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8502, 91 405 Orsay, France, EU

E-mail: isabelle.bonnet@curie.fr, gabelli@lps.u-psud.fr

Abstract. We report on physics around an incandescent lamp. Using a consumer

grade digital camera, we combine electrical and optical measurements to explore

Planck’s law of the black body radiation. This simple teaching experiment is

successfully used to measure both Stefan’s and Planck’s constants. Our measurements

lead to a strikingly accurate value for Planck’s constant: h = 6.7±0.4×10−34 kg.m2.s−1.

A digital camera is thus a sufficiently good equipment to measure a constant directly

related to quantum mechanics.

1. Introduction

Spectroscopy, the study of the interaction between radiation and matter, has been used

for almost two centuries to provide information about the matter under investigation.

Each chemical element produces its own unique set of spectral lines serving as a

fingerprint. In the middle of the nineteenth century, Kirchhoff was so able to prove

that the Sun contains such familiar elements as sodium, magnesium, iron or copper

by experimentally evidencing the positions of Fraunhofer’s dark lines in a continuous

spectrum. Behind these characteristic lines was hidden an universal law related to the

continuous spectrum [1]. Following his research on the nature of spectral absorption,

Kirchhoff was indeed led to introduce the concept of black-body, a body that is both a

perfect emitter and absorber of heat radiation [2]. Even though it is slightly confusing

for students allowing that it does not appear black, the name of black-body has been

kept for historical reasons. One should rather talk about body in equilibrium with

thermal radiations. It turns out that the radiated energy distribution of a black-body

is a curve that depends only on the temperature T and not on the nature and shape of

the emitter.

The measurement of this spectral distribution and the difficulties to interpret it led

Planck to come up 40 years later with the idea of energy quantization. He stated that

exchange of energy between matter and radiation occurs in a discrete manner unlike
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the classical assumption of continuous exchange. This marked the birth of quantum

mechanics and its fundamental constant h, also called the Planck’s constant. Expressed

in SI units, the suitable units for everyday human experiments, h ≃ 6.62 × 10−34 J.s.

The smallest amount of energy exchanged by an oscillator at frequency f is then set by

δE = hf . h is one of the smallest fundamental constants used in physics which explains

that its existence had been ignored prior to Planck’s work.

The main objective of this paper is to demonstrate how a digital camera and a simple

flash light open the possibility of measuring such a small constant. Following Planck,

we propose a simple experiment that can be achieved at home by measuring the light

intensity emitted from a tungsten bulb. After a theoretical reminder on black-body

radiation (section 2) we describe our setup (section 3). Section 4 then describes electrical

and optical measurements that together lead to an estimate of Stefan’s and Planck’s

constants at home.

2. Black-body radiation theory

2.1. The black-body model

Quantum revolution came from the inability to understand the spectrum of light emitted

by hot bodies, what is called black-body radiation. An ideal black-body refers to an

idealized object that absorbs all incident light at all wavelengths: no transmission and no

reflection. The body is thus at thermal equilibrium with the electromagnetic field at the

same temperature. Consequently, black-body radiation is the reference thermodynamic

equilibrium state of light. In the final years of the nineteenth century, experimentalists

measured, for different temperatures, the energy density of the radiation emitted by

a black-body at various wavelengths [3]. The emitted spectrum only depends on the

absolute temperature of the body and displays a broad peak that shifts from red to blue

as the temperature increases (Figure 1).

Physicists failed for a long time to provide a theoretical explanation for this black-body

radiation spectrum. The Rayleigh-Jeans law first tempted to describe the energy density

u(λ, T ) of black-body radiation as a function of wavelength λ for a fixed temperature T

eq. (1) [4, 5]. It is based on a classical description of electromagnetic modes described

by Maxwell theory. Indeed, the equipartition theorem of classical statistical mechanics

states that all harmonic oscillator modes of a system at equilibrium have an average

energy of kBT , where kB is the Boltzmann constant (kB = 1.38× 10−23 m2.kg.s−2.K−1).

Thus, the distribution of energy radiated by a black-body is uniform and given by:

uRJ(λ, T ) =
2ckBT

λ4
for λ ≫ hc

kBT
(1)

where c is the light speed (c = 3×108 m.s−1). This law reproduces well the experimental

data for large wavelengths. However, it predicts that the total emitted power (integrated

over all wavelengths) should be infinite due to the divergence at small wavelengths. This

is called the ultraviolet catastrophe.
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Figure 1. Black-body radiation spectrum. Radiation power ϕ as a function of

wavelengths for three different temperatures: T = 1500K (blue), T = 2000K (orange)

and T = 2500K (red). Dashed curve corresponds to Wien’s displacement law,

λM = 2897µm/T [K]. Vertical dotted lines denote the range of visible wavelengths.

