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ON POLYNOMIALS IN PRIMES, ERGODIC AVERAGES AND MONOTHETIC

GROUPS
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ABSTRACT. Let G denote a compact monothetic group, and let

ρ(x) = αkxk + . . .+α1x+α0,

where α0, . . . ,αk are elements of G one of which is a generator of G. Let (pn)n≥1 denote

the sequence of rational prime numbers. Suppose f ∈ Lp(G) for p > 1. It is known that if

AN f (x) :=
1

N

N

∑
n=1

f (x+ρ(pn)) (N = 1,2, . . .),

then the limit limn→∞ AN f (x) exists for almost all x with respect Haar measure. We show

that if G is connected then the limit is
∫

G f dλ . In the case where G is the a-adic integers,

which is a totally disconnected group, the limit is described in terms of Fourier multipliers

which are generalizations of Gauss sums.
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1. INTRODUCTION

Topological groups, having a dense cyclic subgroup have been well studied. For the

class of locally compact groups, following D. Van Dantzig, who was the first to study them

[vD], these groups are called monothetic. Such groups are fully classified in [HeR]. See

also G. Falcone, P. Plaumann and K. Strambach [FPS] and D. Dikranjan and A.G. Bruno

[DB]. Some examples are also given by J.W. Nienhuys [Ni].

Following [HeR] we say a topological group G is monothetic if it contains an element α
such that the closure of (nα)∞

n=1 is G. Evidently by approximation, for arbitrary monothetic

G, the density and commutativity of (nα)∞
n=1 implies the commutativity of G. For a finite

set of elements α0,α1, . . . ,αk ∈ G set

ρ(n) = αknk +αk−1nk−1 + . . . +α1n+α0,

for each n ∈ N. Let (pn)n≥1 the sequence of rational primes. Let λ denote Haar measure

on G and let Lp(G) denote the Lp space of λ -integrable functions on G.

We show the following.

Theorem 1.1. Suppose G is a compact, connected, monothetic group. Then if one of the

elements α1, . . . ,αk ∈ G is a generator and f ∈ Lp(G) for p > 1, we have

lim
N→∞

1

N

N

∑
n=1

f (x+ρ(pn)) =
∫

G
f dλ ,

for almost all x with respect to Haar measure on G.

If we drop the requirement that G is connected the situation is different. We now consider

a class of totally disconnected monothetic groups of arithmetic character, of which the p-

adic numbers is a special case.

Let a = (ai)i∈Z denote a doubly infinite sequence of integers each greater than 1. Set

Qa := Πi∈Z{0,1, . . . ,ai −1},

i.e. the space of doubly infinite sequences a = (ai)i∈Z with ai = 0 for i < no = no(a) for

some no.

Without loss of generality, assume for x,y ∈ Qa that no(x) = no(y) = 0 and that x =
(xn)

∞
n=0 and y = (yn)

∞
n=0 let z = (zn)

∞
n=0 be defined as follows. Write x0 + y0 =

t0a0 + z0, where z0 ∈ {0,1, ...,a0−1} and t0 is a rational integer. Suppose z0, · · · ,zk and

t0, · · · , tk have been defined. Then write xk+1 + yk+1 + tk = tk+1ak+1 + zk+1, where

zk+1 ∈ {0,1, ...,ak+1−1} and tk+1 is a rational integer. We have thus inductively defined

the sequence z = (zn)
∞
n=0, which we deem to be x + y. The binary operation + which we

call addition makes Qa an abelian group.

For each non-negative integer k let

Λk = {x ∈Qa : xn = 0 i f n < k}.

