0, 0,

• • •). Note that (nu) ∞ n=0 is dense in Q a . First on (nu) ∞ n=0 define k 1 u × k 2 u to be k 1 k 2 u. Deem- ing multiplication to be continuous on Q a defines it off (nu) ∞ n=0 .
The binary operations addition and multiplication makes Q a a topological ring . We call Z a := Λ 0 the a-adic integers and it is compact sub-ring of Q a . Let η a i denoted the counting measure on {0, 1, . . ., a i -1}. For each integer let µ = ⊗ i∈Z η a i denote the corresponding product mea- sure on Π n∈Z {0, . . ., a n -1}, defined first on "cylinder sets". By cylinder sets we mean sets of the form

A = {(b i ) i∈Z : b i 1 = c i 1 , . . . , b i r = c i r } for finite r, fixed {i 1 , . . . , i r } ⊂ Z and specific c i 1 , . . .c i r .
We then specify µ by setting

µ(A) = (a i 1 . . . a i r ) -1 .
on cylinder. We then extend and complete to all Haar measurable sets on the topological group Q a .

The dual group of Z a , which we denote Ẑa consists of all rationals t = ℓ A r where A r = a 0 • • • a r and 0 ≤ ℓ ≤ A r for some non-negative integer r. To evaluate a character χ t at x in Z a we write

χ t (x) = e ℓ A r (x 0 + a 0 x 1 + • • • + a 0 • • • a r-1 x r ) ,
where as usual, for a real number x, e(x) denotes e 2πix . We note that Qa = Q a * where a * = (a -n ) n∈Z . Suppose at least one of the numbers α 1 , . . . , α k is a generator of Z a . Let δ j : Z → Z a be the homomorphism defined by δ j (n) = nα j ( j = 1, 2, . . ., k) and let ε j : Ẑa → Q a denote its adjoint. Hence for all n ∈ Z we have We can identify Ẑa with the quotient of Q a * by A(Q a * , Ẑa ) the annihilator of Ẑa in Q a * ( [HeR], Lemma 24.5). Let Ψ : Q a * → Ẑa be the associated quotient map. Consider the map G, dependent on α 1 , . . . α k , mapping Ẑa to C, given by

G χ l a 0 ...a r = 1 φ (D r ) D r ∑ m=1 (m,D r )=1 e γ(m) D r ,
for all l a 0 ...a r ∈ Ẑa . Here, φ is the Euler totient function. The integers D r and polynomial γ are described as follows. Let l j = l(α j (0) + α j (1)a o + α j (2)a o a 1 + . . . + α j (r -1)a 0 . . . a r-2 ).

( j = 1, 2, . . ., k).

Here α j (r) denote the r th term of α j , viewed as a sequence. In general l j a 0 ...a r is not in reduced form. Let m j B j with (m j , B j ) = 1 denote l j a 0 a 1 ...a r in reduced terms. Let D r denote the least common multiple of the numbers B 1 , . . . , B k and define γ via the identity γ(x)

D r = m k B k x k + . . . + m 1 B 1 x. Define m : Q a * → C by m(χ) = G(Ψ(χ)) for all χ ∈ Q a * . Henceforth F( f ) denotes the Fourier transform of f . Theorem 1.2. Suppose that p ∈ (1, 2] and that f ∈ L p ∩ L 2 (Q a ). Also suppose ρ(n) = α k n k + α k-1 n k-1 + . . . + α 1 n + α 0 ,
has degree at least 2, with one of the numbers {α 1 , . . . ,

α k } ⊂ Q a a generator of Q a . Then lim N→∞ 1 N N ∑ n=1 f (x + ρ(p n )) = ℓ( f )(x),
for ℓ( f ) ∈ L p almost everywhere with respect to Haar measure on Q a , where

F(ℓ( f ))(χ) = m(χ)F( f )(χ)
for almost all x with respect to Haar measure on Q a .

