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ABSTRACT

Context. For detecting and directly imaging exoplanets, coronagraphic methods are mandatory when the intensity ratio between a
star and its orbiting planet can be as large as 106. In 1996, a concept of an achromatic interfero-coronagraph (AIC) was presented for
detecting very faint stellar companions, such as exoplanets.
Aims. We present a modified version of the AIC not only permitting these faint companions to be detected but also their relative
position to be determined with respect to the parent star, a problem that was not solved in the original design of the AIC.
Methods. In our modified design, two cylindrical lens doublets were used to remove the 180◦ ambiguity introduced by the AIC’s
original design.
Results. Our theoretical study and the numerical computations show that the axis of symmetry is destroyed when one of the cylindrical
doublets is rotated around the optical axis.
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1. Introduction

More than 300 exoplanets have been discovered by observing
their effect on their hosting star using indirect methods. Direct
detection remains a very difficult issue mainly because of the
very high dynamic range required. For instance, when looking
for terrestrial exoplanet the intensity ratio between the star and
the planet is as high as 106 in the infrared and can reach 1010

in the optical range. This huge difference in intensity makes this
kind of detection extremely difficult.

However, coronagraphy has proven to be a versatile tool in
overcoming this difficulty ever since Bernard Lyot introduced
his solar coronagraph in 1930. Nowadays, stellar coronagraphs
have been adapted to the more challenging and ambitious task of
finding exoplanets around nearby stars. Behind the wide variety
of existing (or conceptual) coronagraphs lies a simple main idea:
extinguish the light coming from the brighter source. Extinction
of the star-light can be achieved in various ways, each leading to
one coronagraphic type, such as Lyot-type coronagraphs, band-
limited coronagraphs and nulling coronagraphs. A larger list of
different coronagraphs is presented by Guyon et al. (2006).

The AIC1 belongs to the nulling coronagraph family and,
more precisely, interferometric nulling coronagraphs. Despite its
ability to completely remove the diffracted light of an on-axis
source from the image plane, the AIC produces two identical
images of a single off-axis source, symmetrical with respect to
the optical axis.

1 Called CIA, Coronographe Interferential Achromatique in its origi-
nal quoting by Gay & Y. Rabbia (1996).

The proposed new design removes this ambiguity by using
two pairs of cylindrical lenses instead of a cat’s eye in the AIC,
at which point, the position of the companion can be determined
unambiguously. This is important, for example, when determin-
ing orbits with a few measurements (Kraus 2007; Patience 2008)
when the 180◦ symmetry can create a lot of uncertainty in the in-
terpretation of the data (Schöller 2008). We call the new concept
absolute position interfero-coronagraph (APIC).

2. APIC: absolute position interfero-coronagraph

The basic design of the APIC is a Mach-Zehnder interferometer
(an unfolded Michelson interferometer), displayed in Fig. 1. The
components of the design are discussed in detail in the next sec-
tion. For simplicity, only the incoming light of an on-axis source
is shown.

In Fig. 1, we can visualize the propagation of light through
the APIC. At the entrance of the device, the incoming light is
separated into two different beams by a beam splitter. Every
beam follows a different path schematically denoted by 1 and
2. The reflected part goes successively through two doublets2 of
cylindrical lenses, respectively denoted D1 and D2 in the figure.
The two beams are recombined by a second beam splitter, and
the final image is formed in the focal plane of a recombining
lens.

2 By doublet we refer to a pair of identical lenses, thus having the same
diameter and the same focal length. They are placed in such a way that
the image focus of the first coincides with the object focus of the second.
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Fig. 1. The basic design of APIC is a Mach-Zehnder interferometer.
Two cylindrical lens doublets, D1 and D2, in one arm of the interferom-
eter replace the AIC’s cat’s eye. The image is formed in the focal plane
of a recombining lens, the image plane of APIC. The axes of all the
cylindrical lenses in this schematic figure are perpendicular to the paper
plane, i.e. parallel to the y-axis of the laboratory.

We use cylindrical lenses to explain the principle. If the in-
trinsic chromatic aberrations of the lenses and the optical path
differences introduced by them are proven too large when build-
ing an instrument based on the APIC concept the cylindrical
lenses can be replaced by cylindrical mirrors.

