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Abstract

This work describes the development of a method for the global hydrodynamic stability analysis of diffusion flames. The low-Mach-
number (LMN) Navier—Stokes (NS) equations for reacting flows are solved together with a transport equation for the mixture
fraction describing the local composition of the fluid. The equations are solved by the spectral-element code NEKS5000 with
Legendre polynomial reconstruction of degree twelve and second-order accurate Runge-Kutta time integration scheme. In order to
compute the base flow for the stability analysis, a selective frequency damping approach has been employed. The global stability
analysis has been performed by a matrix-free time-stepper algorithm applied to the LMN-NS equations, using an Arnoldi method
to compute the most unstable modes. Moreover, a numerical linearization of the governing equation is employed, which allows one
to study the stability of diffusion flames without the direct evaluation and storage of the linearized operator. Therefore, a remarkable
reduction of the storage capacity is achieved and a more flexible numerical approach is obtained. The numerical model has been
validated by comparison with the results for the axisymmetric diffusion flame available in the literature.
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1. Introduction

Lifted flames are common in many engineering applications such as gas-turbine combustion chambers, burners,
and rocket engines. The flame does not anchor to the injector rim when the flame propagation velocity in the upstream
direction equals the flow velocity at some distance from the inlet plane. The flame velocity depends on the charac-
teristics of the fuel and of the oxidizer and on their mixing process. In most gas-turbine combustion chambers, the
lifting distance depends also on the inlet flow swirl, which creates a recirculation region downstream of the injector,
anchoring the flame [1].

In the present work a non-swirling jet diffusion flame is considered. Such a flame has a typical triple-flame structure
with a lean branch and a rich branch in the base premixed region, which anchor the diffusion part of the flame extending
downstream along the stoichiometric surface.
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The hydrodynamic stability of a jet diffusion flame has been recently studied by using local [2] and global [1]
stability analysis, considering an axisymmetric jet of fuel issuing in a large cylindrical domain.

A pocket of absolute instability [2] at the injector exit (wavemaker) produces oscillations which are convected and
amplified downstream. The hydrodynamic stability properties of the flow upstream of the flame base is different from
that downstream of it. The upstream part is more unstable and can influence the behavior of the entire flow [1]. These
instabilities may become dangerous when coupled with thermo-acoustic perturbations. For small lift-off height, for
example in H,/O; rocket engines where the flame speed is very high, the pocket of absolute instability reduces and
does not support unstable global modes, so that the entire flow may stabilize.

Nichols (2008) et al. have shown that two peak-frequency ranges for the oscillations exist: a high frequency range,
0.25 < St < 0.3, and a low frequency range, St < 0.05, St being the Strouhal number. They showed that the
high-frequency oscillations are linked to the absolutely unstable premixing region, whereas they postulated that the
low-frequency oscillations were due to nonlinear interactions among resonant modes.

The local stability analysis is not fully suited for this kind of application since the heat release modifies sharply
the stability properties of the flow. For this reason, Qadri et al. (2015), performed a global stability analysis using
the same test case. They have shown that two families of global mode exist, called mode A and B. Mode A is linked
to high-frequency oscillations and its wavemaker is located in the shear layer in the premixing region. Mode B has
global frequency close to the low-frequency oscillations computed by [2], and its wavemaker is located in the outer
part of the shear layer of the flame.

The approach employed by Qadri is based on a linearization of the differential operator governing the phenomenon.
and on the time-stepper approach proposed in references [3, 4] to compute the eigenpairs of the exponential propaga-
tor. Such an approach allows one to avoid the explicit storage of the linearized operator and a direct computation of
its eigenvalues; this is needed especially for computations in three space dimensions, where the number of degrees of
freedom can be too large.

In the present work, we employ a time-stepper approach and also avoid the linearization procedure by adopting a
numerical evaluation of the eigenpairs of the exponential propagator. In this way, we provide a more flexible approach,
which can be applied straightforwardly to any complex system of conservation equations governing the dynamics of
a reacting flow. Such a method is validated versus the results of Qadri et al. (2015) using the same test case proposed
by Nichols et al. (2008).

