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The Gradient Discretisation Method for
Two-phase Discrete Fracture Matrix Models
in Deformable Porous Media

F. Bonaldi, K. Brenner, J. Droniou, R. Masson

Abstract We consider a two-phase Darcy flow in a fractured porous medium con-
sisting in a matrix flow coupled with a tangential flow in the fractures, described as
a network of planar surfaces. This flow model is also coupled with the mechanical
deformation of the matrix assuming that the fractures are open and filled by the
fluids, as well as small deformations and a linear elastic constitutive law. The model
is discretized using the gradient discretization method [3], which covers a large class
of conforming and non conforming discretizations. This framework allows a generic
convergence analysis of the coupled model using a combination of discrete func-
tional tools. Here, we describe the model together with its numerical discretisation,
and we state the convergence result, whose proof will be detailed in a forthcoming
paper. This is, to our knowledge, the first convergence result for this type of models
taking into account two-phase flows and the nonlinear poro-mechanical coupling.
Previous related works consider a linear approximation obtained for a single phase
flow by freezing the fracture conductivity [4].

Key words: poromechanics, discrete fracture matrix models, two-phase Darcy
flows, Gradient Discretization, convergence analysis

MSC (2010): 65M12, 76S05, 74B10

1 Continuous model

We consider a bounded polytopal domain Ω of Rd, d P t2, 3u, partitioned into a
fracture domain Γ and a matrix domain ΩzΓ . The network of fractures is Γ “
Ť

iPI Γi, where each Γi is planar and has therefore two sides denoted by ˘ in the
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matrix domain, with unit normal vectors n˘ oriented outward to the sides ˘. We
denote by γ the trace operator on Γ for functions in H1pΩq and by J¨K the normal
trace jump operator on Γ for functions in HdivpΩzΓ q.

We denote by ∇τ the tangential gradient and by divτ the tangential divergence
on the fracture network Γ . The symmetric gradient operator � is defined such that
�pvq “ 1

2 p∇v `tp∇vqq for a given vector field v.
Let us fix a continuous function d0 : Γ Ñ p0,`8q with zero limits at BΓ zpBΓ X

BΩq (i.e. the tips of Γ ) and stricly positive limits at BΓ X BΩ.
Let us introduce the following function spaces: U0 “ tv̄ P pH

1pΩzΓ qqd | γBΩv̄ “
0 on BΩu for the displacement vector, and V0 “ tv̄ P H

1
0 pΩq | γv̄ P H

1
d0
pΓ qu for each

phase pressure, where the space H1
d0
pΓ q is made of functions vΓ in L2pΓ q, such that

d
3{2
0 ∇τvΓ is in L2pΓ q, whose traces are continuous at fracture intersections BΓiXBΓj

and vanish on the boundary BΓ X BΩ.
The matrix and fracture rock types are denoted by the indices rt “ m and rt “ f ,

respectively, and the non-wetting and wetting phases by the superscripts α “ nw
and α “ w, respectively.

Fig. 1 Example of a 2D domain
Ω with its fracture network Γ , the
unit normal vectors n˘ at Γ , the
phase pressures p̄α in the matrix and
γp̄α in the fracture network, the dis-
placement vector field ū, the matrix
Darcy velocities qαm and the fracture
tangential Darcy velocities qαf inte-

grated along the fracture.

The PDEs model reads: find the phase pressures p̄α, α P tnw,wu, and the dis-
placement vector field ū, such that p̄c “ p̄nw ´ p̄w and, for α P tnw,wu,
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Bt
`

φ̄mS
α
mpp̄cq

˘

` div pqαmq “ hαm on p0, T q ˆΩzΓ ,
qαm “ ´η

α
mpS

α
mpp̄cqqKm∇p̄α on p0, T q ˆΩzΓ ,

Bt

´

d̄fS
α
f pγp̄cq

¯

` divτ pq
α
f q ´ JqαmK “ hαf on p0, T q ˆ Γ,

qαf “ ´η
α
f pS

α
f pγp̄cqqp

1

12
d̄3
f q∇τγp̄α on p0, T q ˆ Γ,

´div
´

�pūq ´ b p̄EmI
¯

“ f on p0, T q ˆΩzΓ

�pūq “ 2µ �pūq ` λ divpūq I on p0, T q ˆΩzΓ ,

(1)

with
$

’

&

’

%

Btφ̄m “ b divBtū`
1

M
Btp̄

E
m on p0, T q ˆΩzΓ ,

p�pūq ´ b p̄EmIqn˘ “ ´p̄Ef n˘ on p0, T q ˆ Γ,

d̄f “ ´JūK on p0, T q ˆ Γ,

(2)

and the initial conditions

p̄α|t“0 “ p̄α0 , φ̄m|t“0 “ φ̄0
m.

