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We describe experimentally the formation of a pattern for drop impacts on thin liquid films for a large

range of impact parameters. Using the shallow-water approximation, we are able to explain the main

mechanisms leading to these patterns: it consists in the linear instability of the self-similar axisymmetric

radial solution of the equations. Agreement between the experiments and the theory is remarkably good,

leading, in particular, to the prediction that the most unstable fold number scales like ðWe=h1Þ2=7.
DOI: 10.1103/PhysRevLett.105.184503 PACS numbers: 47.55.D�, 47.20.Ma, 47.55.N�

Introduction.—Drop impact on liquid film is at the heart
of our understanding of many complex multiphase flows
[1]. It is present in many industrial applications such as
spray coating, ink-jet printing or combustion in motor
chambers. It is also crucial in environmental contexts, for
instance controlling the dissemination of agricultural
products [2] or understanding the erosion enhanced by
raindrops [3]. It involves a high pressure impulse, rapid
velocity changes, strong interface deformations and even-
tually secondary droplet breakup. In particular, important
questions related to drop impact on liquid films concern the
splashing transition and the number and the sizes of the
secondary droplets eventually ejected by the impact. In
general, when a drop hits a thin liquid surface, a crater
rapidly expands surrounded by a liquid rim or corolla. The
crater corresponds to a thin liquid layer with high velocity
field, the corolla is usually unstable and this can lead to
the breakup of secondary droplets [4]. When the impact
velocity is high enough, the so-called prompt splash can be
seen, where a very thin jet and small droplets can be
ejected at short times [5–7]. Since the pioneering work of
Worthington [8], most studies have focused on the splash
formation, particularly for high Weber and Reynolds num-
bers and thin liquid layers [9–12], as for instance in the
well-known pictures of Edgerton [13].

Here, we report on an experimental study of the insta-
bility of the corolla for drop impacts on a liquid surface for
moderate Weber numbers and thicker liquid layers, where
no splash is observed. Drop impact studies have always
been strongly linked to the improvement of imaging tech-
niques [8,14]. In these footsteps, using a Fourier Transform
Profilometry technique (FTP) [15], adapted recently for
fluid interface [16–19], we exhibit and analyze for the first
time the striking formation of a flowerlike pattern originat-
ing from a hydrodynamic instability, illustrated in Fig. 1.

Experiments.—A drop of radius R0 ¼ 2:05 mm is cre-
ated using a syringe and impacts at velocityU0 on a film of

the same liquid of thickness H comparable to R0. The
liquid is water dyed with 0.1 wt% white pigment supplied
by Millenium (surface tension and viscosity remain the
same as pure water). The surface deformation was mea-
sured by FTP, a technique based on fringe pattern projec-
tion on the surface, that allows a resolution of the elevation
of the interface with a 50 �m accuracy in the three direc-
tions each millisecond (for more details see [16,17]). This
technique enables the measurement of the interface for
large time after impact; that is to say t > � ¼ R0=U0

(� � 1 ms).
The impact dynamics of droplets is usually governed by

the Reynolds and the Weber numbers, defined as:

Re ¼ 2R0U0

�
and We ¼ 2�R0U

2
0

�
;

FIG. 1 (color online). Snapshots of the liquid surface defor-
mation 37 ms after the impact of a water drop (R0 ¼ 2:05 mm,
We ¼ 136) on a water film (H ¼ 3:1 mm). We observe a eight-
fold flower pattern. The surface deformation was measured using
the FTP technique. The liquid is pure water dyed with 0.1 wt%
white pigment.
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where � and � are, respectively, the liquid density and
kinematic viscosity while � is the surface tension. Here,
the influence of the surrounding air can be neglected
and two additional dimensionless numbers have to be
considered: the aspect ratio R0=H and the Froude number
Fr ¼ U0=

ffiffiffiffiffiffiffiffiffi
gR0

p
that characterizes the importance of the

gravity during the impact.
In our experiments, the velocity U0 is varied from 1 to

2:8 m � s�1 by changing the falling height of the drop, and
H varied between 1.5 and 3.4 mm. After the impact, we first
observe the expansion of a liquid bump of height almost
constant in time (Fig. 2, top left and Fig. 3). Later an
instability of the bump develops (Fig. 2, top). Eventually
the bump collapses and a flower pattern—remanent of the
bump instability—is observed temporarily (Fig. 2, bottom
left and right, see also supplementary materials for the full
movie of the dynamics). Finally, a thick jet is formed at the
impact point. We found these dynamics to be robust in the
studied parameter range (4000< Re< 15 000, 27<
We< 222 and 0:66<H=R0 < 1:66), and six to 12-fold
symmetry flowers have been observed. We focus here on
the first regime, before the bump collapses. A typical height
profile measurement is shown on Fig. 3 (bottom) and both
the bump position r and thickness dr appear to follow a

ffiffi
t

p
power law (insets of Fig. 4).

