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matrix domain, with unit normal vectors n ˘oriented outward to the sides ˘. We denote by γ the trace operator on Γ for functions in H 1 pΩq and by ¨ the normal trace jump operator on Γ for functions in H div pΩzΓ q.

We denote by ∇ τ the tangential gradient and by div τ the tangential divergence on the fracture network Γ . The symmetric gradient operator ε is defined such that εpvq " 1 2 p∇v `t p∇vqq for a given vector field v. Let us fix a continuous function d 0 : Γ Ñ p0, `8q with zero limits at BΓ zpBΓ X BΩq (i.e. the tips of Γ ) and stricly positive limits at BΓ X BΩ.

Let us introduce the following function spaces: U 0 " tv P pH 1 pΩzΓ qq d | γ BΩ v " 0 on BΩu for the displacement vector, and V 0 " tv P H 1 0 pΩq | γv P H 1 d0 pΓ qu for each phase pressure, where the space H 1 d0 pΓ q is made of functions v Γ in L 2 pΓ q, such that d 3{2 0 ∇ τ v Γ is in L 2 pΓ q, whose traces are continuous at fracture intersections BΓ i XBΓ j and vanish on the boundary BΓ X BΩ.

The matrix and fracture rock types are denoted by the indices rt " m and rt " f , respectively, and the non-wetting and wetting phases by the superscripts α " nw and α " w, respectively.

Fig. 1 Example of a 2D domain Ω with its fracture network Γ , the unit normal vectors n ˘at Γ , the phase pressures pα in the matrix and γ pα in the fracture network, the displacement vector field ū, the matrix Darcy velocities q α m and the fracture tangential Darcy velocities q α f integrated along the fracture.

The PDEs model reads: find the phase pressures pα , α P tnw, wu, and the displacement vector field ū, such that pc " pnw ´p w and, for α P tnw, wu,

$ ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' % B t `φ m S α m pp c q ˘`div pq α m q " h α m on p0, T q ˆΩzΓ , q α m " ´ηα m pS α m pp c qqK m ∇p α on p0, T q ˆΩzΓ , B t ´d f S α f pγ pc q ¯`div τ pq α f q ´ q α m " h α f on p0, T q ˆΓ, q α f " ´ηα f pS α f pγ pc qqp 1 12 d3 f q∇ τ γ pα on p0, T q ˆΓ, ´div ´σpūq ´b pE m I ¯" f on p0, T q ˆΩzΓ σpūq " 2µ εpūq `λ divpūq I on p0, T q ˆΩzΓ , (1) with 
$ ' & ' % B t φm " b divB t ū `1 M B t pE m on p0, T q ˆΩzΓ , pσpūq ´b pE m Iqn ˘" ´p E f n ˘on p0, T q ˆΓ, df " ´ ū on p0, T q ˆΓ, (2) 
and the initial conditions

pα | t"0 " pα 0 , φm | t"0 " φ0 m .
Here, the equivalent pressures p E m and p E f are defined, following [START_REF] Coussy | Poromechanics[END_REF], by pE m " ÿ αPtnw,wu pα S α m pp c q ´Um pp c q, pE f " ÿ αPtnw,wu γ pα S α f pγ pc q ´Uf pγ pc q, where U rt pp c q " ş pc 0 q pS nw rt q 1 pqqdq is the capillary energy density function for each rock type rt P tm, f u. This is a key choice to obtain the energy estimates which are the starting point for the convergence analysis.

We make the following main assumptions on the data:

• For each phase α P tnw, wu and rock type rt P tm, f u, the mobility function η α rt is continuous non-decreasing and there exist 0 ă η α rt,min ď η α rt,max ă `8 such that η α rt,min ď η α rt psq ď η α rt,max for all s P r0, 1s. • For each rock type rt P tm, f u, S nw rt is a non-decreasing Lipschitz continuous function with values in r0, 1s, and S w rt " 1 ´Snw rt . • b P r0, 1s is the Biot coefficient, M ą 0 is the Biot modulus, and λ ą 0, µ ą 0 are the Lamé coefficients. These coefficients are assumed to be constant for simplicity. • There exist 0 ă φ 0 m,min ď φ 0 m,max ă 1 such that φ 0 m,min ď φ0 m pxq ď φ 0 m,max for a.e. x P Ω.

• The initial fracture aperture satisfies d0 f pt, xq ě d 0 pxq for a.e. pt, xq P p0, T q ˆΓ . • The permeability tensor K m is symmetric and uniformly elliptic on Ω.

Definition 1 (Weak solution of the model).

