
HAL Id: hal-02454262
https://hal.science/hal-02454262

Submitted on 9 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From the separation to the intersection sub-problem in
Benders decomposition models with prohibitively-many

constraints
Daniel Cosmin Porumbel

To cite this version:
Daniel Cosmin Porumbel. From the separation to the intersection sub-problem in Benders decom-
position models with prohibitively-many constraints. Discrete Optimization, 2018, 29, pp.148-173.
�10.1016/j.disopt.2018.04.003�. �hal-02454262�

https://hal.science/hal-02454262
https://hal.archives-ouvertes.fr

From the Separation to the Intersection Sub-problem in Benders

Decomposition Models with Prohibitively-Many Constraints

Daniel Porumbel∗
∗CEDRIC CS Lab, CNAM, 292 rue Saint-Martin, F-75141 Paris, France

Abstract

We consider a minimization linear program over a polytope P described by prohibitively-many con-
straints. Given a ray direction 0 → r, the intersection sub-problem asks to find: (i) the intersection
point t∗r between the ray and the boundary of P and (ii) a constraint of P satisfied with equality by
t∗r. In [12, §2], we proposed a method based on the intersection sub-problem to optimize general linear
programs. In this study, we use a Cutting-Planes method in which we simply replace the separation
sub-problem with the intersection sub-problem. Although the intersection sub-problem is more complex,
it is not necessarily computationally more expensive than the separation sub-problem and it has other
advantages. The main advantage is that it can allow the Cutting Planes algorithm to generate a feasible
solution (using t∗r ∈ P) at each iteration, which is not possible with a standard separation sub-problem.
Solving the intersection sub-problem is equivalent to normalizing all cuts and separating; this interpre-
tation leads to showing that the intersection sub-problem can find stronger cuts. We tested such ideas
in a Benders decomposition model with prohibitively-many feasibility cuts. We show that under certain
(mild) assumptions, the intersection sub-problem can be solved within the same asymptotic running time
as the separation one. We present numerical results on a network design problem that asks to install a
least-cost set of links needed to accommodate a one-to-many flow.

1 Introduction

Let us start with a general Integer Linear Program (ILP) often arising in Benders reformulations:1

min
{
d>y : u>y ≥ b, ∀(u, b) ∈ C, y ∈ Zn+

}
= min

{
d>y : y ∈P, y ∈ Zn+

}
, (1.1)

where C is a set of rows (constraints). We do not formally impose any condition on the size of C, but
we consider that listing all rows is computationally very exhausting, if not impossible. As such, practical
algorithms for this ILP only manipulate a subset of C. A standard Cutting-Planes or Branch-and-cut

optimizes the above ILP by progressively removing infeasibility. For each intermediate optimal solution y,
one solves the separation sub-problem to (try to) separate y and to add a new constraint of C. A disadvantage
of the canonical Cutting-Planes is that it reports no feasible solution before the end of the convergence.

r

t∗r

0

P

Figure 1: An intuitive view of
a ray projection. The first-hit
constraint is depicted in red.

The standard Cutting-Planes belongs to the class of dual (outer) meth-
ods, because it converges to the optimum of the above LP through a sequence
of infeasible (outer, dual) solutions. In contrast, a primal method constructs
a converging sequence of feasible (interior) solutions. The primal and dual
methods are described in greater detail in [12, §1.1.1.1]. The approach pro-
posed in this paper can be seen as a primal and dual method, because it
generates a convergent sequence of both feasible and infeasible solutions.

Given a ray direction 0→ r, the intersection sub-problem asks to find the
minimum t∗ ≥ 0 such that u>(t∗r) ≥ b, ∀(u, b) ∈ C. If b > 0 ∀(u, b) ∈ C (so
that 0 is infeasible), this is a generalization of the separation sub-problem: if
t∗ ≤ 1, then r satisfies all constraints in C (as in the example from Figure 1);
otherwise, r is infeasible and can be separated by a constraint of C. Besides

1The condition y ∈ Zn
+ will be lifted in Section 4.3, which amounts to solving a Linear Program (LP) instead of an ILP.

1

the value of t∗, the intersection sub-problem asks to find a first-hit constraint u>y ≥ b satisfied with equality
by y = t∗r. This first-hit constraint separates all points tr with t < t∗ from the feasible polytope P.

Let us briefly compare the intersection and the separation sub-problems. A Cutting-Planes algorithm
works with a relaxed version of (1.1) using only a subset of the constraints C, i.e., a relaxed master ILP. Given
the current optimum solution r of this relaxed master ILP, the separation sub-problem asks to maximize:

max
(u,b)∈C

b− u>r. (1.2)

If the result of this sub-problem is greater than 0 for some (ui, bi) ∈ C, then r does not satisfy u>i y ≥ bi,
and so, a Cutting-Planes algorithm would separate r by adding u>i y ≥ bi to the current constraint set.
Then, it would re-optimize the new relaxed master ILP using the new enlarged set of constraints.

We now give a short proof that the intersection sub-problem along 0 → r reduces to maximizing the
ratio below, assuming u>r > 0, b > 0 ∀(u, b) ∈ C to avoid unnecessary complication in the introduction.2

t∗ = max
(u,b)∈C

b

u>r
. (1.3)

We associate each (ui, bi) ∈ C to a value ti = bi
u>

i r
> 0, so that tir satisfies with equality the constraint

u>i y ≥ bi. Taking t∗ = max(ui,bi)∈C ti, we obtain t∗ ≥ ti for all (ui, bi) ∈ C, and so, u>i (t∗r) ≥ u>i (tir) = bi,

where we used u>i r ≥ 0. This shows that t∗r satisfies all constraints in C, i.e., t∗r ∈ P. We still need
to show that t∗ is minimum with this property. This follows from the fact that t∗r satisfies u>i (t∗r) = bi
for some (ui, bi) ∈ C that maximizes (1.3). As such, any t < t∗ would lead to u>i (tr) < bi, violating the
constraint u>i y ≥ bi. A similar result in the context of a maximization problem can be found in Proposition
3 of [12, §3.2]. Comparing (1.2) and (1.3), the intersection sub-problem can be seen as a generalized version
of the separation sub-problem. We will also discuss in Section 2.5.1 that solving the intersection sub-problem
is equivalent to normalizing all constraints (i.e., make them all have a right-hand side term of 1) followed
by choosing one constraint by classical separation.

Since the invention of the Benders decomposition in 1962 [2], the approach has become increasingly
popular in optimization and hundreds of papers have used it for a wide variety of applications.3 In particular,
the Benders reformulation has been very successful for network design problems [5, 6, 7, 8]. The prohibitively-
many constraints C correspond to the extreme solutions (optimality cuts) and the extreme rays (feasibility
cuts) of a polytope P referred to as the Benders sub-problem polytope. To solve the separation sub-problem,
one optimizes a Linear Program (LP) over P . We will see (Section 2.3) that the intersection sub-problem
reduces to solving a linear-fractional program over P , maximizing an objective like (1.3). This can be done
by casting the linear-fractional program into an LP using the Charnes-Cooper transformation [3]. Based on
this approach, the computational complexity of the intersection sub-problem algorithm is the same as that
of the separation algorithm, i.e., it is the complexity of solving an LP over P .

Notice that a fractional feasible solution t∗r ∈ P determined by the intersection sub-problem might
not necessarily respect the integrality constraint t∗r ∈ Zn+ imposed by (1.1). However, the Benders decom-
position models discussed in this paper use integer master variables to indicate a number of times that a
transmission facility (e.g., a cable) is installed and one can obtain an integer feasible solution by rounding
up all components of t∗r. There is no natural constraint in P that forbids an increase (by rounding) of the
number of installed facilities, see Observation 4 at the end of Section 3.3 for an explicit application example.

The method proposed in this paper is specifically designed to solve large-scale ILPs (1.1) of a particular
form, arising in Benders reformulations. However, the most general intersection ideas could be potentially
useful for other problems that fit well the general ILP (1.1). The necessary condition is to have an intersection
sub-problem algorithm and to be able to apply a rounding procedure as above. Appendix A presents two
problems (using no Benders decomposition) that fit well the ILP (1.1) and that surely allow a rounding

2In Theorem 1 of Section 2.3 we solve the intersection sub-problem by addressing all degenerate cases.
3The reader whose curiosity is piqued can further relate to surveys [4, 13] and to the references therein. As early as 1981,

[9] compiled a list of successful applications (see page 1) such as scheduling the movement of railway engines, airline routing,
industrial distribution systems, or vehicle routing. Many more other examples can be found in more recent work [4, 13].

2

procedure because their constraints C only have non-negative coefficients. Other problems with positive and
negative coefficients would not allow such a rounding. Finally, the intersection ideas are most useful when
0 is infeasible (i.e., ∃(u, b) ∈ C such that b > 0) and the feasible solutions have positive objective values.

The remaining is organized as follows. Section 2 presents the main theoretical description from this
paper: the study of the intersection sub-problem in a Benders reformulation model with feasibility cuts;
this includes algorithmic aspects of the Benders’ cut generating ILP, e.g., the use of solution smoothing
techniques to accelerate the convergence (both for separation and intersection sub-problems). Section 3 is
devoted to a network design application example and its specific intersection sub-problem. Section 4 provides
numerical results on this network design problem, followed by conclusions in the last section. Appendix A
presents two examples of other (non Benders) ILP models for problems that fit well the general ILP (1.1).
Appendix B describes a generalized intersection sub-problem algorithm, for a Benders decomposition model
with both optimality and feasibility cuts, with no restriction on the projected or flow costs.

2 The intersection sub-problem in a Benders decomposition con-
text and advanced Cutting-Planes

2.1 The classical Benders decomposition

In order to (try to) keep the paper self-contained, let us briefly introduce the main steps of the general
Benders decomposition approach [2, 4]. We consider integer variables y and fractional variables x. As
a general example, in network design (resp. facility location problems) y might encode the placement of
transmission (resp. production) facilities and x could quantify flows (resp. delivered goods or products). The
general Mixed Integer Linear Program (MILP) is:

min d>y + c>x (2.1a)

Dy ≥ e (2.1b)

By + Ax ≥ b (2.1c)

y ∈ Zn+, x ≥ 0 (2.1d)

where some of the constraints (2.1c) can act on x only, i.e., B can have some null rows.
We now present the main steps of the Benders decomposition, essentially following the reasoning from [4,

§2]. Based on the below reformulation of the above program, we will dualize the inner LP of (2.2c).

min d>y + ẑ (2.2a)

Dy ≥ e (2.2b)

ẑ = min
{
c>x : By + Ax ≥ b, x ≥ 0

}
(2.2c)

y ∈ Zn+ (2.2d)

Introducing dual variables u in the inner LP (considered with x as decision variables and y as parameters),
the primal-dual linear programming properties lead to

ẑ = max{(b−By)>u : u ∈ P}, (2.3)

where
P =

{
u ≥ 0 : A>u ≤ c

}
(2.4)

is the Benders sub-problem polytope that does not depend on the current y. The optimal ẑ in (2.3) can
be modelled as a decision variable that is bounded from below by ẑ ≥ (b − By)>u ∀u ∈ P and can be
interpreted as a projected cost (associated to y) to be minimized. We suppose P is always not empty (e.g.,
P surely contains u = 0 if c ≥ 0), because otherwise the primal (2.2c) would be infeasible or unbounded.
As such, P can be described by its (prohibitively-many) vertices and extreme rays. All extreme rays ue ∈ P

3

satisfy 0 ≥ (b − By)>ue for a feasible y, because otherwise ẑ would be unbounded. The above MILP
(2.2a)-(2.2d) can thus be written in the following Benders decomposition form:

min d>y + ẑ (2.5a)

Dy ≥ e

ẑ ≥ (b−By)>ui, for any vertex ui ∈ P (2.5b)

0 ≥ (b−By)>ue, for any extreme ray ue ∈ P (2.5c)

y ∈ Zn+, ẑ ∈ R (2.5d)

Observation 1. To solve the above program (2.5a)-(2.5d), the Benders Cutting-Planes algorithm delays
the generation of the constraints (2.5b)-(2.5c) and works at each iteration with a relaxed master MILP
containing a reduced constraint set. Given the current optimal solution (y, ẑ) of the relaxed master MILP at
the current iteration, the Cutting-Planes algorithm executes the following steps:

(A) solve the LP max{(b − By)>u : u ∈ P} from (2.3), in an attempt to separate the current optimal
solution (y, ẑ). If ẑ < max{(b − By)>u : u ∈ P}, one has to insert a constraint (2.5b) or (2.5c)
associated to the optimal u ∈ P to separate (y, ẑ); see also below for more details on the case of extreme
rays.

(B) re-optimize the new relaxed master MILP (enriched with the above-generated constraint) to find a new
optimal solution (y, ẑ).

(C) repeat from Step (A), until the optimal solution (y, ẑ) can no longer be separated, i.e., until (y, ẑ)
becomes optimal in (2.5a)-(2.5d).