2. Problem formulation

The present work provides the hydrodynamic stability analysis of a jet diffusion flame. The concentration of fuel
Y puet = You + Yoy

Y90+ Yox
concentrations of fuel and oxidizer while Y° indicates the corresponding inlet values and s is the reaction stoichio-
metric ratio so that Z = 1 for pure fuel and Z = 0 for pure oxidizer.

Following the approach of [2], we use the low-Mach-number Navier—Stokes (LMN-NS) equations with a closing

equation to link density, p, temperature, 7', and mixture fraction:

and oxidizer is described using the mixture fraction parameter (see [5]), Z = , where Y indicates

Zp +V-(ou) = (1)
p(au; ): “VpEV: (SlRe)’ @
oG v s ®
p(aa_T ) S z:eTS c * Dap3w, @)

plS1—DZ+1][(S.- DT +1] =1, (5)
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where p indicates the pressure, u is the velocity vector, and T = [Vu + (Vu)”] = 2/3(V - w)l. The flow variables
have been non-dimensionalized by the jet diameter at inlet, d, inlet fuel jet velocity, u;, and oxidizer density, p,. The

*

TO' where T is the dimensional temperature [K], 7 is the dimensional
f=410
adiabatic flame temperature [K] and 7)) is the dimensional ambient oxidizer temperature [K]. S| represents the ratio
of the oxidizer density to the fuel density, p;; whereas, S is the the ratio of the adiabatic flame temperature to the
oxidizer temperature. In equation (4) the source term, Dap’w, is the non-dimensional rate of enthalpy release per unit

volume. In particular, a simple Arrhenius law has been used for the reaction rate,

non-dimensional temperature is 7 =

-B(1-T)
PP AT A (e o

s+1 +1

that includes the following chemistry parameters: the equilibrium constant «; the mass stoichiometric ratio s; the heat
release parameter @ = (T — To)/Ty; the Zeldovich number, 8 = aT, /Ty, where T, is the dimensional activation tem-

perature of the considered reaction. Re, Pr and S c indicate the Reynolds, Prandtl and Schmidt numbers, respectively.

Ah d
Finally, Da is the Damkéohler number, Da = (1 + s)——————— ——, where A# is the enthalpy change due to combus-
Cc p(Tf - T()) u;

tion, ¢, the specific heat at constant pressure and A the pre-exponential factor. This parameter is very important in this
case of study: it specifies the ratio of the rate of reaction to the rate of fluid convection and controls the transition from
stable to unstable flame.

2.1. Global stability analysis

Linear stability analysis allows one to investigate the asymptotic time evolution of global infinitesimal perturbations
in the vicinity of a given fixed point of the governing equations. We recast these equation in the following compact
form, 6_(t1 = N(q), where q = (uy, u,, 7, T)" and N is the nonlinear partial differential operator (the density in not

included since it can be derived from the mixture fraction and the temperature by using equation (5)). The dynamics
of an infinitesimal perturbation q'(x, r,t) is governed by the following linearized equation (with respect to a given
’

base point qp: = £(q’), where £ is a suitable linearized operator. Since, especially for computations in three

space dimensions, the number of degrees of freedom can be too large to enable explicit storage of matrix £ and a
direct computation of its eigenvalues, the time-stepper approach proposed by Edwards et al. (1994) and Bagheri et al.
(2009a) is here employed. Given an initial state q’( and a time increment At, the solution of the linearized equation

is of the form q'(Af) = Mq’,, where M = ¢ is the exponential propagator. The eigenvalues 1 = o + iw and the

log (A
eigenvectors Q of L are related to those of M, namely (A, V), by the following equations: A = OgA(t ), Q=V.
Therefore, one can compute the eigenpairs of M and easily recover those of £ by the latter equations; the advantage

of this procedure is that one does not need to compute £ since the action of the exponential propagator onto a generic
vector (', can be approximated by integrating the linearized Navier—Stokes equations from ¢ = 0 to ¢ = At with initial
solution q’. This allows one to compute A and V by using an efficient Arnoldi iteration. In the present work, we
also avoid the linearization of the Navier—Stokes equations by computing numerically the effect of the linear operator
employing a perturbation of the solution, namely, Mq’, ~ [N(q, + €q’¢) —N(q5)]/€, where N indicates the integration
of the nonlinear Navier-Stokes equations from # = 0 to r = Ar and € is a small parameter.

