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The Gradient Discretisation Method for
Two-phase Discrete Fracture Matrix Models
in Deformable Porous Media

F. Bonaldi, K. Brenner, J. Droniou, R. Masson

Abstract We consider a two-phase Darcy flow in a fractured porous medium con-
sisting in a matrix flow coupled with a tangential flow in the fractures, described as
a network of planar surfaces. This flow model is also coupled with the mechanical
deformation of the matrix assuming that the fractures are open and filled by the
fluids, as well as small deformations and a linear elastic constitutive law. The model
is discretized using the gradient discretization method [3], which covers a large class
of conforming and non conforming discretizations. This framework allows a generic
convergence analysis of the coupled model using a combination of discrete func-
tional tools. Here, we describe the model together with its numerical discretisation,
and we state the convergence result, whose proof will be detailed in a forthcoming
paper. This is, to our knowledge, the first convergence result for this type of models
taking into account two-phase flows and the nonlinear poro-mechanical coupling.
Previous related works consider a linear approximation obtained for a single phase
flow by freezing the fracture conductivity [4].

Key words: poromechanics, discrete fracture matrix models, two-phase Darcy
flows, Gradient Discretization, convergence analysis
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1 Continuous model

We consider a bounded polytopal domain §2 of Re, d e {2,3}, partitioned into a
fracture domain I" and a matrix domain (2\I". The network of fractures is I' =
Uies I, where each I is planar and has therefore two sides denoted by + in the
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matrix domain, with unit normal vectors n* oriented outward to the sides +. We

denote by ~ the trace operator on I" for functions in H'(£2) and by [-] the normal
trace jump operator on I" for functions in Hgi, (2\I').

We denote by V. the tangential gradient and by div, the tangential divergence
on the fracture network I'. The symmetric gradient operator is defined such that

(v) = 3(Vv +1(Vv)) for a given vector field v.

Let us fix a continuous function dy : I' — (0, +00) with zero limits at 0I'\(0I" N
012) (i.e. the tips of I') and stricly positive limits at 0I" n 0f2.

Let us introduce the following function spaces: Ug = {v € (H'({\I'))? | y00V =
0 on 012} for the displacement vector, and Vy = {v € Hy(R2) | o € Hj (I")} for each
phase pressure, where the space Hj (I') is made of functions vp in L?(I"), such that

dg/ V., v is in L2(I"), whose traces are continuous at fracture intersections 015 N oI ’
and vanish on the boundary 0I" n 0f2.

The matrix and fracture rock types are denoted by the indices rt = m and rt = f,
respectively, and the non-wetting and wetting phases by the superscripts a = nw
and o = w, respectively.

Fig. 1 Example of a 2D domain
2 with its fracture network I, the
unit normal vectors nT at I', the
phase pressures p® in the matrix and
vp® in the fracture network, the dis-
placement vector field u, the matrix
Darcy velocities q%, and the fracture
tangential Darcy velocities q?‘ inte-

grated along the fracture.

The PDEs model reads: find the phase pressures p%, o € {nw,w}, and the dis-
placement vector field u, such that p. = p™ — p“ and, for a € {nw, w},

01 (dmSe(Pe)) + div (q2,) = A, on (0,T) x T,

qy, = _nﬁz(‘sﬁ(ﬁc))Kmvﬁa on (0,T) x NI,

2, (st;*(vpc)) + div,(a2) — [q%] = 9 on (0,T) x T,

af = (PP AV on (0.7) x T, .

—div( (@) — b pﬁﬂ) —f on (0,T) x AT

(@) =2p (@) +Adiv(a) I on (0,T) x \I',
with

Otpm = b divo, i + %atpf; on (0,T) x \T,
( (@) —bpEDnt = —pFn* on (0,T) x I, (2)
dy = —[qa] on (0,T) x I,

and the initial conditions
P =0 = D5, bmli—o = 02,

Here, the equivalent pressures pZ and pJIZJ are defined, following [2], by

ph= > PSuBe)—Un(), D7 = Y. 70" SF(vpe) — Us(vpe),

ac{nw,w} ae{nw,w}
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where Uy (D) = SO( (S%)' (q)dq is the capillary energy density function for each
rock type rt € {m, f}. This is a key choice to obtain the energy estimates which are
the starting point for the convergence analysis.