Notice that Step (A) solves the separation sub-problem on (y, ẑ). In the worst case, it can find an
extreme ray ue that does not respect the feasibility cut (2.5c), making max{(b−By)>u : u ∈ P} reach an
arbitrarily large value, i.e., ẑ becomes unbounded and the current y can be considered infeasible. In such a
case, Step (A) actually reduces to a separation sub-problem on y only: the goal is to find some extreme ray
ue ∈ P such that 0 < (b−By)>ue.

2.2 Benders decomposition with zero flow costs and feasibility cuts

We hereafter focus on the case c = 0 that can arise, for instance, when c represents zero flow costs in network
design or network loading problems (see examples in Section 3.1). When c = 0, all constraints involving x in
the initial program (2.1a)-(2.1d) are only useful to decide on the feasibility of y, because x has no influence
in the objective function (2.1a). As such, the projected cost ẑ in the primal-dual LPs (2.2c)-(2.3) can be
either 0 when a primal feasible x exists for the current y in (2.2c), or∞ when (2.2c) is infeasible. The goal is
thus to find design variables y that respect the design constraints (2.2b) and that allow x to receive feasible
values in (2.2c). The feasible solutions in (2.2a)-(2.2d) can only have a form (y, ẑ) with ẑ = 0.

Observation 2. The Benders sub-problem polytope P in (2.4) is a pointed polyhedral cone when c = 0, as it
takes the form P =

{
u ≥ 0 : A>u ≤ 0

}
. This means that P consists only of rays, because u ∈ P =⇒ αu ∈

P , ∀α ≥ 0. The only vertex of P is 0. This has the following consequences on the Benders reformulation
(2.5a)-(2.5d). Since (2.5b) is always respected by the only vertex of P , (i.e., 0), it can be ignored. As such,
we solely consider feasibility cuts (2.5c) that can be written 0 ≥ (b−By)>u,∀u ∈ P .4 Such a cut remains
unchanged if we replace u by αu, ∀α ≥ 0. We can hereafter work with

P ′ =
{
u ≥ 0 : A>u ≤ 0, 1>u = 1

}
, (2.6)

since any ray αu of P intersects P ′ in a unique point u′ such that 0 ≥ (b−By)>u′ ⇐⇒ 0 ≥ (b−By)>u.

4Using the presentation from [7, § 2.5], this constraint can also be seen as a consequence of the Farkas’ lemma: the system of

equations {Ax ≥ b−By,x ≥ 0} from (2.2c) has a solution if and only if all u ≥ 0 such that A>u ≤ 0 satisfy (b−By)> u ≤ 0
(i.e., if and if all u ∈ P satisfy 0 ≥ (b −By)>u). In other words, there is no hyperplane separating b −By from the conical
hull of the columns of A and of the negative orthant.

4

Using the above observation, the Benders reformulation (2.5a)-(2.5d) simplifies to the integer-only mas-
ter problem below with feasibility cuts only, i.e., the optimality cuts (2.5b) are dropped. Notice that all
constraints (2.7c) are associated to vertices of P ′, or, equivalently, to rays of P .

min d>y (2.7a)

Dy ≥ e (2.7b)

0 ≥ (b−By)>u for all u ∈ P ′ (2.7c)

y ∈ Zn+ (2.7d)

As for the master mixed-integer problem (2.5a)-(2.5d) from the previous Section 2.1, a Benders
Cutting-Planes algorithm can generate the constraints (2.7c) one by one, using a repeated call to the
separation sub-problem max{(b − By)>u : u ∈ P ′}. It can execute the same steps indicated by Observa-
tion 1 (previous page) for a master with both integer and real variables. In fact, all Benders Cutting-Planes
concepts discussed so far apply perfectly well for this new integer-only master problem (2.7a)-(2.7d). How-
ever, a canonical Cutting-Planes for (2.7a)-(2.7d) would not allow one to generate feasible solutions y
(upper bounds) along the iterations. We will next present in Section 2.3 an intersection algorithm for this
new master problem. This algorithm could actually be extended to the case of non-zero flow costs c 6= 0,
with both optimality and feasibility cuts, as described in Appendix B.

2.3 Solving the intersection sub-problem

Definition 1. (Benders intersection sub-problem) Given ray 0 → r, the intersection sub-problem along
0→ r asks to find:

– the minimum t∗ ≥ 0 such that y = t∗r is feasible with regards to constraints (2.7c), if such t∗ exists;

– an element u ∈ P ′ for which (2.7c) is satisfied with equality by t∗r, when a t∗ defined above exists.

A solution t∗r calculated by solving the intersection sub-problem is always feasible with regards to
constraints (2.7c), but technically not necessarily feasible with regards to the design constraints (2.7b) or to
the integrality constraints (2.7d). We can simply overcome this as follows. First, the number of constraints
(2.7b) is bounded and it is possible to list them all and pick the minimum value tD such that tDr is
feasible with regards to all (2.7b). By executing at the end of the intersection algorithm an assignment
t∗ ← max(t∗, tD), we simply obtain a solution t∗r that is feasible with regards to both (2.7b) and (2.7c).

To satisfy the integrality constraint (2.7d), it is possible to round up all components of t∗r, i.e., construct
solution y∗ such that y∗i = dt∗rie ∀i ∈ [1..n]. In network design, the variables yi often represent a number
of installed transmission facilities and there is no constraint that forbids increasing this number. Under this
interpretation, y∗ ≥ t∗r means that y∗ installs more facilities than t∗r; as such, y∗ can accommodate more
flow than t∗r, and so, y∗ is also feasible. For an explicit application example, see also Observation 4 at the
end of Section 3.3.

Theorem 1. When the flow costs are c = 0 and the demands satisfy b ≥ 0, the intersection sub-problem is
as tractable as the separation sub-problem.

Proof. We will show that the intersection sub-problem requires solving a few linear programs over a polytope
of the size of P ′, i.e., of the same size as the one solved by the separation sub-problem.

Given r as input to the intersection sub-problem, we replace y with t∗r in (2.7c) and obtain:

t∗(Br)>u ≥ b>u, ∀u ∈ P ′ (2.8)

The goal of the intersection sub-problem is to find the minimum t∗ ≥ 0 that satisfies the above family of
constraints for the current r. We need to separate two main cases:

(i) a degenerate case in which no t∗ ≥ 0 satisfies (2.8) above, i.e., the ray 0→ r does not even “touch” the
polytope P, see case (i) of Figure 2 next page for an intuitive illustration;

5

0
r

uι

P

case (i): no intersection,
whole ray infeasible

0

r

u0

P

case (ii.a.1): only tr = 0
could be feasible

0

r
u0

P

case (ii.a.2): a zero case,
(Br)>u0 = b>u0 = 0

0
r

t∗r

t∗ = 2

u

P

case (ii.b): proper
intersection, (Br)>u > 0

Figure 2: The four cases of ray projection in Theorem 1

(ii) the non-degenerate in which there exists some t∗ ≥ 0 that satisfies (2.8) above.

We first address the degenerate case (i). It arises if there is some uι ∈ P ′ such that (Br)>uι ≤ 0 and
b>uι > 0. To detect such cases, it is enough to maximize:

max
{
b>u : u ∈ P ′, (Br)>u ≤ 0

}
(2.9)

If this LP has an optimal objective value strictly greater than 0 for some uι ∈ P ′, then there is no t∗ ≥ 0 that
respects (2.8) for uι. The intersection sub-problem returns uι ∈ P ′, but it reports no feasible t∗. A Benders
Cutting-Planes algorithm can simply deal with this case by adding the valid inequality (By)>uι ≥ b>uι

to the current relaxed master ILP associated to (2.7a)-(2.7d), so as to separate the current r and all its
multiples tr, t ≥ 0.

We now address the non-degenerate case (ii), considering there is no uι ∈ P ′ satisfying the conditions
of the above degenerate case (i), i.e., there is no uι ∈ P ′ such that (Br)>uι ≤ 0 and b>uι > 0. Assuming
P ′ is not empty (otherwise, (2.7a)-(2.7d) has a limited number of constraints), all u ∈ P ′ respect one of the
following, depending on the value of (Br)>u:

(ii.a) (Br)>u ≤ 0 and b>u = 0. Notice that (Br)>u ≤ 0 =⇒ b>u = 0, because both b>u > 0 and
b>u < 0 are impossible in this case. Indeed, b>u > 0 can not hold because we ruled out (i) above
and b>u < 0 is impossible because all u ∈ P ′ satisfy u ≥ 0 in (2.6) and b ≥ 0 by hypothesis.

(ii.b) (Br)>u > 0.

The case (ii.a) can be detected by solving (2.9). If the best objective value in (2.9) is exactly 0, then
there exists at least a vector u0 ∈ P ′ such that b>u0 = 0 and (Br)>u0 ≤ 0. We need to further distinguish
between (Br)>u0 < 0 and (Br)>u0 = 0, see also cases (ii.a.1) and (ii.a.2) of Figure 2 for an intuitive
illustration. Let us now take u0 = arg min

{
(Br)>u : u ∈ P ′, b>u = 0

}
.

(ii.a.1) If (Br)>u0 < 0, then the constraint (2.7c) or (2.8) defined by u0 separates r, as well as all tr with
t > 0. In this case, the intersection sub-problem returns u0 to make the Cutting-Planes separate r.
Since the constraint (2.7c) defined by u0 separates all tr with t > 0, this is a very strong cut and there
is no need to search for other constraints, i.e., the intersection sub-problem algorithm could stop and
return u0, to provide a strong constraint for the next Cutting-Planes iteration.

(ii.a.2) If (Br)>u0 = 0, then all y = tr with t ≥ 0 are feasible with regards to the constraint (2.7c) or (2.8)
defined by u0. The smallest t∗ ≥ 0 value associated to this u0 is t∗ = 0. To find vectors u ∈ P ′ that
lead to higher t∗ values, the intersection algorithm has to continue with the non-degenerate case (ii.b).

We hereafter address the main case (ii.b), i.e., the case of vectors u ∈ P ′ that can lead to a larger t∗

value than the value t∗ = 0 that might be associated to case (ii.a.2) above. The existence of such u can be
detected by maximizing (Br)>u over all u ∈ P ′. If the objective value is not strictly positive, case (ii.b)
does not exist and the proof is finished in case (ii.a). Otherwise, the set of u ∈ P ′ satisfying (ii.b) is not
empty. In this case, the intersection sub-problem asks to find the minimum t∗ that satisfies:

t∗ ≥ b>u

(Br)>u
, ∀u ∈ P ′, (Br)>u > 0

6

To determine t∗, one needs to solve:

t∗ = max

{
b>u

(Br)>u
: u ∈ P ′, (Br)>u > 0

}
, (2.10)

This is a linear-fractional program that can be solved within the same asymptotic running time as a linear
program over P ′, using the following modelling inspired by the Charnes-Cooper transformation [3]. Writing

u = u
1

(Br)>u
, (2.11)

the linear-fractional program (2.10) above translates into the following pure linear program:

t∗ = max b>u (2.12a)

A>u ≤ 0 (2.12b)

(Br)>u = 1 (2.12c)

u ≥ 0 (2.12d)

We now show that any u ∈ P ′ in case (ii.b) is associated to a feasible u = u
(Br)>u

in (2.12a)-(2.12d) such

that u and u have the same objective value, in (2.10) and resp. (2.12a). First, since (Br)>u > 0, the value
of u is well-defined in (2.11). Furthermore, u satisfies (2.12b) because u is u divided by a positive value and
A>u ≤ 0, recall the definition of P ′ in (2.6). Finally, the constraint (Br)>u = 1 follows from the definition
of u, and so does the last constraint (u is u ≥ 0 divided by a positive value). This shows that any u ∈ P ′

leading the linear-fractional program (2.10) to t∗ = b>u
(Br)>u

can be associated to u = u
(Br)>u

that generates

the same t∗ value in the above linear program (2.12a)-(2.12d).
Conversely, we prove that any feasible solution uo of above (2.12a)-(2.12d) can be associated to a feasible

uo ∈ P ′ such that uo and uo have the same objective value in, respectively, (2.10) and (2.12a). This uo is
given by uo = uo

α , choosing a value of α > 0 so that 1>uo = 1, to make uo satisfy the second (equality)
constraint of P ′ as defined in (2.6). The first constraint A>uo ≤ 0 of P ′ is also satisfied by uo, because uo

is uo divided by some positive value α and A>uo ≤ 0 holds in (2.12b). To show that uo ∈ P ′ leads (2.10)
to the same t∗ = b>uo, we write the objective value of uo = uo

α ∈ P ′ in (2.10) as follows:

b>uo

(Br)>uo
=

b> uo

α

(Br)> uo

α

=
b>uo

(Br)>uo
=

b>uo

1
= t∗, (2.13)

where we used (Br)>uo = 1, as imposed by (2.12c). This shows that uo = uo

α ∈ P ′ leads (2.10) to the same
t∗ value as the one achieved by uo in (2.12a). Also, notice that this uo respects condition (ii.b), because

(Br)>uo = (Br)>uo

α = 1
α > 0.

