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a b s t r a c t

Coherent structures in turbulent shear flows take the form of packets of hairpin vortices reaching the
outer region of the boundary layer along with streaks of different size, going from the near-wall to the
outer region. The latter can be explained by the linear transient growth of the perturbations of the mean
turbulent profile. Whereas, the former are recently found to be optimally-growing only in the presence
of nonlinear effects, as ascertained for a turbulent channel flow at a low friction Reynolds number. The
present work aims at investigating whether large-scale streaks can be optimally-growing in a nonlinear
framework for a turbulent channel flow. Changing the friction Reynolds number from 180 to 590, the
nonlinear optimal perturbation tends towards more robust large-scale streaks and vortical structures of
smaller size. These streaks are generated by a coherent large-scale lift-up mechanism, acting as a source
term in the energy balance, inducing a positive turbulent kinetic energy production at the outer scale. This
indicates that the outer energy production peak arising between the two considered Reynolds numbers
can be associated with the growth of optimal large-scale streaks, which represent a robust feature of
turbulent channel flows.

1. Introduction

Turbulent flows are characterized by the chaotic dynamics of
fluctuations around a statistically steady mean flow. Most of the
efforts done in the last decades aimed at studying the turbu-
lent regime by analysing the flow statistics [1], which are well
characterized by well-defined and robust laws [2]. However, in
addition to this chaotic dynamics, turbulent flows also appear to be
populated by coherent structures, i.e. fluid motions highly coherent
in space and lasting for a reasonable time. Unlike the chaotic
fluctuations, which have a very low dynamical relevance, these
coherent structures carry a large part of the flow momentum [3].

The first evidence of organized motion in turbulent flows was
related to the presence of near-wall streaks [4], whose length and
time scales expressed in terms of viscous quantities are invari-
ant [5]. Several authors [6–8] have observed that the near-wall
motion is self-sustained [8] due to the feedback of the secondary
instability of the streaky structures onto the streamwise vortices
able to generate them. Part of this self-sustainedwall-cycle is based
on the lift-up mechanism [9], which is a nonmodal mechanism
able to induce O(1) streaks from vortices of O(1/Re). Such a linear,
nonmodal mechanism can be explained by the non-normality of
the Navier–Stokes operator linearized around the (statistically)
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steady mean flow, and can be easily retrieved by means of a
linear transient-growth analysis [10]. In fact, optimally-growing
perturbations can be employed to understand the features of the
coherent motion in transitional and turbulent flows. As explained
by Luchini [11], in highly non-normal shear flows, a randomly
chosen small-amplitude initial disturbancewill tend to produce an
output coinciding almost entirely with the optimal perturbation.
Extending this concept to the nonlinear framework, nonlinear
transient-growth analyses have been found to recover optimal
flow structures similar to those typically observed in transitional
and turbulent flows, containing all of the basic elements of the self-
sustainedwall-cycle. In fact, inmost of the cases, nonlinear optimal
perturbations of laminar base flows [12–14] and turbulent mean
ones [15] are composed of bent streaks and vortices, similar to the
structures constituting the wall cycle.

Apart from the (nowwell established) wall cycle, recent studies
have conjectured the existence of self-sustained Large Scale Mo-
tion (LSM) [16–18] in the outer region of turbulent flows, charac-
terized by the presence of elongated streaks whose wavelengths
scale with the outer units (for instance, the spanwise and stream-
wise spacings are of order ofmagnitude of 1−2h and 2−3h, respec-
tively, as reported by Balakumar and Adrian [19] and Hwang and
Cossu [16], where h is the half-height of a channel). Evidence of the
self-sustained nature of such LSMhas been provided byHwang and
Cossu [16], Hwang and Cossu [17], Rawat et al. [18], Hwang [20],
Hwang and Bengana [21]. In these works, the Small-Scale Motion
(SSM) has been damped using a Large Eddy Simulation (LES) with
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an increasing value of the Smagorinsky constant. The observation
that the LSM remains sustained evenwhen the SSMwas artificially
dumped has led to the idea that large-scale streaks are regenerated
by a (large-scale) self-sustained cycle similar to the wall one. In
fact, similarly to the near-wall streaks, the occurrence of these
structures can be easily linked to the lift-up mechanism acting at a
large scale, as ascertained by several local linear transient growth
analyses perturbing the turbulent mean flow (see [22–24]). These
authors have found that optimal flow structures having a spanwise
wavelength of the same order of magnitude of the outer length
scale have indeed the form of large-scale streaks.