Theorem 1.3. Suppose that p ∈ (1, 2] and that f ∈ L p (Z a ). Also suppose that

ρ(n) = α k n k + α k-1 n k-1 + . . . + α 1 n + α 0 ,
has degree at least 2, with one of the numbers {α 1 , . . . , α k } ⊂ Z a a generator of Z a . Then

lim N→∞ 1 N N ∑ n=1 f (x + ρ(p n )) = ℓ( f )(x), for ℓ( f ) ∈ L p (Z a )
almost everywhere with respect to Haar measure on Z a . Here

F(ℓ( f ))(χ) = G(χ)( f )(χ)
for almost all x with respect to Haar measure on Z a .

A measurable transformation T : X → X of a measure space (X , β , µ) is called measure preserving if µ(T -1 (A)) = µ(A) for all A ∈ β . Here T -1 (A)) := {x ∈ X : T x ∈ A}. For a measure space (X , β , µ), let T 1 , . . . , T k be a finite case set of commuting measure preserving transformations. Given f ∈ L p (X , β , µ) if π N denotes the number of prime numbers in the interval [1, N], for (N = 1, 2, . . .) we set (1.0.1)

A N f (x) := 1 π N ∑ 1≤p≤N f (T p 1 T p 2 2 . . . T p k k x).
Here the summation parameter p runs over the primes. The pointwise convergence of these averages is proved in [T]. This is the new tool, that enables us to prove Theorems 1.1 -1.3 going beyond the results in [N3] and [N4].

Some background : A sequence

(x n ) n≥1 in a compact topological group is said to be uniformly distibuted on G if for each continuous functions f : G → C we have lim N→∞ 1 N N ∑ n=1 f (x n ) = G f dλ .
An example is x n = {nα} (n = 1, 2, . . .), where α is an irrational number and for a real number y we have used {y} to denote its fractional part. This early result was due to P. Bohl, W. Sierpinski and H. Weyl independently around the start of the 20th century. See the notes in [KN] for the historic background. Subsequently it was shown by H. Weyl [W] that of ρ(x) = α 0 + α 1 x + . . . + α k x k and one of the numbers {α 1 , . . ., α k } is irrational then the se- quences x n = ρ(n) (n = 1, 2, . . .) is uniformly distributed modulo 1. Later I. M. Vinogradov and G. Rhin [R] proved that x n = ρ(p n ) (n = 1, 2, . . .) is uniformly distributed modulo 1. Another result with a form similar in statement is that the result of Bohl, Sierpinski is that if f is Lebesgue integrable on [0, 1) then

(1.0.2) lim N→∞ 1 N N ∑ n=1 f ({x + αn}) = 1 0 f (t)dt,
almost everywhere with respect to Lebesgue measure. This is an immediate consequence of Birkhoff's pointwise ergodic theorem and the ergodicty of the Lebesgue measure preserving map T : x → x + α for irrational α on [0, 1). An issue addressed by a number of authors is whether ({nα}) n≥1 in (1.0.2) can be replaced by either (ρ(n)) n≥1 or (ρ(p n )) n≥1 possibly under additional conditions on f . See for instance [KS], where the following is shown. Suppose that ρ(n

) = α 0 + α 1 n + . . . , α k n k with (α 1 , . . . , α k ) / ∈ Q k . Also for f ∈ L 2 ([0, 1)) with Fourier coefficients (c n ) n∈Z suppose for some γ > 0 that (1.0.3) ∑ |n|≥N |c n | 2 = O(log e N) γ ). Then (1.0.4) lim N→∞ 1 N N ∑ n=1 f ({x + ρ(n)}) = 1 0 f (t)dt,
almost everywhere with respect to Lebesgue measure on [0, 1).

The second author was introduced to this topic when asked in private communication independently and at different times by R.C. Baker and M. Weber, whether condition (1.0.3) could be weakened or removed. It turns out the answer is yes under the additional assumption that f ∈ L p ([0, 1)) for p > 1 and indeed in more general settings than G = [0, 1). This is the content of the papers [N3], [N4], and the current paper. The condition p = 1 is essential however because of the results in [BM]. Notice the x in (1.0.2) cannot in general be chosen to be 0. This is the implication of J. Marstrand's famous result [M], that there exists a G δ set B such that if f (x) = I B (x), i.e. the indicator set of B, then the limit in (1.0.2) fails to exist with x = 0 for almost all α.

