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Splitting methods and short time existence for the master
equations in mean field games

Pierre Cardaliaguet* Marco Cirant! Alessio Porrettal

January 24, 2020

Abstract

We develop a splitting method to prove the well-posedness, in short time, of solutions for two
master equations in mean field game (MFG) theory: the second order master equation, describing
MFGs with a common noise, and the system of master equations associated with MFGs with a major
player. Both problems are infinite dimensional equations stated in the space of probability measures.
Our new approach simplifies, shortens and generalizes previous existence results for second order
master equations and provides the first existence result for systems associated with MFG problems
with a major player.
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1 Introduction

The paper is dedicated to a construction of a solution of the so-called “master equations” in mean field
game theory (MFG). These equations have been introduced by Lasry and Lions and discussed by Lions
in [27]. Let us recall that mean field games describe the behavior of infinitely many agents in interaction.
We consider here two problems: the master equation with common noise and the master equation with
a major player. We present a general approach valid for both problems.

Let us first discuss the master equation with common noise. In this problem, the agents are subject
to a common source of randomness. The master equation is then a second order equation in the space of
measures and reads as follows:

—0:U(t,x,m) — Tr((a(t,z) + a®(t,)) D2, U(t,x,m)) + H(z, D U(t,z,m), m)
- [ Ix((att.) + (6. 9)D2, Ut m. ) dm(y)
+ DmU(tamama y) 'Hp(y,DIU(tay,m)am) dm(y)

Rd

| 2 w0 ) DU m. )] m(ay) L

—/ Tr[o°(t,y)(0°(t,y') " D2, Ut z,m, y, ') m(dy)m(dy’) = 0

R2d
in (0,7) x R x P,
U(T,z,m)=G(x,m) in RY x Py

In the above equation, the unknown U = U(t, z,m) is scalar valued and depends on the time variable
t € [0,T], the space variable x € R? and the distribution of the agents m € Py (Ps is the space of Borel
probability measures with finite second order moment); the derivatives D,,U and D2, U refer to the
derivative with respect to the probability measure (see subsection [2.2)); the maps H = H(z,p,m) and
G = G(z,m) reflect the running and terminal costs of the agents. The matrix valued function a = a(t, x)
is the volatility term corresponding to idiosyncratic noise of the small players while a = a°(t,z) =
0%(c®)T(t,x) is the volatility corresponding to the common noise.

As explained by Lions [27], the master equation can be understood as a non-linear transport equation
in the space of probability measures. When a® = 0 (i.e., in the so-called first order master equation), the
characteristics of this transport equation are given by the MFG system: if we fix an initial time ¢g and



an initial probability measure mg on R%, and if the pair (u,m) is a solution of the MFG system

(i) —0wu — Tr(a(t,z)D?*u) + H(z, Du,m(t)) =0 in (to,T) x RY
(i)  oem — 35, ; Dij(a; ym) — div(mHy,(z, Du,m(t)) = 0 in (to, T) x RY (2)
(#91)  m(to) = mo, w(T,z) = G(x,m(T)) in R?

then we expect the equality
U(t,z,m(t)) = u(t,x) Yt € [to, T (3)

The interpretation of the MFG system is the following: the map u is the value function of a typical
small agent (anticipating the evolution of the population density (m(t))) and accordingly solves the
Hamilton-Jacobi equation —(i). When this agent plays in an optimal way, the drift in the dynamic of
its state is given by the term —H,(x, Du,m(t)). By a mean field argument (assuming that the noise of
the agents are independent), the resulting evolution of the population density m satisfies the Kolmogorov
equation

o — Y Dij(a; ji) — div(mHy(z, Du,m(t)) =0 in (to, T) x R

i

m(ty) = mo in RY
In an equilibrium configuration, i.e., when agents anticipate correctly the evolving measure, one has
m = m and therefore the population density m solves (2)-(ii).

The existence/uniqueness of the solution for the MFG system is rather well understood: it relies on
Schauder estimates, fixed point methods and monotonicity arguments (see, in particular, [24] 25]). From
the well-posedness of the MFG system, one can derive the existence of a solution to the first order master
equation “quite easily”: one just needs to define the map U by with ¢t = tg and check that the map U
thus defined is a classical solution to the first order master equation. This is the path followed in [I7], 28]
(when there is no diffusion at all: @ = a” = 0) and in [16] (when a > 0 is constant and a° = 0). See also
[9] for a similar result (in the torus) using PDE linearization techniques.

When a° # 0 (i.e., for the second order master equation, or master equation with a common noise),
the characteristics are now given by the system of SPDEs (called “stochastic MFG system” ):

du(t,z) = [-Tr((a + a°)(t, z) D*u(t, z)) + H(z, Du(t,x), m(t))

—V2Tr(0°(t, ) Du(t, x))|dt + v(t, z) - AW, in (0,7) x R?,
dm(t,z) = [Z D;;(((aiy) + a?j)(t, z)m(t, z)) + div(m(,2)DpH (z, Du(t, z), m(t))) | dt (4)
Y divim(t 2)V3e (2 W), in (0,T) x RY,

w(T,z) = G(x,m(T)), m(0) = mo, in RY

In the above system, (W;) is the common noise (here a Brownian motion) and the unknown is the triplet
(u, m,v), where the new variable v (a random vector field in RY) ensures the solution u of the backward
Hamilton-Jacobi (HJ) equation to be adapted to the filtration generated by the common noise (W;). The
analysis of this system is much more involved than the deterministic one: Schauder estimates are no
longer available and the usual fixed point methods based on compactness arguments can no longer be
applied. One has to replace them by continuation methods, which are much heavier to handle, see [9].
Besides the PDE approach we just mentioned, MFG with common noise can also be handled through a
probabilistic formulation: see the pioneering result [12], as well as [2] [21] and the monograph [II]. Once
the analysis of the stochastic MFG system has been performed, one can proceed with the construction
of the second order master equation as in the first order case, defining the map U by for t = to,
where u is now the u—component of the solution of the stochastic MFG system (u (%o, ) turns out to be
deterministic). However, here again, the verification that the map U defined so far is smooth enough to
satisfy (1)) requires a lot of work: see [9] and [I1].

Let us finally recall another approach, suggested by P.-L. Lions in the seminar [29]: it consists in
writing the equation for the quantity D,,U as an hyperbolic equation in a Hilbert space of random vari-
ables. The construction requires, however, convexity conditions on the system with respect to the space
variable (but no uniform ellipticity for the matrix a).



We now discuss the second equation considered in this paper: the master equation corresponding to
MFG models with a major player. It reads as follows:

(i) —o0,U° — A, U’ + H(x0, D, U, m) — div, D, U°(t, x9, m, y)dm(y)
Rd

+ D, U%(t, 20, m,y) - Hy(zo,y, DU (t, 70, y,m), m)dm(y) = 0
R in (0,7) x R% x Py,
(11) —oU — AU — A, U+ H(xg,z,D,U,m) — / div, D, U (¢, o, x, m, y)dm(y)
+D,, U - Hg(xo,DmUO(t,xo,m),m) - ?
+ [ DUt 0,.m,) - Hyfao,, DU 0, . m), m)dm(y) = 0

R
in (0,7) x R x R? x Py,
(iii) U(T,z0,m) = G°(xg,m), in R% x Py,
() U(T,zo,x,m) = G(zg,x,m) in R% x R% x P,.

In the above system, U° = U°(t, 9, m) corresponds to the payoff at equilibrium for a major player in-
teracting with a crowd in which each agent has at equilibrium a payoff given by U = U (¢, xg, x, m). Here
m is the distribution law of the agents. Notice that each agent is influenced by the major player whereas
the latter is only influenced by the distribution of the whole population. Mean field games with a major
player have been first discussed by Huang in [20] and several notions of equilibria, in different contexts,
have been proposed in the literature since then: see [B 6] [7, 8 11 13} 14l 15, 26]. The above system
has been introduced by Lasry and Lions in [26]. In the companion paper [10], we explain how the above
master equation is related to the approach by Carmona and al. [I3] [14] [I5]. Concerning the existence
of a solution, [15] shows the existence of an equilibrium in short time for the case of a finite state space,
[26] proves the existence of a solution to the master equation still in the finite state space framework and
notes that the Hilbertian techniques described in [29] could be adapted to the master equation with a

major player ().

The purpose of this paper is to introduce a different path towards the construction of a solution to
the second order master equation and to the master equation with a major player, using as a building
block the construction of a solution to the first order master equation. For the second order master
equation, we justify this point of view by the fact that the deterministic MFG system and the first order
master equation are much easier to manipulate than the stochastic MFG system. Our approach allows
for instance to build solutions of the second order master equation (in short time) under more general
assumptions than in [9, [11]. For the MFG problem with a major player, we prove for the first time the
(short time) well-posedness of the associated system of master equations in continuous space.

Let us first explain our ideas for the master equation with common noise . In contrast to previous
works, we do not use directly the representation formula (3)) (for ¢ = tg) for the solution of the second order
master equation. Instead, we somehow decompose the second order master equation as the superposition
of the first order master equation:

—0,U — Tr(a(t,z)D2,U) + H(x, D,U,m) — / Tr(a(t,y)DimU) dm(y)
Rd
v | DnU-Hy(y,DoU,m) dm(y) =0 in (0,T) x R% x Py (6)
Rd
U(T,z,m) = G(x,m) in R? x P,



and of a linear second order master equation:

(

—0,U —Tr [0%(c®)" (t,2) D2, U] — /R Tr [0%(c)" (t,y) D, U] m(dy)
~2 [ T [0t )(0° () D2, U] mldy)
Rd

— [ Tr[e®(t,y) (0%t y) D2, Ulm(dy)m(dy') = 0

R2d
in (0,T) x R? x Py
U(T,z,m) = G(z,m) in R? x P,

The solution to this linear second order master equation is just given by a Feynman-Kac formula, and
thus it is very easy to handle. Then we use Trotter-Kato formula, alternating the two equations in short
time intervals to build in the limit a solution of the full equation . If the technique is quite transparent,
its actual implementation requires some care. Indeed, one has to check that, at each step of the process,
the regularity of the solution does not deteriorate too much, meaning at least in a linear way in time.
The aim of Section [f]is precisely to quantify this deterioration for the solution U of the first order master
equation @, as well as for its derivatives in the measure variable. As the solution of @ is built by using
the representation formula (where t = ty) presented above, one has first to do the analysis on the
MFG system and this is the aim of Section |5} Note that we are able to control the regularity of the
linear second order equation only when the matrix a° is constant. Hence we only prove the short time
existence of a solution to in that case.