3. Results
3.1. Flow configuration and computational model

We consider an axisymmetric jet of fuel into a cylindrical domain filled with oxidizer. The nondimensional flow
parameters are set to match exactly the cases studied in [2] and [1]. In this configuration, being the fuel flow rate
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Fig. 1: Scheme of considered test case as proposed in reference [2]).

reference [2] Present results
Da St H; H, St H, H,
4.0-10° 0.267 4.878 1.026 0.290 4.428 1.110
5.0-10° 0.284 1.913 0.949 0.313 1.878 1.027
6.0-10° 0.284 0.865 0.865 0.313 0.645 0.662
7.0-10° stable 0.557 0.557 0.313 0.243 0.301

Table 1: Results of DNS compared to those of [2].

sufficently large, the flame lifts off the jet nozzle and stabilizes at some distance downstream of the jet exit plane.
Moreover, for a large enough density ratio S, it has been shown that the jet contains a pocket of absolute instability
in the premixing zone at the nozzle exit [6]. This region acts as a "wavemaker”, generating perturbations which are
convected and amplified downstream [7, 2].

The jet of fuel with velocity u; and density p; enters through a circular nozzle of diameter d at x = 0 and is aligned
along the axis of the cylindrical chamber. At the inlet, the jet is surrounded by a co-flow of oxidizer with velocity
u. = 0.01.

For validation purpose, we set the nondimensional parameters in the governing equations to the same values em-
ployed by [2] and [1], namely: Re = 1000, S| = 7,8, =6, Pr = Sc = 0.7, « =001, = 0833, =3,5s =2
(corresponding to a stoichiometric mixture fraction Z;; = 0.333). Four values of the Damk&hler number have been
considered in the present analysis, namely, 4 x 10°, 5 x 10°, 6 x 10%, 7 x 10°.

Concerning inlet boundary condition, Michalke’s profile number two [8] has been employed,

1 1d/d 2r
fin = 5{1 “a“h[m(z—r - 3)]}’ @)
u(0,r) = (uj —uc)f(r) +uc, Z0,r)= f(r), T(0,r)=0, (8)

with the ratio of the jet radius d/2 to momentum thickness of the shear layer 6 equal to d/20 = 12.5. Moreover,
dp/0x = 0 has been imposed at inlet points. At the lateral boundary, T(r = 7yex) = 0, Z(r = 7puax) = 0, and the
wall normal derivative of the velocity components and pressure have been set to zero. Finally, along the centreline,
axisymmetry is imposed, whereas, at the outlet boundary, convective boundary conditions have been employed for
velocity, temperature and mixture fraction, imposing p = 0.

We performed firstly a direct numerical simulation (DNS) to analyse the time evolution of the flow and then we
applied the selective frequency damping technique (SFD)[9] to compute the base flow for the stability analysis. A
modified version of the spectral-element code Nek5000 [10] has been employed to solve the Navier—Stokes equations
and to perform the stability analysis. An Arnoldi interation has been also implemented to compute the eigenpairs of
the exponential propagator M. The computational domain for the DNS has length equal to 10 in the axial direction (x)
and 5 in the radial (r) one [2]. For the spatial discretization, 146 spectral elements have been used in axial direction
and 74 elements in radial direction. The Galerkin approximation has been employed. The solution is expanded within
the spectral elements using Legendre polynomials of order N = 12 at the Gauss—Lobatto—Legendre quadrature points.
Concerning the time discretization, a second-order-accurate backward differentiation has been employed [10]. The
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Fig. 2: Snapshots at time # = 500 of the lifted flames obtained by four simulations: Da = 4 X 10°,5%10%,6%x105,7x 10° (top to bottom). Contours
of In(w) (red, -5, blue —16) are plotted together with the stoichiometric surface (continuos black line) and the temperature contour 7 = 0.5 (dashed
black line).

nondimensional time step is equal to 0.001. Both the number of elements in space and the time step have been
determined by a refinement study whose details are omitted for brevity.