These sets form a basis at 0 = (0,0, · · ·) for a topology on Qa. With respect to this topol-

ogy Qa is compact and the group operations are continuous making Qa a locally-compact

σ -compact abelian topological group. A second binary operation called multiplication,

denoted by × and compatible with addition is defined as follows. Let u = (1,0,0, · · ·).
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Note that (nu)∞
n=0 is dense in Qa. First on (nu)∞

n=0 define k1u× k2u to be k1k2u. Deem-

ing multiplication to be continuous on Qa defines it off (nu)∞
n=0. The binary operations

addition and multiplication makes Qa a topological ring . We call Za := Λ0 the a-adic

integers and it is compact sub-ring of Qa. Let ηai
denoted the counting measure on

{0,1, . . . ,ai−1}. For each integer let µ =⊗i∈Zηai
denote the corresponding product mea-

sure on Πn∈Z{0, . . . ,an−1}, defined first on ”cylinder sets”. By cylinder sets we mean sets

of the form

A = {(bi)i∈Z : bi1 = ci1, . . . ,bir = cir}

for finite r, fixed {i1, . . . , ir} ⊂ Z and specific ci1 , . . .cir . We then specify µ by setting

µ(A) = (ai1 . . .air)
−1.

on cylinder. We then extend and complete to all Haar measurable sets on the topological

group Qa.

The dual group of Za, which we denote Ẑa consists of all rationals t = ℓ
Ar

where Ar =
a0 · · ·ar and 0 ≤ ℓ ≤ Ar for some non-negative integer r. To evaluate a character χt at x in

Za we write

χt(x) = e

(

ℓ

Ar
(x0 +a0x1 + · · ·+a0 · · ·ar−1xr)

)

,

where as usual, for a real number x, e(x) denotes e2πix. We note that Q̂a = Qa∗ where

a∗ = (a−n)n∈Z.

Suppose at least one of the numbers α1, . . . ,αk is a generator of Za. Let δ j : Z→ Za be

the homomorphism defined by δ j(n) = nα j ( j = 1,2, . . . ,k) and let ε j : Ẑa →Qa denote its

adjoint. Hence for all n ∈ Z we have

e
ε j

(

l
a0...ar

)

= χ l
a0 ...ar

(

δ j(n)
)

= χ l
a0...ar

(nα j).

We can identify Ẑa with the quotient of Qa∗ by A(Qa∗, Ẑa) the annihilator of Ẑa in Qa∗

([HeR], Lemma 24.5). Let Ψ : Qa∗ → Ẑa be the associated quotient map. Consider the

map G, dependent on α1, . . .αk, mapping Ẑa to C, given by

G

(

χ l
a0...ar

)

=
1

φ(Dr)

Dr

∑
m=1

(m,Dr)=1

e

(

γ(m)

Dr

)

,

for all l
a0...ar

∈ Ẑa. Here, φ is the Euler totient function. The integers Dr and polynomial γ
are described as follows. Let

l j = l(α j(0)+α j(1)ao+α j(2)aoa1 + . . .+α j(r−1)a0 . . .ar−2). ( j = 1,2, . . . ,k).

Here α j(r) denote the rth term of α j, viewed as a sequence. In general
l j

a0...ar
is not in

reduced form. Let
m j

B j
with (m j,B j) = 1 denote

l j

a0a1...ar
in reduced terms. Let Dr denote the

least common multiple of the numbers B1, . . . ,Bk and define γ via the identity

γ(x)

Dr
=

mk

Bk

xk + . . .+
m1

B1
x.

Define m : Qa∗ → C by m(χ) = G(Ψ(χ)) for all χ ∈ Qa∗ . Henceforth F( f ) denotes the

Fourier transform of f .
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Theorem 1.2. Suppose that p ∈ (1,2] and that f ∈ Lp ∩L2(Qa). Also suppose

ρ(n) = αknk +αk−1nk−1 + . . . +α1n+α0,

has degree at least 2, with one of the numbers {α1, . . . ,αk} ⊂Qa a generator of Qa. Then

lim
N→∞

1

N

N

∑
n=1

f (x+ρ(pn)) = ℓ( f )(x),

for ℓ( f ) ∈ Lp almost everywhere with respect to Haar measure on Qa, where

F(ℓ( f ))(χ) = m(χ)F( f )(χ)

for almost all x with respect to Haar measure on Qa.