For the problem with a major player, we argue in a similar way: we view equation as the super-
position of two systems: the first one is a first order system of master equations (for a fixed x):

() —8,5U0—/ddivmeUO(t,xo,m,y)dm(y)
R

+/ DmUo(tvaa m, y) : Hp('r07ya D»LU(tvxmyvm)am)dm(y) =0
Rd
(i) —0U — AU + H(xo,x,DU,m) — /d divy D, U(t, o, z, m, y)dm(y)
R
+ DmU(t,xo,x,m,y) ! HP(ZEOa Y, DIU(ta any,m)vm)dm(y) =0
Rd

It turns out that this system can be handled by the method of characteristics. As for the second one, it
is a simple system of HJ equations (for fixed x, m):

(i) —o0,U° — AL, U° + HY(xo, Dy U, m) =0
(it) —0,U — AgyU + Dy U - H) (20, Dy U°(t, 9, m),m) = 0.

The idea of splitting time is not completely new in the framework of mean field games. For instance, the
construction, given in [12], of (weak) equilibria for MFG problems with common noise relies on a time
splitting. The main difference is that it is done at the level of the MFG equilibrium, while we do the
construction at the (stronger) level of the master equation. One consequence is that, with our approach,
the construction of a solution to the stochastic MFG system (in short time, though) is straightforward
once the solution of the master equation is built, while deriving a solution of the master equation from
the stochastic MFG system is much trickier. Let us also quote the paper in preparation [I] in which the
authors use a splitting technique similar to the one described above to compute numerically the solution
of MFGs with a major player.

Let us finally point out that, in this paper, we do not address at all the problem of the existence of a
solution on a large time interval. For the first and second order master equation, this question is related
to the Lasry-Lions monotonicity condition [24] 25]. The existence of a solution on a large time interval
can be obtained under this condition either by the Hilbertian approach, as explained in [29], or by a
continuation method, as in [I6] and [II] or even directly by using the long time existence of a solution
for the MFG system, as in [9]. Let us recall that, when the monotonicity condition is not fulfilled, the
solution to the second order master equation is expected to develop shocks (i.e., discontinuities) in finite



time. Note also that a structure condition similar to the monotonicity condition is not known for MFGs
with a major player.

The paper is organized in the following way. In Section [2| we fix the notation, we recall the definition
of derivatives in the space of measures and state our main assumptions. The main existence results
for the second order master equation (equation ) and for the system of master equations for MFG
with a major player (system ) are collected in Sections |3 and 4| respectively. Both sections require
estimates on the first order master equations. As first order master equations are built by the method of
characteristics involving the solutions of classical MFG systems 7 Section [5| first provides estimates for
these systems. Then Section [6]is devoted to the first order master equations. We complete the paper by
appendices in which we prove short-time estimates for the standard Hamilton-Jacobi equations (Section
and we discuss several facts on maps defined on the space of measures (differentiability, interpolation
and Ascoli Theorem, Section .

Acknowledgement.  The first author was partially supported by the ANR (Agence Nationale de
la Recherche) project ANR-16-CE40-0015-01 and by the AFOSR grant FA9550-18-1-0494. The second
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of University of Parma, co-sponsored by Fondazione Cariparma. The third author was partially supported
by Indam (Gnampa national project 2018) and by FSMP (Foundation Sciences Mathématiques de Paris).

2 Notation and assumptions

2.1 Notation

Throughout the paper, we work in the euclidean space R? (with d € N, d > 1), endowed with the scalar
product (z,y) — = -y and the distance | - |. Given T > 0 and a map ¢ : (0,7) x R? — R, we denote by
0+ the derivative of ¢ with respect to the time-variable, by 0,,¢ its partial derivative with respect to
the i—th space variable (i = 1,...,d) and by D¢ the gradient with respect to the space variable.

For n € N, we denote by C}' the set of maps ¢ : R? — R which are n—times differentiable with
continuous and bounded derivatives: in particular, Cg is the set of continuous and bounded maps.
Given ¢ € C! and a multi-index k = (ki,...,kq) € N9, with length |k| := Z?:l k; < n, we denote by
ok = ot ok ¢ (or briefly ¢r) the k—th derivative of ¢. We also denote by D"¢ (n € N, n > 1) the

k k
Ayl Ord
(/.fCl (/.Ld

vector (8k¢)|k‘:n. The norm of ¢ in C} is

1/2
n

[¢lln ==Y sup [ D] 10%@)1* | = 3] [D"¢lee.
r=0

r=0 T la|=r

For n = 0, we use indifferently the notation [¢[lo or [¢]|s.

For (n1,...,n;) € N¥ (ke N, k > 2), we denote by C;'~"* the space of functions ¢ : R x - - - x R% —
R (d; = 1) having continuous and bounded derivatives Di}l e D;lp";c(b for all Iy < nq,...,lx < ng, endowed
with the norm

H(anl,m,nk = H(Z)(.wl’""'wk)Hnlwuxnk = Z HDlmll '”Diskk(bHOO’

lisni,.. lg<ng

where now (z1, ..., ;) stands for a generic element R4 x R,
We denote by C~" the dual space of C}', endowed with the usual norm

lpl-n == sup p(¢)  VpeC™.
[¢ln<1

Finally, when a map ¢ = ¢(¢, ) depends also on time ¢ belonging to an interval I, we often write
supe; @) | for sup,es |o(t, ). We use a corresponding notation for a map p € C°([0,T], C~F).



Throughout the paper, P stands for the set of Borel probability measures on R? and for k > 1, Py
stands for the set of measures in P with finite moment of order k: namely,

1/k
= (/ |x|km(dx)> <+ if m € Py.
Rd

The set Py, is endowed with the distance (see for instance [4 [30, [31])

1/k

di(m,m’) = inf (/ |z — y|F 7 (de, dy)) , vm,m’ € Py,
™ Rd

where the infimum is taken over the couplings m between m and m’, i.e., over the Borel probability

measures m on R x R? with first marginal m and second marginal m’. Note that Py < P; and d; < ds

by Cauchy-Schwarz inequality. We will often use the fact that, if ¢ : R¢ — R is Lipschitz continuous with

a Lipschitz constant L > 0, then

é(x)(m —m')(dz)| < Ldy(m,m’), Vm,m’ € Py.

R4

Moreover, dq(m,m’) is the smallest constant for which the above inequality holds for any L—Lipschitz
continuous map ¢ (see for instance [30, B31]). Given m € P and ¢ € Cy, the image ¢pffm of m by ¢ is the
element of P defined by

/f ) mid(dz) = /f m(dx)  VfeCP.

2.2 Derivatives in the space of measures

We now define the derivative in the space Ps. For this, we follow mostly the definition and notations
introduced in [9] (in a slightly different context) and which are reminiscent of earlier approaches: see
[3, 4] and the references in [I1]. We say that a map U : Py — R is C! if there exists a continuous and
bounded map g—gl : Py x R4 — R such that

U(m’ / /]Rd (1 =s)m+sm/,y)(m' —m)(dy)ds ~ Ym,m’ € Ps. (8)

Note that the restriction on 5U to be continuous on the entire space Rd and globally bounded is restrictive:
it will however simplify our forthcoming construction. The map is defined only up to an additive

constant that we fix with the convention o
oU
/ —(m,y)m(dy) =0 Ym € Ps. 9)
R4 (5m

We say that the map U is continuously L—differentiable (in short: L—C?) if U is C*! and if y — —(m Y)
is everywhere differentiable with a continuous and globally bounded derivative on Py x R%. We denote
by
oU
D, U(m,y) := Dy%(m,y)

this L—derivative. In view of the discussion in [9], D,,,U coincides with the Lions derivative as introduced
in [27] and discussed in [I1]. In particular, it estimates the Lipschitz regularity of U in P2 (Remark 5.27

n [11]):
1/2
U (m) — U(m')| < da(m, mt') sup ( |DmU<u,y>|2u<dy>) Vm,m' € Py. (10)
HEP2 R4

Of course one can also estimate the Lipschitz regularity of U through the d; norm, as

[U(m) = U(m)| < di(m,m’) sup |DnU(p, ) |0 < da(m,m”) sup DU (p1, ) oo - (11)

HEP2 HEP2



Note that, with our boundedness convention, if U is continuously L—differentiable, then U is automati-
cally globally Lipschitz continuous.

When U is smooth enough, we often see the map

oU

om

U

: —k
5. as a linear map on C~" by

(m)(0) = (5, 3o (m, Do-rer Ve C.

We say that U is C? if 2% is C' in m with a continuous and bounded derivative: namely g;g =
%(%) : P2 x R? x R? — R is continuous in all variables and bounded. We say that U is twice
L—differentiable if the map D,,U is L—differentiable with respect to m with a second order derivative
D2, U = D2, U(m,y,y') which is continuous and bounded on Py x R? x R? with values in R%*<,

When a map U : R% x Py — R is of class C} with respect to the space variable, uniformly with respect

to the measure variable, we often set

[Ulln == sup [U(:;m)[n- (12)
mE'Pg

We use similar notation for a map U depending on several space variables and on a measure.
When a map U : R? x P, — R is Lipschitz continuous with respect to m, uniformly with respect to
the space variable in some C™ norm, we define Lip,, (U) as the smallest constant C such that

[U(-sm1) = U(-,m2)|n < Cda(mi1, mo) Vm, m' € Pa.
Namely:

: U ma) = U ma)|n
Lip,(U) := su .
Pn() s da(my,ms)
More generally, if U : (R9)* x P, — R (for k€ N, k > 1) is Lipschitz continuous in the measure variable
in some Cy""""™* norm (where n; € N for i = 1,...,k), then we set

U(gryenns- —U(gyyenes
Lipnh...,nk(U) = sup H (11’ ) wkvml) (9317 ) 93k7m2)Hn17m,nk_
miF#ma dQ(mlamQ)

We will typically use this notation for the derivatives of a map U : R? x Py — R: indeed we will often
have to estimate quantities of the form

. HDmU<'$7m17"L/) _DmU('m7m27'y)Hn1 Mo
Li D, U):= su : :
pnl)nZ( ) mﬁ'}:nz d2(m17m2)

and

Lip (D2 U) = sup ”D?nmU('zvmlv'yv'y') _D?erU('fb’mQa'yv'y/)“n17n2,n3.
T my#ms da(m1,ms)
Concerning the Lipschitz continuity with respect to one of the entries x;, we will use the following
notation:

i T ._
Llp”lv---;ni—l;”i+1a~~7nk (U) T
1 2
sup HU(E“ e twie T wigy - '$k7m) B U('Zl’ sy w1 Lg s Ty ey T m)Hn17~~~;ni—1sni+ls-~wnk
1 2 .
m,xl#r? |z} — @7

Further norms: In order to estimate the y—dependence of a derivative with respect to the measure
of a map U = U(x,m), we systematically proceed by duality method, testing this derivative against
distributions. This yields to the following norms, for n, k € N (note the the subtle difference in notation

between || - |5 and | - [nk):
9 1/2

oU 2 oU u oU
L - sp Y sup 2 wme)| | = Y s D22 m)(o).