We still need to address the (degenerate) case of unbounded rays in (2.12a)-(2.12d), i.e., the case in
which (2.12a)-(2.12d) contains some ray of the form u = u′ + βz (with β ≥ 0) of unbounded objective
value. We show below that one can associate such z to a solution z′ ∈ P ′ that is degenerate as in case
(i) above, i.e., a z′ ∈ P ′ such that b>z′ > 0 and (Br)>z′ = 0. This proves that if (2.12a)-(2.12d)
contained such unbounded rays, the intersection algorithm would stop in degenerate case (i). As such,
if the intersection algorithm arrives at case (ii.b), then such unbounded rays can not exist. The objective
value b>(u′ + βz) can only be unbounded when β → ∞ if b>z > 0. Replacing u = u′ + βz in (2.12c), we
observe (Br)>(u′ + βz) = 1∀β > 0 =⇒ (Br)>z = 0. We still need to show that z ∈ P : for this, we replace
u = u′ + βz in (2.12b) and we obtain A>(u′ + βz) ≤ 0. Since this is satisfied by all β > 0 we need to
have A>z ≤ 0, i.e., z has to belong to P as described in (2.4). As such, z belongs to P and satisfies both
b>z > 0 and (Br)>z = 0, i.e., after an appropriate scaling using a factor α > 0 (as in the above paragraph),
we obtain z′ = z

α ∈ P ′ that belongs to the above degenerate case (i). This case would thus be detected by
solving the LP (2.9) associated to the case (i).

7

2.4 Basic Benders Cutting-Planes using the intersection sub-problem

We propose a new Benders Cutting-Planes algorithm for (2.7a)-(2.7d), by replacing the separation sub-
problem of the standard Benders Cutting-Planes (see Observation 1, p. 4) with the intersection sub-
problem. At each iteration, the intersection sub-problem leads to one of the cases discussed in Theorem 1:

(i) an uι ∈ P ′ such that no y = t∗r can be feasible with regards to the constraint (2.7c) or (2.8) defined by
uι, i.e., the degenerate case in which the ray 0→ r does not even “touch” the feasible polytope P. It
is thus enough to add a cut (2.7c) defined by uι to separate all tr with t ≥ 0.

(ii.a.1) an u0 ∈ P ′ such that b>u0 = 0 and (Br)>u0 < 0. One has to add to the current relaxed master
ILP the constraint (2.7c) associated to u0, so as to separate all tr with t > 0.

(ii.a.2) an u0 ∈ P ′ such that b>u0 = 0 and (Br)>u0 = 0. This is equivalent to finding t∗ = 0 (all tr with
t ≥ 0 are feasible) and it happens only when case (ii.b) does not lead to a higher t∗. The current value
of r can not be separated and the Cutting-Planes algorithm finishes by reporting an optimal r.

(ii.b) an u ∈ P ′ that maximizes the linear-fractional program (2.10) and the associated t∗ = b>u
(Br)>u

. The

resulting y = t∗r satisfies all constraints (2.7c) and it can be easily used to determine an upper bound.
If t∗ ≤ 1, then r is feasible, and so, the Cutting-Planes algorithm finishes reporting optimal solution
r. Otherwise, r does not satisfy the constraint (2.7c) defined by u. As such, the Cutting-Planes

process adds to the current relaxed master ILP the cut (2.7c) associated to u, so as to separate r.

After enriching the current (relaxed) master ILP with a new constraint (2.7c) generated as above, the
new proposed Benders Cutting-Planes algorithm has to (re-)optimize the resulting (relaxed) master ILP,
to obtain the next optimal solution (ray r). Optimizing this master integer program requires (much) more
computing time than the intersection sub-problem algorithm that only solves a few pure LPs.

For both the intersection and the separation sub-problems, it is always possible to go beyond the basic
Benders Cutting-Planes discussed until here. For instance, it is known that the separation sub-problem
might often have multiple optimal solutions, associated to different cuts. Finding the strongest cuts in
this case might have an important effect upon the efficiency. We refer the reader to [9, 5, 4, 6, 7] for
interesting strategies of generating effective Benders cuts (referred to as strengthening methods, accelerating
schemes, or separation techniques to generate non-dominated constraints, “simultaneous” Benders cuts,
disjoint Benders cuts, etc.). For instance, one of the earliest approaches dating from the 1980s consists of
generating constraints that are Pareto-optimal, i.e., not dominated by other Benders cuts [9]. Such strategies
have been designed for the separation sub-problem, but they can also be used to accelerate Cutting-Planes

algorithms based on the intersection sub-problem. However, experiments suggest that the intersection sub-
problem has relatively few optimal solutions, less than the separation sub-problem. We discuss further related
ideas in Section 2.5 below, along with other enhancement techniques for both Benders Cutting-Planes.

2.5 Advanced Cutting-Planes using separations and intersections

2.5.1 The intersection sub-problem can find stronger normalized cuts by construction

Let us first introduce the central idea of this section in the context of a general LP (1.1), recalled below for
the reader’s convenience.

min
{
d>y : u>y ≥ b, ∀(u, b) ∈ C, y ∈ Zn+

}
= min

{
d>y : y ∈P, y ∈ Zn+

}
We start with a simple example (with n = 3 variables) that nevertheless captures the essence of this section.
Consider, for instance, that r = [1 1 1]> is the current optimal solution at a given Cutting-Planes iteration
and that one has to choose between the following (Benders) cuts:

(1) 4y1 + 6y2 + 8y3 >= 20, i.e., u1 = [4 6 8]> and b1 = 20;

(2) y1 + 2y2 + y3 >= 5, i.e., u2 = [1 2 1]> and b2 = 5.

8

The standard separation problem would choose constraint (1) by solving max
(u,b)∈C

b − u>r as in (1.2), notice

that 20 − 4 − 6 − 8 = 2 > 1 = 5 − 1 − 2 − 1. The intersection sub-problem would choose (2) by solving

max
(u,b)∈C

b

u>r
as in (1.3), notice that 20

4+6+8 = 1 + 1
9 < 1 + 1

4 = 5
1+2+1 . We can easily argue that constraint (2)

is indeed stronger than (1), more by violated by r = [1 1 1]. For this, it is enough to normalize constraints
(1) and (2), to make them both have the same right-hand side value, allowing us to make an unbiased
comparison. We obtain the following normalized cuts, completely equivalent to above (1) and resp. (2).

(1’) 0.2y1 + 0.3y2 + 0.4y3 >= 1, i.e., u1 = [0.2 0.3 0.4]> and b = 1;

(2’) 0.2y1 + 0.4y2 + 0.2y3 >= 1, i.e., u2 = [0.2 0.4 0.2]> and b = 1.

When comparing these normalized constraints, we can say that (2′) dominates (1′) because 0.2 + 0.3 + 0.4 >
0.2 + 0.4 + 0.2, and so, (2′) is more violated than (1′) by the current optimal solution r = [1 1 1]>. Both the
separation and the intersection sub-problem would choose (2′) in this case.

More generally, if all cuts were normalized, the separation and the intersection sub-problem would both
return the same cut – assuming u>r > 0 ∀(u, b) ∈ C. Indeed, if the right-hand side is always fixed to b = 1,
both the separation and the intersection sub-problem reduce to finding min

(u,1)∈C
u>r.

Let us focus on the more general case in which the cuts are not all normalized. In this case, we can say
that the intersection sub-problem first normalizes all cuts and then returns the most violated one. Indeed,

one could determine max
(u,b)∈C

b

u>r
by normalizing all constraints followed by minimizing min

(u,1)∈C
u>r, where C

is the set of normalized constraints. Solving the intersection sub-problem is thus equivalent to normalizing
all constraints and separating (by minimizing min

(u,1)∈C
u>r). We can easily argue that it makes most sense

to compare two cuts only when they are normalized. This idea has been implicitly used since 1981, when
[9, § 2] defined the domination relation by comparing cuts with the same variable-free term (right-hand
side value b in our terminology). One can say that the intersection sub-problem requires finding the most
violated normalized cut ; this is actually the strongest constraint in the sense that it is more violated than
other constraints with the same right-hand value.

0
r

constraint found
by separation

constr
aint found

by inter
sec

tio
n

P

Figure 3: An unfortunate
case for the intersection sub-
problem (degenerate case).

On the other hand, experiments suggest that the weak point of the new
Benders Cutting-Planes is the degenerate case (i) from Theorem 1, i.e.,
the ray r does not even “touch” the feasible polytope P. This can only
happen when there is a constraint u>ι y ≥ bι such that u>ι r ≤ 0 and bι > 0.
A very unfortunate case example is illustrated in Figure 6. It can arise, for
instance, when one has to choose between (a) 3y1 + 2y2 + 2y3 ≥ 10 and
(b) 50y1 ≥ 1 for r = [0 1 1]>. The intersection sub-problem has to return
constraint (b) as a degenerate case, i.e., the constraint (b) makes the whole
ray infeasible, because all points tr = [0 t t]> with t ≥ 0 violate (b). The
separation sub-problem returns the cut (a) which is stronger than (b) in the
sense that one has to increase r1 to r1 = 2 to satisfy (a), why a small value
of r1 = 0.02 is enough to satisfy (b). We can no longer take profit from the above ideas on normalized cuts,
because the intersection algorithm does no longer minimize a ratio, but it has to maximize an LP of the
form (2.9) to find constraints like u>ι y ≥ bι above. We present in the next subsection a smoothing strategy
that can reduce such limitations and also overcome other drawbacks.

2.5.2 Accelerating the convergence: smoothed solutions for separation and intersection

A frequent drawback of Cutting-Planes algorithms is that the convergent progress can be characterized
by strong oscillations of the current optimal solution along the iterations, which can seriously slow down
the convergence. If the current optimal solution is taken as query point (i.e., by calling the separation
sub-problem on it), the Cutting-Planes algorithm is also referred to as the Kelley’s method. The query
points generated along the iterations can be far from each other, and also quite far from the feasible area.

9

As [10] put it, this algorithm has a lack of stability that had been noted for a long time, with intermediate
“solutions possibly moving dramatically after adding cutting planes”. Experiments suggest that our Benders
Cutting-Planes algorithms do suffer from such issues, i.e., the optimal solution at a given iteration might
share very few features (selected edges) with the optimal solution at the previous iteration.

An approach that can (partially) overcome this drawback consists of “solution smoothing”, i.e., instead
of applying the separation or the intersection sub-problem on the current optimal solution at each iteration,
we apply it on a smoothed solution. The query point is a thus smoothed solution that can be obtained, for
instance, by taking the midpoint between the current optimal solution and the previous optimal solution.
This solution smoothing approach is also very popular as a stabilization method in Column Generation,
where the dual optimal solutions exhibit strong oscillations along the iterations. At least in this context,
the solution smoothing approach can address at the same time “oscillations, tailing-off and degeneracy
drawbacks” – see [11] for arguments on this and further details on (dual) solution smoothing.

We propose to use this smoothing technique both for the standard and the new Benders Cutting-Planes al-
gorithms. For the standard algorithm, we first apply the separation sub-problem on a smoothed solution (the
midpoint between the current and the previous optimal solution). If the resulting cut separates the current
optimal solution, we say the smoothed cut is successful (a hit). Otherwise, the smoothed cut is unsuccessful
and we need to call a second separation on the current optimal solution.

Regarding the new Cutting-Planes algorithm, we consider that the search progress consists of two
phases: a degenerate phase in which most rays (current optimal solutions) do not even “touch” the feasible
polytope P (i.e., they are in the degenerate case (i) of Theorem 1) and a normal phase in which the rays
r usually intersect the feasible polytope P in points of the form t∗r. We consider that the search is in the
degenerate phase as long as the best upper bound is more than twice the current lower bound.

At each iteration of the degenerate phase, we determine a smoothed solution as for the standard Benders
Cutting-Planes case, i.e., take the midpoint between the current optimal solution r and the optimal solution
at the previous iteration. As argued in Section 2.5.1 above, this degenerate phase is the weak point of the
new Benders Cutting-Planes, because the cuts generated by intersection are not particularly strong when
the rays do not “touch” the feasible polytope P. To overcome this, the advanced version of the new
Cutting-Planes algorithm first applies the standard separation sub-problem on the smoothed solution. If
the resulting cut shows that the ray 0 → r does not “touch” P, we then consider that the smoothed cut
is successful (a hit). Otherwise, the smoothed cut is unsuccessful and we need to call the intersection sub-
problem on the current ray r. By using a separation sub-problem during this degenerate phase, one can say
that the advanced version of the new Benders Cutting-Planes algorithm actually combines the intersection
and the separation sub-problems.

During the normal (non-degenerate) phase, the smoothing technique can use the feasible primal solutions
generated by solving intersection sub-problems at previous iterations. As such, the query point is defined
as the the midpoint rm between the current optimal solution r and the best (non-rounded) feasible solution
discovered so far. At each iteration, we fist solve the intersection sub-problem on this query point rm. If the
returned cut separates the current optimal solution r, we consider the smoothed intersection is successful (a
hit) and we no longer apply the intersection sub-problem on r. Otherwise, the smoothed cut is unsuccessful
and we need to call a second intersection sub-problem on r. The use of the best feasible solution to define the
query point is reminiscent of centralization methods (or centering schemes), in which one uses more interior
solutions as query points – e.g., see references on the analytic-center Cutting-Planes method in [10, 11].