However, a global nonlinear optimization recently performed
by Farano et al. [15] for a turbulent channel flow at Reτ = 180
has shown that, when the optimization is performed for a time
scale associatedwith the LSM, the nonlinear optimal perturbations
are characterized mostly by near-wall streaks and hairpin vortices
populating the outer region. In particular, the streaky structures
observed at the outer scale are veryweak compared to both hairpin
vortices and near-wall streaks, although it has been demonstrated
that large-scale streaks can be self-sustained in turbulent flows.
One possible explanation can be found in the friction Reynolds
number used for those optimizations. In fact, at this rather low
Reynolds number, the turbulent kinetic energy production in the
outer region is overtaken by the dissipation [7,15], suggesting
that the large scale streaks, generated by an energy production
mechanism such as the lift-up,might be outscored by the growth of
dissipative hairpin vortex structures.Whereas, at a larger Reynolds
number allowing a net energy production at the outer scale [25],
large-scale streaksmight be optimal also in a nonlinear framework.

The present work aims at investigating whether large-scale
streaks can be optimally-growing in a nonlinear framework for a
turbulent channel flow. Towards this aim, we have considered a
moderately larger Reynolds number (Reτ = 590) compared to
that considered in [15] (Reτ = 180), and following this work
we have used a fully 3D nonlinear optimization to maximize the
energy of perturbations of the turbulent mean flow. The results
of this nonlinear optimization allow us to show the presence of
an optimally growing oscillating streaky motion at the outer scale
in a turbulent channel flow at Reτ = 590. These optimal flow
structures are then compared to those at Reτ = 180. Clearly, being
the optimizations limited to only two values of Reτ , we do not
aim at providing any quantitative dependence of the results on the
Reynolds number. However, comparing the results at two different
values of Reτ might help understanding the physical mechanisms
behind the formation of large-scale structures in turbulent flows.

2. Numerical methods

We consider the turbulent flow in a channel at moderate
Reynolds number Re = Uch/ν, h being the half distance between
the plates and Uc the centreline velocity of the mean velocity
profile. When considering a turbulent flow, variables can be nor-
malized using the half height h and the velocity Uc (referred to as
‘‘outer’’ units), or using the friction velocity uτ = (µdU/dy)1/2w

and the viscous length scale ν/uτ (referred to as ‘‘inner’’ units).
Hereafter, variables expressed in inner units will be labelled with
the superscript+, any other variable being normalizedwith respect
to outer units. The friction velocity is used to define the friction
Reynolds number Reτ = uτh/ν, which here is set to the two
constant values, Reτ = 180 and 590, guaranteed by a constant
pressure gradient. Computations are performed using the spectral-
element code NEK5000 [26], with Legendre polynomial recon-
struction of degree seven and second-order accurate Runge–Kutta
time integration [27] with constant time step equal to ∆t = 0.013
for C180 and∆t = 0.0001 for C590. Dirichlet boundary conditions
for the three velocity components are imposed atwall, whereas pe-
riodicity is prescribed in the streamwise and spanwise directions

(denoted with x and z, respectively, whereas y denotes the wall-
normal direction). Details about the computational domain, aswell
as the number of grid points and the length of the cells are provided
in Table 1. The domain lengths have been chosen following [1]
for C180, and [25] for C590, who selected the domain sizes so
that the two-point correlations in the streamwise and spanwise
directions were close to zero at half of the domain size. Low- and
high-order statistics (mean velocity and r.m.s. profiles),whichhave
been validated with respect to those provided by Kim et al. [1] for
C180 and Moser et al. [25] for C590, are reported in the Appendix.

2.1. Nonlinear optimization

The aim of this work is to compute optimal perturbations ca-
pable of inducing a peak of kinetic energy in a finite time T when
evolving nonlinearly over themean flow. To describe the nonlinear
evolution of perturbations of the mean turbulent velocity profile
we use the following system of equations (NS ′):

∂u′

∂t
= −u′

· ∇u′
− u′

· ∇U − U · ∇u′
− ∇p′

+
1
Re

∇
2u′

+ ∇ · τ, (1)

∇ · u′
= 0,

where u′
= (u′, v′, w′)T and p′ represent the velocity and pressure

perturbations of the mean turbulent velocity profile U(y), and τ
is the Reynolds stress tensor forcing the mean turbulent velocity
profile, defined as the Reynolds average of u′u′. A DNS of the fully
turbulent flow is used to compute themean velocity profile as well
as the Reynolds stress tensor (although they could be extracted
from an existing database). Details of the derivation of Eqs. (1) are
provided by Farano et al. [15].