3.1.1. Discussion of the results

For sufficiently large inlet jet velocity u;, the flame stabilizes at a lift-off height H defined as the minimum axial
distance from the nozzle at which the temperature is 7 > 0.5 for any radius (see figure 1) [2]. This flow configuration
originates a typical triple-flame structure characterized by rich and lean premixed branches which anchor a diffusion
flame extending downstream along with the stoichiometric surface [11].

Figure 2 provides four snapshots at t = 500 showing the contours of the logarithm of the reaction rate for four
different values of Da. In all cases, the computations clearly capture the triple-flame structure. One can see also the
temperature contour 7 = 0.5 (dashed line) close to the stoichiometric surface and exactly on the triple flame front.
When Da is increased, the flame becomes more stable and the lift-off height decreases; for Da > 6 x 10° a barely
unsteady solution is obtained. The time-averaged value of the lift-off height, H,,, is reported in table 1 along with the
lift-off height, H;, obtained by the SFD technique and the Strouhal number, S¢, computed by an FFT analysis of the
H time history. These data are compared with those provided by [2]. For Da = 4.0 X 10° and Da = 5.0 x 10°, after
the initial transient, the flame oscillates around a mean value, H,,, that reasonably agrees with the values found by [2].
Whereas, when Da is further increased we obtain lower H, values with respect to Nichols et al.. This is probably due
to the different numerical scheme employed. Although the values of the lift-off height do not coincide, we confirm
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Fig. 3: The least-stable part of the global eigenvalue spectrum (domain M2; Da = 5 x 10%). Filled circles represent modes A, B and C.
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Fig. 4: Real components of global modes A and B for Da = 5 x 10°. For each mode, the mixture fraction Z (left) and the temperature T (right) are
shown.

that the case with Da = 6 x 10° can be considered barely unstable with only very small oscillations of the diffusive
flame tip.

3.2. Global stability

In order to estimate the influence of the length of the computational domain on the global stability of this problem
we employed two domains: M1 with x,,,, = 10 and r,,,, = 5; and M2 with x4, = 15 and 7,5, = 5. M1 is discretized
using 146 spectral elements in axial direction and 74 elements in radial direction, whereas domain M2 has 219 and
74 elements, respectively. This choice allows a direct comparison with the same computational domains employed in
reference [1] for the case with Da = 5 x 10°.

In the related spectrum, see figure 3, among the well-converged modes, we find an isolated unstable high-frequency
mode, labelled mode A, and a branch of low-frequency modes very close to the marginally stable condition (Re(4 = 0);
such a branch is composed of free-stream vortical modes and only the most unstable of them, labelled mode B, will
be shown in detail. Finally, we have also found another isolated stable high-frequency mode, labelled mode C.

Table 2 provides the eigenvalues associated to these modes computed using domain M1 and M2, compared with
the results of [1]. It’s worth remarking that the present global stability analysis can be very sensitive to the domain
dimensions. In fact, small discrepancies in the real and imaginary part of the eigenvalues computed using domains
M1 and M2 can be observed in table 2. However, these discrepancies do not change the stability behavior of the three
analyzed modes. The results agree reasonably well with those provided in [1], even if, using domain M2, these authors
find that mode B is (barely) stable. Also the frequencies of the modes agree very well and the shape of the spectrum
is very similar. Considering the results obtained using domain M1, mode A has growth rate Re(1) = 0.18 with pulse
Im(Ad) = 1.411. The corresponding real components, given in figure 4a, show that this mode shape is dominant in the
premixing zone, between the inlet and the flame base. In fact mode A is linked to the pocket of instability upstream of
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[1] Computed
Ml M2 M1 M2