SOME LEMMAS

The following is a special case of S. Sawyer's Theorem [S].

Lemma 2.1. The pointwise convergence of the averages By splitting the primes into their reduced residue classes modulo D r we have 1

(A N f ) N≥1 in (1.0.1) for p > 1 implies that if M f (x) = sup N≥1 |A N f (x)| , then there exists C > 0 such that ||M f || p ≤ C|| f || p . Lemma 2.2. For each χ = χ l a o ...a r ∈ Z a * we have G(χ) = lim N→∞ 1 π N ∑ 1≤p≤N χ(ρ(p)),
π N ∑ 1≤p≤N χ l a 0 ...a r (ρ(p)) = 1 π N ∑ 1≤p≤N e 2πi γ(p) D r . (N = 2, 3, . . .)
Let Λ : N → R denote the Von Mangoldt function defined by Λ(n) = log e p if n = p l for some prime p and positive integer l, and zero otherwise. Using partial summation we see that 1

π N ∑ 1≤p≤N e 2πi γ(p) D r = 1 N ∑ 1≤n≤N Λ(n)e 2πiγ(n) D r
+ O((log e N) -1 ).

The Siegel -Walfish prime number theory for arithmetic progressions, says that for a fixed positive u, if 1 ≤ D r ≤ (log e N) u and (m, D r ) = 1, then for some C > 0

∑ 1≤n≤N n≡m mod D r Λ(n) = N φ (D r ) + o(Ne -C(log e N) 1 2 ). Now note that ∑ 1≤n≤N Λ(n)e 2πiγ(n) D r =    D r ∑ m=1 (m,D r )=1 e 2πi γ(m) D r      ∑ 1≤n≤N n≡m mod D r Λ(n)   +O   ∑ p l ≤N;p|D r Λ(p l )e 2πiγ(p l ) D r

 

Using the fact that the sum inside the O notation is O((log e N)(log e log N)), and the Siegel-Walfish theorem

1 N ∑ 1≤n≤N n≡m mod D r Λ(n)e 2πiγ(n) D r = 1 φ (D r ) ∑ 1≤n≤N Λ(n)e 2πiγ(n) D r

+O

(log e N)(log e log e N) N , which proves the first part of Lemma 2.2. The second part follows from the observation for all x ∈ Z a and χ ∈ Q a * we have χ(x) = Ψ(χ)(x).

3. PROOF OF THEOREM 1.1

For the averages (1.0.1), let X be G, let µ be Haar measure λ on G and let β denote Haar measurable sets in G. Then if we set T i = x + α i for i = 1, . . . , k, for N = 1, 2, . . . and set

a N ( f , x) = A N f (x) := 1 π N ∑ 1≤p≤N f (x + ρ(p)).
We wish to show a N ( f , x) tends to G f dλ almost everywhere with respect to Haar measure, as N tends to ∞. First suppose f :

G → C is continuous. Because G is a compact, connected
and monothetic, for each non-trivial character χ, and each generator χ(α) = e 2πiα * for an irrational number α * ([KN], p. 275). Thus φ (ρ(n)) = e 2πiρ * (n) , for a polynomial ρ * defined on the real numbers, with at least one irrational coefficient other than the constant term. This means that

1 N N ∑ n=1 χ(ρ(p n )) = 1 N N ∑ n=1 e 2πiρ * (p n ) . (N = 1, 2, . . .)
Now, if {y} denotes the fractional part of a real number y, then the sequence ({ρ * (p n )}) n≥1 is uniformly distributed modulo 1. Hence by Weyl's criterion on G, a N ( f , x) tends to G f dλ for all continuous f : G → C. We now deal with the general case of Theorem 1. Suppose ( f n ) is a sequence of continuous functions converging to fixed f ∈ L p . Choose