2.5.3 Practical acceleration of both methods by avoiding the hardest master ILPs

The most critical computational step of both Benders Cutting-Planes is the iterative resolution of the
(relaxed) master integer LP associated to (2.7a)-(2.7d). While the computational effort of solving this
ILP does depend on the number of generated constraints, experiments suggest that certain relatively small
master ILPs can still require a prohibitively-long computing time. This can occasionally happen in both
Benders Cutting-Planes algorithms, whenever they produce a particularly difficult combination of generated
constraints in the master ILP, so that the Cplex ILP solver can remain blocked virtually indefinitely. To

10

avoid this, we propose to stop the ILP solver if it exceeds a certain CPU time threshold,5 and let the
Cutting-Planes continue with the best integer solution ynopt found by the ILP solver so far, i.e., ynopt is a
sub-optimal solution of the current relaxed master. However, if the (separation or intersection) sub-problem
separates ynopt, the Cutting-Plane algorithm can add a new constraint, (re-)optimize the resulting master
ILP and continue as usually. The fact that ynopt was sub-optimal does not influence the correctness of (the
continuation of) the Cutting-Planes. By adding a new constraint to separate ynopt, the resulting master
ILP can become reasonably-difficult again, “unblocking” the Cutting-Plane process.

If the above ynopt can not be separated, the Benders Cutting-Planes can not stop and report ynopt as
an optimal solution, simply because ynopt is by construction sub-optimal for the current relaxed master. For
this case, we propose to multiply the above CPU time threshold by 100 and try again to solve the current
(prohibitively-hard) master ILP. If this new larger time limit is enough to solve the master ILP, the Benders
Cutting-Planes algorithm can continue as usually. Otherwise, the Cutting-Planes algorithm stops and
we consider that it can not solve the instance at issue. Generally speaking, experiments suggest that even if
one multiplied the threshold by 1000, the ILP solver could still fail.

3 An application example

3.1 The primal integer linear model

Suppose one needs to install multiple transmission facilities – such as cables or other telecommunication
links – over the edges of a graph (telecommunication network) G = (V,E). We consider a source (origin) O
and a set of destination terminals T with O /∈ T : the goal is to construct a least-cost set of links that allow
a multicast flow x to pass from O to T . In other words, we ask to minimize the total cost of the mounted
links y needed to accommodate a required one-to-many flow.

As argued in [14, 8], the flow cost can be ignored in many computer networks: this is realistic when
there is no volume-based cost for using installed telecommunication links (e.g., TCP/IP Ethernet cables).
However, there is a fixed charge dij incurred for leasing a communication link from a telecommunication
carrier or for installing a private link from i to j. The network design problems with zero flows cost have also
been referred to as network loading problems [8, 7], in the sense that one has to load transmission facilities
(e.g., cables) that can carry flow at no cost along the edges, see also the beginning of [8, §1]. Zero flow costs
can also arise in other applications besides computer networks, for instance, in networks of electric lines or
in networks of watter supply pipes. It is indeed reasonable to assume that the volume-based cost for using
an electric line or a water pipe is insignificant compared to the installation or construction cost.

Our model uses decision variables yij to indicate the number of installed links between i and j, each of
bandwidth (capacity) bwd; variables xij represent the flow from i to j. Notice that dij and yij are undirected
variables associated to undirected edges {i, j} ∈ E, i.e., we can use the convention dij = dji and yij = yji.
In contrast, the flow variables xij are directed. The following model is an adaptation of (21)-(25) from [4],
of (10)-(14) from [5], of (1)-(4) from [7], of (1)-(6) from [6], or of (1)-(3) from [8].

min
∑
{i,j}∈E

dijyij (3.1a)

∑
{i,j}∈E

xji −
∑
{i,j}∈E

xij ≥ 0, ∀i /∈ T ∪ {O} (3.1b)

∑
{i,j}∈E

xji −
∑
{i,j}∈E

xij ≥ bi, ∀i ∈ T (3.1c)

bwdyij − xij − xji ≥ 0, ∀{i, j} ∈ E, i < j (3.1d)

yij ∈ Z+, xij , xji ≥ 0, ∀{i, j} ∈ E, i < j (3.1e)

5We use
⌊
|E|
120

⌋
+ 1 seconds for the ILP solver of Cplex 12.6, where |E| is the number of edges of the underlying graph.

11

The above model replaced the classical flow conservation equality constraints (see, e.g., (22) of [4] or (1)
of [7]) with inequalities (3.1b)-(3.1c). For instance, (3.1b) states that the flow entering i has to be greater
than or equal to the flow exiting i. This is weaker than an equality constraint, but a feasible solution (y,x)
that satisfies a constraint (3.1b) or (3.1c) without equality can be transformed into a feasible solution that
satisfies it with equality. For this, it is enough to decrease the flow

∑
{i,j}∈E xji entering in i, by decreasing

any xji terms. We prefer to use these inequality flow constraints, because the goal is to make the above LP
better fit the model (2.1a)-(2.1d) and Theorem 1. We do not add any constraint (3.1b) or (3.1c) for i = O,
because there is no flow conservation at the source. The flow values xOj with {O, j} ∈ E can become as
large as necessary, and there is no flow xjO entering O because O /∈ T .

Finally, constraints (3.1d) ensure that the total traffic on each link is bounded by the total installed
bandwidth, i.e., the number of installed links multiplied by the bandwidth bwd of an individual link. This
type of inequality arises, for instance, in (3) of [14] or in (2) of [8].

3.2 Constructing P ′ and the Benders reformulation model

The variables of the Benders sub-problem polytope P The inequalities (3.1b)-(3.1d) are instanti-
ations of the general constraints (2.1c). Using the Benders decomposition approach from Section 2.1, these
constraints can be used inside an inner LP of the form (2.2c). By dualizing this inner LP as when we
constructed (2.3)-(2.4), we first obtain the variables of the Benders sub-problem polytope P from (2.4):

(a) |V | − 1 dual variables ui ≥ 0 associated to (3.1b)-(3.1c). There are |V | − 1 such dual variables (primal
constraints), because there is no constraint (3.1b) or (3.1c) for the source O.

(b) |E| dual variables uij ≥ 0 associated to (3.1d). For each edge {i, j} with i < j, we define a unique dual
variable uij ;

Summing up above (a) and (b), we obtain that the vectors u of polytope P from (2.4) have size |E|+ |V |−1.

The constraints of the Benders sub-problem polytope P There are 2|E| constraints in P , because
each edge {i, j} ∈ E is associated to two primal variables xij and xji. The dual constraints associated to the
columns of xij and resp. xji (with i < j) are (3.2a) and resp. (3.2b) below, constructing the polytope P :

−uij − ui + uj ≤ 0 ∀{i, j} ∈ E, i < j (3.2a)

−uij − uj + ui ≤ 0 ∀{i, j} ∈ E, i < j (3.2b)

u ≥ 0, (3.2c)

where we use the convention that if i (resp. j) equals O then the term ui (resp. uj) vanishes in (3.2a)-(3.2b).
The first (resp. second) constraint corresponds to column xij (resp. xji). The argument justifying the first
constraint is the following: (i) −uij comes from the −xij term of (3.1d), (ii) −ui comes from the −xij term
(flow exiting i) of either (3.1b) or (3.1c) defined by i, (iii) +uj comes from the xij term (flow entering j) of
(3.1b) or (3.1c) defined by j. The second constraint follows from an analogous argument.

P

Notice that the resulting polytope P defined by (3.2a)-(3.2c) above has the particular structure described
in Observation 2 (p. 4), i.e., it is a pointed polyhedral cone consisting only of rays (except vertex 0). Then,
the definition of P ′ follows immediately by imposing 1>u = 1 as stated by (2.6).

The Benders reformulation model We now reformulate (3.1.a)-(3.1e) to obtain a Benders reformulation
of the general form (2.7a)-(2.7d). In fact, we will instantiate (2.7a)-(2.7d) to our application, using a similar
approach as in Section 2.2. Recall that (2.7c) actually states that the dual objective function (b −By)>u
over all u ∈ P ′ (or equivalently u ∈ P) has to be at maximum 0. We can generate a similar constraint for
our application. For this, first notice that the variables ui with i ∈ T have dual objective function coefficient
bi, because constraints (3.1c) have a right-hand side value of bi; variables ui with i /∈ T ∪ {O} have dual
objective function coefficient 0 because of the right-hand 0 in (3.1b). Similarly, variables uij have dual
objective function coefficient −bwdyij , by moving bwdyij in the right-hand side of (3.1d). Since P contains

12

only rays (except 0), the following inequality needs to hold to ensure that the dual objective function over
u ∈ P in (2.3) is at maximum 0 as in (2.7c).

0 ≥ −
∑
{i,j}∈E

bwdyijuij +
∑
i∈T

biui

A similar constraint was derived in [5, (5)] for the (generalized) case of multi-commodity flows. Also, the
constraints (3.2a)-(3.2c) defining our polytope P are very similar to the constraints (4) of [5].

The main Benders reformulation model (2.7a)-(2.7d) becomes:6

min d>y (3.3a)

0 ≥ −
∑
{i,j}∈E

bwdyijuij +
∑
i∈T

biui,∀u ∈ P ′ (3.3b)

y ∈ Zn+ (3.3c)

After determining the optimal solution y at the current iteration, a Cutting-Planes algorithm searches
for some u′ ∈ P ′ (i.e., an u′ satisfying (3.2a)-(3.2c) and 1>u′ = 1) that maximizes −

∑
{i,j}∈E bwdyiju

′
ij +∑

i∈T biu
′
i, i.e., it tries to separate the current y, so as to add a new constraint to the current relaxed master.

The main general Cutting-Planes steps are the same as those described in Observation 1 (p. 4).

3.3 Solving the intersection sub-problem

To solve the intersection sub-problem along some 0→ r in the above Benders reformulation (3.3a)-(3.3c), one
has to replace y = t∗r in (3.3b) and then find the minimum t∗ ≥ 0 that makes the following (particularization
of (2.8)) hold:

t∗ ·
∑
{i,j}∈E

bwdrijuij ≥
∑
i∈T

biui ∀u ∈ P ′. (3.4)

Observation 3. (degenerate case) Following Theorem 1, we first separate the degenerate case (i) in which
there is no t∗≥ 0 for which the above (3.4) holds. This can only happen if there is some uι ∈ P ′ such that∑
{i,j}∈E bwdriju

ι
ij = 0 and

∑
i∈T biu

ι
i > 0. Such a case can be detected by solving the following LP, an

instantiation of (2.9) from Theorem 1:

max
{∑

i∈T biui : u ∈ P ′,
∑
{i,j}∈E bwdrijuij = 0

}
. (3.5)

If the best objective value of this LP is strictly greater than 0 for some uι ∈ P ′, the proposed Cutting-Planes

algorithm adds the constraint
∑
{i,j}∈E bwdyiju

ι
ij ≥

∑
i∈T biu

ι
i, so as to separate all tr with t ≥ 0 from the

feasible area of (3.3a)-(3.3c). Also notice that
∑
{i,j}∈E bwdrijuij ≥ 0 is always satisfied during the Benders

Cutting-Planes, because u ≥ 0 holds in (3.2c), r ∈ Zn+ is a non-negative optimal solution of a relaxed
master associated to (3.3a)-(3.3c), and bwd is a non-negative bandwidth.

We now address the particular case (ii.a) of Theorem 1, that can be detected if the maximum of the above
LP (3.5) is exactly 0. First, the (sub-)case (ii.a.1) can not arise, because

∑
{i,j}∈E bwdrijuij ≥ 0 ∀u ∈ P ′

as explained above. We are left with the particular case (ii.a.2) in which there is some u0 ∈ P ′ such that∑
{i,j}∈E bwdriju

0
ij = 0 and

∑
i∈T biu

0
i = 0. This u0 allows any t∗ ≥ 0 to be feasible in (3.4), yielding

t∗ = 0. As such, the constraint (3.3b) associated to this u0 does not generally lead to the strongest cut in
(3.3a)-(3.3c). If it does, the Cutting-Planes algorithm can stop and report that r is an optimal solution.

6All next sums of y or u terms over edges {i, j} ∈ E use the convention i < j. Whenever we refer to variables yij , uij or
rij , we assume that i < j holds, see also the arguments from the 6th paragraph of [4, §3].

13

As in Theorem 1, after separating the above particular cases, we can focus on elements u ∈ P ′ that
respect

∑
{i,j}∈E bwdrijuij > 0, i.e., the main case (ii.b). To find t∗ in this case, one needs to solve the

following linear-fractional program, a particularization of (2.10):

t∗ = max

{ ∑
i∈T biui∑

{i,j}∈E bwdrijuij
: u ∈ P ′,

∑
{i,j}∈E bwdrijuij > 0

}
, (3.6)

We can apply the following Charnes-Cooper transformation as in (2.11)

u = u
1∑

{i,j}∈E bwdrijuij
, (3.7)

so as to translate (3.6) into:

t∗ = max b>u =
∑
i∈T biui (3.8a)

− uij − ui + uj ≤ 0 ∀{i, j} ∈ E, i < j 7 (3.8b)

− uij − uj + ui ≤ 0 ∀{i, j} ∈ E, i < j 7 (3.8c)∑
{i,j}∈E

bwdrijuij = 1 (3.8d)

u ≥ 0 (3.8e)

As in Theorem 1, any feasible u ∈ P ′ from (3.6) is transformed by (3.7) into a feasible u in (3.8a)-(3.8e)
such that u and u have the same objective value in (3.6) and resp. (3.8a). To show u is feasible, we first
notice that since u ∈ P ′ satisfies (3.2a)-(3.2b), then u = u/β (with β =

∑
{i,j}∈E bwdrijuij > 0) satisfies

(3.8b)-(3.8c). Secondly, u ≥ 0 from (3.2c) leads to u = u/β ≥ 0, i.e., constraint (3.8e). Finally, constraint
(3.8d) follows from the definition of u in (3.7). It is not hard to check now that the objective value of u in
(3.6) is the same as that of u in (3.8a).