Theorem 1.3. Suppose that p ∈ (1,2] and that f ∈ Lp(Za). Also suppose that

ρ(n) = αknk +αk−1nk−1 + . . . +α1n+α0,

has degree at least 2, with one of the numbers {α1, . . . ,αk} ⊂ Za a generator of Za. Then

lim
N→∞

1

N

N

∑
n=1

f (x+ρ(pn)) = ℓ( f )(x),

for ℓ( f )∈ Lp(Za) almost everywhere with respect to Haar measure on Za. Here F(ℓ( f ))(χ)=
G(χ)( f )(χ) for almost all x with respect to Haar measure on Za.

A measurable transformation T : X → X of a measure space (X ,β ,µ) is called measure

preserving if µ(T−1(A)) = µ(A) for all A ∈ β . Here T−1(A)) := {x ∈ X : T x ∈ A}. For a

measure space (X ,β ,µ), let T1, . . . ,Tk be a finite case set of commuting measure preserving

transformations. Given f ∈ Lp(X ,β ,µ) if πN denotes the number of prime numbers in the

interval [1,N], for (N = 1,2, . . .) we set

(1.0.1) AN f (x) :=
1

πN
∑

1≤p≤N

f (T
p

1 T
p2

2 . . .T
pk

k x).

Here the summation parameter p runs over the primes. The pointwise convergence of these

averages is proved in [T]. This is the new tool, that enables us to prove Theorems 1.1 – 1.3

going beyond the results in [N3] and [N4].

Some background : A sequence (xn)n≥1 in a compact topological group is said to be

uniformly distibuted on G if for each continuous functions f : G → C we have

lim
N→∞

1

N

N

∑
n=1

f (xn) =
∫

G
f dλ .

An example is xn = {nα} (n= 1,2, . . .), where α is an irrational number and for a real num-

ber y we have used {y} to denote its fractional part. This early result was due to P. Bohl, W.

Sierpinski and H. Weyl independently around the start of the 20th century. See the notes

in [KN] for the historic background. Subsequently it was shown by H. Weyl [W] that of

ρ(x) = α0 +α1x+ . . .+αkxk and one of the numbers {α1, . . . ,αk} is irrational then the se-

quences xn = ρ(n) (n = 1,2, . . .) is uniformly distributed modulo 1. Later I. M. Vinogradov



ON POLYNOMIALS IN PRIMES, ERGODIC AVERAGES AND MONOTHETIC GROUPS 5

and G. Rhin [R] proved that xn = ρ(pn) (n = 1,2, . . .) is uniformly distributed modulo 1.

Another result with a form similar in statement is that the result of Bohl, Sierpinski is that

if f is Lebesgue integrable on [0,1) then

(1.0.2) lim
N→∞

1

N

N

∑
n=1

f ({x+αn}) =

∫ 1

0
f (t)dt,

almost everywhere with respect to Lebesgue measure. This is an immediate consequence of

Birkhoff’s pointwise ergodic theorem and the ergodicty of the Lebesgue measure preserv-

ing map T : x → x+α for irrational α on [0,1). An issue addressed by a number of authors

is whether ({nα})n≥1 in (1.0.2) can be replaced by either (ρ(n))n≥1 or (ρ(pn))n≥1 possi-

bly under additional conditions on f . See for instance [KS], where the following is shown.

Suppose that ρ(n) = α0 +α1n+ . . . ,αknk with (α1, . . . ,αk) /∈ Qk. Also for f ∈ L2([0,1))
with Fourier coefficients (cn)n∈Z suppose for some γ > 0 that

(1.0.3) ∑
|n|≥N

|cn|
2 = O(loge N)γ).