The main difference between the AIC and the APIC is the
substitution of the cat’s eye by two cylindrical doublets. In the
AIC configuration, the cat’s eye, acting like a spherical doublet,
induces a phase shift of π (Gouy 1892), fully achromatic, that
ensures the destructive interference extinguishing the diffracted
light of the on-axis source in the image plane. Moreover, the
centro-symmetric rotation, induced by the cat’s eye, reveals a
faint companion by avoiding the superposition of its π-dephased
complex amplitudes. However, we know that the resulting output
in this case consists of two identical images, symmetric around
the optical axis. In other words, the ambiguity of the AIC is in-
trinsic to using a cat’s eye.

In the APIC concept, the cylindrical lens doublet induces a
phase shift of −π/2 (Gouy 1892), thus the focus crossing of two
consecutive doublets will dephase the wavefront by −π assuring
the destructive interference of an on-axis source. In addition, the
wavefront is flipped around the axis of the doublet3 at the exit of
the cylindrical doublet.

Depending on the orientation we give to the axis of the dou-
blet with respect to the axis of the second doublet, the wavefront
can therefore be flipped in various ways. We call the angle be-
tween the two axes θ. If the axes are parallel to each other, i.e.
θ = 0, the wavefront is flipped twice and the wavefront has the
same orientation as at the entrance. Then, the on-axis and any
off-axis source are extinguished in the image plane by destrutive
interference. If the axis of the cylindrical doublets are perpen-
dicular, θ = 90◦, the wavefront is rotated by 180◦ as in the AIC
configuration, and the ambiguity remains.

In the following, we discuss how setting θ at values between
0 and 90◦ removes the ambiguity of the AIC.

3 Each cylindrical lens has its own axis, but in each one of our doublets,
the two lenses axis are parallel to each other. So from now on we will
talk about the one axis of the whole doublet.

3. The APIC analytical expressions

Here we develop the analytical expressions of the complex am-
plitudes of the light at the exit of each path for on and off-axis
sources in the recombining plane PR defined in Fig. 1.

3.1. On-axis source

The complex amplitudes of a wavefront propagating path 1 and
path 2, the lengths of which are denoted by d1 and d2, respec-
tively, are (Goodman 1992):

ΦS
1(x, y) = −ψ0eikd1 , for path 1 and (1)

ΦS
2(x, y) = ψ0eikd2 , for path 2, (2)

where the superscript S represents the star and the subscripts 1
and 2 designate the path. The −π phase shift of the two con-
secutive cylindrical doublets is considered by the minus sign in
Eq. (1).

Thus, in the recombining plane PR, as soon as d1 and d2 are
equal, the sum of the two complex amplitudes for an on-axis
source is null.

3.2. Off-axis source

We derive the complex amplitude of an off-axis source located
at (αo, βo) in two steps, considering one of the cylindrical lens
doublets at a time.

After propagation through the first cylindrical lens doublet
with its axis along the y-axis, the complex amplitude becomes

ΦC
1 (x, y) = ψ0e−i π2 exp {ik(−α0x + β0y)}. (3)

After going through the second cylindrical lens doublet – rotated
by θ with respect to the first doublet – the coordinates of the
wave vector in the previous equation (−αo, βo) are transformed
into (α̂o, β̂o)

(α̂o, β̂o) = (α0 cos(2θ) − β0 sin(2θ), α0 sin(2θ) + β0 cos(2θ)). (4)

The complex amplitude of the outgoing wavefront becomes

ΦC
1 (x, y) = −ψ0eikd1 exp

{
ik(α̂0x + β̂0y)

}
, (5)

where the sign minus represents the total phase shift of −π af-
fecting the wavefront.

The complex amplitude of a wavefront propagating over
path 2 is:

ΦC
2 (x, y) = ψ0eikd2 exp {ik(α0x + β0y)}. (6)

And therefore the sum of both amplitudes in PR, assuming
d1 = d2, is

ΦC(x, y) = ΦC
1 + Φ

C
2 = ψ0

{
eik(α0 x+β0y) − eik(α̂0 x+β̂0y)

}
. (7)

3.3. Complex amplitude and intensity in the image plane

The expression of the complex amplitude in the image plane is
given by

Φ̂(α, β) =
�
Φ(x, y).