Conversely, any optimal solution uo of (3.8a)-(3.8e) above8 can be associated to a feasible uo ∈ P ′ by
applying a scaling of the form uo = uo

α , choosing an α > 0 such that 1>uo = 1, so as to make uo belong to
P ′. This uo leads (3.8a) to the same t∗ value as the one associated to uo in (3.6). This comes from the fact

that
∑
{i,j}∈E bwdriju

o
ij = 1 as stated in (3.8d), so that

∑
i∈T biu

o
i =

∑
i∈T biu

o
i∑

{i,j}∈E bwdrijuo
ij

=
∑

i∈T biu
o
i∑

{i,j}∈E bwdrijuo
ij

.

Finally, uo satisfies the last constraint of (3.6), because
∑
{i,j}∈E bwdriju

o
ij = 1 > 0 and α is a strictly

positive value.
After solving the LP (3.8a)-(3.8e), the intersection algorithm returns the hit point y = t∗r that satisfies

with equality the constraint (3.3b) or (3.4) associated to uo. If t∗ > 1, one can separate r by adding
the constraint (3.3b) defined by uo to the relaxed master associated to (3.3a)-(3.3c). After adding such a
constraint, the Cutting-Planes algorithm re-optimizes the resulting master enriched with one constraint
more, so as to find a new current optimal solution r. The Cutting-Planes based on the intersection sub-
problem was discussed in greater detail in Section 2.4 (basic version) and in Section 2.5 (advanced version).
All results from Section 2.5 on the advanced Cutting-Planes algorithm apply perfectly well to the models
from this section, and so, we will use this advanced algorithm for most numerical tests in the next section.

Observation 4. The solution y = t∗r ≥ 0 returned by the intersection algorithm satisfies all constraints (3.3b),
but not necessarily the integrality of y from (3.3c). To obtain a solution y′ that does respect all constraints
(3.3b)-(3.3c), it is enough to set y′ij = dyije, ∀{i, j} ∈ E, i < j. This rounded y′ satisfies the constraint
(3.3b) defined by any u ∈ P ′, because the following is true by virtue of u ≥ 0 and bwd > 0:

0 ≥ −
∑
{i,j}∈E

bwdyijuij +
∑
i∈T

biui ≥ −
∑
{i,j}∈E

bwdy
′
ijuij +

∑
i∈T

biui.

7If i or j is O, the associated term uO vanishes, recall we used the same convention when we defined P in (3.2a)-(3.2c). For
instance, if j = O, constraints (3.8b)-(3.8c) become −uij − ui,−uij + ui ≤ 0.

8If (3.8a) is unbounded, t∗r is infeasible for any t∗ ≥ 0. This case would be detected as the degenerate case (i) described by
Observation 3 (p. 13), see the last paragraph of Theorem 1 for a proof.

14

One can obtain the same result using the primal constraints (3.1b)-(3.1e). The solution y′ allows all required
flow to pass in (3.1b)-(3.1e), because y′ imposes even less constraints than y on the variables x in (3.1d).

4 Numerical Results: Basic and Advanced Benders Cutting-Planes

We start out with a brief Section 4.1 that evaluates the intersection sub-problem on the basic Benders
Cutting-Planes from Section 2.4, using a few small instances that can generally be solved in less than one
minute. We will then continue in Section 4.2 with the advanced accelerated Cutting-Planes from Section
2.5, providing statistical results over larger, harder and more varied instances. We will finish in Section 4.3
with an evaluation of the potential integration of the proposed new upper bounds in a Branch-and-Bound

algorithm based on a linear relaxation.

4.1 Basic Cutting-Planes based on the intersection sub-problem

We here evaluate a basic Cutting-Planes in which we only replace the separation sub-problem with the
intersection sub-problem. We generated 20 instances of 4 different sizes, with |E| ranging from 150 to 220
and |V | ranging from 25 to 50. For each size, we consider 5 random graphs, identified by an id from 1 to 5.
The demand bi for each vertex (sink) i ∈ V \ {O} is generated uniformly at random from the interval [0, 10];
we consider d = 1 (each link has the same installation cost) and an unitary bandwidth bwd = 1.

Table 1 compares the new Cutting-Planes algorithm with the standard one. Columns 1-3 describe the
instance, Column 4 reports the integer optimum, Columns 5-6 indicate the computing effort (iterations and
CPU time in seconds) needed by the new method to reach a gap of 20% between the upper and the lower
bound, Columns 7-8 provide the total computing effort spent by the new method to fully converge, and the
last two columns indicate the total computing effort of the standard Cutting-Planes. For 13 of the 20
instances, the new method needs less CPU time than the standard Cutting-Planes.

id |E| |V | OPT New Meth. Computing Effort Std. Meth. Computing Effort
Gap 20% Full convergence Full convergence

iters time[s] iters time[s] iters time[s]
1 150 25 174 40 0.37 40 0.37 91 2.51
2 150 25 164 58 1.92 85 3.44 34 0.28
3 150 25 141 74 2.02 78 2.22 93 3.8
4 150 25 131 73 0.80 79 0.89 100 1.22
5 150 25 177 35 0.31 35 0.31 48 0.4
1 200 40 371 105 1.4 105 1.4 120 1.8
2 200 40 333 65 0.84 65 0.84 94 4.7
3 200 40 332 91 2.5 104 3.4 120 5.8
4 200 40 358 51 0.96 51 0.96 83 3.2
5 200 40 298 56 0.62 56 0.62 111 5.1
1 210 45 348 72 2.33 76 2.73 91 2.51
2 210 45 348 87 6.72 344 60 122 28.3
3 210 45 318 69 0.73 69 0.73 93 13.8
4 210 45 364 159 13.4 302 61.6 105 13.6
5 210 45 382 63 2.16 63 2.16 158 25.4
1 220 50 402 82 2.8 82 2.8 135 5.64
2 220 50 414 142 3.3 192 10.9 165 8.52
3 220 50 509 119 9.7 302 68.1 135 16.2
4 220 50 432 158 8.6 178 13.9 145 12.3
5 220 50 515 79 1.9 79 1.96 165 3.22

Table 1: Comparison of the new basic Cutting-Planes using the intersection sub-problem and the standard
basic Cutting-Planes on small random instances (called random-10 instances in Table 2).

15

Table 1 suggests that the total running time depends more on the number of iterations than on the
choice between the separation and the intersection sub-problem. In both cases, the sub-problem requires
solving a few LPs, but the main computational bottleneck is the iterative resolution of the master integer
LP associated to (3.3a)-(3.3c). The more constraints are added to this master integer LP, the slower the
ILP solver. As such, the Cutting-Planes algorithms become increasingly slower as the number of iterations
grows. By doubling the number of iterations, the total running time is multiplied by more than 2.

The results from this section were obtained by running C++ programs compiled with g++ (avec l’option
-O3) using the Cplex 12.6 library for C++. We used a mainstream Linux computer with a CPU i7-5500U.

4.2 Advanced Cutting-Planes and statistical comparisons

To better evaluate the the potential of the intersection sub-problem, we now use it within the advanced Ben-
ders Cutting-Planes algorithm from Section 2.5. Recall that this advanced algorithm calls the separation or
the intersection sub-problem on a smoothed solution instead of the optimal one, i.e., it uses a smoothed query
point at each iteration (see more exact details in Section 2.5.2). This can reduce oscillations of the query
points along the iterations, accelerating the convergence. If the cut determined using this smoothed solution
separates the current optimal solution, the smoothed cut is successful (a hit). Otherwise, the smoothed cut
is unsuccessful and the algorithm calls again the separation or the intersection sub-problem on the current
optimal solution. In Section 2.5.3 we also presented a practical technique to (try to) avoid certain relaxed
master ILPs on which the Cplex ILP solver can stay blocked virtually indefinitely; such master ILPs can
be occasionally generated by all presented Benders algorithms. The above two techniques have thus been
applied both for the new Benders Cutting-Planes based on intersections and for the standard one based
on the separation sub-problem.

We will report statistics over 20 runs, providing the average, the standard deviation and the minimum
value of several performance indicators. The main studied indicators are the number of iterations, the CPU
time and the number of successful smoothed cuts (hits). We will also report the percentage of CPU time
spent on solving (relaxed) master ILPs associated to (3.3a)-(3.3c). Reporting statistical results is slightly
complicated by the fact that all our Cutting-Planes algorithms have no random component by default.
Indeed, the algorithmic descriptions from Sections 2-3 do not mention any point where an algorithm has to
randomly break ties. If some LP or ILP encountered along the search has multiple optimal solutions, we let
Cplex break ties and it always returns the same optimal solution.

However, we can quite easily randomize the algorithms by simply adding random cut-set inequalities in
the beginning. More exactly, we add 10 random cut-set inequalities before launching the Cutting-Planes

algorithm, to change the way it starts, this way changing its whole evolution. These are well-known valid
inequalities [5] that we implemented as follows. We first randomly split the vertex set V in two sub-sets, a
subset Vs containing the source and a subset Vt containing 10 terminals (sinks). We then impose that the
edges linking vertices from Vs to vertices from Vt need to have enough installed bandwidth to carry all the
demands of Vt, i.e., to route all the traffic from Vs (including the source) to Vt. The following is an example

of a cut-set inequality, very similar to (9) from [5]:
∑

{i,j}∈E

i∈Vs, j∈Vt

yij ≥
∑
j∈Vt

bi

We use larger instances than in the previous Section 4.1. All of them have the same installation cost for
each edge (i.e., d = 1). The first four instance classes have an unitary bandwidth bwd = 1 and the last one
has bwd = 3. For each graph class, we choose 4 sizes, so as to generally solve the smallest one in a time of
minutes and the largest one in about one hour (between 30 and 90 minutes). These are the instance graph
classes:

– instances random-10 representing random graphs with random demands in the set {0, 1, 2 . . . 10}.

– instances random-2 representing random graphs as above but with random demands in the set {1, 2}.

– instances layered-10 representing so-called layered graphs (see below) with random demands in the
set {0, 1, 2 . . . 10}. We call such graphs layered in the sense that all edges (i, j) ∈ E need to respect

16

|i− j| ≤ 20. This means that a source at vertex 0 needs a path of length at least 2 to reach vertices in
the interval [21..40], a path of length at least 3 to reach vertices in [41, 60], 4 for the vertices in [61.80],
etc. Such layered instances are more realistic in the sense very distant vertices (hosts) are not usually
directly connected (by cables) in computer networks;

– instances layered-2 representing layered graphs as above but with random demands in the set {1, 2}.

– instances random-10-bwd3 that are identical to the first instances random-10 except for the fact that
the links have a bandwidth of bwd = 3.

The main results of the advanced Cutting-Planes for both the intersection and the separation sub-
problem9 are reported in Table 2, next page. The columns of this table can be divided into three groups:

Columns 1-5 describe the instance as follows: the graph class is provided in Column 1, the instance number
(id) in Column 2, the number of edges |E| (i.e., the number of decision primal variables y) in Column
3, the number of vertices |V | in Column 4 and the optimal integer value in Column 5.

Columns 6-14 indicate the average computing effort of the new Cutting-Planes algorithm, as follows:
statistics on the number of iterations (over 20 runs) in Columns 6-8, statistics on the CPU time (over 20
runs) in Columns 9-11, the average percentage of the total CPU time spent on solving (relaxed) integer-
only master problems in Column 12, and finally the number of successful smoothed cuts (average and
standard deviation) in Columns 13-14. All statistics indicate the average value, the standard deviation
and the minimum over 20 runs.

Columns 15-23 indicate the average computing effort of the standard method, using the same format as
above, more exactly: statistics on the number of iterations (over 20 runs) in Columns 15-17, statistics
on the CPU time in Columns 18-20, the average percentage of the total CPU time spent on integer-
only master problems in Column 21, and finally the number of successful smoothed cuts (average and
standard deviation) in the last two columns.

The main conclusions that can be drawn from Table 2 are the following. The new Cutting-Planes

method requires in general a lower number of iterations , which often leads to a CPU time speed-up between
1.2 and 2. In fact, in the best case, the new method reaches a CPU time speed-up of 3 (i.e., it is 3 times
faster) on the last instance of the random-10 graphs. On the other hand, the new method is not always
systematically faster in terms of CPU time. However, the only instances for which it is slightly slower are
the smallest ones, for which the slow-down induced by the number of solved master integer LPs (equal to
the number of iterations) is less important compared to other factors (e.g., loading the initial program with
the cut-set constraints).