Then

(1.0.4) lim
N→∞

1

N

N

∑
n=1

f ({x+ρ(n)}) =

∫ 1

0
f (t)dt,

almost everywhere with respect to Lebesgue measure on [0,1).
The second author was introduced to this topic when asked in private communication in-

dependently and at different times by R.C. Baker and M. Weber, whether condition (1.0.3)

could be weakened or removed. It turns out the answer is yes under the additional assump-

tion that f ∈ Lp([0,1)) for p > 1 and indeed in more general settings than G = [0,1). This

is the content of the papers [N3], [N4], and the current paper. The condition p 6= 1 is es-

sential however because of the results in [BM]. Notice the x in (1.0.2) cannot in general be

chosen to be 0. This is the implication of J. Marstrand’s famous result [M], that there exists

a Gδ set B such that if f (x) = IB(x), i.e. the indicator set of B, then the limit in (1.0.2) fails

to exist with x = 0 for almost all α .

2. SOME LEMMAS

The following is a special case of S. Sawyer’s Theorem [S].

Lemma 2.1. The pointwise convergence of the averages (AN f )N≥1 in (1.0.1) for p > 1

implies that if

M f (x) = sup
N≥1

|AN f (x)| ,

then there exists C > 0 such that ||M f ||p ≤C|| f ||p.

Lemma 2.2. For each χ = χ l
ao...ar

∈ Za∗ we have

G(χ) = lim
N→∞

1

πN
∑

1≤p≤N

χ(ρ(p)),
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where p runs over the prime numbers in [1,N]. Further for χ ∈Qa∗ we have

m(χ) = lim
N→∞

1

πN
∑

1≤p≤N

χ(ρ(p)).

Proof. Note that

χ l
a0...ar

(ρ(pn)) = χ l
a0...ar

(α0 +α1 pn + . . .+αk pk
n)

=
k

∏
j=0

χ l
a0 ...ar

(α j)
p

j
n

= ∏
k

j=0

(

e
2πi l

ao ...ar

p
j
n(α j(0)+α j(1)a1+...+α j(r−1)a0a1 ...ar−2)

)

=
k

∏
j=0

(

e
2πi

l j
ao...ar

)p
j
n

=
k

∏
j=0

(

e

2π im j
B j

)p
j
n

= e
2πi

γ(pn)
Dr .

By splitting the primes into their reduced residue classes modulo Dr we have

1

πN
∑

1≤p≤N

χ l
a0...ar

(ρ(p)) =
1

πN
∑

1≤p≤N

e
2πi

γ(p)
Dr . (N = 2,3, . . .)

Let Λ : N → R denote the Von Mangoldt function defined by Λ(n) = loge p if n = pl for

some prime p and positive integer l, and zero otherwise. Using partial summation we see

that
1

πN
∑

1≤p≤N

e
2πi

γ(p)
Dr =

1

N
∑

1≤n≤N

Λ(n)e
2π iγ(n)

Dr +O((loge N)−1).

The Siegel -Walfish prime number theory for arithmetic progressions, says that for a fixed

positive u, if 1 ≤ Dr ≤ (loge N)u and (m,Dr) = 1, then for some C > 0

∑
1≤n≤N

n≡m mod Dr

Λ(n) =
N

φ(Dr)
+o(Ne−C(loge N)

1
2 ).

Now note that

∑
1≤n≤N

Λ(n)e
2π iγ(n)

Dr =







Dr

∑
m=1

(m,Dr)=1

e
2πi

γ(m)
Dr









 ∑
1≤n≤N

n≡m mod Dr

Λ(n)





+O



 ∑
pl≤N;p|Dr

Λ(pl)e
2π iγ(pl )

Dr





Using the fact that the sum inside the O notation is O((loge N)(loge logN)), and the Siegel-

Walfish theorem

1

N
∑

1≤n≤N
n≡m mod Dr

Λ(n)e
2π iγ(n)