Shallow-water approximation.—In the context of the
present experiments and for the large enough times t > �
considered here, the interface can be described by a 2D
mapping z ¼ hðx; y; tÞ. In these conditions, we can use the
shallow-water approximation to describe the interface
dynamics. Neglecting the viscosity and gravity since

Re> 4000 and Fr> 10 in the experiments, the dynamics
is described for radially symmetric solutions by the inter-
face height hðr; tÞ and the radial velocity vðr; tÞ:

@h

@t
þ 1

r

@

@r
ðrvhÞ ¼ 0; (1)

@v

@t
þ v

@v

@r
¼ 1

We

@�

@r
; (2)

where � is the curvature. For the impact, these equations
have been first made dimensionless using the change

of variable: t ! U0t
R0

h ! h
R0

r ! r
R0
, and we will consider

" ¼ 1
We � 1.

The radially symmetric solution can be decomposed in
three regions: an inner layer, originating around the region
of impact and where the fluid forms a thin film with a more
or less constant height; and an outer layer where the film
tends asymptotically to a uniform thickness h1 ¼ H=R0.
An intermediate region, that can be interpreted as a
‘‘shock’’, matches the inner with the outer region.
Inner layer solution: in the " ¼ 0 limit, the equation for

the velocity is Burgers equation. The impact conditions are
such that a shock is created in a finite time [4], with explicit
solution:

v ¼ r

t
and h ¼ a

t2
; (3)

where t can be shifted to tþ t0 and a is a constant. This
solution describes the thinning of the film after the com-
plete impact of the drop up to some limiting thickness that
is determined by the growth of a viscous boundary layer at
its base [20,21].
Outer layer solution: we can seek a solution by means of

the self-similar ansatz:

FIG. 2 (color online). Evolution of the liquid interface after a
water drop (R0 ¼ 2:05 mm,We ¼ 110) has impacted a 3.4 mm-
deep liquid layer. Snapshots of the surface deformation
measured by FTP technique for 30, 38, 44, and 50 ms after
the impact, respectively. The color scale indicates the height of
the interface.

FIG. 3 (color online). Top: spatiotemporal diagram of the
height of the interface following a diameter. Bottom: measured
bump profile 17 ms after the impact (We ¼ 110, H ¼ 3:4 mm)).
Inset: maximal height h as a function of time, while the straight
line indicates the liquid height at infinity.
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v ¼ 1

t1=2
f

�
r

t1=2

�
; h ¼ h1g

�
r

t1=2

�
: (4)

The self-similar variable � ¼ r=
ffiffi
t

p
is reminiscent of the

Burgers equation’s structure of Eq. (2) in the limit " ¼ 0
and is in fact common to the inner and the outer solutions.
Plugging (4) into Eqs. (1) and (2), we obtain, in the limit
" ¼ 0, a system that can be integrated giving:

fð�Þ ¼ �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � c2

p
2

and gð�Þ ¼ ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � c2

p Þ2
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � c2

p (5)

where c is a constant, and gj�!cþ � 1
4

ffiffiffiffiffiffiffiffiffiffiffi
c

2ð��cÞ
q

and

gj�!1 � 1þOð��4Þ.
The singularity of g can be understood as a shock sepa-

rating the inner domain r � c
ffiffi
t

p
and the outer domain r �

c
ffiffi
t

p
where a bump is growing due do the propagation of the

shock. Figure 4 shows the experimental profiles rescaled
according to (3) for different times, showing the self-similar
structure of the expanding bump. The singular behavior of g
is found to be in good agreement with the experimental
profiles up to the top of the bump where some regularization
mechanism has to be invoked. Indeed, it can be found that
the leading regularization comes from the surface tension
and so by keeping the dominant term g00 of the curvature for
t � 1, the self-similar structure of the outer solution sur-
vives. Balancing the surface tension term with all the others
in Eq. (2), we can describe the solution in the form:

v ¼ 1

t1=2
~f

�
� ¼ �� c

lc

�
; h ¼ h1l

�ð3=2Þ
c ~gð�Þ:

The self-similar scale is lc ¼ ðh1WeÞ2=7, with

� 1

2
ðcþ lc�Þ~g0 þ 1

cþ lc�
ððcþ lc�Þ~f ~g Þ0 ¼ 0; (6)

� 1
2ððcþ lc�Þ~fÞ0 þ 1

2ð~f2Þ0 ¼ �~g000; (7)

so that, when lc � 1, one can integrate Eq. (7) near the
bump leading to:

h

h1
� AWe3=7 �We

16
c2ð�� �maxÞ2; (8)

where A is, at leading order, independent of the Weber
number and �max indicates the position of the top of the
bump. On Fig. 4, we represent the experimental profiles
rescaled according to Eq. (3) together with the theoretical
profile for We ¼ 1 [Eq. (5)] and with the bump profile
[Eq. (8)], at the—finite—experimental Weber number.
To find the global solution of the problem, we need to

match the solution of these equations with the inner solu-
tions (3). This can be done by introducing the viscosity in
the equations. It has been shown that a viscous boundary
layer grows into the inner film solution leading to an

asymptotic constant film thickness scaling like Re�2=5h1
[20,21]. Then, a fairly good approximation of the solution
is simply given by considering, in the t � 1 limit, that the
inner solutions satisfy v ¼ 0 and h ¼ 0.
In the original parameters, the impact of the drop in this

regime leads to a self-similar expanding bump of radius

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U0R0t

p
and thickness dr / lc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
U0R0t

p ¼ ð H1	
�U2

0R
2
0

Þ2=7 	ffiffiffiffiffiffiffiffiffiffiffiffiffi
U0R0t

p
with a—time-independent—maximum height

h ¼ H1ð�U
2
0
R2
0

H1	
Þ3=7. This situation might be interpreted as

a particular hydraulic jump where the gravity is replaced
by the inertia stored in the bump [22].
Stability analysis.—In order to describe the appearance

of the flower pattern, we study the linear stability of the
former radial solution. We use the shallow-water equations
in polar coordinates:

@h

@t
þ 1

r

@

@r
ðrvhÞ þ 1

r

@

@

ðruhÞ ¼ 0;

@v

@t
þ v

@v

@r
þ u

r

@v

@

� u2

r
¼ � 1

We

@�

@r

@u

@t
þ v

@u

@r
þ u

r

@u

@

þ uv

r
¼ � 1

We

1

r

@�

@


where u is the azimuthal velocity. Denoting ð~f0; ~g0Þ the
extension of the radial solution ð~f; ~gÞ towards the inner
region, we can develop the azimuthal stability analysis

following the same scalings: hðr; 
; tÞ ¼ h1l
�ð3=2Þ
c ð~g0ð�Þþ

~g1ð�; 
; �ÞÞ, vðr; 
; tÞ ¼ t�ð1=2Þð~f0ð�Þ þ ~f1ð�; 
; �ÞÞ,
uðr; 
; tÞ ¼ t�ð1=2Þ~q1ð�; 
; �Þ. For the perturbed analysis,
the pertinent time scale is � ¼ lnðtÞ. By decomposing

ð~g1; ~f1; ~q1Þ in angular modes ð ~G1; ~F1; ~Q1Þe!n�þin
 and as-
suming that the eigenmodes are concentrated near the

FIG. 4 (color online). Experimental profiles (We ¼ 110,
H ¼ 3:4 mm, t ¼ 10 to 18 ms) rescaled with respect to the
self-similar structure of the solution according to Eq. (4).
Thick dotted red line: theoretical profile for We ¼ 1 [Eq. (5)].
Thick red line: bump profile given by formula (8) for
We ¼ 110. Inset top: square of the bump position (r) as a
function of time. Inset bottom: square of the bump thickness
(dr) as a function of time.
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bump (�� 0), we obtain at leading order (lc � 1) the
simplified relations

lc!n
~G1�1

2
c
d ~G1

d�
þ d

d�
ð~g0 ~F1þ ~f0 ~G1Þþ inlc

c
~g0 ~Q1¼ 0;

lc!n
~F1�c

2

d ~F1

d�
þ ~f0

d ~F1

d�
þ ~F1

d~f0
d�

¼�
�
d2

d�2
�n2l2c

c2

�
d ~G1

d�
;

lc!n
~Q1�c

2

d ~Q1

d�
þ ~f0

d ~Q1

d�
¼�inlc

c

�
d2

d�2
�n2l2c

c2

�
~G1:

This linear system depends only on three coefficients so
that we have an implicit relation lc!n ¼ F ðnlc=c; cÞ.
Therefore, without solving the linear system explicitly
and taking into account the slight dependence of c with
the Weber number, we argue that the fold index of the
maximum growth rate scales like

nmax / c

lc
¼ c

�
We

h1

�
2=7

:

The index of the unstable modes was measured in the
different experiments carried out and it agrees remarkably
well with the predicted theoretical scaling as shown Fig. 5.
Finally, can one relate this instability to some physical
mechanism? Two familiar surface instability candidates
are the Rayleigh-Taylor (RT) or Rayleigh-Plateau (RP) in-
stabilities. RT would act differently on the inner and outer
sides of the bump. In the frame of reference attached to
the bump the inner side would be stable and the outer
unstable since the bump is decelerating. But the inner side
of the shock covers a higher area so that this is an unlikely
source of instability. On the other hand, since the bump can
be viewed approximately as half a torus that is fixed in the
self-similar frame, we expect the RP instability to be the
leading instability mechanism, in agreement with the origi-

nal scenario of droplet breakup drawn by Worthington [23].
The amplitude growth of the perturbations can discriminate
between these two instabilities: one expects a �2 � ð lnðtÞÞ2
evolution for RT and a e	� � t	t for RP. Preliminary results
(see supplementary materials [24]) suggest an algebraic
growth of the instability in agreement with RP.
Finally, it is tempting to try to link this self-similar

dynamics to the question of secondary droplet formation.
Indeed, we would like to emphasize that the higher the
Weber number and the smaller h1, then the higher and the
thinner the self-similar bump is, suggesting eventually
droplet breakup.
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FIG. 5 (color online). Flower mode number n as a function of
the parameter cðWe

h1
Þ2=7. Inserts: experimental observations using

the FTP technique for n ¼ 7, 9 and 11. The color scale indicates
the height of the interface, increasing from blue (� 0:75 mm) to
red (0.75 mm). Relative errors in the horizontal measures are
below 7% while the vertical error is 
0:5.
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