Let us now examine the progress over the iterations of both Benders Cutting-Planes algorithms. Fig-
ures 4-6 (page 19) depict the values of the lower and the upper bounds generated by the new Cutting-Planes

(on three instances), compared to those of the standard Cutting-Planes (lower bounds only). Notice that
the upper bound is not available during the first (degenerate) phase of the new Cutting-Planes, associated
to the degenerate case (i) described in Theorem 1 (Section 2.3) or in Observation 3 (Section 3.3), i.e., the rays
0→ r do not even “touch” the feasible area. The initial degenerate phase is longer in Figure 4, and this is
the main weak point of the new algorithm, as already stated in Section 2.5.1. However, even in Figure 4, the
new upper bounds are useful to close the gap earlier at the end of the convergence (tail cutting). In Figure 6
on an instance with a bandwidth of bwd = 3, the gap between the two bounds of the new Cutting-Planes

algorithm is roughly 40% after only a sixth of the total number of iterations.
Figures 4-6 also suggest that the lower bounds of both methods are relatively strong, i.e., they can reach

about 90% of the optimum after only a fifth of the total number of iterations. During the second half of the
search, the new Benders Cutting-Planes can generally no longer improve the lower bound substantially,
but it actually tries to prove that this lower bound is close to optimal. Upper bounds can thus be very useful
to reduce or close the gap, and it seems more difficult to generate quality upper bounds than quality lower
bounds.

9The C++ source code is publicly available on-line at cedric.cnam.fr/~porumbed/benders/, along with several instances.

17

In
st

an
ce

C
u
t
t
i
n
g
-
P
l
a
n
e
s

u
si

n
g

th
e

In
te

rs
ec

ti
o
n

su
b

-p
ro

b
le

m
C
u
t
t
i
n
g
-
P
l
a
n
e
s

u
si

n
g

th
e

S
ep

a
ra

ti
o
n

su
b

-p
ro

b
le

m
G

ra
p

h
id

|E
|
|V
|

O
P

T
It

er
at

io
n

s
T

im
e

to
ta

l
[s

ec
s]

T
im

e
sm

o
o
th

It
er

a
ti

o
n

s
T

im
e

to
ta

l
[s

ec
s]

T
im

e
sm

o
o
th

cl
as

s
so

lv
e

cu
t

h
it

s
so

lv
e

cu
t

h
it

s
av

g
(

st
d

)
m

in
av

g
(

st
d

)
m

in
IL

P
s

av
g

(
st

d
)

av
g

(
st

d
)

m
in

av
g

(
st

d
)

m
in

IL
P

s
av

g
(

st
d

)

random-10

(maxdemand10)

1
60

0
90

84
4

11
1

(
7.

3
)

9
6

6
2
.9

(1
7
.5

)
3
1
.2

7
7
%

4
4
.2

(
7
.1

)
2
7
1

(3
6
.3

)
1
9
4

1
1
9

(4
8
.1

)
4
4
.8

8
4
%

2
6
4

(3
5
.4

)
2

60
0

90
83

7
11

1
(

9.
2

)
9
6

8
6
.5

(2
6
.7

)
4
3
.5

8
3
%

3
8

(1
0
.1

)
2
4
2

(
3
5

)
1
8
2

1
0
6

(6
4
.9

)
3
5
.1

8
3
%

2
3
9

(
3
5

)
1

10
0
0

11
0

93
2

11
5

(
7.

5
)

1
0
5

1
5
7

(7
9
.9

)
3
6
.6

8
6
%

4
0
.9

(
8
.5

)
3
1
3

(6
8
.5

)
2
1
6

2
1
0

(
1
7
9

)
3
5
.3

8
2
%

3
0
6

(6
6
.6

)
2

10
0
0

11
0

98
4

13
3

(1
0.

8)
1
1
8

2
1
8

(
1
0
0

)
4
7

8
5
%

3
8
.1

(1
0
.2

)
3
4
9

(
5
6

)
2
6
5

2
7
5

(
2
5
2

)
6
1
.5

8
4
%

3
4
0

(5
6
.8

)
1

15
0
0

13
0

12
47

16
2

(1
5.

3)
1
4
2

5
3
6

(
2
1
9

)
1
8
1

8
5
%

5
5

(1
6
.4

)
5
3
2

(8
5
.4

)
3
9
5

1
2
2
0

(1
0
4
5
)

1
6
3

9
0
%

5
1
5

(8
4
.8

)
2

15
0
0

13
0

11
23

15
3

(1
2.

3)
1
3
8

5
4
5

(
1
9
8

)
2
3
5

8
1
%

3
9
.5

(1
3
.6

)
5
0
2

(6
2
.9

)
3
8
3

1
0
8
0

(
8
2
8

)
1
8
6

9
0
%

4
8
6

(6
1
.7

)
1

20
0
0

15
0

13
72

18
4

(1
1.

8)
1
6
2

1
5
3
3

(
3
4
2

)
8
3
4

9
1
%

5
3
.8

(1
3
.2

)
8
0
4

(
1
9
6

)
4
3
5

5
0
1
3

(2
6
8
7
)

7
9
6

9
5
%

7
7
9

(
1
9
1

)

random-2

(maxdemand2)

1
60

0
90

23
4

16
8

(1
9.

1)
1
3
8

3
5
9

(
1
3
5

)
1
2
5

9
6
%

7
1
.8

(
1
7

)
2
6
9

(2
8
.7

)
2
1
6

4
3
5

(
1
0
8

)
2
1
1

9
6
%

2
6
4

(2
6
.8

)
2

60
0

90
24

3
13

1
(1

5.
9)

1
1
4

1
5
1

(5
6
.6

)
5
2

8
9
%

5
7
.7

(1
7
.3

)
2
7
4

(4
2
.1

)
2
0
6

1
5
7

(7
7
.5

)
4
2
.7

8
7
%

2
7
2

(4
1
.8

)
1

10
0
0

10
0

24
2

14
8

(1
4.

5)
1
2
8

4
6
4

(
1
4
4

)
2
3
6

9
0
%

5
1
.9

(1
3
.6

)
4
0
4

(6
6
.4

)
3
0
7

7
5
7

(
4
4
9

)
1
9
0

9
1
%

3
9
9

(6
4
.6

)
2

10
0
0

10
0

21
9

13
0

(1
1.

4)
1
1
5

4
0
8

(9
0
.9

)
1
9
1

9
1
%

5
3
.9

(
1
1

)
3
9
6

(5
6
.6

)
3
1
6

4
9
3

(
3
0
0

)
1
1
0

8
7
%

3
8
9

(
5
7

)
1

13
0
0

11
0

26
2

14
8

(1
0.

8)
1
2
9

5
1
2

(
1
3
0

)
1
7
9

9
2
%

6
1

(
1
0

)
5
6
2

(
1
3
6

)
4
0
1

1
0
8
2

(
6
7
5

)
2
4
4

8
9
%

5
4
6

(
1
3
4

)
2

13
0
0

11
0

26
1

14
8

(
8

)
1
3
4

5
4
6

(
1
4
9

)
3
0
4

8
8
%

5
9
.5

(
8
.1

)
5
1
3

(
8
5

)
3
9
3

1
0
3
1

(
7
6
9

)
2
2
6

8
9
%

4
9
9

(8
4
.2

)
1

15
0
0

12
0

29
2

16
3

(1
2.

6)
1
4
5

7
5
0

(
2
2
4

)
3
8
5

9
2
%

7
0
.7

(
1
1

)
5
7
7

(
1
1
5

)
4
3
6

1
2
6
9

(1
0
2
4
)

2
4
3

8
8
%

5
6
0

(
1
1
6

)

layered-10

(maxdemand10)

1
20

0
80

15
56

11
2

(
8.

4
)

9
1

3
1

(1
4
.1

)
1
3
.9

9
3
%

6
6
.7

(
1
0

)
1
4
5

(1
0
.6

)
1
2
6

2
8
.4

(
1
3
.4

)
9
.4

9
4
%

1
4
2

(
1
0

)
2

20
0

80
17

66
13

5
(1

4.
4)

1
1
6

2
7
.7

(1
5
.3

)
1
1
.4

9
0
%

8
1
.9

(1
3
.6

)
1
8
4

(1
3
.6

)
1
5
4

4
2
.9

(
1
6
.1

)
1
5
.8

9
5
%

1
7
9

(1
3
.3

)
1

40
0

10
0

16
65

17
1

(1
3.

5)
1
5
3

3
6
5

(6
5
.1

)
2
7
5

9
6
%

8
4
.9

(1
3
.8

)
2
5
0

(1
4
.7

)
2
2
1

5
2
5

(5
7
.2

)
3
8
5

9
8
%

2
4
7

(1
4
.4

)
2

40
0

10
0

21
66

14
1

(1
5.

2)
1
1
3

2
2
1

(7
7
.5

)
5
3
.2

9
6
%

7
3
.2

(1
5
.5

)
2
1
0

(1
9
.2

)
1
7
0

2
9
8

(7
6
.5

)
1
1
9

9
8
%

2
0
7

(1
8
.9

)
1

60
0

12
0

28
73

25
1

(1
6.

7)
2
1
9

1
1
8
3

(9
5
.3

)
1
0
1
6

9
7
%

1
4
3

(1
7
.5

)
3
8
4

(2
1
.4

)
3
5
7

1
7
2
7

(
1
5
9

)
1
5
0
0

9
8
%

3
8
1

(2
1
.4

)
2

60
0

12
0

23
84

22
1

(1
6.

4)
1
9
0

9
2
9

(
1
2
1

)
7
1
1

9
6
%

1
1
6

(1
6
.2

)
3
3
9

(2
6
.6

)
2
9
2

1
3
6
9

(
1
9
7

)
1
0
7
6

9
7
%

3
3
5

(2
6
.1

)
1

80
0

14
0

31
36

28
2

(2
7.

5)
2
3
1

1
5
1
7

(
2
1
2

)
1
1
4
9

9
7
%

1
5
6

(
2
6

)
4
2
5

(2
5
.7

)
3
8
0

2
1
5
2

(
1
9
8

)
1
7
5
3

9
8
%

4
2
0

(2
4
.8

)

layered-2

(maxdemand2)

1
20

0
80

36
9

12
5

(1
1.

7)
1
0
1

7
0
.7

(2
0
.7

)
2
7

9
7
%

7
6
.5

(1
3
.9

)
1
6
4

(1
4
.9

)
1
3
8

8
5
.1

(
2
2
.1

)
5
4
.5

9
7
%

1
5
8

(1
3
.6

)
2

20
0

80
38

4
10

5
(

9
)

8
7

4
4
.7

(2
1
.6

)
1
7
.6

9
5
%

5
6
.9

(
7
.8

)
1
3
3

(1
5
.2

)
1
1
1

4
5

(1
4
.9

)
2
0
.5

9
5
%

1
2
9

(
1
4

)
1

40
0

10
0

50
3

17
2

(1
7.

5)
1
4
9

3
7
3

(
1
1
8

)
2
4
0

9
8
%

8
7
.9

(1
5
.2

)
2
3
6

(1
4
.1

)
2
0
0

5
0
7

(
6
8

)
3
3
8

9
8
%

2
3
0

(1
2
.9

)
2

40
0

10
0

50
2

15
8

(1
5.

1)
1
3
8

2
5
0

(4
7
.1

)
1
5
7

9
5
%

6
6
.8

(1
7
.6

)
2
3
2

(1
3
.4

)
2
1
0

4
0
5

(7
1
.4

)
2
9
9

9
8
%

2
2
6

(1
2
.7

)
1

60
0

12
0

64
2

19
7

(1
1.

1)
1
7
9

7
8
2

(8
7
.1

)
6
3
8

9
9
%

8
8
.7

(1
0
.5

)
2
9
3

(2
4
.7

)
2
3
5

1
1
4
9

(
1
6
2

)
7
5
4

9
8
%

2
8
9

(2
4
.3

)
2

60
0

12
0

69
2

20
0

(1
6.

7)
1
6
8

7
7
6

(
1
2
3

)
5
2
3

9
6
%

7
9

(1
5
.9

)
3
1
5

(2
0
.5

)
2
6
6

1
2
4
9

(
1
2
4

)
9
6
4

9
8
%

3
1
0

(1
9
.6

)
1

80
0

14
0

85
6

27
7

(2
7.

6)
2
2
1

1
5
0
6

su
cc

es
s

ra
te

:
1
1
/
2
0

4
1
8

(2
2
.5

)
3
6
6

2
1
9
8

su
cc

es
s

ra
te

:
1
1
/
2
0

random-10-bwd3

(bandwidth3)

1
70

25
87

94
.1

(1
5.

1)
7
3

1
3
.4

(
7
.6

)
3
.8

9
6
%

7
0
.9

(1
4
.5

)
1
1
6

(1
1
.2

)
9
0

1
6
.8

(
7
.9

)
5
.9

9
7
%

1
0
1

(1
0
.2

)
2

70
25

72
12

4
(1

5.
2)

1
0
7

3
9
.1

(1
3
.4

)
2
0
.1

9
8
%

8
2
.9

(1
0
.9

)
1
6
5

(2
8
.5

)
1
1
3

4
9
.4

(
2
5
.9

)
1
4
.5

9
9
%

1
3
3

(1
7
.3

)
1

80
30

10
0

19
0

(3
7.