We aim at maximizing the kinetic energy growth of perturba-
tions u′ at a time T , the energy being defined as

E(t) =
{
u′(t),u′(t)

}
=

∫
V

(
u′2

+ v′2
+ w′2

)
(t)dV , (2)

where V is the volume of the computational domain. The energy
gain G(T ) = E(T )/E(0) is maximized using a Lagrange multiplier
approach in which the initial energy E0, along with the NS ′ equa-
tions (1), are imposed as constraints using the Lagrangemultipliers
or adjoint variables (u′†, p†, λ). Following previous works focusing
on nonlinear optimal perturbations of laminar base flows (see [28–
30]) and turbulent mean ones (see [15]), the optimization prob-
lem is solved by direct-adjoint iterations coupled with a gradient
rotation algorithm [31]. The iterative procedure is stopped when
the relative variation between two successive direct-adjoint loops,
e = (Gn

− Gn−1)/Gn is smaller than 10−7, n being the iteration
number. It is noteworthy that these optimizations require a high
computational cost. In fact, depending on the selected target time,
40 to 80 direct-adjoint iterations are needed for achieving con-
vergence for one set of parameters. Therefore, each optimization
needs from 800.000 to 2.000.000 CPU hours on an IBM cluster Intel
ES 4650, the computational time increasing remarkably with the
Reynolds number.

3. Results

Firstly, DNSs of turbulent channel flow at Reτ = 180 (C180)
and Reτ = 590 (C590) have been performed. The mean velocity
profile as well as the root mean square (r.m.s.) of the velocity field
are found to be coincident (within plotting accuracy) with those
reported by Kim et al. [1] and Moser et al. [25] (see the Appendix).
A visualization of the flow structures is provided in Fig. 1, showing
the vortical structures identified by the second invariant of the
velocity gradient tensor (known as Q-criterion, see [32]). For C180



Table 1
Simulation parameters for the two cases considered in the present work.

Reτ Re ∆x+ ∆z+ ∆y+
max ∆y+

min Lx Lz Nx × Ny × Nz

C180 180 3300 12 7 4.4 0.05 4π 2π 192 × 160 × 160
C590 590 12450 9.7 4.8 7.2 0.05 2π π 384 × 256 × 384

Fig. 1. Instantaneous isosurfaces of the second invariant of the velocity gradient tensor, Q-criterion (Q/Qmax = 0.025), coloured by the streamwise velocity: left, C180; right,
C590.

(left), several hairpin-like vortical structures can be observed [33].
On the other hand, from a qualitative point of view, one can notice
the loss of coherence of the vortical structures when increasing
the Reynolds number (C590 right). In both cases, looking at the
instantaneous vortical structures, no clear evidence of LSM can be
observed, as also remarked by Hwang and Cossu [16].

To show the presence of a streaky LSM, one can average the
perturbation flow field in the streamwise direction. The result
of the streamwise averaging procedure over a single snapshot
extracted from the DNS is shown of Fig. 2 for C180 (left) and
C590 (right). The top frames provide a close-up of the wall region
(y+

≤ 50), whereas the bottom ones extend up to the centre of
the channel, with axes scaled in outer units. As one can notice, the
near-wall region is characterized by an alternation of small-scale
low- and high-velocity streaks. Their spanwise spacing is of the
order ofmagnitude of 100 viscous length units, althoughwe do not
measure exactly the mean value reported in the literature [3,25]
since a single snapshot is used here for streamwise-averaging.
Moving away from thewall, similar structures are observed,whose
size grows towards the centreline of the channel, reaching an
average spacing of order of magnitude of h, as reported in the lit-
erature [19]. This feature is observed at both considered Reynolds
numbers (compare left with right frames) but it is clearer at higher
Reτ .

3.1. Nonlinear optimal structures

Nonlinear optimizations are performed with target time T =

31.12 (corresponding to T+
≈ 305 for C180 and T+

≈ 874
for C590, respectively). In order to allow the growth of large-
scale motion, this target time has been chosen approximately
equal to the eddy turnover time at the centre of the channel,
defined as the ratio between the turbulent kinetic energy and
the dissipation rate, k/ϵ (see [10]). Therefore, we anticipate that
optimal structuresmaximizing the growth at the outer scalewill be
obtained, as in [10,15]. Fig. 3 provides a visualization of the optimal

perturbations computed for C180 (E0 = 10−2, left frame) and
C590 (E0 = 7.5 × 10−4, right frame). In both cases the initial
energy has been chosen as the smallest energy providing a well
converged finite amplitude solution (see the discussion in the
Appendix of [15]). For both values of theReynolds number,wehave
verified that the optimal disturbances keep a similar structure as
long as the initial energy is sufficiently high to trigger nonlinear
effects. Both frames show that the optimals at target time are
composed of elongated negative streaks (green) with spanwise
spacing≈ h (in inner units, h+

= Reτh) alongwith a family of local-
ized vortical structures (grey), among which hairpin-like vortices
can be recognized. These vortical structures are often observed as
coherent structures populating the log layer and characterizing the
outer motion of wall-bounded turbulent flows [16–18,20,21,35].
However, one may notice some qualitative differences between
the optimal flow structures at the two considered Reynolds num-
bers. In particular, for the largest value of the Reynolds number,
the streamwise perturbation isosurfaces representing the streaks
appear to extend towards the centre of the channel, whereas the
vortical structures appear to decrease their size, in agreementwith
what has been observed in the DNS snapshots shown in Fig. 1.