(n k ) k≥1 such that ∑ k≥1 G | f -f n k | p dλ < ∞. This means ∑ k≥1 | f -f n k | p < ∞,
almost everywhere with respect to Haar measure on G. Thus for each ε > 0, there exists a sequence of functions ( f ε,k ) k≥1 such that || ff ε,k || p p ≤ ε 2k and f ε,k tends to f as k tends to infinity, almost everywhere with respect to A with respect to Haar measure. Let

m( f ) = sup N≥1 |α N f |.
Notice that m is sub-additive i.e.

m( f + g) ≤ m( f ) + m(g). Let E ε,k = {x ∈ G : m( f -f ε,k )(x) > e k p }. Notice that, µ(E ε,k ) ≤ 1 ε k E ε,k [m( f -f ε,k )(x)] p dλ ≤ 1 ε k ||m( f -f ε,k )(x)|| P P , which, using the fact that ||M f || p ≤ C p || f ||, is ≤ c 1 ε k ||(( f -f ε,k )(x)|| P P , ≤ c 1 ε k .ε 2k = Cε k . Now a N ( f , x) = a n ( f -f ε,k , x) + a N ( f ε,k , x).
This means that

a N ( f , x) - G f dλ | ≤ |a N ( f -f ε,k , x)| + |a N ( f ε,k , x) - G f dλ
We have already shown that lim

N→∞ a N ( f ε,k , x) = G f ε,k dλ ,
almost everywhere with respect to Haar measure on G. Therefore

lim sup N→∞ a N ( f , x) - G f dλ ≤ lim sup N→∞ a N ( f -f ε,k , x) + + G f dλ - G f ε,k dλ ≤ m( f -f ε,k ) + G f -f ε,k dλ .
Thus as N tends to infinity we know a N ( f , x) tends to G f dλ for all x in A ε = ∪ k≥1 E ε,k . Let B ε denote the null set of which f ε,k tends to f as k tends to infinity. This means that

µ(A ε ∪ B ε ) ≤ ∑ k≥1 µ(E ε,k ) ≤ C ∑ k≥1 ε k = Cε 1 -ε .
Letting ε → 0 completes the proof of Theorem 1.1, upon noting that π N ∼ N ln(N) by the prime number theorem.

PROOF OF THEOREMS 1.2 AND 1.3

Fix p ∈ (1, ∞), let f ∈ L p (Q a ), and suppose the support of f is contained in Λ k for some non-positive integer k. This means f = f I Λ k , where for a set A, we let I A denotes the indicator function. Applying the Stone-Weierstrass theorem shows that f can be approximated in the L p norm functions of the form (4.0.1)

I Λ k ν ∑ j=1 b j χ j ,
with each b j ∈ C and χ ∈ Q a * . Because compactly supported functions are dense in L p (Q a ), it follows functions of the form are also dense in L p (Q a ). It is clear for each N that the averaging operator A N commutes with translations on Q a . We know by Lemma 2.1 that the function ℓ f (x) exists almost everywhere. Also as a consequence of Lemma 2.1 and the Lebesgue dominated covergence theorem, it follows that the functions (A N f (x)) N≥1 also converges in L p to the same limit. Evidently the operator ℓ commutes with translations on Q a . It follows that the linear operator ℓ is a Fourier multiplier on L p (Q a ). Hence there is a bounded measurable function m on Q a such that for all f ∈ L p ∩ L 2 (Q a ) we have

F(ℓ f ) (χ) = m(χ)F( f )(χ),
almost everywhere in Q a . To identify m we evaluate ℓ on functions of the form (4.1) we note that

F( f )(ξ ) = ν ∑ j=1 b j F(χ j I Λ k )(ξ ) = ν ∑ j=1 b j F(I Λ k )(ξ + χ j ) (4.0.2) = λ (Λ k ) ν ∑ j=1 b j I χ j +A(Q a * ,Λ k ) (ξ ),
where A(Q a * , Λ k ) denotes the annihilator in Q a * of Λ k . The penultimate identity follows from the fact that multiplication by a character shifts the Fourier transform. The last identity follows from the identity (4.0.3)