Inset : schematic of the model of black-body suggested by Wien and Lummer, a hollow

sphere with internal reflecting walls and a narrow hole [3].

In 1893, Wien showed that the maximum radiation in the black-body spectrum displaces

to the side of shorter wavelengths with increasing temperature which is called Wien’s

displacement law eq. (2, Figure 1)[6]:

λm T = 2897µm.K (2)

where λm is the wavelength of the maximum of the spectral density. Three years later,

Wien proposed an empirical law [7] which succesfully describes experiments at short

wavelengths and predicts of his displacement law:

uW(λ, T ) =
k1
λ5

e−
k2
λT for λ ≪ hc

kBT
(3)

where k1 and k2 are constants determined experimentally. Even though Wien’s law still

failed at long wavelengths, its success at short ones indicated that already in 1896 that

there was something amiss in classical physics. It was remaining to understand this

discrepancy.

2.2. Planck’s law

In 1901, Planck succeeded in obtaining an expression that perfectly agreed with

experimental data at any wavelength [8]. He established the link between the classical

expression of Rayleigh-Jeans and the phenomenological Wien expression. To obtain

this result, he had to assume that the energy exchange between radiations (the

electromagnetic field) and matter (the black-body) is done in finite amounts or quanta of

energy. He introduced the Planck’s constant h = 6.62×10−34 m2.s−1 giving the smallest
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amount of energy δE carried by a mode of the electromagnetic field at wavelength λ:

δE = hc/λ. He ended up to describe the spectral energy density u(λ, T ) of a black body

as a function of wavelength λ at temperature T :

ublack body(λ, T ) =
8πhc

λ5

1

e
hc

λkBT − 1
(4)

Given a black-body at temperature T , the quantity easily measurable on a bench is the

radiated power ϕ (Figure 1) per unit surface area. In the case of a real body, its nature

is only coded in its emissivity ε which can be considered as a constant:

u(λ, T ) = ε ublack−body(λ, T ) (5)

2.3. Stefan’s law

As early as 1879 Stefan first determined the relation between the amount of power per

surface unit Φ radiated by a body and its temperature. From experimental evidence,

he stated that Φ varies as the fourth power of its absolute temperature [9]:

Φ(T ) = ε σ T 4 (6)

Here, σ is Stefan’s constant, equal to 5.67 × 10−8 W.K−4.m−2 and ε the emissivity of

the body which is 1 in case of a perfect black-body. This experimental fact can be

deduced once the Planck’s formula is known. Indeed, by considering energy radiated

perpendicular to a small area δS, it must be noted that half of the energy density in the

waves is going toward the walls (u/2). The radiated power being carried by photons at

light speed c, the relation between power ϕ radiating per unit surface and wavelength

through δS during time δt and energy u is given by: ϕ δS δt = (c δS δt) u/2. Evaluating

now the power seen at a given direction (angle θ in Figure 1), the effective area will be

δS cos θ and the effective speed will be c cos θ. The radiated power averaged over all

angles will be reduced to :

ϕ(λ, T ) =
∫ π/2

0
dθ c cos2 θ

u(λ, T )

2
=

c

4
u(λ, T ) (7)

To obtain the total power Φ radiated per unit surface area of a black-body at a

temperature T , we integrate the Planck’s law over wavelength and recover eq. (5).

2.4. A filament as a black-body radiator

In a light bulb, the Joule power dissipation, given by PJ = U2/R where R is

the resistance of the metallic filament, heats up the filament. Assuming that the

filament behaves approximately as a black-body radiator (within a very wide band

of electromagnetic radiation wavelengths), we can illustrate the connection between

radiated power Prad and Joule dissipated power PJ. The perceived color of a bulb

lamp is yellowish white: according to Wien’s displacement law, the temperature of the

filament is of order T ∼ 3000 K. In this daily experiment, the bulb remains at a much
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lower temperature and does not burn out. That means we can neglect the thermal

conduction Pcond by the socket of the bulb:

PJ = Prad + Pcond ∼ Prad (8)

In our case, the temperature of the filament is set by a DC bias voltage U across the lamp.