m n;k meP2 . xERd,pECS la|=r m mePz "o xeRd,pECg, m

lpll—r=1 [pl-x=1

52U 2 ‘ 2 ,

FUI o sup w0128 (o)
‘ om? n;k,k’ mePs ; zeR?, p,p'eC?, Com2 ’

lol—k=lp"ll —gr=1



For maps U = U(x1,x2,m) depending on two (or more) space variables, we use the transparent notation
| lny,neik (and, if nq = 0 (say), we simply set | - [ny = | - %) Finally, we use similar notation for
the Lipschitz norms, setting, for instance for a map U = U(z, m),

’ 52U 52U

D — (x,ma)(p, p') — Dy — (x,m1)(p, p')|-

n
sup da(mi,ma)” Z sup v5a o

mi#me r—0 zeR¢ ppeC?
ol =15 | =1

Some comment about the norms we just introduced are now in order. We discuss the norm | - ||,,;5 to
fix the ideas. With these notations, we have, if U = U(z, m) is smooth enough,

oU
I5,,, )Pl < || anHpH s

for every fixed m € P5. Inequalities of this type are used throughout the text. Next we note that the
norms sup,,cp, | - = oU/dm(xz,m,y) is in
cy . In general we do not have this information, but only know that 6U//6m is (at least) continuous. In
this case, we use the following remark:

Lemma 2.1. Let ke N with k > 1 and u € C° be such that

0= sup /]Rd u(y)p(y)dy < +o0. (13)

peC?, llpll-x=1

Then u e Cy=" with |u|x—1 < Cx0 (where Cy depends on d and k) and, for any 3 € N with |8] = k — 1,
0Pu is 0— Lipschitz continuous.

Remark 2.2. In particular, if 5 U ¢ C’ZL’O and H(SUH is finite for some n,k € N with k > 1, then

C;k L and
16U /omp -1 < C.

for some constant Cy, ; depending in addition on dimension only. Moreover, the derivatives of the form

52‘85 g% for |la| < n and 8 < k — 1 are Lipschitz continuous with respect to y and thus—by —also
o

with respect to m, with a Lipschitz constant bounded by H S

Proof. For k = 1, we have, approximating Dirac masses by continuous maps with compact support: for
any x,y € R?,

lu@)| < 0dz|1 =0 and  Ju(z) —u(y)] < 00, = 0y[ 1 = Olz —yl.

This proves the claim for k = 1. Let now assume that (| . ) holds for £ = 2. Then u can be extended to
an element 7" in (C~2)" with norm |T|| < 6, such that T(p) = [udp for any Radon measure p. As, for
any v e RY,

lim hil(ém-&-hv’ — 5r) = —0,0; in 072,

h—0,v'—>v

we infer that

. %IH} At (u(x + h') —u(x)) = —T(0y04).
The map (z,v) — 0,0, being continuous in C~2 with [[0,0,]_2 < |v|, w is in C! with |Du| < 6. Then,
arguing as for k£ = 1, one can easily check that Du is §—Lipschitz continuous. So the result also holds for
k = 2. The proof can be completed in the same way for any k by induction. O

2.3 Assumptions on the data

We state here the assumptions needed on a, H and G for the existence of a classical solution to the second
order master equation and to the master equation for the MFG problem with a major player.
These assumptions are in force throughout the paper. Note that they are common to both problems (/1)
and since both require the same kind of estimates on the first order master equation (see Section [6]).



We assume that the map a : [0, T] x R? — R?*9 can be written as a = co” where o : [0, 7] x R? — R4
(M eN, M =>1)isbounded in CJ' with respect to the space variable, uniformly with respect to the
time variable, for some n > 4. We also assume that the following uniform ellipticity condition holds:

a(t,z) = Cy 'y, |Da|s < Co, (14)
for some Cy > 0.
We assume that the map H : R% x R? x R? x P, — R satisfies the growth condition
sup |D$H(‘r07x7pa m)| < 00(1 + ‘pp)? vp € Rda (15)

zo€R0, zeRI, mePy
for some v > 1. We also suppose that, for any R > 0, the quantities

oH 82H
%('woa'xa'pama y) ) W('$U7'3¢7'p7m7 'y:'y’)

2,n—1,n,k

)

1,n—2n—1,k—1,k—1

”H('xga ‘T py m)||3,n,n+1, '

and Lip17n_3,n_27k_17k_1(%) are bounded for |p| < R, m € Py and z¢ € R%, for any k € {2,...,n — 1}.
Note that we could also allow for a time dependence for H without changing at all the arguments: we
will not do so to simplify a little the notation. For the second order master equation, the Hamiltonian
H actually does not depend on z(, but this dependence is important to handle the MFG problem with
a major player.

As for the initial condition G : R% x R x Py — R, we assume that G is of class C? with respect to
all variables and that the quantities

oG

%('xga cxy T, y)

G

W('x(ﬁ sy Ty vy, 'y’)

HG('HCW ‘T m)|

3,mn ’

2.n—1,k

3

1,n—2,k—1,k—1

. 532G
Llpl,n73,k72,k72(W)('m’m s Ty ys 'y’)7
are bounded uniformly with respect to m € Ps. Here again, for the second order master equation, the
terminal condition G does not depend on zg, but this dependence is needed in the MFG problem with a
major player.

Additional assumptions for the MFG problem with a major player. This problem involves
in addition a Hamiltonian HC : R% x R% x P, — R and a terminal condition G° : R% x Py — R. We
assume that the map H satisfies the growth property

sup | Dy pH' (20, p,m)| + |DZ, ,H® (0, p,m)| < Co(|p]” + 1), (16)

Zo,p
2o€R0, mePy

for some v > 1. We also suppose that, for any R > 0, the quantities

SHO 52HO°
HHO( )" am) 3,4 7( sty T ) ) 7( sy Ty oy ’) )
x> p S L T0s P L RN PR G N
and Lip071’k72,k72(%) are bounded for |p| < R, m € Py and z¢ € R%, for any k € {2,...,n — 1}.

The initial condition G° : R% x P, — R is assumed to be of class C? with respect to the measure
variable and the quantities

5GP 52Go

HGO("m)H?” 7('7’[77,7') ) 7('w07ma' I ') 5
om 2.k om? o 1,k—1,k—1
52Go

LipO,k—2,k—2(W)('$o » My 'y’)a

are supposed to be bounded uniformly with respect to m € Ps.

Throughout the proofs, we assume that the time horizon T is small, say T' < 1. We denote by C' and
C)s a constant which might change from line to line and which depends only on the data of the problem,
i.e., on a, H and H°—the dependence in G and G being always explicitly written—and, for Cj;, on the
additional real number M. In some proofs, when there is no ambiguity, we drop the M dependence of
Cr to simplify the expressions.
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3 The second order master equation
The aim of the section is to show the short-time existence of the second order master equation:
—0,U(t,z,m) — Tr((a(t,x) + a®) D2, U(t,x,m)) + H(x, D,U(t,z,m), m)

- [ Tr((alt) + @) D3, U t.m.) dmy)

d
+/R D U(t,x,m,y) - Hy(y, DU (t,y,m), m) dm(y)
R

—2 Tr [angmU(tvxamay)] m(dy)
]Rd
—/ Tr[a® D2, U(t,z,m,y,y ) ]m(dy)m(dy’) = 0
R2d
in (0,7) x R x Py,
U(T,z,m)=G(x,m) in RY x Py,

0

where a” is a symmetric positive definite d x d matrix (independent of time and space).

Definition 3.1. We say that U : [0,T] x RY x Py — R is a classical solution of if U and its
derivatives involved in exist, are continuous in all variables and are bounded, and if holds.

Our main result is the following short time existence Theorem:

Theorem 3.2. Under the assumptions of Subsection [2.3, there exists a time T > 0 such that the second
order master equation has a classical solution U on [0,T] .

We shall not prove here the uniqueness of the solution to , which holds under our assumptions:
this point has been often discussed in the literature (see [9, [I1] for instance). The reader may notice
that we cannot handle a second order master equation with a space dependent matrix a” = a°(¢,x). The
reason is that we do not know how to extend the estimate in Proposition to the space dependent case.

The proof of Theorem is given at the end of the section, after a few preliminary steps. The key
idea is to use a Trotter-Kato scheme alternating the first order master equation as in @ and a linear
second order master equation. The analysis of the first order master equation, being quite technical, is
postponed to Section [f] below. We now discuss the linear second order master equation.

3.1 The linear second order master equation

In this section we consider the (forward) second order linear master equation

o U(t,z,m) — Tr [aODfmU(t, T, m)] - / Tr [aOD2 U(t,x,m, y)] m(dy)

Rd ym
—2/ Tr [a°D2,U(t,z,m,y)| m(dy)

Rd
— | Tx[a’D},, Ut 2, m,y,y)lm(dy)m(dy’) = 0

R2d
in (0,7) x R x Py,
U0,z,m) = G(z,m) in RY x Py.

(18)

Let T' be the fundamental solution of the equation associated with a:

ol(t,z) — Tr[a®D2,T(t,z)] =0  in (0,+0) x RY,
I'0,z) = do(x) in RY,

and, given a map G : R% x P, — R of class C? in (z,m), let us set

U(t,x,m) = /Rd G, (id—xz+ tm)T(t, x — £)dE V(t,z,m) € [0,T] x R? x Py.

11



Proposition 3.3. The map U is a classical solution to the second order equation . Moreover, there
exists a constant C > 0 (depending only on n, k and a®), such that

sup [|U(t)|n < (1+CT) sup |G|

te[0,T] mePz
and, for ke {2,...,n— 1},
oU oG
sup |—(¥) <(1+CT) ‘ ,
tefo,7] || 0 n—1:k om n—1;k
52U G
sup | —(t) < (1+CT)‘2
te[0.7] || O n—2;k—1,k—1 om n—2;k—1,k—1
and 52U G
Li . — () < (1+ CT)Li . —s ).
tf[lgF’T] 1Pn-3,k-2,k—2(5m2( ) < (1+CT) 1pn—3,k—2,k—2(6m2)
Remark 3.4. If we assume that, for some constant M,
0G %G %G
Gln+ || — — Lip,, 5.4 0k o(—=) < M,
” H " om n—1;k ' om? n—2k—1,k—1 b skak 2(5m2)

then the above estimates can be rewritten in the form:

oU 52U 52U
sup (|U(t n—l—‘t + | =t + Lip,,_s5.4_2p_o(=—=(
(U@ [Z00] S50 e 0)
oG %G %G
< n . = 9 L —3:k— -2\ ¢ o T7
|Gl + ‘ om n—1:k om? n—2;k—1,k—1  UPn-gih-2.k 2(5m2) +Cu

for some constant Cy; depending on n, k, a® and M.