A weak solution of the model for f P L 2 pΩq d , h α m P L 2 pp0, T q ˆΩq, and h α f P L 2 pp0, T q ˆΓ q, is given by pα P L 2 p0, T ; V 0 q, α P tnw, wu, and ū P L 8 p0, T ; U 0 q, such that for any α P tnw, wu, d 3{2 f ∇ τ γ pα P L 2 pp0, T q ˆΓ qq d and, for all φα P C 8 c pr0, T q ˆΩq and all smooth functions v : r0, T s ˆpΩzΓ q Ñ R d vanishing on BΩ and having finite limits on each side of Γ ,

$ ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' % ż T 0 ż Ω ´´φ m S α m pp c qB t φα `ηα m pS α m pp c qqK m ∇p α ¨∇ φα ¯dxdt `ż T 0 ż Γ ´´d f S α f pγ pc qB t γ φα `ηα f pS α f pγ pc qq d 3 f 12 ∇ τ γ pα ¨∇τ γ φα ¯dσpxqdt ´żΩ φ0 m S α m pp 0 c q φα p0, ¨qdx ´żΓ d0 f S α f pγ p0 c qγ φα p0, ¨qdσpxq " ż T 0 ż Ω h α m φα dxdt `ż T 0 ż Γ h α f γ φα dσpxqdt, (3) 
ż T 0 ż Ω ´σpūq : εpvq ´bp E m divpvq ¯dxdt `ż T 0 ż Γ pE f v dσpxqdt " ż T 0 ż Ω f ¨vdxdt, (4) 
with pc " pnw ´p w , df " ´ ū , φm ´φ 0 m " b divpū ´ū 0 q `1 M pp E m ´p E,0 m q, d0 f " ´ ū0 , where ū0 is the solution of (4) without the time integral and using the initial equivalent pressures pE,0 m and pE,0 f obtained from the initial pressures pα 0 P V 0 , α P tnw, wu. Remark 1 (Regularity of the displacement field). Notice that ū P L 8 p0, T ; U 0 q implies df " ´ ū P L 8 p0, T ; L 4 pΓ qq. All the integrals above are thus well-defined.

The gradient scheme

The gradient discretization for the mechanics is defined by the vector space of d.o.f. The gradient discretization (GD) of the Darcy continuous pressure model is introduced in [START_REF] Brenner | Gradient discretization of hybrid-dimensional darcy flows in fractured porous media[END_REF] and defined by the vector space of d.o.f. X 0 Dp and • two discrete gradient operators on the matrix and fracture domains

∇ m Dp : X 0 Dp Ñ L 8 pΩq d , ∇ f Dp : X 0 Dp Ñ L 8 pΓ q d´1 ;
• two function reconstruction operators on the matrix and fracture domains

Π m Dp : X 0 Dp Ñ L 8 pΩq, Π f Dp : X 0 Dp Ñ L 8 pΓ q,
which are piecewise constant [3, Definition 2.12].

A consequence of the piecewise-constant property is that, for any g : R Ñ R and v P X 0 Dp , we can define gpvq P X 0 Dp component-wise and we have Π ρ Dp gpvq " gpΠ ρ

Dp vq for ρ P tm, f u. Fixing a continuous function d 0 : Γ Ñ p0, `8q with zero limits at the tips of Γ , the vector space X 0 Dp is endowed with }v} Dp " }∇ m Dp v} L 2 pΩq d `}d

3 2
0 ∇ f Dp v} L 2 pΓ q d´1 , assumed to define a norm on X 0 Dp .

This spatial GD is extended into a space-time GD by complementing it with

• a discretisation 0 " t 0 ă t 1 ă ¨¨¨ă t N " T of the time interval r0, T s;

• interpolators P Dp : V 0 Ñ X 0 Dp and P m Dp : L 2 pΩq Ñ X 0 Dp of initial conditions. The spatial operators are extended into space-time operators as follows. Let χ represent either p or u. If w " pw n q N n"0 P pX 0 Dχ q N `1, and Ψ Dχ is a spatial GDM operator, its space-time extension is defined by Ψ Dχ p0, ¨q " Ψ Dχ pw 0 q and, @n P t0, . . . , N ´1u , @t P pt n , t n`1 s, Ψ Dχ pt, ¨q " Ψ Dχ w n`1 .

where, for convenience, the same notation is kept for the spatial and space-time operators. We also define the discrete time derivative as follows: for f : r0, T s Ñ L 1 pΩq piecewise constant on the time discretisation, with f n " f |ptn´1,tns , and using the same n and t as above, δ t f ptq " fn`1´fn tn`1´tn .