The filament reaches a constant temperature solution of the equation S Φ(T ) = PJ ,

where S = 2πrℓ is the surface of the filament, supposed to be a cylinder of length ℓ

and radius r. Using eqs. (6) and (8), we end up with a steady state temperature:

T =

(
rU2

2εσℓ2ρ(T )

)1/4

(9)

where ε is the emissivity of the tungsten about 0.3. Its resistivity ρ is a non linear

function of the temperature [10]:

ρ[nΩ.m] = 48.0
(
1 + 4.8297× 10−3 T [K] + 1.663× 10−6 T [K]2

)
(10)

According to eq. (9), the temperature of the filament is thus entirely controlled by the

voltage U .

3. Experimental set-up

3.1. Description
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Figure 2. Schematic of the experimental set-up used to perform both electrical and

optical measurements. A and V are amp- and voltage-meters respectively. Bottom

right : picture of the flash light filament.

A blackened-inside cardboard tube of diameter 8 cm and length 1m is used to realize

darkness and avoid parasitic radiations from other sources. The camera and the bulb

take place at the two tube extremities. The bulb comes from a 0.5W flash light. The

tungsten filament is biased by a voltage U through a potentiometer and the association

in series of three 4.5 V batteries. Voltage U and current I are measured with commercial

Fluke 175 multimeters (Figure 2). Measurements require to take series of images with
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Figure 3. Intensity saturation of the camera detector as a function of the exposure

time in a log scale for the three colour channels (RGB). The light source is the filament

put at 0.5m from the detector. The voltage is fixed at U = 10V. Black lines correspond

to linear fits taking into account the background light.

different exposure times. To simplify them, we chose to control the camera remotely from

a computer but it is possible to perform the measurements manually. The temperature

T of the filament is deduced from eq. (9).

3.2. The digital camera

The digital camera is a CCD (Coupled Charge Detector) image sensor that converts

photons to electrons [11]. We used a Pentax K10D camera. Its detector consists of

10.75×106 photodetector elements called pixels of 6×6 µm2 size which record the level

of light intensity from full black to white. Intensity of light denoted by ϕ is then the

radiated power absorbed by a pixel during the exposure time. To detect color, colored

filters are placed over each pixel assigning to it a primary color: the more common-used

filters are the RGB (Red Green Blue). Every pixel will only have information about one

color channel corresponding to the color of the filter in front of it. The camera produces

images with 12 bit depth in a raw format [12]. The light intensity will be scaled taking

212 = 4096 values between 0 and 1.

3.3. Calibration of the camera

The camera was used without any lens and image acquisitions were conducted in a

dark room. Acquisitions were done at room temperature T0 = 300K. In order to

correctly interpret the light reaching each pixel, we did a calibration procedure. Parasitic

reflections and angular dependance of absorption coefficient on the surface of the detector

make light intensity ϕ(x, y) non homogeneous. To retrieve the flatness of the profile, we

used one of the picture (exposure time τ = 0.1 s and voltage U = 7.25V) as a reference
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ϕ0(x, y). The factor ϕ0(x, y)/Max(ϕ0(x, y)), which is close to 1, allows to define an

intensity Φ(x, y) that does not depend on the position (x, y) any more:

Φ(x, y) =
Max(ϕ0(x, y))

ϕ0(x, y)
ϕ(x, y) (11)

The remaining fluctuations δΦ around the mean value over the whole image ⟨Φ⟩x,y is

then due to electric and photonic noises which can be assumed to be gaussian.

In the following, the light intensity for a given set of parameters (voltage U , exposure

time τ) will be denoted by Φi with i = R,G,B corresponding to one color. Φi is equal

to the mean value of the gaussian fit of Φ(x, y). To avoid sensor saturation we set

the camera to its lowest sensitivity (ISO 100), which allows to reduce noise, but re-

quires a longer exposure time. We then fixed the voltage U = 10V and took a series

of pictures by increasing the exposure τ from the minimum the camera is able to do

(τ = 1/4000 s) to an exposure time a long enough so that all pixels were saturated in

all colors (τ = 0.3 s). Above a given exposure time, the intensity exhibits a saturation

(Figure 3) which allows to define a maximum intensity that should not be exceeded in

the following measurements: we set Φ ≤ 0.5.

3.4. Fresnel diffraction for calibration of the wavelength camera filters.
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Figure 4. Diffraction by a straight edge (razor blade) in the Fresnel limit. Red, green

and blue markers correspond to the three color layers. Curves have been vertically

shifted for visibility. Black lines are fits by theoretical curves [13]. Dotted line indicates

the edge of the razor blade. Inset: cropped picture of Fresnel’s oscillations.