Here, the equivalent pressures pEm and pEf are defined, following [2], by

p̄Em “
ÿ

αPtnw,wu

p̄α Sαmpp̄cq ´ Umpp̄cq, p̄Ef “
ÿ

αPtnw,wu

γp̄α Sαf pγp̄cq ´ Uf pγp̄cq,
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where Urtpp̄cq “
şp̄c
0
q pSnw

rt q
1
pqqdq is the capillary energy density function for each

rock type rt P tm, fu. This is a key choice to obtain the energy estimates which are
the starting point for the convergence analysis.

We make the following main assumptions on the data:

• For each phase α P tnw,wu and rock type rt P tm, fu, the mobility function ηαrt
is continuous non-decreasing and there exist 0 ă ηαrt,min ď ηαrt,max ă `8 such
that ηαrt,min ď ηαrtpsq ď ηαrt,max for all s P r0, 1s.

• For each rock type rt P tm, fu, Snw
rt is a non-decreasing Lipschitz continuous

function with values in r0, 1s, and Sw
rt “ 1´ Snw

rt .
• b P r0, 1s is the Biot coefficient, M ą 0 is the Biot modulus, and λ ą 0, µ ą 0

are the Lamé coefficients. These coefficients are assumed to be constant for
simplicity.

• There exist 0 ă φ0
m,min ď φ0

m,max ă 1 such that φ0
m,min ď φ̄0

mpxq ď φ0
m,max for

a.e. x P Ω.
• The initial fracture aperture satisfies d̄0

f pt,xq ě d0pxq for a.e. pt,xq P p0, T qˆΓ .
• The permeability tensor Km is symmetric and uniformly elliptic on Ω.

Definition 1 (Weak solution of the model). A weak solution of the model
for f P L2pΩqd, hαm P L2pp0, T q ˆ Ωq, and hαf P L

2pp0, T q ˆ Γ q, is given by p̄α P

L2p0, T ;V0q, α P tnw,wu, and ū P L8p0, T ; U0q, such that for any α P tnw,wu,

d̄
3{2
f ∇τγp̄α P L2pp0, T q ˆ Γ qqd and, for all ϕ̄α P C8c pr0, T q ˆ Ωq and all smooth

functions v̄ : r0, T s ˆ pΩzΓ q Ñ Rd vanishing on BΩ and having finite limits on each
side of Γ ,
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ż T

0

ż

Ω

´

´φ̄mS
α
mpp̄cqBtϕ̄

α ` ηαmpS
α
mpp̄cqqKm∇p̄α ¨∇ϕ̄α

¯

dxdt

`

ż T

0

ż

Γ

´

´d̄fS
α
f pγp̄cqBtγϕ̄

α ` ηαf pS
α
f pγp̄cqq

d̄ 3
f

12
∇τγp̄α ¨∇τγϕ̄α

¯

dσpxqdt

´

ż

Ω

φ̄0
mS

α
mpp̄

0
cqϕ̄

αp0, ¨qdx´

ż

Γ

d̄0
fS

α
f pγp̄

0
cqγϕ̄

αp0, ¨qdσpxq

“

ż T

0

ż

Ω

hαmϕ̄
αdxdt`

ż T

0

ż

Γ

hαf γϕ̄
αdσpxqdt,

(3)

ż T

0

ż

Ω

´

�pūq : �pv̄q ´ bp̄Emdivpv̄q
¯

dxdt`

ż T

0

ż

Γ

p̄Ef Jv̄Kdσpxqdt

“

ż T

0

ż

Ω

f ¨ v̄dxdt,

(4)

with p̄c “ p̄nw ´ p̄w, d̄f “ ´JūK, φ̄m ´ φ̄0
m “ b divpū ´ ū0q `

1

M
pp̄Em ´ p̄E,0m q,

d̄0
f “ ´Jū0K, where ū0 is the solution of (4) without the time integral and using

the initial equivalent pressures p̄E,0m and p̄E,0f obtained from the initial pressures
p̄α0 P V0, α P tnw,wu.