Dr =

(

1

φ(Dr)
∑

1≤n≤N

Λ(n)e
2π iγ(n)

Dr

)
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+O

(

(loge N)(loge loge N)

N

)

,

which proves the first part of Lemma 2.2. The second part follows from the observation for

all x ∈ Za and χ ∈Qa∗ we have χ(x) = Ψ(χ)(x). �

3. PROOF OF THEOREM 1.1

For the averages (1.0.1), let X be G, let µ be Haar measure λ on G and let β denote Haar

measurable sets in G. Then if we set Ti = x+αi for i = 1, . . . ,k, for N = 1,2, . . . and set

aN( f ,x) = AN f (x) :=
1

πN
∑

1≤p≤N

f (x+ρ(p)).

We wish to show aN( f ,x) tends to
∫

G f dλ almost everywhere with respect to Haar measure,

as N tends to ∞. First suppose f : G →C is continuous. Because G is a compact, connected

and monothetic, for each non-trivial character χ , and each generator χ(α) = e2πiα∗ for an

irrational number α∗ ([KN], p. 275). Thus φ(ρ(n))= e2πiρ∗(n), for a polynomial ρ∗ defined

on the real numbers, with at least one irrational coefficient other than the constant term.

This means that

1

N

N

∑
n=1

χ(ρ(pn)) =
1

N

N

∑
n=1

e2πiρ∗(pn). (N = 1,2, . . .)

Now, if {y} denotes the fractional part of a real number y, then the sequence ({ρ∗(pn)})n≥1

is uniformly distributed modulo 1. Hence by Weyl’s criterion on G, aN( f ,x) tends to
∫

G f dλ for all continuous f : G → C. We now deal with the general case of Theorem

1. Suppose ( fn) is a sequence of continuous functions converging to fixed f ∈ Lp. Choose

(nk)k≥1 such that

∑
k≥1

∫

G
| f − fnk

|pdλ < ∞.

This means

∑
k≥1

| f − fnk
|p < ∞,

almost everywhere with respect to Haar measure on G. Thus for each ε > 0, there exists a

sequence of functions ( fε,k)k≥1 such that || f − fε,k||
p
p ≤ ε2k and fε,k tends to f as k tends

to infinity, almost everywhere with respect to A with respect to Haar measure. Let

m( f ) = sup
N≥1

|αN f |.

Notice that m is sub-additive i.e.

m( f +g)≤ m( f )+m(g).

Let

Eε,k = {x ∈ G : m( f − fε,k)(x)> e
k
p}.
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Notice that,

µ(Eε,k)≤

(

1

ε

)k ∫

Eε ,k

[m( f − fε,k)(x)]
pdλ

≤

(

1

ε

)k

||m( f − fε,k)(x)||
P
P,

which, using the fact that ||M f ||p ≤Cp|| f ||, is

≤ c

(

1

ε

)k

||(( f − fε,k)(x)||
P
P,

≤ c

(

1

ε

)k

.ε2k =Cεk.

Now

aN( f ,x) = an( f − fε,k,x)+aN( fε,k,x).

This means that
∣

∣

∣

∣

aN( f ,x)−

∫

G
f dλ | ≤ |aN( f − fε,k,x)|+ |aN( fε,k,x)−

∫

G
f dλ

∣

∣

∣

∣

We have already shown that

lim
N→∞

aN( fε,k,x) =
∫

G
fε,kdλ ,

almost everywhere with respect to Haar measure on G. Therefore

limsup
N→∞

∣

∣

∣

∣

aN( f ,x)−
∫

G
f dλ

∣

∣

∣

∣

≤ limsup
N→∞

∣

∣aN( f − fε,k,x)
∣

∣+

+

∣

∣

∣

∣

∫

G
f dλ −

∫

G
fε,kdλ

∣

∣

∣

∣

≤ m( f − fε,k)+
∫

G

∣

∣ f − fε,k

∣

∣dλ .