In order to prove this Proposition, we need two Lemmas, the proof of which are easy and left to the
reader.

Lemma 3.5. Let U : P, — R be L —C' and let ¢ : R* — R? be of class C* with bounded derivative. Let
us set V(m) = U(¢fm). ThenV is L — C with

Dy V(m,y) = (Dd(y))" DU (gtm, ¢(y))-

Lemma 3.6. Let U : Py — R be L — C' and let V(z,m) = U((id + x)m). Then V is of class C* with

D, V(z,m) = g D, U((id + x)fm, z + y)dm(y).
Proof of Proposition[3.3 Let us first note that
U(t,z,m) = y G, (id —z + &)tm)T(t,x — £)d§ = g Gz — z,(id — 2)fm)T(¢t, z)dz.
In particular, U is C' in ¢, C? in = and has second order derivatives which are C? in the space variables

with, in view of Lemma [3.5| and Lemma [3.6

D, U(t,z,m) = D,G(x —y, (id — y)im)T'(t, y)dy,
Rd

D?EU(t, T, m) = D?EG(m — vy, (id — y)im)I'(¢, y)dy,
Rd

12



DmU(ta Z,m, y) = DmG(.I —Z (Zd - Z)ttma Yy — Z)F(ta Z)dZ,
Rd

and
Dran(ta €, m,y, y/) = / D’I%’LG(‘T — % (Zd - Z)ﬁma Yy—z y/ - Z>F(t7 Z)dZ
Rd
This easily implies the estimates on U and its derivatives.

On the other hand, since (id — w)i[(id — 2)fm] = (id — z — w)m, we have, for any t € (0,7") and
he (0, T —1),

/Rd U(t,x — z, (id — 2)im)T(h, 2)dz
= / Gz — 2z —w, (id — z — w)im)T(h, 2)T(t,w)dwdz
= G(z — u, (id — u)fm) (/Rd L'(h,u —w)I'(t, w)dw) du

R4

= G(z — u, (id — w)tm)I'(t + h,u)du = U(t + h, z, m).
Rd

So, taking the derivative with respect to h > 0 in the above expression:
Ut + h,x,m) = /Rd U(t,z — z, (id — z)tm)0:T'(h, z)dz.
Integrating by parts and using Lemma [3.5] and Lemma [3.6}
Ut + h,xz,m) = /Rd Ult,z — z,(id — z)tm) (’I&" [a°D2.T(h, z)])dz
= /Rd (Tr [a°D2,U(t,x — z, (id — z)fm)] + 2 /]Rd Tr[aD2,U(t,x — z, (id — z)im,y — z)| m(dy)
+ / Tr [a 0D2 WUtz — 2, (id — 2)im,y — )| m(dy)
/]Rd /Rd Tr [a’D2,, U(t,x — 2, (id — 2)fm,y — 2,y — 2)| m(dy)m(dy’))F(h, 2))dz.
Letting h — 0 we obtain
o U(t,z,m) = Tr [a®D2,U(t,z,m)] + 2/}1@ Tr [a°D2,U(t, 2, m,y)| m(dy)
+ /]Rd Tr [a"D},, U(t,z,m,y)] m(dy) +/ / v [a® D2, U(t,z,m,y,y")] m(dy)m(dy’).
So U is a solution to . O

3.2 Existence of a solution
3.2.1 Definition of the semi-discrete scheme

Let us fix some horizon T' > 0 (small) and a step-size 7 := T/(2N) (where N € N, N > 1). We set
t, = kT/(2N), k € {0,2N}. We define by backward induction a continuous map UY = UN (¢, z,m), with
UN :[0,T] x R% x Py — R, as follows: we require that

(i) UN satisfies the terminal condition

UN(T,z,m) = G(z,m) V(z,m) e R x Py,

13



(ii) UY solves the backward linear second order master equation

—o,UN = 2Tr [a°D2,UN] - 2 / Tr [a°D2,,UN | m(dy)

w (19)
—4/ Tr[a°D2,,UN | m(dy) — 2 Tr[a® D2, UNm(dy)m(dy’) = 0
R4 R2d
on time intervals of the form (to;j11,%2;42), for j =0,...,N —1,

(iii) UV solves the first order master equation

—o,UN = 2Tr(aD2,UN) + 2H (2, D,UY ,m) =2 [ Tr(aD}, U") dm(y)
R (20)
+2 » D, UN - Hy(y, D,UN ,m) dm(y) =0

on time intervals of the form (to;,t9;11), for 5 =0,...,N — 1.

Our aim is to show that, if the time horizon is short enough, UY converges to a solution of the second
order master equation as N — 4oc0.

3.2.2 Estimates of UV
Forn>4and ke {3,...,n— 1}, let

52G . 5@
+ Llpn—3;k—2,k—2(m) + 1. (21)

oG
M = |G|, + 5 Sm2

n—1k ' n—2;k—1,k—1

Lemma 3.7. There exists Tpy > 0 such that, for any T € (0,Ty] and N = 1, we have

SUN 52UN 52UN
sup(UNtn—i-tnl;k—&-t + Lip,,_s.5_ (t) < M.
s (07 (0l + 150 5o O] s (Gm ©)

Moreover:

e The maps UN, D,UN, D2 UN are globally Lipschitz continuous in (t, z,m), uniformly with respect
to N.

e The maps DU, D,y DUV, DmeUN are Holder continuous in (t,z,m,y), uniformly with respect
to N, in any set of the form

{(t,z,m,y) € [0,T] x R x P, x RY, Ma(m) < R, |y| < R}, (22)

(where Ma(m) = ([ga [y*m(dy))*?).

e The map D2, UN is Holder continuous in (t,z,m,y,y'), uniformly with respect to N, in any set of
the form

{(t,z,m,y,y") € [0,T] x R x Py x R x RY, My(m) < R, |y|, || < R}. (23)

Proof. In order to prove the estimate, we use Proposition as well as Propositions (in
Section |§| below). Let Ths be the smallest positive constant associated with these Propositions. Let also

Cw be the largest constant in Propositions [3-3] [6.1] [6.6] and [6.8] We assume without loss of generality
that Thy < 1/(2C)) and we fix T € (0, Thy].
We define the sequence (0x)r=o,... 2n by

T
GQjZM—l‘FCMN(N_j)a j:O,...,N.

As Ty <1/(2C), we have 055 < M for any T € (0,Th] and N > 1.
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Now, using Propositions [6.1] [6.6} [6-8 and [3-3] one checks by backward induction that

§2UN

sUN
5z (@)

sup {|UN<t>n 15— @l +

te[ta; b 42]

n—2k—1,k—1 (24)
. 5*UN .
+L1pn_3;k_27k_2 <W(t)>} < 92]‘ <M V] = 0, ‘e .,N — 1.

Indeed, assume that this is true for j + 1; Proposition [3.3] (see also Remark [3.4)), applied in the interval
[t2;+1,t2j+2] and with the terminal condition UnN (t2j4+2,-,-) which satisfies (24) by assumption, implies

that
sUN s2UN
swp YOl + 15O+ | 50
teltzj1,t2j+42] m m n—2ik—1,k—1
: §2UN CuT
+Lip,,_3.5—2 k—2 (52(75))} Ogj40 + —— SN

Then usmg Proposmons E . . for the interval [ta;, t2]+1] and the terminal condition U™ (t2j41575°)
for which ( now holds, one gets:

SUN 52UN
sip IO+ 12 )i + | 2 0)
teltag,ta;+1] { " om " om? n—2:k—1,k—1
. 52UN CuT
+Lip,_g.5—2 k—2 <5mg(t)>} O2j40 + ——— i = 0qj,

S0 holds for j. Since the first step (j = N — 1) can be proved similarly using the very definition of
M in , we can conclude that holds for every j =0,...,N — 1.

We now prove the second part of the Lemma. As UV solves on the time intervals (t2j41,t254+2)
and on time intervals (fa;,%2;+1), we obtain directly, by the space estimates proved above:

sup [0 (¢, )],y < Civ. (25)
,m

where C; does not depend on N.

Let now | € N¢ with |I| < 2. By and the fact that |U%|,, is bounded for n > |I|, D'UY is
uniformly Lipschitz continuous in ¢ and x. Moreover, since |§UY /dm|,—1.% is bounded (for k > 1),
D!UY is uniformly Lipschitz continuous in m as well by Remark since |I| <n —1.

Next we prove the uniform continuity of D% Dy D, U™ for |I],|r| < 1. First we recall that [6UN /6m,—1
is bounded, so that | Dy, UN | ,—1,5-1 is bounded withn—1> 2 and k—1 > 2. Therefore D! D; D,,,U" is
uniformly Lipschitz contmuous in (z,y) (for y, thisis Remark. Second, recall that |52 UN/5m2Hn 2k—1,k—1
is bounded, so that H 5= D UN|lp—2.k—2k—1 is bounded as well, with n > 3 and k > 3: therefore
D!, Dy D, U N is uniformly Lipschitz continuous in m. As we have already proved that U N is uniformly
Llpschltz continuous in ¢, we can deduce from Lemmambelow applied to UV that D,,U" is also Holder
continuous in time in any set of the form (22)).

Finally we consider D2, UN = D2 U (t,z,m,y,y’). Since |§2UY /6m|,—2.k-1,—1 and
Lip,,_3.k—2 k-2 (%) are bounded, with n > 4 and k > 3, D2,,,U" is uniformly Lipschitz continuous in

(z,m,y,y’). Applying Lemma to the map D,,U", which is Holder continuous in time in sets of the
form (as we have seen above) and such that D2 U is uniformly Lipschitz in (m,y,y’), we deduce
that D2, U" is also Holder continuous in time, uniformly in NV, in sets of the form (23). So we conclude
that D2, UM is uniformly Holder continuous in all variables. O

3.2.3 Proof of Theorem [3.2]

Proof of Theorem[3.3 Inview ofLemma. 3.7} the maps UN, D, UN, D2 UV, D,,UN, D,,D,U"~, D,D,,UN
and D2 UY are locally Holder continuous in all variables, unlformly w1th respect to N. So, by a version
of Arzela Ascoli Theorem (see Lemma [B.5| below), there is a subsequence denoted in the same way such
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that UV, D, UN, D2, UN, D,,UN, D,,D,UN, D,D,,UN and D2 U converge pointwisely in m and
locally unlforrnly in tlme space to some maps U D U, D2,U,V, D V, D,V and W. Moreover, using
the integral formula , is easy to check that V = D, U and W = D,%LU.