2)
1
2
0

9
3
.9

(3
5
.3

)
3
2
.1

9
9
%

1
4
6

(3
2
.7

)
2
7
6

(4
5
.2

)
1
8
9

1
5
6

(4
8
.5

)
5
8
.9

9
9
%

2
2
4

(3
0
.8

)
2

80
30

88
17

8
(2

8.
5)

1
2
6

8
3
.2

(2
9
.5

)
1
6
.5

9
9
%

1
2
8

(2
3
.6

)
2
4
4

(3
9
.4

)
1
8
5

1
1
4

(3
9
.3

)
5
2
.3

9
9
%

1
9
4

(2
4
.3

)
1

90
35

13
4

11
24

(
39

8
)

7
2
9

1
4
3
8

su
cc

es
s

ra
te

:
1
3
/
2
0

1
1
2
8

(
1
1
1

)
1
0
2
4

1
3
5
9

su
cc

es
s

ra
te

:
3
/
2
0

2
90

35
12

8
71

0
(
16

1
)

4
5
1

7
3
9

su
cc

es
s

ra
te

:
8
/
2
0

–
–

–
–

a
ll

2
0
/
2
0

ru
n

s
fa

il
ed

1
10

0
40

19
2

66
3

(
13

5
)

4
0
2

1
2
4
6

su
cc

es
s

ra
te

:
1
3
/
2
0

–
–

–
–

a
ll

2
0
/
2
0

ru
n

s
fa

il
ed

T
ab

le
2:

A
v
er

ag
e

re
su

lt
s

of
th

e
n

ew
m

et
h

o
d

co
m

p
a
re

d
w

it
h

th
e

st
a
n
d

a
rd

o
n

e
ov

er
h

a
rd

a
n

d
la

rg
e

in
st

a
n

ce
s.

18

0 20 40 60 80 100 120 140 160 180 200 220 240 260

600

800

1,000

1,200

Iterations

B
ou

n
d
V
al
u
es

upper bounds reported by the new method (intersection sub-problem)

lower bounds reported by the new method (intersection sub-problem)

lower bounds reported by the standard method (separation sub-problem)

Figure 4: The running profile of the new Cutting-Planes method and of the standard Cutting-Planes

method on instance id = 1 of graph class random-10 with |E| = 600 and |V | = 90.

0 50 100 150 200 250 300 350

1,000

2,000

3,000

4,000

5,000

Iterations

B
ou

n
d
V
a
lu
es

upper bounds reported by the new method
lower bounds reported by the new method

lower bounds reported by the standard method

Figure 5: The running profile of the new Cutting-Planes method and of the standard Cutting-Planes

method on instance id = 1 of graph class layered-10 with |E| = 600 and |V | = 120.

0 20 40 60 80 100 120 140 160 180 200 220 240 260

50

100

150

200

250

Iterations

B
ou

n
d
V
al
u
es

upper bounds reported by the new method
lower bounds reported by the new method

lower bounds reported by the standard method

20 40
60

80

100

Figure 6: The running profile of the new Cutting-Planes and of the standard Cutting-Planes on instance
id = 1 of graph class random-10-bnd3 (hence with a bandwidth of 3) with |E| = 80 and |V | = 30.

19

We now investigate what are the most computationally expensive operations for both Cutting-Planes

methods. Returning to Table 2, notice that about 80% − 99% of the total CPU time is spent on solving
relaxed master ILPs (see the percents in Columns 12 and 21), for both Cutting-Planes methods. The total
CPU time is not always exactly proportional to the number of iterations, because there are many factors
that can influence the total running time. For instance, the smoothed cuts are very often sufficient for
the standard Cutting-Planes method (next-to-last column), meaning that it is often enough to generate a
unique smoothed constraint at each iteration. The new method has less successful smoothed cuts (Column
13), meaning that it often has to generate two constraints at each iteration, leading to (relaxed) master ILPs
with more generated constraints, increasing the CPU time.10

A natural question that arises is whether the new method achieves similar or better speed-ups on larger
graphs. On the first random-10 instances of Table 2 one can simply note the following CPU time speed-ups:
1.33 for the instance id = 1 with |E| = 1000, 2.27 for the instance id = 1 with |E| = 1500 and 3.27 for
the instance id = 1 with |E| = 2000. This already suggests a speed-up increase hypothesis: the speed-up
obtained by the new method increases with the instance size. Table 3 below presents the speed-ups obtained
on random-10 graphs (id = 1) with |E| ranging from 1000 to 5000. The reported figures represent averages
over 5 runs, except for the first two instances with |E| ≤ 2000 for which we simply copied the CPU time
values from Table 2 (where we used 20 runs). This table confirms the above speed-up increase hypothesis,
i.e., the speed-up obtained by the new method becomes increasingly higher as the graph size grows, reaching
speed-ups close to 10, when |E| = 5000. More detailed results on these new runs are publicly available
on-line at cedric.cnam.fr/~porumbed/benders/, along with the code source.

|E| |V | |E| |V | |E| |V | |E| |V | |E| |V | |E| |V |
1500 130 2000 150 2500 175 3000 200 3500 225 5000 275

CPU Time speed-up 2.27 3.27 3.78 4.49 5.65 9.21
CPU Time new meth. 536 1533 1886 2912 4164 8636
CPU Time old meth. 1220 5013 7124 13063 23521 79564
Iters new meth. 162 184 221 257 280 340
Iters old meth. 532 804 961 1179 1518 1983

Table 3: Speed-up of the new Cutting-Planes compared to the standard one on larger random-10 graphs
(all with id = 1). The figures for the first two graphs are copied from Table 2.

Comparing the graph classes, Table 2 suggest that the instances with lower demands (i.e., random-2 or
layered-2) are more difficult. This is why we needed to reduce the sizes of the random-2 instances compared
to those of random-10 in Table 2. However, we could keep the same instance sizes for the layered-2 and the
layered-10 instances, but notice in Table 2 that some of the layered-2 instances could not be solved by
all runs, i.e., certain runs remained completely blocked trying to solve a prohibitively-hard (relaxed) master
ILP as described in Section 2.5.3.

However, the most difficult class of instances is by far the last one (random-10-bwd3) that uses a band-
width of 3. In this case, the optimal integer solution always wastes some capacity (bandwidth), at least for
any demand that is not a multiple of 3. Experiments suggest that if one adds ten more edges (compare
results with |E| = 80, |E| = 90 and |E| = 100 in Table 2), both Cutting-Planes methods can easily require
twice more CPU time. When setting |E| ≥ 100, both methods have high chances of failing – notice the last
two rows in which we prefer to provide the success rates instead of detailed CPU time statistics. We will

10Let us exemplify this on the first instance of Table 2. The standard Cutting-Planes requires an average of 271 iterations
and the smoothed constraint is sufficient in most of them (next-to-last column indicates an average of 264); the remaining
271-264 iterations need two constraints, leading to a total of 264+2×(271-264)=276 generated constraints along all iterations.
In average, the new method needed 111 iterations but only about 44 of the smoothed cuts were sufficient. This means that for
about 111− 44 iterations in average, the new Cutting-Planes needed to add more than one constraint per iteration, leading to
a total of roughly 44+2×(111−44) = 178 generated constraints. The ratio (speed-up) of the average CPU times is 119

62.9
≈ 1.89,

the ratio of the numbers of iterations is 271
111
≈ 2.44 and the ratio of the numbers of generated constraints is roughly 276

178
≈ 1.55.

Notice the CPU time ratio is sandwiched by the ratio of the other two indicators, that can both influence the total CPU time.

20

thus use this more difficult instance class to solve in Section 4.3 the linear relaxation of our models (using
larger instances), discussing the potential of the new upper bounds in a Branch-and-Bound method.

4.3 The potential of the new upper bounds to improve a Branch-and-Bound

method based on a linear relaxation

As stated in Section 4.2 above, the instances random-10-bwd3 are by far the most difficult. Both Cutting-Planes

algorithms can only rarely solve such instances with |E| > 100 in reasonable time, while they do solve
instances with thousands of edges for the other graph classes. We here consider large random-10-bwd3

instances, taking the same sizes (with |E| from 600 to 2000) used in Table 2 for the random-10 graphs of
unitary bandwidth (notice that the random-10-bwd3 instances use the same underlying graphs as random-10,
but only the bandwidth differ). As it stands, we do not know how to find the optimum integer solutions of
such large random-10-bnd3 instances. We can only solve their linear relaxation, in which we assume that
y can be fractional in the initial model (3.1.a)-(3.1e), i.e., allow the installation of a fractional number of
transmission facilities along the edges. We can apply the same Cutting-Planes algorithms but instead of
iteratively solving a relaxed master ILP (associated to (3.3a)-(3.3c)), we solve a linear relaxation of this
master ILP, also referred to as the relaxed master LP.

m
a
x

d
em

an
d

C
la

ss

id |E| |V | OPTLP
Cutting-Planes with intersections Standard Cutting-Planes

UB iters time[s]
time solve
primal LPs

iters time[s]
time solve
primal LPs

r
a
n
d
o
m
-
1
0
-
b
w
d
3

1 600 90 10 281.33 311 141 16.1 1.78% 283 20.8 4.08%
2 600 90 10 279 306 138 16.9 1.84% 243 18.6 4.14%
1 1000 110 10 310.67 346 125 34 1.14% 277 53 2.81%
2 1000 110 10 328 361 151 46.5 1.46% 391 70.1 4.1 %
1 1500 130 10 415.67 461 167 99.5 1.05% 361 133 2.57%
2 1500 130 10 374.33 421 155 88.1 0.859% 396 143 2.53%
1 2000 150 10 457.33 507 216 215 1.14% 480 268 2.84%
2 2000 150 10 430 482 223 228 0.723% 494 271 2.84%

r
a
n
d
o
m
-
1
0
0
-
b
w
d
3 1 600 90 100 2918.7 2948 148 15.7 2.12% 235 17.5 3.84%

2 600 90 100 2782 2812 109 12.8 2.03% 224 17.5 3.06%
1 1000 110 100 3414.7 3454 749 170 3.78% 320 61.6 3.89%
2 1000 110 100 3080.3 3117 163 48.4 1.48% 328 64.9 3.12%
1 1500 130 100 3922 3960 895 388 2.26% 408 155 2.82%
2 1500 130 100 4033.7 4077 955 403 2.34% 529 196 4.14%
1 2000 150 100 4638 4688 209 199 1.11% 563 309 3.95%
2 2000 150 100 4584 4636 1114 679 2 % 494 280 2.93%

r
a
n
d
o
m
-
3
0
0
-
b
w
d
3 1 600 90 300 7265.7 7295 126 15 2 % 247 19.1 3.86%

2 600 90 300 8154.7 8186 241 23 2.57% 207 15.2 3.07%
1 1000 110 300 9060.3 9095 130 38.4 1.24% 335 65.8 3.69%
2 1000 110 300 10163 10203 3367 733 20.1% 379 71.7 3.97%
1 1500 130 300 12607 12652 619 297 1.73% 470 162 3.1 %
2 1500 130 300 12003 12051 670 272 1.81% 503 176 2.14%
1 2000 150 300 13314 13370 199 189 1.3 % 537 286 2.86%
2 2000 150 300 13358 13408 197 182 0.934% 545 290 2.84%

Table 4: Results on the linear relaxation of the random instances with bandwidth bwd = 3, using different
values of the maximum demand (Column 5). The gap between the lower bound (fractional optimum in Col-
umn 6) and the integer upper bound obtained by solving intersection sub-problems (Column 7) is relatively
small, varying from 10% to less than 0.5%.

Table 4 above presents the results of both Cutting-Planes methods on the relaxed instances with
bandwidth bwd = 3 mentioned above. The first five columns describe the instance and the maximum
demand, Column 6 indicates the fractional optimum, Column 7 provides the integer upper bound reported

21

by the Cutting-Planes algorithm based on the intersection sub-problem. Columns 8-10 and respectively
Columns 11-13 report the computing effort needed by the new and respectively the standard Cutting-Planes

to fully converge. For each of these two algorithms, we provide three columns indicating the number of
iterations, the total CPU time and the percentage of the CPU time spent on solving relaxed master LPs
(linear relaxations of master ILPs).

The most important conclusion that can be drawn from Table 4 relates to the quality of the gab between
the integer upper bound and the fractional optimum of the LP relaxation. This can vary from about 10%
(instances with maximum demand 10) to less than 0.5% (instances with maximum demand 300). It is well-
known that the effectiveness of a Branch-and-bound algorithm depends substantially on the quality of the
bounds at the root node of the search tree. We can safely conclude that the Cutting-Planes algorithm
based on the intersection sub-problem can provide strong upper bounds (leading to small gaps) at the root
node, at least for instances with higher demands (see the last rows of Table 4). This suggests that the
approach could be successfully embedded in a Branch-and-bound, but the evaluation of such an algorithm
lies outside the scope of this paper.