F 1 λ (Λ k ) I Λ k = I A(Q a * ,Λ k ) .
Indeed if χ ∈ Q a * the restriction of χ to Λ k is plainly a continuous character of Λ k and (4.0.3) follows since the Haar integral on Λ k of any non-trivial character of Λ k is zero ( [HeR], Lemma 23.19, p. 363). For f as in (4.0.1) we have

A N f (x) = 1 N N ∑ n=1 I Λ k (x + ρ(p n ) ν ∑ j=1 b j χ j (x + ρ(p n )).
where (p n ) n≥1 denotes the strictly increasing sequence of all primes. If x is not in Λ k then nor is x + ρ(p n ) because ρ(p n ) ∈ Λ k . This means that we have (4.0.4)

A N f (x) = A N f (x)I Λ k (x).
For x ∈ Λ k we have

A N f (x) = 1 N N ∑ n=1 ν ∑ j=1 b j χ j (x + ρ(p n )). = ν ∑ j=1 χ(x) 1 N N ∑ n=1 χ j (ρ(p n )).
By Lemma 2.2 and (4.0.4) for all x ∈ Q a we get (4.0.5)

ℓ( f )(x) = lim N→∞ I Λ k (x)A N f (x) = I Λ k (x) ν ∑ j=1 b j G(Ψ(χ j ))χ j (x) = I Λ k (x) ν ∑ j=1 b j G(Ψm(χ j ))χ j (x).
Computations similar to (4.0.2) and (4.0.5), show for all χ ∈ Q a * (4.0.6)

F(ℓ f )(χ) = λ (Λ k ) ν ∑ j=1 b j G(Ψ(χ j ))I λ j +A(Z a * ,Λ k ) (χ). If χ ∈ χ j + A(Q a * , Λ k ) then χ = χ j + χ ′ with χ ′ ∈ A(Q a * , Λ k ). Consequently Ψ(χ) = Ψ(χ j ) + Ψ(χ ′ ). Recall Ψ : Q a * → Q a * \A(Q a * , Λ k ) and χ ′ is in A(Q a * , Λ k ), which is a subset of A(Q a * , Z a ) because Z a is a subset of Λ k . Hence if χ ∈ χ j + A(Q a * , Z a ), then Ψ(χ) = Ψ(χ j ).
Using (4.0.2) and (4.0.4) we have that for all

x ∈ Q a * F(ℓ( f ))(x)(χ) = m(χ)F( f )(x)(χ),
establishing the theorem for all functions of the form (4.0.1). To prove it in general, given f ∈ L p ∩ L 2 (Q a ), let ( f n ) n≥1 be a sequence of functions of the form (4.0.1) which converge to f ∈ L 2 . Because ℓ is continuous (ℓ( f n )) n≥1 converges to ℓ( f ) in L 2 (Q a ). Hence a subsequence of (F(ℓ( f n )) n≥1 converges almost everywhere in Q a * to F(ℓ( f )). The desired conclusion follows from the fact that F(ℓ( f n )) = m(χ)F( f n ) and a subsequence of (F( f n )) n≥1 converges to F( f ) almost everywhere.

To prove Theorem 1.3, we need only observe that f ∈ L p (Z a ) then it may be approximated by functions in f ∈ L p (Z a ) of the form (4.0.1) with k = 0 as required.

MORE ON THE LIMIT FUNCTION

ℓ(f) Define H : Ẑa → C , dependent on α 1 , . . .α k by H l a 0 . . . a k := 1 D k D k ∑ m=1 e γ(m) D k . Also define n : Q a * → C by n(χ) := H(Ψ(χ)).
In [AN] we show the following lemma and the two theorems χ(ρ(q)).

We also showed the following theorems.