By the equation satisfied by U, we have, for any 0 < s <t < T,

UN(t,z,m) —UN(s,z,m)
N—-1 (topqo
=— Z / 2{Tr [a°D2,UN] +/ Tr [aODimUN] m(dy)
k=0 Yt2k+1 R4
+ 2/ Tr [ ODimUN] m(dy) + / Tr [aOD%mUN] m(dy)m(dy’)}l[syt] (T)dr
R2d

t2k+1
_ Z / Tr (aD2,UN) — H(z, D,UN ,m)
k=0

+/ Tr(aDimUN) m(dy) —
R4 '

Since, as N tends to infinity, the maps

[ DU Hy(y, DU, m) mdy) 1100 (7).

N-1
t— 2 1[t2k+lat2k+2](t) and

tzk,t2k+1

HMZ

weakly converge to the constant 1/2 and since the space integrals in the above equation converge point-
wisely to the corresponding quantities for the limit U, we obtain by the dominated convergence Theorem:

U(t,x,m) - U(vaam)
t
__ / (Tr[e* D207 + / Tr [a® D2, U] dm
s R4

+ 2/ Tr [a°D2,,U] dm +/ Tr[a°D2,,, U] dm ® dm
Rd R2d
+ Tr(aD2,U) — H(z, D,U,m)

+ / Te(aD2,U) dm— | DU - Hy(y, D,U,m) dm)dT,
R4

Rd

so that U is a classical solution to . O

3.3 Existence of the solution to the stochastic MFG system

An easy consequence of the existence of a solution to the master equation is the well-posedness of the
stochastic MFG system:

du(t,z) = [-Tr((a + a®)(t, 2) D?u(t, x)) + H(z, Du(t, ), m(t))

—ﬁTr(JODU(t,x))]dt +o(t,z) - dWy in (0,7) x R,
dm(t,z) = [Z D;;(((aij) + a?j)(tx)m(t,w)) + div(m(, z)Hp(x, Du(t, ), m(t)))]dt (26)
v —div(m(t, x)\/ﬁaoth), in (0,7) x R,

w(T,z) = G(x,m(T)), m(0) = my, in R?

We say that (u, m,v) is a classical solution to if u, m and v are random with values in C°([0, T, C3),
Co([0,T],P2) and C°([0,T], CL(R%,RY)) respectively and adapted to the filtration generated by W and
if the backward HJ equation is satisfied in a classical sense:

u(t,z) = G(x,m(T)) — /t (—=Tr((a + a®)(s,z)D*u(s,z)) + H(z, Du(s,z),m(s))

T
- \/iTr(UODv(s,x)))ds — / v(s,x) - dWs
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while the Fokker-Planck equation is satisfied in the sense of distributions: for any ¢ € C*([0,T) x R?),
0= / (0, 2)mp(dx)
/ /Rd Tr ((a +a®)(s,z)D*¢(s,z) — Do(s,z) - Hy(z, Du(s,z), m(s)))m(s,dz)ds
+ \f/ /Rd NT D¢ (s, x)m(s,dx) - dWs.

Theorem 3.8. Under the assumptions of Theorem[3.3, there exists a time T > 0 for which the stochastic
MFG system has a classical solution (u, m,v) in [0,T]. Moreover,

v(t, ) =2 Rd(ao)TDmU(t,ac,m(t),y)m(t,dy), (27)

where U is the solution to the second order master equation .

Proof. Let m be the solution to the stochastic McKean-Vlasov equation:

dm(t, ) ZDU a;j + a3 ;) (t, x)m(t,z)) + div(m(t, 2)Hy(x, DU (t, z, m(t)), m(t))) ] dt
v —div(m(t, z)vV20°dW;), in (0,T) x RY, (28)
m(0,dx) = my, in R?

Existence of a solution for this system can be obtained, for instance, as the mean field limit of the SDE
dxNi = —Hp(ng’i,DxU(t,Xév’i,m%,\,),m%\,)ds + 20 (s, XN dB! + 1/20% (s, XN dW,
X = X o

N
where X ' is a family of i.i.d. r.v. of law mo and where mg YN Z dxn.i. Indeed, one can show that

the famﬂy of laws of (mXN) is tight in C°([0,7],P2) and that its hmlt is a solution to . Uniqueness

for comes from the regularity of U and Gronwall’s Lemma.
Then one can use the Itd’s formula in [9, Theorem A.1] (see also [I1, Theorem 11.13]) to derive that
u(t,z) := U(t,x,m(t)) solves the backward stochastic HJ equation

du(t,z) = [-Tr((a + a°)(t, z) D*u(t, z)) + H(z, Du(t,z), m(t))
—\/iTI‘(O'OD'U(t,{E))]dt +o(t, z) - dW in (0,7) x R,
u(T,z) = G(x,m(T)) in RY

where v is given by . Note that, by the regularity of U, u and v have the required regularity. O
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4 The master equation for MFGs with a major player

In this section we investigate the well-posedness of the master equation associated with the MFG problem
with a major player. The unknown (U, U) solves the system of master equations:

(1) —(9tU0(t,x0,m) — AzOUO(tmo,m) + Ho(x(),DIOUO(twO,m),m)
- / divy Dy UV (t, 0, m, y)dm(y)
d

+‘f DmUO(ty l‘o,m,y) : Hp<x0ay7 Da:U(taan y7m)7m)dm(y> =0
Rd

in (0,7) x R% x Py,
(i11) —0:U(t, w0, 2,m) — ALU(t, o, 2, m) — Ay  U(t, 20, z,m)
] +H(x0,x,D$U(t,xo,x,m),m) (29)

—/ divy D, U(t, o, x, m,y)dm(y) + D, U - Hg(fb(], D, U°(t,z9,m), m)
d

+ DmU(t,xo,z,m,y) : HP(IanaDIU(tax()vyam)’m)dm(y) =0
Rd
in (0,7) x R x R? x P,
(iii) U(T,z0,m) = G°(xg,m), in R% x Py,
[ () U(T,z9,x,m) = G(xg,z,m) in R% x R? x Py.

Definition 4.1. Let U : [0,T] x R% x Py — R and U : [0, T] x R% x R? x Py — R. We say that (U°,U)
s a classical solution of if UY and U and their derivatives involved in ezist, are continuous in
all variables and are bounded, and if holds.

Throughout this part, assumptions in Subsection [2.3] are in force. Our main result is the following:

Theorem 4.2. Under the assumptions of Subsection [2.3, there exists a time T > 0 and a classical
solution (U°,U) to on the time interval [0,T], which is, in addition, such that Dy, U" and D, .U
are uniformly Lipschitz continuous in the space and measure variables.

The result can be easily extended to non constant diffusions. We work here with a constant diffusion
to simplify the notation.

The idea of the proof follows a similar splitting method as we did in Section [3} by dividing the
time interval [0, 7] into [tak, tak+1) and [tor11,tok+2), where t, = kKT/(2N), k € {0,2N}. This time we
alternate the two following problems: in [tax41, tog+2) we solve, for a fixed g € R% the first order system
of master equations in R% x Ps:

-

(i) —o,U° —2 / , div, D, U°(t, z, m, y)dm(y)
R

+2/ DmUO(taanmvy) : Hp($07y7DIU(t7xO7y7m)7m)dm(y) = 07

R (30)
(i) —0U —2A,U + 2H (xg, 2, D, U,m) — 2 /d divy D, U(t, o, x, m, y)dm(y)
R
+2 DmU(tv Zo,T,Mm, y) : H;D(x(h Y, DxU(ta xo,Y, m)a m)dm(y) =0 3
Rd

while on [ta, tog+1) we solve for a fixed (z,m) € R? x Py the system of HJ equations in R%:

(1) —oU% —2A,,U° + 2H (g, D,,,U%,m) =0, (31)

(i1) —0U = 204,U + 2Dy, U - H) (20, D2, U°(t, 39, m), m) = 0.

The (technical) analysis of System is postponed to Section @ We now concentrate on System
. In order to write the estimate, we need to treat the pair of maps (U°,U) simultaneously: this
requires specific notation that we discuss first.
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4.1 Analysis of the simple system of HJ equations

In this section we consider the system

(i) =0, U°(t, xo;m) — A, U(t, xo;m) + H (0, Dy U (t, z0;m), m) = 0 in (0,T) x R%
(1)  —0U(t, xo;2,m) — Ay U(t, x0; 2, m)

+D;, U(t,xo0;2,m) - Hg(xo,DIOUO(t,xo,m),m) =0 in (0,T) x R%
(i3i) U°(T,xz0;m) = G°(x9,m) in R® U(T,x0;x,m) = G(x0,2,m) in R%,

(32)

where (z,m) € R? x P, are fixed. The main part of this subsection consists in proving estimates on the
solution (U%,U) to (32).

4.1.1 Notation for the norms

In this section, we are dealing with pairs of maps (V°, V) = (V°(zg,m), V (20, z,m)) which might also
depend on time ¢, not indicated here. The way we compute the norms is crucial in order to match all the
estimates. We use the following norms:

|V, V)|, == sup Z sup  (|[VO(mo,m)|” + |D;V(x0,x,m)|2)1/2,
meP2 ;. —y woeR%0,zeR?
5(VO, V) $ NE ? sV 2
B = su su —(z9,m + | DL — (w0, T, m ,
’ om n;k 7"6782 7;) wOERdO}ZERda ( om ( ’ )(p) ‘ om ( ’ )(p) >

PECY, ol —k=1

1/2

V0, V) 2 VO Ni ‘ 4 N&
— = sup sup zo,m)(p, p')| + |Dhv—5 (0, z,m)(p, p

‘ om? nikk  mEP2 Z;) 20€R% zeR?, 5m2( o m)e ) 5m2( ’ N0.p)

P €CL o=l -k =1
and
, F2(VO, V) L 8
Llpn;k’k(w) = m?i%Q dy(my, me)™t W(Vo(mz) —VO%my),V(my) — V(m1)) .
= sup da(my,mg)t Z sup
mi#Fms r=0 z0 € R0,z e RY,
0.0 € CO ol = I/l x = 1
52170 52170 2 2 52

< y

0%V \%4
W(ﬂﬁo,mﬂ(%ﬂ) - W(Jfo,mﬁ(f% ﬂ/) +’ T Sm 2(330793 ma)(p, P/) z(; 2(1‘0’1’ ml)(ﬂ,ﬂl)

svY
We define in a similar way the quantities Llpxo (D2, V°, D2 V)U7 Lip,,.;. (522, 6;20 ) and Lip,, (D2 V°,D2 U).
Note that arguing as in Remark a control on w yields a control on H%L and
n;k n,k—1

l

.. 62 VO,V . 62 VO,V
H(; k1 and similarly for ([st ) o Llpn;k,k( (6m2 ))7
n

4.1.2 Basic regularity of (U°,U)
We recall that H? satisfies the assumptions of Section in particular condition is in force.