Thus as N tends to infinity we know aN( f ,x) tends to
∫

G f dλ for all x in Aε = ∪k≥1Eε,k.

Let Bε denote the null set of which fε,k tends to f as k tends to infinity. This means that

µ(Aε ∪Bε)≤ ∑
k≥1

µ(Eε,k)≤C ∑
k≥1

εk =
Cε

1− ε
.

Letting ε → 0 completes the proof of Theorem 1.1, upon noting that πN ∼ N
ln(N) by the

prime number theorem.
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4. PROOF OF THEOREMS 1.2 AND 1.3

Fix p ∈ (1,∞), let f ∈ Lp(Qa), and suppose the support of f is contained in Λk for some

non-positive integer k. This means f = f IΛk
, where for a set A, we let IA denotes the indi-

cator function. Applying the Stone-Weierstrass theorem shows that f can be approximated

in the Lp norm functions of the form

(4.0.1) IΛk

ν

∑
j=1

b jχ j,

with each b j ∈ C and χ ∈ Qa∗ . Because compactly supported functions are dense in

Lp(Qa), it follows functions of the form are also dense in Lp(Qa). It is clear for each N that

the averaging operator AN commutes with translations on Qa. We know by Lemma 2.1 that

the function ℓ f (x) exists almost everywhere. Also as a consequence of Lemma 2.1 and the

Lebesgue dominated covergence theorem, it follows that the functions (AN f (x))N≥1 also

converges in Lp to the same limit. Evidently the operator ℓ commutes with translations on

Qa. It follows that the linear operator ℓ is a Fourier multiplier on Lp(Qa). Hence there is a

bounded measurable function m on Qa such that for all f ∈ Lp ∩L2(Qa) we have

F(ℓ f ) (χ) = m(χ)F( f )(χ),

almost everywhere in Qa. To identify m we evaluate ℓ on functions of the form (4.1) we

note that

F( f )(ξ ) =
ν

∑
j=1

b jF(χ jIΛk
)(ξ ) =

ν

∑
j=1

b jF(IΛk
)(ξ +χ j)

(4.0.2) = λ (Λk)
ν

∑
j=1

b jIχ j+A(Qa∗ ,Λk)(ξ ),

where A(Qa∗,Λk) denotes the annihilator in Qa∗ of Λk. The penultimate identity follows

from the fact that multiplication by a character shifts the Fourier transform. The last identity

follows from the identity

(4.0.3) F

(

1

λ (Λk)
IΛk

)

= IA(Qa∗ ,Λk).

Indeed if χ ∈ Qa∗ the restriction of χ to Λk is plainly a continuous character of Λk and

(4.0.3) follows since the Haar integral on Λk of any non-trivial character of Λk is zero

([HeR], Lemma 23.19, p. 363). For f as in (4.0.1) we have

AN f (x) =
1

N

N

∑
n=1

IΛk
(x+ρ(pn)

ν

∑
j=1

b jχ j(x+ρ(pn)).

where (pn)n≥1 denotes the strictly increasing sequence of all primes. If x is not in Λk then

nor is x+ρ(pn) because ρ(pn) ∈ Λk. This means that we have

(4.0.4) AN f (x) = AN f (x)IΛk
(x).

For x ∈ Λk we have

AN f (x) =
1

N

N

∑
n=1

ν

∑
j=1

b jχ j(x+ρ(pn)).
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=
ν

∑
j=1

χ(x)
1

N

N

∑
n=1

χ j(ρ(pn)).

By Lemma 2.2 and (4.0.4) for all x ∈Qa we get

(4.0.5) ℓ( f )(x) = lim
N→∞

IΛk
(x)AN f (x) = IΛk

(x)
ν

∑
j=1

b jG(Ψ(χ j))χ j(x)

= IΛk
(x)

ν

∑
j=1

b jG(Ψm(χ j))χ j(x).