We make the following main assumptions on the data:

e For each phase o € {nw, w} and rock type rt € {m, f}, the mobility function n%
is continuous non-decreasing and there exist 0 < 77 i < M max < +00 such
that ngc,min < 773(8) < nro::,max fOI' au Ss€ [0? 1]

e For each rock type rt € {m, f}, S&¥ is a non-decreasing Lipschitz continuous
function with values in [0,1], and S =1 — SV

e b e [0,1] is the Biot coefficient, M > 0 is the Biot modulus, and A > 0, © > 0
are the Lamé coefficients. These coeflicients are assumed to be constant for

simplicity. -
e There exist 0 < ¢, .5 < G0, mae < 1 such that ¢f), . < @9 (x) < @), 0, for
a.e. X € {2.

e The initial fracture aperture satisfies ci?c (t,x) = do(x) for a.e. (t,x) € (0,T) x I.
e The permeability tensor K, is symmetric and uniformly elliptic on (2.

Definition 1 (Weak solution of the model). A weak solution of the model
for fe L2(2)¢, he e L2((0,T) x £2), and h$ € L2((0,T) x I'), is given by p® €
L?(0,T; V), a € {nw,w}, and @ € L®(0,T;Uy), such that for any a € {nw,w},
CZ;’/QVTW?@ e L2((0,T) x I'))4 and, for all g@ € CZ([0,T) x £2) and all smooth
functions v : [0, 7] x (\I') — R? vanishing on 02 and having finite limits on each
side of I,

T
||| (Fonsnmaoe + s, vie - Ve ) ixd:
0
73

T _ d
+ f f ( dySG (vpe) 0y @™ +n?(5?(vﬁc))1—’;vrvﬁ“ : Vw@“)dU(X)dt

f 30, 5% ()2 (0, >dx—f 853 (vp2)r5™ (0, )do(x)

=J J.Q gp"‘dxdt—i—f j $yp“do(x)dt,
0

f f ) — bpE div(v dxdt—i—f pr [v]do(x)dt
:L fgfw‘rdxdt,

3)

(4)

S _ T T " . 1 _
with p. = p"™V — pv, dy = —[a], ém — 4%, = b div(a — a°) + M(pm — p0y,
J?e = —[u’], where @ is the solution of without the time integral and using

the initial equivalent pressures pZ° and pf’o obtained from the initial pressures
p§ € Vo, a € {nw, w}.

Remark 1 (Regularity of the displacement field). Notice that @ e L*(0,T;Uy) im-
plies dy = —[a] € L*(0,T; L*(I")). All the integrals above are thus well-defined.
2 The gradient scheme

The gradient discretization for the mechanics is defined by the vector space of d.o.f.
X2 and
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e a symmetric gradient operator p, : X3, — L*(£2,84(R)),
e a displacement function reconstruction operator Ilp, : X§, — L?(£2)%,
e a normal jump function reconstruction operator [-Jp, : X3, — L*(I),

where Sg(R) is the vector space of real symmetric matrices of size d. Let us define
the divergence operator divp,(-) = Trace( p,(-)), the stress tensor operator

Du (V) = 21 p,(v) + Adivp, (V)L
and the fracture width dyp, = —[u]p,. It is assumed that |v|p, = | p,(V)|z2(2)
is a norm on X3, .
The gradient discretization (GD) of the Darcy continuous pressure model is in-
troduced in [I] and defined by the vector space of d.o.f. X%p and

e two discrete gradient operators on the matrix and fracture domains
. vO d I . x0 d-1,
vgp : Xp, — L*(02)°, VDP : Xp, — L*(M)*
e two function reconstruction operators on the matrix and fracture domains
. Y0 . yO0
Hglp : XDP — L*(02), H;;p 'XDP — L7(I),

which are piecewise constant [3, Definition 2.12].

A consequence of the piecewise-constant property is that, for any g : R — R and
v € X%p, we can define g(v) € X%p component-wise and we have H%pg(v) =

g(H%pv) for p € {m, f}. Fixing a continuous function dy : I' — (0,+00) with
zero limits at the tips of I', the vector space X%p is endowed with |v|p, =

3
IVp, vlL2(2)a + [d§ V{DP'UHL2(F)¢1—1, assumed to define a norm on X%p.

This spatial GD is extended into a space-time GD by complementing it with

e a discretisation 0 = tg < t; < -+ <ty = T of the time interval [0,T7];
e interpolators Pp : Vo — X%p and Pp’ L*(2) — X%p of initial conditions.

