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Deep learning on data streams vs static learning, 
application for the classification task

1) Data comes with high speed → Need real 
time information extraction and learning.

2) Classes don't have to be equal → Want to 
learn well on classes of different sizes.

3) Streams are potentially of a very big (infinite) 
size → Want to avoid storing historical data.

4) At some point several data classes can never 
appear again in the stream → Need to avoid 
catastrophic forgetting of already learned 
information.   

5) Data classes, never seen by the learning 
system before, can appear → Need a model, 
able to adapt to new classes

Generative Adversarial Networks (GAN) [1]

Deep Convolutional GANs [2] – difference from classic GANs:

Learning classification models on streams with no storage 
using GANs
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Data come continuously and have to be 
processed in real time.

The whole dataset is stored on the disc 
and is available at any moment.

Deep learning on static dataset Deep learning on data streams

1) Dataset is of a limited size and exact training 
time per epoch can always be estimate.

2) Sizes of data classes are usually similar or can 
be equalized before training

3) The whole dataset is available for learning and 
retraining at any moment

4) All the data classes are available at every 
training epoch. Moreover, training Is based on 
gradient-based methods, usually need multiple 
training epochs 

5) Number of classes together with labels for 
each data sample are provided before training.

Original Images Generated Images

MNIST(a)

LSUN(b)

(a) Dataset is available at http://yann.lecun.com/exdb/mnist/
(b) Dataset is available at http://lsun.cs.princeton.edu/2016/
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Schematic representation of GAN. Generator (G) and 
discriminator (D) are Neural Networks. 

G is taught to produce samples similar to the real data 
and D is simultaneously trained to distinguish generated 
samples from the real ones.   

Minimax game between G and D is based on loss function:

minG maxD LG,D( x)=E x ~ pS ( x)
[ logD (x)]+Es *~ p S* (s* )[ log(1−D (G(s*)))]

● All pooling layers are replaced by strided convolutions, which allows the network learn 
its own down-sampling

● Batch normalization[3] is used to avoid poor initialization problems.
● No fully-connected hidden layers
● Better suited for image datasets

Goal: 
● Use generative models in classification scenario on data stream with data arriving 

incrementally class-by-class to remove the necessity of storing historical data while 
not introducing forgetting

● Check the influence of the amount of generated data on classification  accuracy
Schematic representation of proposed solution:

Ideas in development and perspectives
● Move forward more efficient learning → Better performance with less training examples (one-shot 

learning, non-gradient optimization methods, … )

● Define and implement sub-space constrains when learning new data classes to avoid catastrophic 
forgetting without reusing historical information at all.

● Study the “separability” of Neural Networks activations, depending on data type/class, to introduce 
activation scheduling inside networks → more efficient learning with less forgetting 

Batch learning on generated data (MNIST dataset)

Goal: To check the ability of generative models to produce data that represent well the initial 
dataset before passing to the online scenario
Method: 

● Train one generator per data class
● Use generators to recreate synthetic dataset of the size, proportional to the initial one
● Train batch classifier on generated dataset 
● Test obtained classifier on the original validation set 

Adaptive learning on incremental data stream

Forming batches to train classifiers. 

● Small values of k provoke forgetting, 
previously learned classes get crushed

● ~94% classification accuracy with big 
enough k in completely online settings 
(99.6% in batch mode with the same net 
architecture)

● Very big k = a lot of data to generate, can 
become a problem for the datasets with 
100+ classes

Results:
● We get to stable accuracy with the size of 

generated set of 20% of the initial training 
set

● Lose >4% in accuracy comparing to the 
original data usage – the price to pay for not 
storing the data

● Using more advanced generative models 
should reduce the loss

Examples of images, used for training (left) 
and samples, generated with GANs (right)
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BACKGROUND

Online learning in realistic stream scenario on complex dataset (LSUN)

Data classes are mixed and only partially presented in the stream at every time point
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