Remark 1 (Regularity of the displacement field). Notice that ū P L8p0, T ; U0q im-
plies d̄f “ ´JūK P L8p0, T ;L4pΓ qq. All the integrals above are thus well-defined.

2 The gradient scheme

The gradient discretization for the mechanics is defined by the vector space of d.o.f.
X0

Du
and
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• a symmetric gradient operator �Du : X0
Du
Ñ L2pΩ,SdpRqq,

• a displacement function reconstruction operator ΠDu : X0
Du
Ñ L2pΩqd,

• a normal jump function reconstruction operator J¨KDu : X0
Du
Ñ L4pΓ q,

where SdpRq is the vector space of real symmetric matrices of size d. Let us define
the divergence operator divDup¨q “ Tracep�Dup¨qq, the stress tensor operator

�Dupvq “ 2µ�Dupvq ` λdivDupvqI,

and the fracture width df,Du “ ´JuKDu . It is assumed that }v}Du “ }�Dupvq}L2pΩq

is a norm on X0
Du

.

The gradient discretization (GD) of the Darcy continuous pressure model is in-
troduced in [1] and defined by the vector space of d.o.f. X0

Dp and

• two discrete gradient operators on the matrix and fracture domains

∇mDp : X0
Dp Ñ L8pΩqd, ∇fDp : X0

Dp Ñ L8pΓ qd´1;

• two function reconstruction operators on the matrix and fracture domains

Πm
Dp : X0

Dp Ñ L8pΩq, Πf
Dp : X0

Dp Ñ L8pΓ q,

which are piecewise constant [3, Definition 2.12].

A consequence of the piecewise-constant property is that, for any g : R Ñ R and
v P X0

Dp , we can define gpvq P X0
Dp component-wise and we have Πρ

Dpgpvq “

gpΠρ
Dpvq for ρ P tm, fu. Fixing a continuous function d0 : Γ Ñ p0,`8q with

zero limits at the tips of Γ , the vector space X0
Dp is endowed with }v}Dp “

}∇mDpv}L2pΩqd ` }d
3
2
0∇

f
Dpv}L2pΓ qd´1 , assumed to define a norm on X0

Dp .

This spatial GD is extended into a space-time GD by complementing it with

• a discretisation 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T of the time interval r0, T s;
• interpolators PDp : V0 Ñ X0

Dp and PmDp : L2pΩq Ñ X0
Dp of initial conditions.

The spatial operators are extended into space-time operators as follows. Let χ
represent either p or u. If w “ pwnq

N
n“0 P pX

0
Dχq

N`1, and ΨDχ is a spatial GDM
operator, its space-time extension is defined by

ΨDχp0, ¨q “ ΨDχpw0q and, @n P t0, . . . , N´1u , @t P ptn, tn`1s, ΨDχpt, ¨q “ ΨDχwn`1.

where, for convenience, the same notation is kept for the spatial and space-time op-
erators. We also define the discrete time derivative as follows: for f : r0, T s Ñ L1pΩq
piecewise constant on the time discretisation, with fn “ f|ptn´1,tns, and using the

same n and t as above, δtfptq “
fn`1´fn
tn`1´tn

.

The gradient scheme for (1) consists in writing the weak formulation (3)-(4) with
continuous spaces and operators substituted by their discrete counterparts, after a
formal integration by part: find pα P pX0

Dpq
N`1, α P tnw,wu, and u P pX0

Du
qN`1,

such that for all ϕα P pX0
Dpq

N`1, v P pX0
Du
qN`1 and α P tnw,wu,
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ż T

0

ż

Ω

´

δt

´

φDΠ
m
Dps

α
m

¯

Πm
Dpϕ

α ` ηαmpΠ
m
Dps

α
mqKm∇mDpp

α ¨∇mDpϕ
α
¯

dxdt

`

ż T

0

ż

Γ

δt

´

df,DuΠ
f
Dps

α
f

¯

Πf
Dpϕ

αdσpxq

`

ż T

0

ż

Γ

ηαf pΠ
f
Dps

α
f q
d3
f,Du

12
∇fDpp

α ¨∇fDpϕ
αdxdt

“

ż T

0

ż

Ω

hαmΠ
m
Dpϕ

αdxdt`

ż T

0

ż

Γ

hαfΠ
f
Dpϕ

αdσpxqdt,

(5a)