The spatial operators are extended into space-time operators as follows. Let x
represent either p or w. If w = (w,)N_, € (X%X)N+1, and ¥p_ is a spatial GDM
operator, its space-time extension is defined by

WDX(O, ) = pr(wo) and7 Vn € {O7 e ,N—l}, YVt e (tn7tn+1]7 !pDX (t, ) = Lppanﬂ.

where, for convenience, the same notation is kept for the spatial and space-time op-
erators. We also define the discrete time derivative as follows: for f : [0,T] — L'({2)

piecewise constant on the time discretisation, with f, = f,_,.+,], and using the

— fn+1_fn,

same n and t as above, 0, f(t) = 5 el

The gradient scheme for consists in writing the weak formulation — with
continuous spaces and operators substituted by their discrete counterparts, after a
formal integration by part: find p* € (X%p)NH7 o€ {nw,w}, and u € (X3 )N+1,
such that for all ¢ € (X%p)NH, ve (X3 )Vt and o € {nw, w},
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T
L L (50 (I8, 55, ) 11, & + 055 (115, 55K VI, 5 - VI o )t

T
w || 8i(drotrh, 55) 1, do)
0] r

T d3 (5a)
+J J n?(ﬂéps?) fl’g“ V{)ppa-Vépgoadxdt
0 r
T T
_ f J he g w“dxdt—i—J J WYIT), o do(x)dt,
0 2 0 r
T
f f (2. (W) s Do (v) = BUTE, pE)dive, (v) ) dxdt

T T
+J J(H;; p?)[[v]]puda(x)dt:f f £ IIp vdxdt,
o Jr ? 0 Jo

with the closure equations

nw

pe=p" —p%, s =55(c), 5§ =SFpc),
ph= >, Psm—Unpe), pf= >, p*s§—Us(pe), (5¢)

ag{nw,w} ac{nw,w}
¢p — I ¢, = b divp, (u =) + 115 (pf, — pi°).

The initial conditions are given by p§ = Pp pfy (o € {nw,w}), ¢), = Pp ¢°, and the
initial displacement u? is the solution of (5b]) with the equivalent pressures obtained
from the initial pressures (p§)aefnw,w}-

3 Convergence result

Let (Dé)zeN and (D),)en be sequences of GDs. We state here the assumptions on
these sequences which ensure that the solutions to the corresponding schemes con-
verge. Most of these assumptions are adaptation of classical GDM assumptions [3],
except for the chain-rule and cut-off properties, whose role is briefly discussed at
the end of the paper; we note that all these assumptions hold for standard discreti-
sations used in porous media flows.

Coercivity, consistency and limit-conformity of (Dé)leN: these propreties are
omitted since they are similar to those in [I], the only change being the use in the
definition of consistency of the L"-norm with » > 8, instead of the L2-norm, for
the gradient in the fractures, and the use of fracture fluxes q; compactly supported
away from the fracture tips in the definition of the limit-conformity.

Chain rule estimate on (DL)IGN: for any Lipschitz-continuous function F : R —

R, there is Cp > 0 such that, for all I € N and v € X2, [V F(0)]12(0) <

CFHV%LLUHH(Q)L
Cut-off property of (Di})leN: for any compact set K < 2\I" and [ € N, there exists
P e Xpr such that, for I large enough and C' > 0 not depending on [: Ugbéwl >0
on (2; Hgéwl >1on K; vaéleLQ(Q)d < Hééd)l = 0; and Vééwl =0.
Coercivity of (D!));en. It holds

HHD‘L,VHLQ(Q)d + ||[[V]]D{, 2

sup max < +0. (6)
leN vex9, \{0} Ivlpy,
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Consistency of (D.,)en. For all i € Uy, it holds lim;_, ;o Spi. (u) = 0 where