The determination of the central wavelengths λR,G,B and widths δλR,G,B of the RGB

filters was performed with a Fresnel diffraction experiment on the edge of a razor blade

[13] placed at distance D = 4.3 cm in front of the CCD sensor. It allows a direct

comparison between the observed pattern of light and the prediction of diffraction theory
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Filters Red Green Blue

λ (nm) 650 557 464

δλ (nm) 32 32 15

Table 1. Center λ and width δλ wavelengths of the RGB filters fitted to the Fresnel

diffraction experiment.

in the near-field region. It yields a pretty good estimate wavelengths of the different

filters. We used the filament as a point light source (size ∼ 1mm) placed at a large

distance ∼ 4m from the diffracting edge. In that case, the diffracting pattern is given

by the Fresnel integrals [14]: it only depends on the wavelength λ of the radiations

and the distance D between the straight edge and the observation plane. We recorded

the illumination pattern and verified the intensity formulas of the Fresnel diffraction of

a straight edge (Figure 4). The agreement with the theoretical pattern is remarkably

good, fitted values of λR,G,B and δλR,G,B are listed in Table 1.

4. Planck’s constant estimation

4.1. Stefan’s law given by electrical measurement

We first investigated the filament energy emission as a function of the temperature. Our

aim was to test the T 4 dependence in Stefan law and to estimate the value of Stefan

constant σ. In this experiment, the voltage U across the lamp is increased by steps of

0.25V. At each voltage, the current I through the lamp is recorded giving access to

the resistance (inset of Figure 5) and to the Joule power PJ = UI. The temperature

dependence of tungsten resistivity ρ(T ) is then used to extract the temperature of the

filament eq. (9 [10]. Figure 5 displays the graph of PJ as a function of T 4 − T 4
0 . The

linearity (the slope is equal to εSσ) assesses the validity of Stefan’s law. This is consistent

with the hypothesis that the filament emits a black-body radiation without any thermal

conduction loss. Estimating the surface of the filament (S ∼ 2πrℓ ≃ 10−6m2, Figure 2,

bottom right), the slope ≃ 1.560± 0.005× 10−14 J.K−4 leads to:

σ = 5.52± 0.01× 10−8 W.K−4.m−2

This agrees with the tabulated value (σ ≃ 5.67 × 10−8W.K−4.m−2) up to 3 %. This

deviation can be attributed to the rough estimation of the surface of the filament.

4.2. Wien’s law given by optical measurement

The semi log plot of the light intensity Φi as a function of c/λikBT is shown in Figure 6,

where the wavelengths λi are deduced from the Fresnel diffraction experiment described

previously (see 3.4, Table 1). Measurements correspond to RGB intensities for voltage

going from 0V to 10V: the set for 2V ≤ U ≤ 10V is performed with an exposure
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Figure 6. h determination in the limit hc/(λikBT ) ≫ 1: light intensity of the green

(squares), blue (triangles) and red (circles) channels as a function of c/(λikBT ) in a

semi log scale when the voltage is tuned from 3 V to 8 V. Dotted lines indicate eq. 4.

time τ = 1/10 s, whereas another set, for 0V ≤ U ≤ 5V, is performed with τ = 1 s in

order to use all the dynamics of the sensor. Data points fall on lines and according to

eqs.(3,4) their slopes correspond to the Planck’s constant. Linear fittings for RGB color

give respectively 6.52 × 10−34, 6.50 × 10−34 kg.m2.s−1 and 7.23 × 10−34 for the slopes.

Averaging these values, we end up with:

h = 6.7± 0.4× 10−34 kg.m2.s−1

We thus test Wien’s law and measure h with 6 % precision. This is surprisingly close

(1 %) to the tabulated value.
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Conclusions

We have illustrated that a consumer grade light bulb follows a conceptual object as a

black-body. The portable experiments which are described in this paper can be easily

taken to schools and even home since they do not require any specialized equipment.

Moreover, they allow to measure with a remarkably good accuracy the fundamental

constant of quantum mechanics: the Planck constant. Although electric lamps are

doomed to disappear in the context of the Kyoto agreement, we have shown that they

easily offer students to enhance simple physic concepts.
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By using gaussian filtering modelization, the measured intensity can be fitted by:

Φ(x, λi, δλi) =

∫ +∞

−∞
ϕF(x, λ) exp

(
− (λ− λi)

2

2δλ2
i

)
dλ

where C and S denote Fresnel integrals: C(u) =
∫∞
0

cos
(
π
2u

2
)
du and S(u) =

∫∞
0

sin
(
π
2u

2
)
du