The gradient scheme for (1) consists in writing the weak formulation ( 3)-( 4) with continuous spaces and operators substituted by their discrete counterparts, after a formal integration by part: find p α P pX 0 Dp q N `1, α P tnw, wu, and u P pX 0 Du q N `1, such that for all ϕ α P pX 0 Dp q N `1, v P pX 0 Du q N `1 and α P tnw, wu,

ż T 0 ż Ω ´δt ´φD Π m Dp s α m ¯Πm Dp ϕ α `ηα m pΠ m Dp s α m qK m ∇ m Dp p α ¨∇m Dp ϕ α ¯dxdt `ż T 0 ż Γ δ t ´df,Du Π f Dp s α f ¯Πf Dp ϕ α dσpxq `ż T 0 ż Γ η α f pΠ f Dp s α f q d 3 f,Du 12 ∇ f Dp p α ¨∇f Dp ϕ α dxdt " ż T 0 ż Ω h α m Π m Dp ϕ α dxdt `ż T 0 ż Γ h α f Π f Dp ϕ α dσpxqdt, (5a) 
ż T 0 ż Ω ´σDu puq : ε Du pvq ´bpΠ m Dp p E m qdiv Du pvq ¯dxdt `ż T 0 ż Γ pΠ f Dp p E f q v Du dσpxqdt " ż T 0 ż Ω f ¨ΠDu vdxdt, (5b) 
with the closure equations

$ ' ' ' & ' ' ' % p c " p nw ´pw , s α m " S α m pp c q, s α f " S α f pp c q, p E m " ÿ αPtnw,wu p α s α m ´Um pp c q, p E f " ÿ αPtnw,wu p α s α f ´Uf pp c q, φ D ´Πm Dp φ0 m " b div Du pu ´u0 q `1 M Π m Dp pp E m ´pE,0 m q. (5c) 
The initial conditions are given by p α 0 " P Dp pα 0 (α P tnw, wu), φ 0 m " P m Dp φ0 , and the initial displacement u 0 is the solution of (5b) with the equivalent pressures obtained from the initial pressures pp α 0 q αPtnw,wu .

Convergence result

Let pD l p q lPN and pD l u q lPN be sequences of GDs. We state here the assumptions on these sequences which ensure that the solutions to the corresponding schemes converge. Most of these assumptions are adaptation of classical GDM assumptions [START_REF] Droniou | The gradient discretisation method[END_REF], except for the chain-rule and cut-off properties, whose role is briefly discussed at the end of the paper; we note that all these assumptions hold for standard discretisations used in porous media flows. Coercivity, consistency and limit-conformity of pD l p q lPN : these propreties are omitted since they are similar to those in [START_REF] Brenner | Gradient discretization of hybrid-dimensional darcy flows in fractured porous media[END_REF], the only change being the use in the definition of consistency of the L r -norm with r ą 8, instead of the L 2 -norm, for the gradient in the fractures, and the use of fracture fluxes q f compactly supported away from the fracture tips in the definition of the limit-conformity. Chain rule estimate on pD l p q lPN : for any Lipschitz-continuous function F : R Ñ R, there is C F ě 0 such that, for all l P N and v P X 0

D l p , }∇ m D l p F pvq} L 2 pΩq d ď C F }∇ m D l p v} L 2 pΩq d .
Cut-off property of pD l p q lPN : for any compact set K Ă ΩzΓ and l P N, there exists ψ l P X D l p such that, for l large enough and C ě 0 not depending on l: Π m

D l p ψ l ě 0 on Ω; Π m D l p ψ l ě 1 on K; }∇ m D l p ψ l } L 2 pΩq d ď C; Π f D l p ψ l " 0; and ∇ f D l p ψ l " 0.
Coercivity of pD l u q lPN . It holds

sup lPN max vPX 0 D l u zt0u }Π D l u v} L 2 pΩq d `} v D l u } L 4 pΓ q }v} D l u ă `8. (6) 
with the assumptions we made on the data, we obtain the following estimate for the solutions of (5): there is a real number C ą 0 depending on the data such that