ż T

0

ż

Ω

´

�Dupuq : �Dupvq ´ bpΠ
m
Dpp

E
mqdivDupvq

¯

dxdt

`

ż T

0

ż

Γ

pΠf
Dpp

E
f qJvKDudσpxqdt “

ż T

0

ż

Ω

f ¨ΠDuvdxdt,

(5b)

with the closure equations

$

’

’

’

&

’

’

’

%

pc “ pnw ´ pw, sαm “ Sαmppcq, sαf “ Sαf ppcq,

pEm “
ÿ

αPtnw,wu

pαsαm ´ Umppcq, pEf “
ÿ

αPtnw,wu

pαsαf ´ Uf ppcq,

φD ´Π
m
Dp φ̄

0
m “ b divDupu´ u0q ` 1

MΠm
Dppp

E
m ´ p

E,0
m q.

(5c)

The initial conditions are given by pα0 “ PDp p̄
α
0 (α P tnw,wu), φ0

m “ PmDp φ̄
0, and the

initial displacement u0 is the solution of (5b) with the equivalent pressures obtained
from the initial pressures ppα0 qαPtnw,wu.

3 Convergence result

Let pDlpqlPN and pDluqlPN be sequences of GDs. We state here the assumptions on
these sequences which ensure that the solutions to the corresponding schemes con-
verge. Most of these assumptions are adaptation of classical GDM assumptions [3],
except for the chain-rule and cut-off properties, whose role is briefly discussed at
the end of the paper; we note that all these assumptions hold for standard discreti-
sations used in porous media flows.
Coercivity, consistency and limit-conformity of pDlpqlPN: these propreties are
omitted since they are similar to those in [1], the only change being the use in the
definition of consistency of the Lr-norm with r ą 8, instead of the L2-norm, for
the gradient in the fractures, and the use of fracture fluxes qf compactly supported
away from the fracture tips in the definition of the limit-conformity.

Chain rule estimate on pDlpqlPN: for any Lipschitz-continuous function F : RÑ
R, there is CF ě 0 such that, for all l P N and v P X0

Dlp
, }∇mDlpF pvq}L2pΩqd ď

CF }∇mDlpv}L2pΩqd .

Cut-off property of pDlpqlPN: for any compact set K Ă ΩzΓ and l P N, there exists

ψl P XDlp such that, for l large enough and C ě 0 not depending on l: Πm
Dlp
ψl ě 0

on Ω; Πm
Dlp
ψl ě 1 on K; }∇mDlpψ

l}L2pΩqd ď C; Πf
Dlp
ψl “ 0; and ∇fDlpψ

l “ 0.

Coercivity of pDluqlPN. It holds

sup
lPN

max
vPX0

Dlu
zt0u

}ΠDluv}L2pΩqd ` }JvKDlu}L4pΓ q

}v}Dlu
ă `8. (6)
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Consistency of pDluqlPN. For all ū P U0, it holds limlÑ`8 SDlupūq “ 0 where

SDlupūq “ min
vPX0

Dlu

”

}�Dlupvq ´ �pūq}L2pΩ,SdpRqq

` }ΠDluv ´ ū}L2pΩqd ` }JvKDlu ´ JūK}L4pΓ q

ı

.

Limit Conformity of pDluqlPN. Let C8Γ pΩzΓ ,SdpRqq denote the vector space
of smooth functions �pxq from ΩzΓ to SdpRq defined as above, and such that
�`pxqn` ` �´pxqn´ “ 0 and p�`pxqn`qˆn` “ 0 for a.e. x P Γ . For all
� P C8Γ pΩzΓ ,SdpRqq, it holds limlÑ`8WDlup�q “ 0 where

WDlup�q “ max
vPX0

Dlu
zt0u

1

}v}Dlu

”

ż

Ω

´

� : �Dlupvq `ΠDluv divp�q
¯

dx

´

ż

Γ

´

p�n`q ¨ n`JvKDludσpxq
ı

.

Compactness of pDluqlPN. For any sequence pvlqlPN with vl P X0
Dlu

for all l P N such

that suplPN }v
l}Dlu ă `8, the sequences pΠDluvlqlPN and pJvlKDluqlPN are relatively

compact in L2pΩqd and in LspΓ q for all s ă 4, respectively.

We can now state the convergence result.