Computations similar to (4.0.2) and (4.0.5), show for all χ ∈Qa∗

(4.0.6) F(ℓ f )(χ) = λ (Λk)
ν

∑
j=1

b jG(Ψ(χ j))Iλ j+A(Za∗ ,Λk)(χ).

If χ ∈ χ j + A(Qa∗ ,Λk) then χ = χ j + χ ′ with χ ′ ∈ A(Qa∗,Λk). Consequently Ψ(χ) =
Ψ(χ j) +Ψ(χ ′). Recall Ψ : Qa∗ → Qa∗\A(Qa∗ ,Λk) and χ ′ is in A(Qa∗ ,Λk), which is a

subset of A(Qa∗,Za) because Za is a subset of Λk. Hence if χ ∈ χ j +A(Qa∗,Za), then

Ψ(χ) = Ψ(χ j). Using (4.0.2) and (4.0.4) we have that for all x ∈Qa∗

F(ℓ( f ))(x)(χ) = m(χ)F( f )(x)(χ),

establishing the theorem for all functions of the form (4.0.1). To prove it in general, given

f ∈ Lp ∩ L2(Qa), let ( fn)n≥1 be a sequence of functions of the form (4.0.1) which con-

verge to f ∈ L2. Because ℓ is continuous (ℓ( fn))n≥1 converges to ℓ( f ) in L2(Qa). Hence

a subsequence of (F(ℓ( fn))n≥1 converges almost everywhere in Qa∗ to F(ℓ( f )). The de-

sired conclusion follows from the fact that F(ℓ( fn)) = m(χ)F( fn) and a subsequence of

(F( fn))n≥1 converges to F( f ) almost everywhere.

To prove Theorem 1.3, we need only observe that f ∈ Lp(Za) then it may be approxi-

mated by functions in f ∈ Lp(Za) of the form (4.0.1) with k = 0 as required.

5. MORE ON THE LIMIT FUNCTION ℓ(f)

Define H : Ẑa → C , dependent on α1, . . .αk by

H

(

l

a0 . . .ak

)

:=
1

Dk

Dk

∑
m=1

e

(

γ(m)

Dk

)

.

Also define n : Qa∗ →C by n(χ) := H(Ψ(χ)). In [AN] we show the following lemma and

the two theorems

Lemma 5.1. For each χ = χ l
ao...ar

∈ Za∗ we have

H(χ) = lim
q→∞

1

N
∑

1≤q≤N

χ(ρ(q)).
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Further for χ ∈Qa∗ we have

n(χ) = lim
N→∞

1

N
∑

1≤q≤N

χ(ρ(q)).

We also showed the following theorems.

Theorem 5.2. Suppose that p ∈ (1,2] and that f ∈ Lp ∩L2(Qa). Also suppose that

ρ(n) = αknk +αk−1nk−1 + . . . +α1n+α0,

has degree at least 2 with one of the numbers {α1, . . . ,αk} ⊂Qa a generator of Qa. Then

lim
N→∞

1

N

N

∑
n=1

f (x+ρ(n)) = k( f )(x),

for k( f ) ∈ Lp almost everywhere with respect to Haar measure on Qa, where

F(k( f ))(χ) = n(χ)F( f )(χ).

Theorem 5.3. Suppose that p ∈ (1,2] and that f ∈ Lp(Za). Also suppose

ρ(n) = αknk +αk−1nk−1 + . . . +α1n+α0,

has degree at least 2 with one of the numbers {α1, . . . ,αk} ⊂ Za a generator of Za. Then

lim
N→∞

1

N

N

∑
n=1

f (x+ρ(n)) = k( f )(x),

for k( f ) ∈ Lp(Za) almost everywhere with respect to Haar measure on Za, where

F(k( f ))(χ) = n(χ)( f )(χ).