Proposition 4.3. Fiz M > 0 and n = 3. There are constants Ky;,Tay > 0, depending on M, Cy and
v, and a constant Cpy > 0 depending on

sup sup Z ”D(wo,p HO 3p7 ”OO + Z ”D(zo p) 7m)H007
|p|<SKn mEP2 [,
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such that, if ¥r_, (ID*G°|o + | D}, G
we have

sup(|(we.U + (Lipj2 5 (D2, (U, U) (1))

< ‘(GO, q) Hn +|Dan(@.0)| D2 (EG)|  + Lipey (D2, (G, G))) + CuT.

n—2

k) + (Llpn 3(D§0G0,D30G)> < M, then, for any T € (0,Th),

+ HDM vy

02,0, U)()

n—2

Proof. To estimate ||(U°, U)|,, it suffices to apply successively Proposition with r = 0 and [ < n, and
to sum over [. The argument to estimate first and higher order derivatives with respect to zq is identical:
apply successively Proposition with 7 =1 and | < n — 1 (for [(Dy,U° DyyU)|ln—1), with 7 = 2 and
I <n—2 (for (D2 U° D2 U)|n—2) and finally with 7 = 3 and [ <n — 3 (for the Lipschitz bound in xg
of D2 (U°,U)). O

4.1.3 First order differentiability in m

Proposition 4.4. Under the assumptions of P'roposz'tion the pair (U°,U) is of class C* with respect to
m, as well as its derivatives with respect to x appearing below, and, for any fized (x,m, p) € R x Py x C~F

the derivative - 5T
0 _ (oY . oY .
(",0) = (S (taoim)(p), 5—(t.z0i,m)(p))

r 0

. OH
(i) —00° — Agov® + %(xO,DxOUO m)(p)
+H (xO,DmOU m) Dy’ =0 in (0,T) x R%,
< (i1) —0w — Ay, v + Dyyv - H (z0, Dy U°, m) (33)
SH?
+Dy, U - (Mf(a:o,D%UO,m)(p) + ng(xo,DonO,m)Dwov()) =01n (0,7) x R%,

e 4G )
(iii) V(T xo;m) = %(xo,m)(p)7 v(T, xg, z;m) = %(xo,x,m)(p) in R%.

Suppose in addition that, for k = 2

5G° 5G 6020 3G - 0G3, G,
D (|5l 4 5 ik 1752 e + |75 i+ (LiDE g o522, 520)) ) < M.
Zog,m
Then there exists Thr, Cpy > 0 such that, for any T € (0,Tyr), we have
6(U07 U) 6(Ua:07 U ) . To 6Ua(c)o (;Uzo
sgp(” om *) n—1;k H om (t)anZkfl + (Llp”_3;k_2( dm = dm )(t)))
6(GOaG) 6(G:co7G ) s Lo 6Ggo 6G$0
< (H Hn 1Lik + H om n—2:k—1 + LD g o Sm ’ dm )> + CuT,

where Cyy depends on M, r, n, k and on the reqularity of H°.
Proof. In order to show that U? is C! with respect to m, let us define
Uo(ta To; S, M, y) = Uo(ta Zo, (1 - S)m + 861/)

Then, as HO := HO(z, p, (1 — s)ym + sd,) and §° := G°(z, (1 — s)m + sd,) are of class C! with respect to
the parameter s € [0, 1], the map U is C! in s and its derivative 9°(¢, xo; m, y) := (dU/ds)(t, 2¢;0,m, y)
solves the linearized equation

SHO
—0p0° — Ay 00 + m(xo,onUO,m,y) + H) (20, DayU°,m) - Dyy®® = 0in (0,T) x R%,
GO
0T, z0) = %(Jco,m,y) in R%,
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By uniqueness and parabolic regularity, the solution to this equation depends continuously of the param-
eters (m,y). Hence Lemmastates that U% is C1 in m with 6U°/om(t, xg, m,y) = 9°(t, wo;m, y).
Next we consider the linear equation satisfied by U. By our previous discussion on U, the vector
field
(t,x09) — HS(xO,DZOUO(t,wO,m),m)

is ! with respect to m. For (s,m,y) € [0,1] x Py x R%_ the map U(t,mo;s,x,m,y) = U(t,xo,z, (1 —
s)m + sd,) solves a linear equation in which the vector field

V(t, o35, m,y) = Hg(xo, Dy, U (t,20; (1 — s)m + 58,), (1 — s)m + s6,)

and the terminal condition Q(mo;x s,m,y) 1= G(zo,x, (1 — s)m + sd,) are C'in s. Then U is C' in s
and its derivative d(t, 2o; @, m,y) := (d/ds)U(t, zo;0, 2, m,y) solves the linear equation

—04d — Ngy® + Doy 0 - H) (w0, Dy U°,m)

oH
+D,,U - <5p(:1co,Dw0U07m7y) + pr(mo,DonO,m)Dwoﬁ()) =0 in(0,7) x R%,
m
)
O(T, oy, m,y) = %(xo,x,m,y) in R%.

As the solution to this equation depends continuously of the parameters (m,y), Lemma states that
U is C' in m with 6U/ém(t,z9,x,m,y) = 9(t,x0;2z,m,y). This proves that the derivative (¢°,9) =
(8U°/6m, 6U /dm)(t, xg, x,m, y) solves with p = §,.

Hence, for any p € C?, the pair (v%,v) = (%(t,xo;m)(p), S (t,xo;2,m)(p)) solves a linear system
of the form in which the drifts

VOt 2% m) := Hg(ajo, D, U(t, z9,m), m)

and
V(t, 2% z,m) = ng(xo, D, U°(t, 29, m), m) D, U(t, xo; x)

are bounded in class C’l} and C’Z? el C’; m—2 respectively, while the source terms

5 0
£0(t,2%m) 1= (20, D, U, m) )

and

6H§ 0
f(t,zo; 2, m) := Dy U(t, xo; x) - %(xo,Don ,m)(p)

are in C} and C’l?’"_l I8 C’;’n_Q respectively, thanks to Proposition We then use Proposition
successively to obtain the estimates: first with r = 0 and | < n — 1, we get

0
(2% (1o m) o)+ DL 2 gz m) (o)) <

5G° 9 2\ /2

(1 + Ty sup (155 osm) ()2 + 10 9% (s e m) o))+ CT.
Zo,T

Then by taking the supremum over ||p|_; = 1,20,z and summing over | < n — 1 we find the estimate

for H U U) Hn 1.k~ An analogous application of Proposition u with » = 1 and | < n — 2 provides the

(Uzy:Uzp) U3, g . o
bound for ”107“" 2;k—1, while the Lipschitz estimate in xq for (=2, 6gm°) is obtained similarly

with r =2, and [ <n — 3. O
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4.1.4 Second order differentiability with respect to m

Proposition 4.5. Under the assumptions of Proposition k =3, the pair (U°,U) (and its derivatives
with respect to x) is of class C? with respect to m and, for any fized (x,m,p,p') € RY x Py x C~ k=1 x
C=*=1 the derivative (w®,w) = (82U°/6m>(t, xo;m)(p, p'), 82U /dm2(t, xo; 2, m)(p, p') ) solves

. 02HO
(i) —ow® — Ay w® + HS(xO,DwOUO,m) - Dyow® + W(xo,DIOUO,m)(p7 o)
SH?
+H) (20, Dy U, m) Dy 0 - Dy (v')° + —2 (0, Dy U, m)(p) - Dy (v')°

om
0Hp 0 / 0 d
+T’l’:(x07DmoU vm)(p)'DmoU =0 in (OaT) x R%
(i1) —0pw — Aggw + Hy (0, DgyU®, m) - Dyyw

OHy 0 / 0 0 NG
+Dg,0 - %(mefﬂoU ,m)(p) + pr(xO’DIoU 7m)DIo(v )

IHy 0 0 0 0 (34)
+Dy v - Tnf(xo’Don ;m)(p) + Hpy,(z0, Dy U”,m) Dyyv

SHO 2 770
D3, U - (=22 @0, DU ) () Day (v))° + gt (70 Do U )0, )

6H
+HI(J)PP (!Eo, D«TO U07 m)‘DIovoDlo (,U/)O + 6771*:1) (.%‘07 DQJO U07 m) (p/)Dasovo

+H2p(wo,Don0,m)Dzow0) —0in (0,T) x R%

(4ii)  w(T, xo;m) = @(x m)(p,p"), w(T,zo;2,m) = 52—0(1‘ x,m)(p, p') in R%

5 L0y = Sm2 0 PP )s 5 L0y L,y = Sm2 (PE) PP )
where (v°,v), ((v")°,v") are the solutions to associated with p and p’ respectively. Moreover, if
(G G §2G0 §°G
‘ (72) + LipyY g p—o(5—5 5—5) < M,

om n—2;k—1,k—1 T om? " om

then there exists Ty, Cpr > 0 such that, for any T € (0,Thr),

§*(U°,U) - §2U° 82U
sgp(‘ sz n—2ik—1,k—1 R W)(t)))
0%(G, G) 2G° G
< |(|——— Lip®® .. —_— T.
(' om? n—2:k—1,k—1 " lpn_3’k_2’k_2( om?2 5m2)) +Cu

Proof. The differentiability of 6U°/dm and of 6U/dm and the representation formula ([34) can be estab-
lished as for UY and U in Proposition To prove the estimate, we use Proposition with

VO(t,2%m) := HS(CE(], D, U°(t,z9,m), m)

and
V(t,2%x;m) = ng(:co, D, U°(t, z9,m), m) Dy, U(t, o, x),

which are bounded in class C,} and Cg n=l C’; m—2 respectively, while the source terms

62H0

O, 2% m) = (o, D, U, m)(p, p') + Hp, (20, Doy U, m) Dy v° - Dy, (v/)°
H? SH?
+ 2 (w0, Doy U m)(0) - Dy ()" + 2 (@0, Dy U m) () - Dy
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and

SHY
f(t,xo,x5m) := Dy, v - ((5775 (20, Dy U, m) (p) —|—ng(xo,DIOUo,m)Dmo(v’)())
/ 6HZ(7) 0 0 0 0
+ Dy’ - %(xO,DIOU ;m)(p) + Hp,(x0, Dy U, m) Dyyv
SHO 52HO
+Dﬂﬂolj'( &Zp(xo,DmoUO,m)(p)on(v’)o+ 5m2p (anDmoanm)(pap/)
HO D UO D OD /N0 5ng D UO /D 0
+ ppp(x()v Zo am) zo U Io(v) + Sm (mOa Zo ,m)(p) zoV

are in Cg and Cl? =2 respectively, thanks to Propositions and By Proposition with r =0
3°U° U
m?2 6m2)

2 0
and n — 2 we obtain the estimates for H%;;U)Hn_g;k_l,k_l. The Lipschitz bound in zq of (
follows analogously.