∏⎛⎜⎜⎜⎜⎜⎝
√

(x2 + y2)
D

⎞⎟⎟⎟⎟⎟⎠ eik(αx+βy)dxdy,with

– α and β the angular coordinates of a running point in the
focal plane;
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– Φ(x, y) the complex amplitude in the recombining plane PR,
the entrance of the recombining lens;

–
∏

the circular aperture of diameter D;
– λ the wavelength.

For an off-axis source, the complex amplitude in the image plane
is the sum of the Fourier transforms of both complex amplitudes
ΦC

1 and ΦC
2 , from path 1 and path 2 given by Eqs. (3) and (6)

respectively:

Φ̂C
1 (α, β) = −Cst

i
Besinc

⎛⎜⎜⎜⎜⎜⎝
πD
√
α2 + β2

λ

⎞⎟⎟⎟⎟⎟⎠ ∗ δ(α − α̂0, β − β̂0), (8)

Φ̂C
2 (α, β) =

Cst
i

Besinc

⎛⎜⎜⎜⎜⎜⎝
πD
√
α2 + β2

λ

⎞⎟⎟⎟⎟⎟⎠ ∗ δ(α − α0, β − β0), (9)

where ∗ denotes the convolution product, Besinc(x) = 2J1(x)/x,
with J1 the first-order Bessel function and δ(x) the Dirac func-
tion. The Cst term in the three previous equations covers all
the transmission and reflection coefficients induced by the beam
splitters and the mirrors. It is assumed equal for the two paths so
dismissed in the following.

The image intensity distribution I(α, β) is given by the
squared modulus of the sum of the complex amplitudes,

I(α, β) = | Φ̂C
1 (α, β) + Φ̂C

2 (α, β) |2

= | Φ̂C
1 (α, β) |2 + | Φ̂C

2 (α, β) |2 +2R[Φ̂C
1 (α, β) ¯̂Φ

C

2 (α, β)], (10)

where the mixed term, the real part of the complex amplitude
product is an interference term.

According to the distance between the two δ-functions
(Eqs. (8) and (9)) the interference is more or less destructive.
If this distance is greater than the Rayleigh limit, the two Besinc
functions do not overlap and the mixed term is negligible. Then,
the total intensity is the sum of two well-separated Airy disks,
one centred on (α̂o, β̂o) and the other on (αo, βo) (Eq. 10).

If the distance is smaller than the Rayleigh limit, the inter-
ference term is not negligible and the π-dephased Besinc func-
tions will add. Because of this interference, the maximum, or the
centre of each Airy disk will be displaced. This point is further
discussed in Sect. 4.2.

3.4. Extinction lobe or finding the optimal value for θ

Interferential coronagraphs differ from Lyot-types by their close
sensing capability i.e. their ability to detect sources at small sep-
aration. This capability can be appreciated through the plot of the
extinction lobe of the instrument. The extinction lobe ω(α0, β0),
as defined in Baudoz et al. (2000), is given by the integration, in
the image plane, of the energy coming from an off-axis source:

ω(α0, β0) =
�

IC(α, β)dαdβ. (11)

The extinction lobe of our instrument is a function of θ.
Therefore, one way of deducing the most suitable values for θ
is to derive them from the most narrow extinction lobe whose
width is defined by its first maximum. In Fig. 2 we see that as
θ increases the extinction lobe narrows down. Numerically we
find that all values of θ ranging between 45◦ and 90◦ are suitable
in the sense that they provide an extinction lobe narrower than
the Airy lobe of the telescope effectively used. However, this last
value of θ, 90◦, converts APIC into an AIC (i.e., the ambiguity
becomes impossible to remove).

Fig. 2. The extinction lobe ω(α0, β0) for different values of θ. The dotted
line represents the extinction lobe of the instrument as a function of the
angular coordinate taken in units of 1.22λ/D. The normalized Airy lobe
of the telescope is given for comparaison by the solid line. The dashed
line limits the Airy radius.

This is intuitively understandable considering that for θ = 0◦
the two Airy disks are on top of each other, while for increas-
ing θ they are driven further apart until they end up at opposite
sides of the optical axis for θ = 90◦. The latter case permits the
smallest separation (α0, β0) of the off-axis source resulting in the
narrowest extinction lobe.

4. Numerical computations

In this secton, we present numerical computations of the inten-
sity distribution for different values of θ, α0, and β0 and inves-
tigate methods for retrieving the planet position on the sky. For
our numerical computations, we assumed the following values:

– λ, the wavelength: 2.2 μm;
– D, the telescope diameter: 10 m;
– intensity ratio between the star and its companion: 10−6.