Theorem 1. Let tln, n “ 0, ¨ ¨ ¨ , N l and l P N, be a sequence of time discretizations
such that limlÑ`8maxn“0,¨¨¨ ,N l´1pt

l
n`1´ t

l
nq “ 0. Let 0 ă φm,min ď φm,max ă `8

and assume that, for each l P N, the gradient scheme (5a)-(5b) has a solution
pαl P pX

0
Dlp
qN`1, α P tnw,wu, ul P pX0

Dlu
qN`1 such that

(i) df,Dlupt,xq ě d0pxq for a.e. pt,xq P p0, T q ˆ Γ ,
(ii) φm,min ď φDlpt,xq ď φm,max for a.e. pt,xq P p0, T q ˆΩ.

Then, there exist p̄α P L2p0, T ;V0q, α P tnw,wu, and ū P L8p0, T ; U0q solutions of
the weak formulation (3)-(4) such that for α P tnw,wu and up to a subsequence

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Πm
Dlp
pαl á p̄α in L2p0, T ;L2pΩqq,

Πf
Dlp
pαl á γp̄α in L2p0, T ;L2pΓ qq,

ΠDluul á ū in L8p0, T ;L2pΩqdq weak ‹,
df,Dlu Ñ d̄f in L8p0, T ;LppΓ qq for 2 ď p ă 4,
φDl á φ̄m in L8p0, T ;L2pΩqq weak ‹,
Πm
Dlp
Sαmpp

l
cq Ñ Sαmpp̄cq in L2p0, T ;L2pΩqq,

Πf
Dlp
Sαf pp

l
cq Ñ Sαf pγp̄cq in L2p0, T ;L2pΓ qq.

The proof of Theorem 1 hinges on the following steps:

• Inferring energy estimates by using suitable test functions;
• Obtaining weak estimates on time derivatives;
• Using the discontinuous Ascoli–Arzelà compactness theorem [3, Theorem C.11]

to prove convergences;
• Identifying the limit fields.

We report here the energy estimate satisfied by the discrete unknowns. For
brevity, let δtpn`

1
2 q “ tn`1 ´ tn and v̂ptq “ vpt ´ δtpn`

1
2 qq @t P ptn, tn`1s for a

piecewise constant scalar or vector function v on r0, T s. Upon choosing ϕα “ pα in
(5a) and v “ δtuptq in (5b), using the fact that δtpuvqptq “ ûptqδtvptq ` vptqδtuptq,
summing the corresponding equations, and using the closure equations (5c) along
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with the assumptions we made on the data, we obtain the following estimate for
the solutions of (5): there is a real number C ą 0 depending on the data such that

ż T

0

ż

Ω

δtpφDUmpΠ
m
Dppcqq dxdt`

ż T

0

ż

Γ

δtpdf,DuUf pΠ
f
Dppcqq dxdt

`

ż T

0

ż

Ω

δt

ˆ

1

2
p�Dupuq : �Dupuqq `

1

2M
pΠm

Dpp
E
mq

2

˙

dxdt

`
ÿ

αPtw,nwu

ż T

0

ż

Ω

|∇mDpp
α|2 dxdt`

ÿ

αPtw,nwu

ż T

0

ż

Γ

d3
f,Du

|∇fDpp
α|2 dxdt

ď C

¨

˝

ż T

0

ż

Ω

f ¨ δtΠDuu dxdt`
ÿ

αPtw,nwu

ż T

0

ż

Ω

hαmΠ
m
Dpp

α dxdt

`
ÿ

αPtw,nwu

ż T

0

ż

Γ

hαfΠ
f
Dpp

α dxdt

˛

‚.

(7)

The right-hand side of this inequality is made of positive terms (up to initial con-
ditions, that appear in the telescopic sums corresponding to the first three terms),
with enough quadratic growth in the unknowns to compensate the linear depen-
dency of the right-hand side on these unknowns.

The chain-rule estimates and cut-off properties of pDlpqlPN are used to prove

estimates on the time-translates of Πm
Dlp
Sαmpp

l
cq (which are crucial in establishing

the strong convergence of this quantity). These estimates require to separate the
matrix and fracture components (hence the need for using cut-off test functions in
the scheme), and is based on a dual estimate that requires to use Sαmpp

l
cq as a test

function and estimate its gradient (which follows from gradient estimates on plc and
the chain-rule estimates).
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