The Riesz representation theorem tells us that there exist measures µℓ and µk on Za such

that at least for f ∈ C(Za) we have ℓ( f ) =
∫

f dµℓ and k( f ) =
∫

f dµk. The same is true

for with Za replaced by Qa. A natural question is whether the measures µℓ or µk are in

fact Haar measure. One might conjecture that if ρ has degree at least two the answer is

no. A special case we can deal with is ρ(n) = n2. To see this, choose l 6= 0 such that

t = l/a0 . . .as, is of the form a
q

for a prime q, with a 6= 0. In this case H(χt) is of the form

C ∑
q
r=1 e

2π iar2

q for a non-zero constant C. As is well known

∣

∣

∣

∣

∑
q
r=1 e

2π iar2

q

∣

∣

∣

∣

= q
1
2 ([A], p. 166).

This means that the Fourier coefficient of the measure µℓ of the squares on Za is non-zero.

For µℓ to be Haar measure you would need H(t) = 0 for every non-zero t which we have

discounted.

Unfortunately, dealing with polynomials more general than ρ(n) = n2 or s > 1, is a good

deal more complex and is as yet unresolved. This is because it relies on lower bounds for

exponential sums of the form

∣

∣

∣

∣

∑
q
r=1 e

2π iaρ(r)
q

∣

∣

∣

∣

, which seems a serious undertaking and yet to

appear in the literature. We can however show that µℓ and µk are always continuous which

we now prove.
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For a measure µ defined on the group Za set

F(µ)(χt) =

∫

Za

χ tdµ, (t ∈ Ẑa)

i.e. the Fourier transform of µ . The analogue of Wiener’s lemma on the group Za ([GM],

p. 236) requires us to show that

lim
r→∞

1

Ar
∑

{ l
As

:0≤s≤r}

|F(µ)(χt)|
2 = 0.

We need the following Lemma [N5].

Lemma 5.4. Suppose that

ψ(x) = adxd + · · · + a1x

for integers ai (i = 1,2, · · · ,d) and let

S(ψ|q) =
q−1

∑
r=0

e2πiψ(r)q−1

.

Then there exist δ0 > 0, and Cδ0
> 0 such that

|S(ψ|q)| ≤
Cδ0

qδ0
.

This means that there exist δH > 0 such that H( l
Ar
)≪ A−δH

r . Also

∑
1≤m≤q

(m,q)=1

e(ρ(m)) = ∑
1≤m≤q

e(ρ(m))−∑
p
q

∑
1≤m≤q

p|m

e(ρ(m)),

so there exist δℓ > 0 such that G( l
Ar
)≪ A

−δℓ
r . In either case there is δ > 0 such that

1

Ar
∑

{t= l
As

:0≤s≤r}

|F(µ)(χt)|
2 ≪ A−δ

r ,

as required, where µ is either µℓ or µk. Hence both measures µk and µℓ are continuous on

Za.

If we consider Qa, we notice that m(χ) = G(Ψ(χ)) and n(χ) = H(Ψ(χ)). The argument

for Za with G(χ) replaced by G(Ψ(χ)) and with H(χ) replaced by H(Ψ(χ)) now implies

that both µℓ and µk are continuous.
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[W] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352.



ON POLYNOMIALS IN PRIMES, ERGODIC AVERAGES AND MONOTHETIC GROUPS 14

† DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, UNIVERSITY OF OSTRAVA, 30. DUBNA

22, 701 03 OSTRAVA 1, CZECH REPUBLIC

E-mail address: hancl@osc.cz

‡ MATHEMATICAL SCIENCES, THE UNIVERSITY OF LIVERPOOL, PEACH STREET, 1 PEACH STREET,

LIVERPOOL, L69 7ZL, U.K.

E-mail address: nair@liv.ac.uk

✸ LAMA, CNRS UMR 5127, UNIV. GRENOBLE ALPES, UNIV. SAVOIE MONT BLANC,

F - 73000 CHAMBÉRY, FRANCE
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