For analysing the nonlinear optimal perturbations from a quan-
titative point of view, the dominating wavelengths within the
perturbed flow are extracted by inspecting their premultiplied
spatial energy density spectra versus y+ (shaded contours), shown
in Figs. 4 and 5 for the streamwise and spanwise directions, k+

x
and k+

z , respectively. Such figures also provide the premultiplied
energy density spectra obtained by the DNS results (solid lines), for
comparison. We recall that the premultiplied spectrum kx,zE(kx,z)
is defined such that the area under the curve in the plane log(kx,z)−
kx,zE(kx,z) represents the energy content [36]. The spectra corre-
sponding to Reτ = 180 and Reτ = 590 are shown on the left
and right column, respectively; the top, middle, and bottom rows
providing the streamwise (Euu), wall-normal (Evv), and spanwise
(Eww) energy densities. One can observe that, increasing Reτ (from
left to right), all the DNS spectra extend to higher values of y+ and



Fig. 2. Streamwise-averaged perturbation of the mean flow for C180 (left) and C590 (right), on a z − y plane scaled in outer units (bottom) as well as a close-up scaled in
inner units (top). Blue (red) contours indicate negative (positive) values of the streamwise velocity perturbations. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Shape of the optimal perturbations at t = T : isosurfaces of negative streamwise velocity perturbation (u′/u′
max = 0.45, green) and of the second invariant of the

velocity gradient tensor, Q-criterion (Q/Qmax = 0.025, grey). C180, E0 = 10−2 (left) and C590, E0 = 7.5 × 10−4 (right). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

lower values of k+
x,z , suggesting the presence of LSM [37]. However,

comparing the optimal spectrawith the DNS ones, it can be noticed
that the former are localized mostly in the outer region, whereas
the latter extend down towards the wall. This feature is due to the
fact that the optimization is performed for a target time typical
of the eddy turnover time at the centre of the channel, selecting
large-scale optimal structures. In fact, the green crosses in Fig. 5,
show that all the optimal perturbation spectra peak at values of
λz = 2π/kz of order of magnitude of h. This is confirmed by
the distribution of the kz-averaged premultiplied spectra k+

z Euu
(top), k+

z Evv (middle), and k+
z Eww (bottom) versus the wall-normal

direction, shown in the left frames of Fig. 6, the red dashed and the
solid blue lines corresponding to the optimal solutions at target
time for C180 and C590, respectively. It can be observed that the
wall-normal region where most of the energy is gathered is in
both cases placed far from the wall, moving towards higher values
of y+ when the Reynolds number is increased from 180 to 590.
Moreover, the y+-averaged premultiplied spectra plotted versus
k+
z , provided in the right frames of Fig. 6, show that most of the

energy is concentrated at k+
z of order 10−2, moving towards even

lower values of k+
z (larger wavelengths) when going from 180 to

590. A similar trend can be observed when looking at the corre-
sponding kx-premultiplied spectra (not shown), with the averaged
energy peaks moving towards larger values of y+ and lower values
of k+

x . Thus, the nonlinear optimal perturbationswell represent the
outer scale turbulent dynamics at different Reτ , as also confirmed

by the velocity–vorticity correlation analysis that will be discussed
later.

In order to investigate how the dominant streamwise wave-
lengths of the optimal perturbations change when increasing Reτ ,
we compare the corresponding streamwise energy density spectra
(shaded contours, top frames of Fig. 4 from left to right). Increasing
Reτ , not only the spectrum moves to higher values of y+, but also
appears to stretch in the wall-normal direction, showing large
values for a wider range of wall-normal positions. This means
that high-amplitude streamwise disturbances can be recovered
not only close to the wall (where the spectrum peak is located)
but also in the outer region, indicating that streaky structures
are indeed recovered at larger scales. Whereas, for Reτ = 180,
the high-amplitude zone of the spectrum is confined close to the
peak value, meaning that high-amplitude streaky structures are
observed mainly at a precise near-wall position. It is also worth
to notice that, while for the streamwise energy spectrum the peak
remains close to the wall even at Reτ = 590, for the spanwise and
wall-normal spectra the peak moves into the outer region, where
most of the vortical structures are indeed located.

Moreover, in order to analyse the streamwise coherence of
the optimal perturbations and to identify the main features of
streaky structures, onemay investigate whether the peaks of these
spectra move towards larger or smaller values of k+

x when the
Reynolds number changes. Fig. 4 shows that the streamwise en-
ergy density peak moves to much smaller wavenumbers (larger



(a) Contours of k+
x Euu(k

+
x ), C180. (b) Contours of k+

x Euu(k
+
x ), C590.