Theorem 5.2. Suppose that p ∈ (1, 2] and that f ∈ L p ∩ L 2 (Q a ). Also suppose that

ρ(n) = α k n k + α k-1 n k-1 + . . . + α 1 n + α 0 ,
has degree at least 2 with one of the numbers {α 1 , . . . , α k } ⊂ Q a a generator of Q a . Then

lim N→∞ 1 N N ∑ n=1 f (x + ρ(n)) = k( f )(x),
for k( f ) ∈ L p almost everywhere with respect to Haar measure on Q a , where

F(k( f ))(χ) = n(χ)F( f )(χ).
Theorem 5.3. Suppose that p ∈ (1, 2] and that f ∈ L p (Z a ). Also suppose

ρ(n) = α k n k + α k-1 n k-1 + . . . + α 1 n + α 0 ,
has degree at least 2 with one of the numbers {α 1 , . . . , α k } ⊂ Z a a generator of Z a . Then

lim N→∞ 1 N N ∑ n=1 f (x + ρ(n)) = k( f )(x),
for k( f ) ∈ L p (Z a ) almost everywhere with respect to Haar measure on Z a , where

F(k( f ))(χ) = n(χ)( f )(χ).
The Riesz representation theorem tells us that there exist measures µ ℓ and µ k on Z a such that at least for f ∈ C(Z a ) we have ℓ( f ) = f dµ ℓ and k( f ) = f dµ k . The same is true for with Z a replaced by Q a . A natural question is whether the measures µ ℓ or µ k are in fact Haar measure. One might conjecture that if ρ has degree at least two the answer is no. A special case we can deal with is ρ(n) = n 2 . To see this, choose l = 0 such that t = l/a 0 . . . a s , is of the form a q for a prime q, with a = 0. In this case H(χ t ) is of the form

C ∑ q r=1 e 2πiar 2 q
for a non-zero constant C. As is well known ∑ q r=1 e 2πiar 2 q = q 1 2 ([A], p. 166).

This means that the Fourier coefficient of the measure µ ℓ of the squares on Z a is non-zero.

For µ ℓ to be Haar measure you would need H(t) = 0 for every non-zero t which we have discounted.

Unfortunately, dealing with polynomials more general than ρ(n) = n 2 or s > 1, is a good deal more complex and is as yet unresolved. This is because it relies on lower bounds for exponential sums of the form ∑ q r=1 e 2πiaρ(r) q

, which seems a serious undertaking and yet to appear in the literature. We can however show that µ ℓ and µ k are always continuous which we now prove.

For a measure µ defined on the group Z a set F(µ)(χ t ) = ∑ r=0 e 2πiψ(r)q -1 .

Then there exist δ 0 > 0, and C δ 0 > 0 such that |S(ψ|q)| ≤ C δ 0 q δ 0 .

This means that there exist δ H > 0 such that H( l A r ) ≪ A 

∑

1≤m≤q p|m e(ρ(m)), so there exist δ ℓ > 0 such that G( l A r ) ≪ A -δ ℓ r . In either case there is δ > 0 such that

1 A r ∑ {t= l A s :0≤s≤r} |F(µ)(χ t )| 2 ≪ A -δ r ,
as required, where µ is either µ ℓ or µ k . Hence both measures µ k and µ ℓ are continuous on Z a .

If we consider Q a , we notice that m(χ) = G(Ψ(χ)) and n(χ) = H(Ψ(χ)). The argument for Z a with G(χ) replaced by G(Ψ(χ)) and with H(χ) replaced by H(Ψ(χ)) now implies that both µ ℓ and µ k are continuous.

=

  where p runs over the prime numbers in [1, N]. Further for χ ∈ Q a * we have mp n )) = χ l a 0 ...a r (α 0 + α 1 p n + . . . + α k p j (0)+α j (1)a 1 +...+α j (r-1)a 0 a 1 ...a r-2 ) e 2πi γ(p n ) D r .

  Lemma 5.1. For each χ = χ l a o ...a r ∈ Z a * we have H(χ) = lim q→∞ 1 N ∑ 1≤q≤N χ(ρ(q)).

Further

  

  . the Fourier transform of µ. The analogue of Wiener's lemma on the group Z a ([GM], p. 236) requires us to show that lim Suppose thatψ(x) = a d x d + • • • + a 1 x for integers a i (i = 1, 2, • • • , d) and let S(ψ|q) = q-1
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