Mode A 0.157 + 1.363i 0.157 + 1.365i 0.180 + 1.411: 0.200 + 1.382i
Mode B 0.020 +0.172i —0.005 + 0.170i 0.022 + 0.152 0.041 + 0.167i
ModeC - ---—7— = —=——--— -0.128 +2.159i -0.093 + 2.174i

Table 2: Eigenvalues computed for Da = 5 x 10° using domains M1 and M2.

Da Mode A Mode B Mode C
4.0x%10° +0.170 + 1.282i +0.008 + 0.225i —0.084 + 2.025i
7.0x 10° —0.487 +2.183i +0.037 + 0.203i -0.572 +2.812i

Table 3: Eigenvalues computed using domain M1.

T 1
[ 2 2 6 8 10

2.0
p— ~1.0
- — T,
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2 4 6 8 10
)

(a) Mode A, A2 = +0.170 + 1.282i

o 2 1 0 2 ) 6 s 10
(a) Mode B, 4 = +0.008 + 0.225i

Fig. 5: Real components of global modes A and B for Da = 4 x 10°. For each mode, the mixture fraction Z (left) and the temperature T (right) are
shown.

the flame base. Mode B has growth rate Re(4) = 0.0222 with pulse Im(1) = 0.1518. Figure 4b shows that in this case
the mode is localized further downstream, along the outer part of the flame and grows radially away from the axis of
the jet. Finally, mode C has Re(1) = —0.128 with pulse Im(1d) = 2.159. It is located near the stability limit and its
shape (not shown) is very similar to mode A (related to the premixed zone) with higher frequency. Mode C was found
also by [1] but it was not analyzed.

Table 3 and figures 5 and 6 provide the results obtained with Da = 4 x 10° and Da = 7 x 10> employing domain
M1, for completeness.

For Da = 7 x 10°, mode A becomes stable. On the other hand, mode B remains unstable with a frequency almost
unchanged. This oscillation characterizes the diffusive tip of the flame, as indicated by the corresponding eigenvector.
Finally, mode C becomes more stable and its frequency further increases.

For the case with Da = 4 x 10°, the results show that mode A is still the most unstable mode, with growth rate
smaller than that found for the case with Da = 5 x 10°. Finally, other two unstable modes appear with the same shape
of mode A (not shown).

4. Conclusions

In this work, a numerical method based on the time-stepper approach proposed by Edwards et al. (1994) and
Bagheri et al. (2009) has been combined with a numerical linearization of the governing equations and employed
to study the global stability of reacting flows. This method allows one to analyze the stability of diffusion flames
without the direct evaluation and storage of the linearized operator; in this way, a remarkable reduction of the storage
capacity is achieved, which renders the method suitable for three dimensional flow computations. Furthermore, a
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Fig. 6: Real components of global modes A and B for Da = 7 x 10°. For each mode, the mixture fraction Z (left) and the temperature T (right) are
shown.

more flexible approach is obtained, which can be applied straightforwardly to any complex system of conservation
equations governing the dynamics of a reacting flows.

The method has been successfully validated versus the results of Qadri et al. (2015) using the same test case
proposed by Nichols (2008) concerning a jet diffusion flame.

We have confirmed the results of Qadri et al. (2015); namely, we have found two modes responsible of the oscilla-
tion of the flame, labelled made A and mode B. Mode A is associated with the upstream global unstable region and is
linked to high frequency oscillations. Instead mode B is responsible of the low frequency oscillations initially found
by Nichols et al. (2008) and is located in the outer part of the flame. In conclusion, the proposed method represents a
valid alternative to the classical linearization approach for studying the global stability of complex three-dimensional
reacting flows, requiring a very small storage capacity.
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