(c) Contours of k+
x Evv(k+

x ), C180. (d) Contours of k+
x Evv(k+

x ), C590.

(e) Contours of k+
x Eww(k+

x ), C180. (f) Contours of k+
x Eww(k+

x ), C590.

Fig. 4. Contours of the logarithm of the premultiplied energy density spectra in the k+
x − y+ plane for the optimal solutions at target time (shaded contours) and the DNS

(solid lines) for C180 (left) and C590 (right). The symbols X indicate the peak values of the optimal spectra. The grey zones for C180 indicate the cut off values of y+ and k+
x

corresponding to the half height and streamwise length of the channel.

wavelengths) for increasing Reτ (from left to right), whereas the
peak of the spanwise and wall-normal energy spectra show but
a slight decrease of k+

x (the peak values, indicated by the green
crosses in Fig. 4 are provided in Table 2 for the ease of the reader).
In particular, considering the streamwise energy spectra, the ratio
between the two streamwise most energetic wavelengths at the
two considered Reynolds numbers is close to the ratio of the two
considered Reτ themselves, λ+

x 590/λ
+
x 180 ≈ Reτ 590/Reτ 180 (see

Table 2). Thus, themain streamwise wavelength of the streamwise

disturbances scales with the outer unit for the two considered
Reynolds numbers, although no general conclusion can be driven
for other values of Reτ . Whereas, for thewall-normal and spanwise
energy spectra, the dominating λ+

x slightly changes with Reτ . This
indicates that the main size of the wall-normal and spanwise
optimal perturbations, representative of the vortical structures,
changes with the inner units. A very good scaling with inner units
has been also found by Hwang [38] for both the wall normal and
spanwise velocity in the near-wall region. However, the nature



(a) Contours of k+
z Euu(k

+
z ), C180. (b) Contours of k+

z Euu(k
+
z ), C590.

(c) Contours of k+
z Evv(k+

z ), C180. (d) Contours of k+
z Evv(k+

z ), C590.

(e) Contours of k+
z Eww(k+

z ), C180. (f) Contours of k+
z Eww(k+

z ), C590.

Fig. 5. Contours of the logarithm of the premultiplied energy density spectra in the k+
z − y+ plane for the optimal solutions at target time (shaded contours) and the DNS

(solid lines) for C180 (left) and C590 (right). The symbols X indicate the peak values of the optimal spectra. The grey zones for C180 indicate the cut off values of y+ and k+
z

corresponding to the half height and spanwise length of the channel.

of such a dependence would deserve a deeper analysis extended
to higher Reynolds numbers. These results indicate that, for the
largest considered Reynolds number, the optimal perturbation is
characterized by streamwise-elongated streaks with increasing
size reaching the outer scale, as well as vortical structures of
smaller size.

In order to analyse the dynamics at the outer scale for the two
considered Reynolds numbers, we analyse the two-point space
correlation of the flow structures extracted from the DNS of tur-
bulent channel flow as well as from the optimal perturbations

Table 2
Wavelength and corresponding wall-normal position of the peaks of the premul-
tiplied energy density spectra shown in Figure 4.

Reτ Euu Evv Eww

λ+
x 180 (C180) 757.5 757.5 757.5

λ+
x 590 (C590) 1857 928.7 619.1

y+ 180 (C180) 67.60 98.18 81.48
y+ 590 (C590) 47.80 229.0 209.6



Fig. 6. Premultiplied energy spectra k+
z Euu (top), k

+
z Evv (middle), and k+

z Eww (bottom), averagedwith respect to (right) the spanwisewavenumber kz and (left) thewall-normal
direction (the superscript in the ordinates indicating the averaging direction). The red dashed and the solid blue lines correspond to the optimal solutions at target time for
C180 and C590, respectively.

at target time. This technique is often used in turbulent flows to
characterize the behaviour of the coherent motion, i.e. the shape
and size of coherent structures. Different kinds of correlationmight
be used, i.e., velocity–velocity, velocity–vorticity, or conditioned
correlation, as discussed by Chen et al. [34], Sillero et al. [40]
and Hwang et al. [41]. Here, we employ a velocity–vorticity

correlation [34] to link the dynamics of the vortical structures
(such as streamwise vortices) to the (streaky) velocity components.
Following [34,41], the velocity–vorticity correlation is defined as:

Rij(yr , rx, y, rz) =
⟨u′

i(x, yr , z)ω
′

j(x + rx, y, z + rz)⟩

u′

i,rmsω
′

j,rms
(3)



(a) C180, DNS, y+
r = 10. (b) C180, OPT, y+

r = 10.

(c) C180, DNS, y+
r = 50. (d) C180, OPT, y+

r = 50.

(e) C180, DNS, y+
r = 100. (f) C180, OPT, y+

r = 100.