4.1.5 Lipschitz regularity of the second order derivatives

We finally address the Lipschitz regularity of second order derivatives of UY and U with respect to m
and xg.

Proposition 4.6. Under the assumptions of Proposition[{.5 and if, in addition,
. 2 ~0 2
Llpn—g;k—z,k—z(%, %) < M, then we have,

. 52U°% §2U . 52G0 §2@G
Slip(Llpn—?);k—Q,k—Q(W’ W)(t)) < Llpn—3;k—2,k_2(W7 W) + CuT,

where the constant C; depend on the regularity of H and H° and on M.

Proof. Let (z,p, p') € R4 x O~ =2) 5 C=(=2) 'l m?2 e Py, (U, U') be the solution to associated
with (z,m!) and (U2, U?) be the solution associated with (x, m?). We denote by (v%*,v1), ((v/)%1, (v/)1)
(resp. (v%2,92), ((v")%2,(v")?)) the corresponding solutions to the first order linearized system
associated with p and p/, and by (w®!,w!) (resp. (w®?,w?)) the corresponding solution of the second
order linearized system (34). We want to estimate the difference (20, 2) := (w®? — w® w? — w'). We
have

—0:2° — Ay 2+ HI?(:EO,DwOUO’l(t,xmml),ml) D2 + 0 =0,

—0¢z — Ngyz + Doz H)) (w0, Doy U ,m") — HY (20, Doy U, m) Dy U - Dy 2% + f =0
52Go 52GY

ZO(T) = W(mOamQ)(pa pl> - (5’57,2 (JU(),ml)(p, pl)a

0“G

2 1

2(T) = Sm2 (z0, 2, m*)(p, p/) - W(xo,m,m )(p, p/)7
where

fO=(H)(x0, DgyU"?,m?) — H) (0, Dz, U™ ,m")) - Dyyw®?

6> H° 02 2 , 0°HY 01 .1 ,

+ 53 (@0, Day U, m)(p, ') = (w0, D U™, m07) (p, ')

+ ng(sco, D, U%2 m?) Dy, v"2 - Dy, (v)%? — ng(xo, D, U m") Dy vt - D, (v))01
SH? SH?

200 (0, Dy U2, m2) () - Dy (1) — "2 (a0, Dy U™ ) ) - Dy ()
SH? SH?

+ Tﬂf(xo, D, U%2. m?)(p) - Dyyv®? — Tﬂf(xo,DonO’la m")(p') - Dgov™?

23



and
f=Dyyw* - (H) (20, Dy, U, m?) — H) (20, Dy, U"", m"))

HO
+ Dy - <6nf($o, Dy U2, m?)(p) + HY, (w0, Dy U™

1 6H0 / 0 0,1
_ DCEOU . 7 ((E(],DIOU )([) ) + pr(ﬁfo,DxOU ,m
N2 5H0 0 0 2
+ Dy (v)? - | 52 (@0, Dy U2, m2)(p) + HY (w0, Dy U2, m?) D02
1 5H0 0, 1 1 0 0 1
- Dwo(v ) 5m (IOv TUU )(P) + pr(x()vaoU ’ Dﬂﬁov
dH? §2HO
+ DonQ ’ (TT:LZ)(%()vDIoUO’QamQ)(p)Dwo (U/)O,Q + 5m2p (.1‘0, a:oUO 2 p,p)
H D UO’Q 2 D O,2D /10,2 5ng D UO,Q 2 / D 0,2
+ ppp(l‘o, o 7m> zoV wo(v) + Sm (1‘0, o , TN )(p) zoV

n (ng(xo,onUO’Q,m)onUQ — HC (20, Dyy U, m)onUl) - Dy
5HO 62 0
- Donl ’ ( 5721) (1‘07 D, U0717 ml)(p)Dmo (U/)OJ + 5m2p (.7(,'07 D10U0717 ml)(pv p/)

SHY
+ l“[]f))pp(avo,DIOUO’I,ml)DgCOvo’le0 ()0 + Tnzp (xo,DmOUO’l,ml)(p’)onvo’1> )

Proposition [4.4] (for the representation of the (v, v*)) and Proposition [4.5| (for their Lipschitz regularity
in m and in x() imply in particular that

_ ) < Odg(ml,mz)

sup (1D (v*2 = 0" oo + [ Dag (v* — 0%)
and hence we have, using also Proposition |4.5]

Sl;p(l\foHoo _3) < Cda(m*,m?).

Using Proposition (with r = 0), we obtain, for any | < n — 3,

sup (12°(t,20)|? + [ D4 2(t wo, ) )2
52G0 ) 52GO NN
< (1+ CT)sup(| 55 (w0, m?) (p. ') = 5 (w0, m") (o, )

Zo,T

‘DldG 2

0 1/2
LG ) o) = DL (Yo )] ) 4 CT st ),

which gives the claim. O

We complete this section by stating similar estimates on the Lipschitz regularity of the other second
order derivatives:

el
Proposition 4.7. Under the assumptions of Proposition and if, in addition, Lip,, 3.5 _o (52, 5?;0 )+

Lipn—g(choGO,DﬁUG) < M, then we have,

SUD, Uy, . 6GY, 4Gy,
o )(t) < Llpnfg;kﬁ(TmO» 5 )+ CuT

Sltlp(Lipnf?);ka(

)

om ~ om
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and

sup(Lip,,_s(D2 U, D2 U)(t)) < Lip,_3(D2 G°, D2 G) + CuT,
t

where the constant C; depend on the regularity of H and H° and on M.

As the proof is completely similar to the proof of Proposition [f.6] we omit it.

4.2 Existence of a solution
4.2.1 Definition of the semi-discrete scheme

Let us fix some horizon T > 0 (small) and a step-size 7 := T/(2N) (where N € N, N > 1). We set
t, = kT/(2N), k € {0,2N}. We define by backward induction the continuous maps U%N = U%N (¢, 24, m)
and UN = UV (t, 29,7, m) as follows: we require that

(i) (U%N,UN) satisfies the terminal condition:

U07N(T, Zo, M) = Go(xo,m), UN(T, xg,x,m) = G(xg, z,m) V(zo,z,m) € RY x R% x P,

(ii) for zg € R% fixed, (U%N,UN) solves the backward system of first order master equations:

(i) —oU°—2 [ divyD,U(t,z0,m,y)dm(y)
Rd
+2/ DmUO(t7$07m7y) . Hp(x07yaDzU(tvaayvm)7m)dm(y) =0
9 R (35)
(i) —oU —2A,U + 2H (xg,z, D, U,m) — 2/ divy D, U(t, 2o, z, m, y)dm(y)
Rd
+2 DmU(t7 Zo, T, Mm, y) ! HP(mOa Y, DJtU(ta Zo,Y, m)a m)dm(y) =0
\ R4
on time intervals of the form (t9;11,%2;42), for j =0,...,N —1,

(iii) for (z,m) e R x Py fixed, (U%Y, UN) solves the backward system of HJ equations:

(i) —o0,U° —2A,,U° +2H (29, D, U%, m) = 0
(i1) —0;U —20,,U + 2D, U - HY (0, D, U°(t =0 (36)
t o o P 07 o 7x07m)7m)

on time intervals of the form (tg;,¢9,11), for 5 =0,...,N — 1.

Our aim is to show that, if the time horizon is short enough, (UO’N, UN) converges to a solution of
the master equation for MFGs with a major player as N — +c0.

4.2.2 Proof of the existence of a solution

Forn>4and ke {3,...,n— 1}, let

+ (Lipy 5(D;,G, D3, G))

M:=1+ H(GO,G)‘” + HDIO(GO,G)‘W1 + HD%O(GO,G)‘

n—2

5(G0 G) (5(G0 ,Gay) e dG°  8G,

? Zo 0 L o Zo 0

+ H om Hn—l;k + H om ‘n72;k71 + lp”_?"k_Q( sm = dm )
52(GO Q) 52°G0 §2@G
ZAT M Lip®° el
om? |, o1 ko1 L gz om?’ 5m2)
§2G0 8@ 6GY, 6G.,

)

+ (Lipn—S;k—Q,k—Q(Wa W)) + (Lip,, 3, )) + (Lip,,_3(D3,G°, D3 G)).

om ~ om
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Lemma 4.8. There exists Tyy > 0, depending on the reqularity of H°, H and on M, such that, for any
T e (0,Ty] and N = 1, we have, for any t € [0,T],

(@) + [P )

R N CAIG]

+ (Lipy? (D3, U, D3, U)(1)

n—2
5(U°, ) 6(U2, Usy) - sU2, 68U,
* H om (t)Hn—l;k * H om ®) n—2;k—1 * (Llp"_S;k_Q(W’ om )®) (37)
6*(U°,U) §2U° U
N -/ Lip%o°
+ om?2 (t) 2k 1 k-1 + ( lpn73;k72,k72( Sm?2 75m2)( ))

, §2U° §2U . oUR, U,
+ (Llpn—3;k—2,k—2(mv W)(t)) + (Lip,,—3.5—a(

)(t)) + (Lip,,_3(D2,U°, D2 U)(t)) < M.

)

om ~ om

Moreover:

o The maps U%N and UN are globally Lipschitz continuous in all variables and their first and second
space derivatives are globally Holder continuous in all variables, uniformly with respect to N.

e The maps D,,U*YN and D,,UN are Holder continuous in (t,ro,m,y) and (t,xo,z,m,y) respectively,
uniformly with respect to N, in any set of the form

{(t7x07may) € [OvT] x R% x Pa x Rd? MQ(m) <R, ‘y| < R}
and {(t, g, z,m,y) € [0,T] x R% x R? x Py x RY, My(m) < R, |y| < R} (38)

respectively (where Ma(m) = ([pa [y>m(dy))¥/?).

Proof. We only sketch the proof, since it is exactly the same as for the second order master equation (see
Lemma [3.7). The proof of can be established by collecting the estimates in Propositions
and in Section |§| below, which provide the bounds on intervals of the form (¢9;41,t2;+2), and, for the

intervals of the form (tg;,t2;11), by Proposition and

The Lipschitz regularity in space of U%" and U" and of their first and second order space derivatives
follows immediately from . As D, U%N and D,, UV are bounded according to , U%N and UV
and their first and second order space derivatives are also Lipschitz continuous in m. Finally, since U%Y
and UV satisfy the equations and , the bounds in show that 0,U%" and 0,U" are bounded
and therefore that U%" and U” are also Lipschitz continuous in time. The global Holder regularity of
the first and second space derivatives of U%" and U then follows by interpolation (Lemma .