ż T 0 ż Ω δ t pφ D U m pΠ m Dp p c qq dxdt `ż T 0 ż Γ δ t pd f,Du U f pΠ f Dp p c qq dxdt `ż T 0 ż Ω δ t ˆ1 2 pσ Du puq : ε Du puqq `1 2M pΠ m Dp p E m q 2 ˙dxdt `ÿ αPtw,nwu ż T 0 ż Ω |∇ m Dp p α | 2 dxdt `ÿ αPtw,nwu ż T 0 ż Γ d 3 f,Du |∇ f Dp p α | 2 dxdt ď C ¨ż T 0 ż Ω f ¨δt Π Du u dxdt `ÿ αPtw,nwu ż T 0 ż Ω h α m Π m Dp p α dxdt `ÿ αPtw,nwu ż T 0 ż Γ h α f Π f Dp p α dxdt '. (7) 
The right-hand side of this inequality is made of positive terms (up to initial conditions, that appear in the telescopic sums corresponding to the first three terms), with enough quadratic growth in the unknowns to compensate the linear dependency of the right-hand side on these unknowns. The chain-rule estimates and cut-off properties of pD l p q lPN are used to prove estimates on the time-translates of Π m D l p S α m pp l c q (which are crucial in establishing the strong convergence of this quantity). These estimates require to separate the matrix and fracture components (hence the need for using cut-off test functions in the scheme), and is based on a dual estimate that requires to use S α m pp l c q as a test function and estimate its gradient (which follows from gradient estimates on p l c and the chain-rule estimates).

X 0

 0 Du and • a symmetric gradient operator ε Du : X 0 Du Ñ L 2 pΩ, S d pRqq, • a displacement function reconstruction operator Π Du : X 0 Du Ñ L 2 pΩq d , • a normal jump function reconstruction operator ¨ Du : X 0 Du Ñ L 4 pΓ q, where S d pRq is the vector space of real symmetric matrices of size d. Let us define the divergence operator div Du p¨q " Tracepε Du p¨qq, the stress tensor operator σ Du pvq " 2µε Du pvq `λdiv Du pvqI, and the fracture width d f,Du " ´ u Du . It is assumed that }v} Du " }ε Du pvq} L 2 pΩq is a norm on X 0 Du .
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Consistency of pD l u q lPN . For all ū P U 0 , it holds lim lÑ`8 S D l u pūq " 0 where

Limit Conformity of pD l u q lPN . Let C 8 Γ pΩzΓ , S d pRqq denote the vector space of smooth functions σpxq from ΩzΓ to S d pRq defined as above, and such that σ `pxqn ``σ ´pxqn ´" 0 and pσ `pxqn `qˆn `" 0 for a.e. x P Γ . For all σ P C 8 Γ pΩzΓ , S d pRqq, it holds lim lÑ`8 W D l u pσq " 0 where

Compactness of pD l u q lPN . For any sequence pv l q lPN with v l P X 0 D l u for all l P N such that sup lPN }v l } D l u ă `8, the sequences pΠ D l u v l q lPN and p v l D l u q lPN are relatively compact in L 2 pΩq d and in L s pΓ q for all s ă 4, respectively.

We can now state the convergence result.

Theorem 1. Let t l n , n " 0, ¨¨¨, N l and l P N, be a sequence of time discretizations such that lim lÑ`8 max n"0,¨¨¨,N l ´1pt l n`1 ´tl n q " 0. Let 0 ă φ m,min ď φ m,max ă `8 and assume that, for each l P N, the gradient scheme (5a)-(5b) has a solution p α l P pX 0 D l p q N `1, α P tnw, wu, u l P pX 0 D l u q N `1 such that (i) d f,D l u pt, xq ě d 0 pxq for a.e. pt, xq P p0, T q ˆΓ , (ii) φ m,min ď φ D l pt, xq ď φ m,max for a.e. pt, xq P p0, T q ˆΩ. Then, there exist pα P L 2 p0, T ; V 0 q, α P tnw, wu, and ū P L 8 p0, T ; U 0 q solutions of the weak formulation (3)-( 4) such that for α P tnw, wu and up to a subsequence

The proof of Theorem 1 hinges on the following steps:

• Inferring energy estimates by using suitable test functions;

• Obtaining weak estimates on time derivatives;

• Using the discontinuous Ascoli-Arzelà compactness theorem [START_REF] Droniou | The gradient discretisation method[END_REF]Theorem C.11] to prove convergences; • Identifying the limit fields.

We report here the energy estimate satisfied by the discrete unknowns. For brevity, let δt pn`1 2 q " t n`1 ´tn and vptq " vpt ´δt pn`1 2 q q @t P pt n , t n`1 s for a piecewise constant scalar or vector function v on r0, T s. Upon choosing ϕ α " p α in (5a) and v " δ t uptq in (5b), using the fact that δ t puvqptq " ûptqδ t vptq `vptqδ t uptq, summing the corresponding equations, and using the closure equations (5c) along