Fig. 7. Isosurfaces of the two-point cross-correlation coefficient (R11 = 0.12) for the DNS (left) and the optimal perturbation at target time (right) for C180. Red (blue)
surfaces represent positive (negative) values. The green circles represent the reference points y+

r , with values y+
r = 10, 50, 100 (top to bottom). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

where ω′ is the vorticity perturbation; i, j = 1, 2, 3 denote the
streamwise, wall normal and spanwise components, respectively;
yr is the reference wall-normal distance; rx, rz are the correla-
tion lengths in the streamwise and spanwise directions and ⟨•⟩

represents the corresponding spatial average operator in the ho-
mogeneous directions. In particular, the first component of this
tensor, R11, provides the correlation between streamwise vortices
and streaks, helping at identifying the regions where the lift-up
mechanism [9] is indeed active. For the DNS at Reτ = 180, as
discussed also by Chen et al. [34], increasing the value of y+

r from
the buffer layer to the logarithmic one, the shape of the highly-
correlated structures changes, as one can observe in Fig. 7 (left)
providing the three dimensional two-point correlation R11 for the
instantaneous turbulent field at three values of y+

r = 10, 50, 100.
In particular, close to the wall, a quadrupole configuration

(called by Chen et al. [34] a ‘‘four cigar structure’’) characterized

by elongated streaky structures is observed, indicating a strong
correlation between the referencewall-normal point and the near-
wall region. This shape is associated with the lift-up mechanism,
as confirmed by the presence of near wall streaks and streamwise
counter-rotating vortices. Increasing y+

r , the correlation becomes
much weaker close to the wall, taking a dipole shape (called by
Chen et al. [34] a ‘‘two blob structure’’), which suggests the presence
of bulge structures linked to the head of hairpin vortices [42],
frequently observed at the outer scale. The optimal perturbation at
Reτ = 180 (right columnof Fig. 7), is characterized by a very similar
correlation, showing: (i) an elongated quadrupole cigar structure
near the wall associated to the presence of the streaks; (ii) the dis-
appearance of these elongated streaks when moving the reference
point y+

r far from the wall; (iii) the onset of a bulge at y+
r = 100

indicating the presence of hairpin vortices heads lifted up from
the wall. One can also notice that, in the optimal perturbation at



(a) C590, DNS, y+
r = 10. (b) C590, OPT, y+

r = 10.

(c) C590, DNS, y+
r = 50. (d) C590, OPT, y+

r = 50.

(e) C590, DNS, y+
r = 100. (f) C590, OPT, y+

r = 100.

(g) C590, DNS, y+
r = 180. (h) C590, OPT, y+

r = 180.

Fig. 8. Isosurfaces of the two-point cross-correlation coefficient (R11 = 0.12) for the DNS (left) and the optimal perturbation at target time (right) for C590. Red (blue)
surfaces represent positive (negative) values. The green circles represent the reference points y+

r , with values y+
r = 10, 50, 100, 180 (top to bottom). (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 9. Time evolution of the net local energy production, given by the difference between the production and dissipation at each y+ for the optimal disturbance for C180 (left)
and C590 (right). Continuous and dashed lines represent respectively positive and negative values. The grey zones for C180 indicate the cut off values of y+ corresponding
to the half size of the channel.

Reτ = 180, the near-wall region remains correlated with the outer
one (see the two near-wall structures in the bottom right frame of
Fig. 7 for y+

r = 100). This feature is consistent with the fact that the
hairpin vortices constituting the optimal perturbation provide a
connection between the near-wall region and the outer one during
the bursting process, as discussed by Farano et al. [15].

For the case C590, a different structure hierarchy has been
observed. Fig. 8 (left) provides the correlation structures extracted
from the DNS for y+

r = 10, 50, 100, 180. For all of the considered
values of y+

r , the quadrupole structure, indicating the presence of
the lift-up mechanism, is preserved, resulting in the generation of
streaky coherent structures at the wall and in the outer region.
In particular, in the linear and buffer region, the structures have
similar size to those observed for C180, preserving the near-wall
spacing of about 100 viscous length units. Whereas, increasing
y+
r , the correlation structures begin to drift in the spanwise di-

rections [41], increasing their spanwise size. This larger spacing
for y+

r = 100, 180 is present also close to the wall (see the
bottom left frame of Fig. 8), indicating that the counter-rotating
streamwise vortices producing the streaks extend themselves from
the outer region to the wall, creating large-scale streaks [17,24]
having a spanwise size of order of magnitude of h (in inner units,
h+

= Reτh). The absence of blob-like structures even at y+
r = 180

suggests the weaker relevance of hairpin structures at this higher
value of the Reynolds number, as it also appears by inspecting
Fig. 3. Concerning the optimal perturbation at Reτ = 590, the
right frames of Fig. 8 provide again the quadrupole structure linked
with the presence of the streaks at all values of y+

r . However, the
spanwise and streamwise size of the correlation structures remain
large independently of y+

r , being the perturbation optimized with
reference to an outer time scale.