Although the intensity distributions in Fig. 3 are not symmetri-
cal, it is not obvious which of the two Airy disks represents the
true position of the off-axis source. The two sections (Sects. 4.1
and 4.2) are dedicated to retrieving the off-axis position both for
images with interference and images without interference (see
Eq. (3.3)).

We would like to point out that, in the case of images of
low signal-to-noise ratio or having a field crowded with speckles
(for example noisy imaging of an extended disk with embedded
planets), a more powerful deconvolution routine that takes the
known PSF behavior of APIC into account could be used instead
of our algorithms developed below.

4.1. Finding the planet from non-interfering subimages

We consider here the separation of the two subimages to be
greater than the Rayleigh limit so that the subimages do not in-
terfere.

To find out which of the two Airy disks in Fig. 4 represents
the true position of the off-axis source, we computed the inten-
sity distribution first assuming that P1 in Fig. 4 is the true po-
sition, and then that P2 is correct. The intensity distributions in
Fig. 4 demonstrates unambiguously that P2 is the true position
of the off-axis source.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811232&pdf_id=2
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Fig. 3. Computed intensity distributions of an off-axis source at position
(αo, βo). The values of θ and (αo, βo) in milli arcsec are illustrated in the
table above. On this colour scale, the on-axis source is invisible.

Fig. 4. On the left, the intensity distribution in the image plane, using the
same parameters as in Fig. 3A. In the middle and on the right, computed
intensity distributions are displayed if the source were in position P1 or
in P2.

4.2. Finding the planet from interfering subimages

As discussed in Sect. 3.2, if the distance between on- and off-
axis source approaches the Rayleigh limit, the two Besinc func-
tions interfere and the resulting intensity distributions show two
slightly deformed Airy disks displayed in (Fig. 5). On the right
hand side of the same figure, a 1-D cut through the image is
shown.

While we can use the same reasoning as in the interference-
free case to determine the true position of the off-axis source,
the distance (α0, β0) cannot be measured directly in the image
since the local maxima deviate from the real maxima of each
(interference-free) Airy disk as illustrated in (Fig. 5). Applying
the knowledge of the form of the Airy disk, this effect can be cal-
ibrated. Computing the average of several images with varying θ
further reduces the remaining error over the distance (αo, βo).

5. Discussion and perspectives

In this Research Note, we present the concept of the APIC for
the ambiguity removal of the AIC. In addition to the numerical

Fig. 5. On the left, the image of an off-axis source located below the
instrument’s resolution, using the same parameters as in Fig. 3D. The
interference of the Besinc functions results in a slight deformation of
the Airy disks. The straight black line indicates the position of the 1-D
cut displayed on the right. Here, the solid line is the intensity distri-
bution formed by two deformed Airy disks. The theoretical form of
the interference-free Airy disks at these locations are shown by dashed
lines.

computations, a laboratory test bench was set up to validate the
concept and to visualize the motion of the off-axis source in the
image plane as a function of the angle θ between the axes of
the two cylindrical doublets. This experiment has shown accu-
rate results for the geometrical optics, matching the theoretical
study and the numerical computations.

The interferometric extinction of the on-axis source uses the
same principle and has the same restrictions in terms of signal-
to-noise and tolerances as the AIC concept presented by Baudoz
et al. (2000). We specifically look into the effect of the chro-
maticity of cylindrical lenses in future experiments determining
the potential practical restrictions of a design with lenses.

6. Conclusion

The concept of APIC lies in the modification of the achro-
matic interfero-coronagraph (AIC), determining unambiguously
the position of a faint companion with respect to its bright par-
ent star. The conceptual modification consists in replacing the
cat’s eye by two cylindrical lens doublets in one arm of a Mach-
Zehnder interferometer. Depending on the rotation angles of the
cylindrical doublets, the original axis of symmetry of the AIC
is removed and the true position of the faint companion in the
sky can be derived from the position of the two images in APIC.
This has been studied for different sets of rotation angles, and a
few numerical examples have been discussed.

Acknowledgements. We are indebted to J. Gay for discussions of the AIC and
APIC concept in general, and for having stimulated more detailed studies of the
above-presented concept.
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