Spy () = min [| oy (v) = (@)]z20.5,0)
veXDl

+ [Ty v = 0l aoye + IvIoy — [lzsry |

Limit Conformity of (D))en. Let C¥(2\I',S4(R)) denote the vector space

of smooth functions (x) from 2\I' to Sy(R) defined as above, and such that
T(x)nT + “(x)n~ = 0 and ( T(x)nT)xn*t = 0 for a.e. x € I'. For all
€ CF(\T', 84(R)), it holds lim;, oo Wpi () = 0 where

Wpi ()= max ;[Lz( :op (V) + Ipy v div( ))dx

vex9,\(0} [v]py,
_f (( n+).n+[[v]]pluda(x)].
r

Compactness of (D.,)ey. For any sequence (v!);ey with vl € X2, for all € N such
that sup;ey ||V |p:, < 400, the sequences (HDLvl)leN and ([[VZHDQ)ZGN are relatively
compact in L(£2)? and in L*(I") for all s < 4, respectively.

We can now state the convergence result.

Theorem 1. Let tﬁl, n=20,---,N" and l e N, be a sequence of time discretizations
such that lim;_, | o max,,_ ... ,lel(tiwl —til) =0. Let 0 < ¢m,min < Pm,maz < +0
and assume that, for each | € N, the gradient scheme — has a solution
e XDZ ,ae{nw,w},ule X%f, such that

(i) dypi (t,x) = do(x) for a.e. (t,x) € (0,T) x I,

(1) Gmmin < Gpi(t,X) < Gmomaz for a.e. (£,x) € (0,T) x £2.

Then, there exist p* € L*(0,T;Vy), a € {nw,w}, and € L*(0,T;Ug) solutions of
the weak formulation — such that for a € {nw,w} and up to a subsequence
e Lpl — p% in L2(0,T; L*(£2)),
Hflpl —p® in L*(0,T; L*(T")),

HDz u! — @ in L*(0,T; L*(2)?) weak *,
dez de in L*(0,T; L (I’ )for2<p<4

)
ngz — ¢ in L*(0,T; L2( )) weak *,
2 S, (ph) — S5(52) in L2(0,T3 LX(2)),
(0,T;

H};LS;“( L) = S§(ype) in L*(0,T; LA(I)).

The proof of Theorem [1| hinges on the following steps:

e Inferring energy estimates by using suitable test functions;

e Obtaining weak estimates on time derivatives;

e Using the discontinuous Ascoli-Arzela compactness theorem [3, Theorem C.11]
to prove convergences;

o Identifying the limit fields.

We report here the energy estimate satisfied by the discrete unknowns. For
brevity, let 6t("+2) = t,.; —t, and 6(t) = v(t — 6t"F2)) Vt € (t,,tn11] for a
piecewise constant scalar or vector function v on [0, T]. Upon choosing ¢p® = p® in
(ba) and v = &,u(t) in (Bb), using the fact that & (uv)(t) = a(t)dev(t) + v(t)dpu(t),
summing the corresponding equations, and using the closure equations along
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with the assumptions we made on the data, we obtain the following estimate for
the solutions of : there is a real number C' > 0 depending on the data such that

T T

J f 6t(¢DUm(H$ppc))dxdt+f J(St(dﬁpuUf(H{)ppc))dxdt

0 2 0 r

+ij6 L pa(0): (W) + (1T pE)? ) dxdt

o 5 t B p. () p,(ua oM Dppm X

T T

+ ) JJ|V$pp“|2dxdt+ > de?}ypu|v7f3pp“|2dxdt
0 2 0 r

ae{w,nw} ae{w,nw}

T T
<C f f f-00Ip,udxdt+ ] J thnﬂgpp“dxdt
0 (9 0 2

ae{w,nw}

T
[e} f «
+ )] JOJFthDpp dxdt

ace{w,nw}

(7)

The right-hand side of this inequality is made of positive terms (up to initial con-
ditions, that appear in the telescopic sums corresponding to the first three terms),
with enough quadratic growth in the unknowns to compensate the linear depen-
dency of the right-hand side on these unknowns.

The chain-rule estimates and cut-off properties of (ng)leN are used to prove
estimates on the time-translates of ng’ S2 (pl) (which are crucial in establishing

the strong convergence of this quantity). These estimates require to separate the
matrix and fracture components (hence the need for using cut-off test functions in
the scheme), and is based on a dual estimate that requires to use S% (pl) as a test
function and estimate its gradient (which follows from gradient estimates on p!, and
the chain-rule estimates).
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