The correlation results further confirm that, for the higher value
of the Reynolds number, the optimal perturbation is mostly char-
acterized by robust streaks reaching the outer scale, along with
less coherent hairpin vortices. This might be linked to the fact
that, unlike the case C180 [7], for larger values of Reτ a positive
(although weak) production of turbulent kinetic energy is found
outside the buffer zone [25]. Such a net energy production might
be associated to the lift-up mechanism, which is confined at the
wall at small values of the Reynolds number and extends also at the
outer scale for increasing values ofReτ , sustaining the development
of large-scale streaks. To ascertain the presence of kinetic energy
production at the outer scale in the optimal perturbation, we have
integrated in time the NS ′ Eqs. (1) initialized with the optimal
solutions, measuring the difference between production and dis-
sipation terms, P(x, t) = −u′

·
(
u′

· ∇U
)
and D(x, t) = 1/Re∇u′

:

∇u′, integrated along the homogeneous directions, referred to as
Px,z(y, t) andDx,z(y, t), respectively. The results are shown in Fig. 9,
providing the net energy production Px,z −Dx,z in a y+ versus time
plane. In both cases, for t < T , a positive energy production (solid
contours) extends from the inner to the outer region, associated

to the energy growth of the optimal structures reaching the outer
region [15]. On the other hand, for t > T , the two flows have
different behaviours. For C590 (right), the net energy production
in the outer zone is positive, which is likely due to the presence
of a strong coherent lift-up mechanism acting at the outer region.
Whereas, for C180 and t > T , (see Fig. 9 (left)), the outer region is
characterized by dissipation (dashed contours) associatedwith the
breakdown of the hairpin vortices [15].

This suggests that, for the lower considered Reynolds number
(C180), the energy production due to the lift-up mechanism is
confined to the wall, whereas coherent hairpin vortices can reach
the outer scale as a result of burst events dissipating the energy
produced at the wall [15], explaining the observations of these
structures at low values of Reτ [33,39]. On the other hand, for
C590, the outer scale coherent lift-up mechanism [17] generates
large scale streaks, explaining the presence of the positive net
energy production in the outer region. In order to confirm that
this production peak is indeed linked to the presence of the lift-
up mechanism, we have computed the spatial distribution of the
production term P(x) = −u′v′∂U/∂y, which represents the wall-
normal transport of the base flow shear. This term can be linked
to both the lift-up [43] and the Orr mechanism [44]. However,
according to Jiménez [45] and as also verified for the optimal
perturbation in the case C180 [15], the linear energy growth due
to the Orr mechanism is dominant for tOrr = t+/Reτ < 0.15.
In our case, this estimated time is much lower than the consid-
ered target time (in particular, T+/Reτ = 1.694 for C180 and
T+/Reτ = 1.481 for C590). Therefore, at the target time, the
main contribution to P is due to the lift-up mechanism. Fig. 10
shows the spatial distribution of P averaged in the streamwise
direction for the optimal perturbations at Reτ = 180 (left) and
590 (right). One can observe that the lift-up mechanism is active
mainly at y+

≤ 100 for C180, whereas for C590 it extends up to
y+

≈ 300, corresponding to the wall-normal region at which an
outer production energy peak is found in the DNS for Reτ = 590
(see [25]). Moreover, the lift-up mechanism appears to be active
in correspondence with the large-scale streaks represented by the
solid lines protruding into the outer region. This indicates that
the kinetic energy production peak observed at the outer scale in
several DNS for sufficiently large values of the Reynolds number
is indeed due to the lift-up mechanism sustaining the large-scale
streaks, which constitute (most part of) the optimal perturbation
at this value of Reτ . Whereas, for the lower values of the friction
Reynolds number, optimally-amplifying perturbations are found
to be mostly composed of hairpin vortices, which are not able to
produce kinetic energy. The reason for this structural change with
Reτ in the optimal coherent structures has yet to be investigated
in detail. However, the results presented here indicate that the
existence of an outer kinetic energy production peak at sufficiently
large Reynolds numbers in turbulent channel flows is indeeddue to
the onset of optimally growing large-scale streaks which overtake
the growth of the (dissipating) hairpin vortices able to maximize
the energy growth at low values of Reτ .



Fig. 10. Lift-up production term averaged in the streamwise direction (shaded contours) and streamwise instantaneous velocity component (solid contours) in a z+
− y+

plane for the optimal perturbations in C180 (left) and C590 (right). The grey zones for C180 indicate the cut off values of y+ corresponding to the half size of the channel.

(a) C180. (b) C180.

(c) C590. (d) C590.