Exceptional cases aside (e.g., besides instances of high demand with |E| = 1500), the new Cutting-Planes

algorithm is quite often faster than the standard one. It can reach a speed-up of up to a factor of 2 in terms
of the number of iterations (see instance 2 for |E| = 600 or |E| = 1000 with a maximum demand of 100),
but the CPU time speed-up is smaller than the iteration speed-up. This may be explained due to the fact
that we can no longer say that the computational bottleneck of the algorithm is the resolution of the relaxed
master LP (see the percents in Columns 10 and 13), because it is far easier to solve an LP than an ILP.
Since the intersection sub-problem needs to solve more LPs than the separation sub-problem, the intersection
iterations are slower than the separation iterations. For the instances mentioned above with an iteration
speed-up of 2, the CPU time speed-up is about 1.5.

5 Conclusions and Prospects

We showed it is possible to improve a standard Cutting-Planes algorithm by “upgrading” the standard
separation sub-problem to the intersection sub-problem. We focused on ILPs with prohibitively-many (fea-
sibility) cuts in a Benders decomposition model. An advantage of the intersection sub-problem is that it
allows one to calculate both a lower and an upper bound (feasible solution) at each Cutting-Planes it-
eration. We explained how solving the intersection sub-problem is equivalent to normalizing all cuts and
separating (the normalized cuts). This normalization interpretation shows that the intersection sub-problem
can find stronger cuts, as argued in Section 2.5.1. Under the (mild) assumptions of Theorem 1, we proved
that the intersection sub-problem can be solved within the same asymptotic running time as the separation
one, i.e., it has the computational complexity of solving an LP over the Benders sub-problem polytope P .

For both sub-problems, we first performed numerical tests using a relatively basic Benders Cutting-Planes
(in Section 4.1), followed by a more advanced Cutting-Planes version (in Section 4.2). For instance, the
advanced Cutting-Planes version uses solution smoothing techniques to reduce the (strong) oscillations of
the current optimal solution along the iterations (see Section 2.5.2), for both sub-problems. In certain cases,
the advanced version of the new Cutting-Planes algorithm still uses the separation sub-problem (combined
with the intersection sub-problem) to finish more rapidly an initial problematic phase in which the rays do
not even “touch” the feasible polytope. Once this issue solved, the new advanced Cutting-Planes algorithm
converges more rapidly than the standard one. Experiments suggest that the new upper bounds can also be
potentially useful in a Branch-and-Bound algorithm, because they can generate quite strong gaps (between
10% and 0.5%) at the root of the search tree.

Looking ahead, the intersection sub-problem could be potentially useful to overcome certain limitations
of current practices on canonical Cutting-Planes, since it allows one to generate feasible solutions along
the iterations. This is the second paper after [12] in a series of planned work that relate to the intersection
sub-problem in different polytopes with prohibitively-many constraints, arising in various mathematical pro-
gramming fields. For instance, an interesting avenue for further research could be the study of the intersection
sub-problem for the primal LP models of the two problems in Appendix A (that use no Benders decomposi-

22

tion), for a Benders decomposition model with non-zero flow costs (Appendix B), in robust programs with
prohibitively-many constraints, etc.

Acknowledgments I am grateful to two reviewers whose valuable comments helped me improve the paper.

A Prospects for applying the new method to other problems

We here only present two other problem examples that fit well the general LP (1.1) on which intersection
ideas could be applied. Consider a graph G = (V,E) and let us associate the decision variables y ≥ 0 to the
edges E. We ask to minimize

∑
e∈E ye subject to prohibitively-many constraints of the form below, where

f : 2E → [0,∞) is a function that can be defined as exemplified next.∑
e∈S

ye ≥ f(S) ∀S ⊆ E

– Consider f(S) ≥ 1 if S is a length-bounded path between a source and some destination(s) in G and
f(S) = 0 otherwise. The resulting problem is essentially the LP (1) from [1]. The value f(S) could
represent a number of units (e.g., surveillance cameras) that need to be placed along the path indicated
by S. As an application example, consider the problem of finding the minimum number cameras needed
to visualise at least once any train travelling along a length-bound path S. We can define f(S) = 1 if S is
a length-bounded path (or f(S) > 1 if S has actually the capacity to accommodate multiple trains) and
f(S) = 0 otherwise.

– Suppose one has to install facilities on certain operative (installable) edges Ẽ (E, considering it is

impossible to install any facility on the non-operative edges E − Ẽ, equivalent to imposing yẽ = 0 ∀ẽ ∈
E − Ẽ. Define f(S) = γ · |S| if S are the edges of an induced subgraph of G of a given minimum size, or
f(S) = 0 otherwise, for a parameter γ > 0. Any such induced S should contain at least one operative edge,
but it can also contain non-operative edges. This model asks to place more facilities on denser induced
subgraphs than on sparser induced subgraphs. In a road network, one can often need more facilities (e.g.,
electric vehicle charging points, public bikes, etc.) servicing denser areas than sparser areas.

Since the coefficients of the above constraints are all non-negative, a fractional feasible solution can be
converted into an integer feasible solution by rounding it up (as in Observation 4, p. 14).

B The intersection sub-problem for non-zero flow costs, for Ben-
ders reformulations with both feasibility and optimality cuts

The intersection algorithm from Theorem 1 (p. 5) can be extended to the case where the flow costs are
non-zero (c 6= 0). This section follows the reasoning from Theorem 1 and it presents all the modifications
needed to address the case of non-zero flow costs.

Recall that Theorem 1 finds the minimum t∗ such that t∗r is feasible with regards to the constraints
(2.7c) that are associated to a zero flow cost ẑ = 0. If we consider non-zero positive flow costs, we need
to check the feasibility with regards to two types of constraints (2.5b) and (2.5c), that can lead to some
non-zero flow cost ẑ ≥ 0. We can re-formulate (2.5b) and (2.5c) resp. as:

ẑ ≥ (b−By)>u ∀u ∈ P (B.1a)

0 ≥ (b−By)>ue for any extreme ray ue ∈ P , (B.1b)

where P is the Benders polyope P =
{
u ≥ 0 : A>u ≤ c

}
, as defined in (2.4). The second above constraint

set (feasibility cuts) can actually be seen as a consequence of the first constraint set (optimality cuts). If a
feasibility constraint (B.1b) does not hold for some ray ue ∈ P , then (B.1a) does not hold either for some
u = αue with a large-enough α > 0. Indeed, if 0 < (b−By)>ue, then (b−By)>αue can become arbitrarily

23

large when α → ∞, and so, (B.1a) can not hold for all u = αue. This means that if all constraints (B.1a)
all valid, then so are all constraints (B.1b). Thus, it is enough to focus on the optimality cuts (B.1a) and
we will see they can actually be used by the intersection sub-problem algorithm to eventually generate both
optimality cuts and feasibility cuts. Perhaps rather contrary to what it may seem at first glance, it has
been noted [5] that restricting P to its extreme rays is not necessarily more efficient; this is in line with our
approach of not focusing on searching extreme rays in (B.1b) but rather using (B.1a).

Let us denote the input of the intersection sub-problem by (r, ẑr). Replacing y in (B.1a) with t∗r (as
we did when we derived (2.8) in Theorem 1) and ẑ with t∗ẑr, the intersection sub-problem requires finding
the minimum t∗ ≥ 0 that satisfies the following:

t∗
(
ẑr + (Br)>u

)
≥ b>u, ∀u ∈ P . (B.2)

First, we can already see that this constraint set can be seen as an extended version of (2.8). Indeed, if

we extend u (resp. b) to û (resp. b̂) by adding a 0-indexed value û0 = 1 (resp. b̂0 = 0), the inequality (B.2)

above can be written as t∗
[
ẑr, (Br)>

]
û ≥ b̂>û. This is exactly a form like (2.8) from Theorem 1, the only

difference being the definition of feasible û, i.e., we need to say all feasible û =

[
û0
u

]
satisfy û0 = 1 and

u ∈ P . This shows we are not so far from the setting of Theorem 1.
Secondly, by strictly following Theorem 1, one can find the same cases (i), (ii.a) and (ii.b), as well as the

same solution methods to address them.

(i) As in Theorem 1, this degenerate case arises when there is no t∗ ≥ 0 that satisfies (B.2). This can only
happen when there is some uι ∈ P ′ such that ẑr + (Br)>uι ≤ 0 and b>uι > 0. To detect such cases,
it is enough to maximize an LP very similar to (2.9) from Theorem 1, i.e., it is enough to check if
0 < max

{
b>u : u ∈ P , ẑr + (Br)>u ≤ 0

}
.

(ii.a) This case corresponds to ẑr + (Br)>u ≤ 0 and b>u = 0 for some u ∈ P , similarly to the same
case in Theorem 1. The only difference is the apparition of the first term ẑr indicating the flow
cost. However, we can detect this case with the same approach as in Theorem 1, in particular we
can take u0 = arg min

{
ẑr + (Br)>u : u ∈ P , b>u = 0

}
to distinguish between ẑr + (Br)>u0 = 0

and ẑr + (Br)>u0 < 0, corresponding to sub-cases (ii.a.1) and (ii.a.2). An intersection sub-problem
algorithm would then take the same decisions as in Theorem 1. More exactly, if ẑr + (Br)>u0 < 0,
the algorithm stops returning a constraint u0 that separates all (tr, tẑr) with t > 0, as in (sub-)case
(ii.a.1). Otherwise, the constraint defined by u0 allows all t(r, ẑr) to be feasible ∀t ≥ 0 and we need to
move to case (ii.b) to find stronger constraints.

(ii.b) This is the main (non-degenerate) case in which we need to solve the following linear-fractional
program very similar to (2.10):

t∗ = max

{
b>u

ẑr + (Br)>u
: u ∈ P , ẑr + (Br)>u > 0

}
, (B.3)

As in Theorem 1, this linear-fractional program can be solved by converting it to an LP using the
Charnes-Cooper transformation [3]. More exactly, the transformation

u = u · 1

ẑr + (Br)>u
; s =

1

ẑr + (Br)>u
(B.4)

translates the above linear-fractional program (B.3) to the equivalent pure linear program:

t∗ = max b>u

A>u ≤ cs

(Br)>u + ẑrs = 1

u ≥ 0, s ≥ 0

24

If the optimum of the above (B.3) is achieved by a vertex uo ∈ P , then the intersection algorithm
returns the corresponding optimum t∗ and an optimality cut ẑr ≥ (b − By)>uo. Otherwise, if the

optimum is achieved by an extreme ray ue of P , then the algorithm returns t∗ = lim
α→∞

b>αue

ẑr+(Br)>αue =

b>ue

(Br)>ue and the feasibility cut 0 ≥ (b − By)>uo. An extreme ray ue is translated by above trans-

formation (B.4) into s = 0 and ue = ue · 1
(Br)>ue , which is actually the limit point of (B.4) when

ue → [∞ ∞ . . .∞].

References

[1] G. Baier, T. Erlebach, A. Hall, E. Köhler, P. Kolman, O. Pangrác, H. Schilling, and M. Skutella.
Length-bounded cuts and flows. ACM Transactions on Algorithms, 7(1):4:1–4:27, 2010.

[2] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems. Numerische
mathematik, 4(1):238–252, 1962.

[3] A. Charnes and W. W. Cooper. Programming with linear fractional functionals. Naval research logistics
quarterly, 9(3-4):181–186, 1962.

[4] A. M. Costa. A survey on benders decomposition applied to fixed-charge network design problems.
Computers & operations research, 32(6):1429–1450, 2005.

[5] A. M. Costa, J.-F. Cordeau, and B. Gendron. Benders, metric and cutset inequalities for multicommod-
ity capacitated network design. Computational Optimization and Applications, 42(3):371–392, 2009.

[6] C. Lee, K. Lee, and S. Park. Benders decomposition approach for the robust network design problem
with flow bifurcations. Networks, 62(1):1–16, 2013.

[7] I. Ljubić, P. Putz, and J.-J. Salazar-González. Exact approaches to the single-source network loading
problem. Networks, 59(1):89–106, 2012.

[8] T. L. Magnanti, P. Mirchandani, and R. Vachani. Modeling and solving the two-facility capacitated
network loading problem. Operations Research, 43(1):142–157, 1995.

[9] T. L. Magnanti and R. T. Wong. Accelerating benders decomposition: Algorithmic enhancement and
model selection criteria. Operations research, 29(3):464–484, 1981.

[10] J. E. Mitchell. Cutting plane methods and subgradient methods. In Tutorials in Operations Research,
pages 34–61. (INFORMS), 2009.

[11] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. In-out separation and column generation stabi-
lization by dual price smoothing. In 12th International Symposium on Experimental Algorithms, pages
354–365. Springer, 2013.

[12] D. Porumbel. Ray projection for optimizing polytopes with prohibitively many constraints in set-
covering column generation. Mathematical Programming, 155(1):147–197, 2016.

[13] R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei. The benders decomposition algorithm: A
literature review. European Journal of Operational Research, 259(3):801 – 817, 2017.

[14] V. Sridhar and J. S. Park. Benders-and-cut algorithm for fixed-charge capacitated network design
problem. European Journal of Operational Research, 125(3):622–632, 2000.

25