Fig. 11. Left frames: mean velocity profile U+ versus the wall-normal coordinate y+ obtained by the present DNS (solid lines) compared with literature results (dashed
lines). Right frames: root mean square of u′ (red), v′ (blue),w′ (green), and Reynolds shear stress u′v′ (black) normalized by the wall shear velocity, versus y+ obtained by the
present DNS (solid lines) compared with results available in the literature (dashed lines). Top and bottom frames correspond to C180 and C590, respectively, the reference
cases being [1] for C180 and [25] for C590.

4. Conclusions

Coherent structures are well organized motions of fluid flows
with high spatial and temporal correlation. In simple turbulent
shear flows, they can take the form of packets of hairpin vortices
mostly placed in the outer region of the boundary layer along
with streaks of different size, going from the near-wall to the
outer region. Previous works, restrained to a linear approximation,
have found that the latter are optimally-growing perturbations of

the turbulent mean profile at different scales (see [22]). Whereas,
when taking into account nonlinear effects, the optimal pertur-
bations becomes mostly composed by hairpin vortices, at least at
low friction Reynolds number such as Reτ = 180 [15]. In this
work we aim at investigating whether large-scale streaks can be
considered optimally-growing perturbations of the mean veloc-
ity profile in a turbulent channel flow, also in the more general
nonlinear framework. Towards this end, we compare nonlinear
optimal perturbations of the mean flow at two friction Reynolds



numbers, namely, Reτ = 180 and 590, for a target time typical of
the motion at the outer scale. For the lower value of the Reynolds
number, the nonlinear optimal perturbation is represented by
coherent hairpin vortices originated by the breakup of the near-
wall streaks, dissipating in the outer region the energy produced
at the wall. Whereas, at the higher Reynolds number, the non-
linear optimal perturbation is composed of more robust large-
scale streaks and less coherent vortical structures. As confirmed
by the turbulent kinetic energy balance, the large-scale streaks
are generated by a coherent large-scale lift-up mechanism, which
acts as a source term in the energy balance, inducing a positive
turbulent kinetic energy production at the outer scale. The coher-
ent structures induced by the lift-up mechanism as well as their
dominating wavelengths are quantitatively analysed by means of
two-point correlations and premultiplied kinetic energy spectra.
The results of such analyses suggest that large-scale streaks are a
highly energetic feature of turbulent channel flows at a sufficiently
high Reynolds number, being recovered by energy optimization
in both linear and nonlinear conditions. Moreover, the fact that
for the higher value of Reτ the optimally-growing perturbations
are mostly characterized by large-scale streaks (instead of hairpin
vortices) may be linked to the onset of a kinetic energy production
peak at the outer scale at values of Reτ between 180 and 590,
as observed in the DNS by several authors [25]. In fact, between
these two Reynolds numbers, we observe that the outer lift-up
mechanism becomes the optimal mechanism for energy growth,
leaving a clear signature in the turbulent kinetic energy budget,
namely, the outer production peak observed in the literature.

Thus, in this work we have identified the physical reason for
the presence of large-scale streaks at Reτ = 590, suggesting that
they are linked to an optimal nonlinear large-scale lift-up effect.
Moreover, we have linked this mechanism to the presence of a
secondary peak on the kinetic energy production distribution. In
future works, it would be interesting to determine whether the
optimal coherent structures further change at higher values of the
Reynolds number for which a more evident scale separation be-
tween the size of the coherent structures populating the inner and
the outer regions exists [37]. In particular, a crucial point would be
to confirm (or, else, to confute) the fading of hairpin vortices in the
optimal solution at higher Reynolds numbers, in order to assess,
as postulated by many authors, that they are a robust coherent
structure mostly for the transitional flow regime [39]. However,
at the moment, extending the present analysis to higher Reynolds
numbers represents a tough computational challenge due to the
high CPU time required for the optimizations.
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Appendix

For validationpurpose, in this Appendixwe show themean flow
velocityU+ computedbyDNSaveraging the instantaneous velocity
field over a long time interval (namely, about 13 time units tuτ/h)
and over the two homogeneous directions. The resulting velocity
profile is shown in the left frames of Fig. 11 (solid lines), which
is compared to the mean flow computed (dashed lines) by Kim
et al. [1] at C180 (top frame) and by Moser et al. [25] for C590
(bottom frame). Subtracting the computed mean flow from the
instantaneous velocity field, we have obtained the perturbation
u′, used to compute u′u′, which is then averaged in time and

over the two homogeneous directions. The right frames of Fig. 11
provide the root-mean-square of u′, v′, w′, as well as the Reynolds
shear stress u′v′, extracted from the DNS (solid lines), showing an
excellent agreement with the same quantities computed by Kim
et al. [1] and Moser et al. [25] (dashed lines) for C180 and C590,
respectively.
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