The Lipschitz regularity in space and in measure of D,,U%" and D,,U" is a consequence of
while the Holder regularity in time in sets of the form comes from interpolation (Lemma . O

Proof of Theorem[].2 It relies exactly on the same argument as in the proof of Theorem and we omit
it. O

4.3 Uniqueness of the solution

We finally address the uniqueness of the solution of the master equation for MFGs with a major player:

Theorem 4.9. Let (UYL, UY) and (U%2,U?) be two classical solutions to defined on the time interval
[0,T] and such that D,,U%' and D, .U" are uniformly Lipschitz continuous in the space and measure
variables. Then (U%, UY) = (U%2,U?).

Proof. Let (to,Zo,mo) € [0,T) x R% x P, be an initial condition, Z be a random variable with law mg
and let (X7, m, X;) be the solution to

dX? = —HY(XP, Dy, U (t, XP,my), my)dt + v/2dWY in (0,T)

dmy = (Amt + div(thp(X?,x, D, U t, X2, x,mt),mt))) dt in (0,T) x R?
dXy = —H,(X?, Xy, DU (¢, X2, Xy, my)dt + /2dW; in (0,T)

XtOO = Zo, My, = Mo, Xto =7
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where (W) and (W,) are Brownian motions, (W), (W;) and Z being independent. As D,U%! and
D,U! are globally Lipschitz continuous, the above system has a unique solution. Note that m; is the
conditional law of X; given (W2),<;.

We compute the variation of U%! along (¢, X, m;):

av®t(t, X2, my) = (o, U + A, U — HO(X?, D, U my) - D, U1
t 0 D t 0 0

= [ DU H (X, DU 6 X0y e mimn(dy) + [ div, DU ()
R R

+ V2D, U - awy,

where, unless specified otherwise, U%! and its space derivatives are computed at (¢, X?, m;) while D,,,U%!
and its space derivatives are computed at (¢, X, m;,y). In view of the equation satisfied by U%!, we find

AU (¢, X0, my) :(HO(XS, D,y UY my) — HO(XP, D, U my) - DzOUm)dt
+ V2D, U - awy.
We proceed in the same way for U%2 and obtain, in view of the equation satisfied by U%2:
AU (t, X7, my) = (HO(XE, Dy U%%,my) — Hp (XY, Dy Ut my) - Dy U™

+ p DmUO’Q : (HP(X?? Y, D$U2(ta X)?v Y, mt)7 mt) - HP(XEa Y, DIUl(ta X?v Y, mt))7 mt)mt(dy))dt
R

+V2D, U2 awy,

where, unless specified otherwise, U%? and its space derivatives are computed at (¢, X7, m;) while D,,,U%?
and its space derivatives are computed at (¢, X?,m¢,y). Therefore

d U0,2 _ UO,l 2 _ 9 U0,2 _ UO,l HO XO,DI UO’2,mt _ HO XO,DI UO’l,mt
t 0 t 0
- HI?(Xg)?DQBUUO’l’ mt) ' (DQTUUO,Q - DafoUO’l)

+ DmUO72 : (Hp(Xz?v Y, DxUQ(t7 Xy?a Y, mt)a mt) - H;D(X197 Y, D;CUl(t7 Xtoa Y, mt)a mt))mt(dy))dt
Rd

+2(D,, U — D, U)2dt + 2v/2(U%2 — U (D, , U — D, , U*Y) - daWy.

Let us set UY" = U%(t, X0, my) (for i = 1,2). We integrate in time between s € [to,T] and T, take
expectation and use the fact that Ux' = U¥? = GO(X%, mr):

T
0=B[(U92 UL+ [ 2UP - UM (HOKD. D102 i) — HOXY. Dy U )

S

- HS(X?, DI0U071>mt) : (D10U072 - DIOUOJ)

+ DmUO72 : (Hp<X1?a Y, DIUQ(taX?7yamt)7mt) - Hp(XtO7y7D:L’U1(t7Xthyvmt)vmt))mt(dy)>dt
Rd

T
n 2/ 1D, U2 — D, U%2dt ]

Thanks to the regularity of the solutions, we have by Cauchy-Schwarz inequality and for any € > 0:
T
0ZE[(U92 U9 — [ (CUP? = UM + Dy (U0 - TP )P

S

T
+ e/ D (U2 = UMt X0, yomo) P (dy) ) dt + 2/ D,y (U2 = U dt |,
R4 s
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So, for € small enough, we obtain

T
0>E[(U92 — U9 = [ (CUUP? - UM e [ IDa(UP ~ U X2y ) Py ) e
s R4
T
+/ 1Dy (002 — U0 Pt |.
We argue in the same way for U} := U'(t, X, X;,m;) (i = 1,2) and find:
T
0 >E| (U2 - U} - / (CU? = UM 4 dDsy (U2 = U1 2
T
e [ DU = U Xy mn) Prnady) )t + [ 1Dsy (U7 = U 4 D,0% U at ]
R4 s
We add the last two inequalities to obtain:
T
0 SB[(U92 - U2+ U2 - UL - [ (CuU@!? - P2+ U7 - UL
4Dy (U U 426 [ |DL(UP = UN) (8 X0,y Py ) e (39)
Rd
T

+/ (1D (U2 = UON)2 4 Dy (U2 = U + D (U2 = UM)) it |.

Note that, as m; is the conditional law of X; given (W,S)ugt, we have
E[|D, (U2 = UY)(t, X7, Xoyme) | = E[B[[D.(U% = UM (0, X0, Xeomo)* | (W)t |

=E[ [ DU = U")(t X7y, me) i (dy)]
R

since X and X; are adapted to (W?),<;. Plugging this relation into we find therefore, for € > 0
small enough,

T
0>E[(U22 ~ UL 4+ (U2 - UNP - [ (CuU@P - Upt 4 WF - Ubas
T S
" (1/2)/ Dy (002~ UON)P 4Dy (U% — UM + Do~ UM dt |-
We conclude by Gronwall’s inequality that, for any ¢ € [tg, T,
IE[(UO’Q(t,Xf,mt) — Ut X0 my))? + (Ut X0, Xy my) — Ul(t,Xf,Xtmt))Z] = 0.
For t = tg, we have therefore U%2(tg, Zo, mo) = U%(to, Zo, mo) and

Ul(to,.i‘o,Z, mo) = Uz(to,i‘o,Z, mo) a.S.

If mo has a positive density, the fact that the law of Z is mg easily implies the equality of U' and U?
at any point (to, %o, r,mo) for z € R We conclude by density of such laws and by continuity of the
U’s. O

5 Estimates on the MFG system

We are now left to prove the estimates on the first order master equations considered in the two pre-
vious sections. As the solutions of these equations are built by a method of characteristics, where the
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characteristics are the solutions of the MFG system, we first need to discuss the well-posedness and the
regularity properties of this system:

(i) —owu(t,x) — Tr(a(t,2)D*u(t,x)) + H(zo,x, Du(t, ), m(t)) =0 in (to,T) x RY,
(i) oym(t,x) — ZDij(ai,j (t,x)m(t, z)) — div(m(t, ) Hp(xo, z, Du(t, ), m(t))) = 0
0.J (40)
in (to,T) x RY,
(i5i) m(tg) = mo, w(T,z) = G(zo,z,m(T)) in RY.
Here zp € R% is treated as a fixed parameter. We also present similar results for the corresponding
linearized systems. These estimates are motivated by the construction and the regularity of the first
order master equation in the next section.

Let us first explain the notion of solution to ([0). Fix (to,mo) € [0,T] x P> and z¢ € R%. We say
that (u,m) is a solution to if we CO([to, T], C}) satisfies

T
u(t,z) = G(xg,z,m(T)) + /t (Tr(a(s, x)D*u(s,z)) — H(zo,x, Du(s,x),m(s)))ds Vi € [to, T

and if m € C%([tg,T],P2) solves the Fokker-Planck equation in the sense of distributions: for any ¢ €
CZ([0,T) x RY),

0= . (0, x)mg(dx)

R
T
+ /0 /Rd (Tr(a(s,z)D*¢(s,x)) — Dé(s, x) - Hy(xo, z, Du(s, ), m(s)))m(s,dx)ds .

The assumptions on a, H and G given in Subsection [2.3| are in force throughout the section.

5.1 Well-posedness and regularity of the MFG system

We discuss here the well-posedness of the MFG system and provide several estimates. Let us start
with the Hamilton-Jacobi (HJ) equation (general estimates on this equation are given in the Appendix

Proposition 5.1. For any M > 0, there exist Tpy > 0, Ly > 0, depending on Cy and v given in
assumptions and (15)), such that, if Sup,, m |G (w0, -, m)|l1 < M, then, for any T € (0,Tr) and any
m e C°([0,T],Pa), the solution u to the HJ equation

{ —0pu(t,x) — Tr(a(t, z)D*u(t,z)) + H(xo,x, Du(t,z),m(t)) = 0 in (to,T) x R?

uw(T,x) = G(xo,z,m(T)) in R? (41)

satisfies
sup |ul; < sup |G(xo,-,m)|1 + LT .
te(to,T] To,m
Henceforth, we set Ky := sup,, ,, |G(zo,-,m)|1 + LaThs.
If, in addition, sup,, ,, |G (zo, ,m)|n < M, then there exists Cas > 0, depending on n, Co, v and

n
sup Ha(t)Hn + sup Z ”D?w,p)H(xoa'ap7 m)||007
te[0,Tr] |p|<Knp,z0eRI0,mePs
such that u satisfies, for any T € (0,Thr), 2o € R% and r < n,

sup  |Dru(t,z)| < sup |DLG(zg, 2z, m(T))| + CpT.
te[to,T],zeRY zeR4

Therefore, for any xq € R,

sup | u(t)|n < sup |G(zo,,m)|n + CuT. (42)
telto,T] m
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Proof. Use Propositions [A1] and [A26] O

Next we discuss the dependence of the solution u of with respect to (m(t))efs,,r) and zo € R
We stress that, hereafter, we currently use the preliminary gradient estimate supyep, 1,7 [u(t)[1 < K
which is obtained as a first step in Proposition In particular, the Hamiltonian H (zo,z,p, m) will be
systematically estimated for |p| < K.

Proposition 5.2. If the assumptions of Pmposition are satisfied so that holds true, then there
exists Thy > 0 such that, for T € (0,Tys) and any to € [0,T], for any m',m? € C°([0,T],Pz) and any
xh, 22 € R, if ul and u? are the corresponding solutions to the HJ equation , then we have, for
n=2,

sup [ul(t) — u?(t)|n_1 < O T( sup do(m!(t),m*(t)) + |xf — :5(2)|)
tE[to,T] tE[to,T]

+ 1+ CuD){[Lipg , 1 (G)]d2(m (T),m*(T)) + [Lipy2, (G)]|zg — 5|}

where Cpr depends on the same quantities as in Proposition as well as on Lip,,_; ,(H(xo,,-,m)),
LiperOfl,n(H(x()? *y am)) (fOT z e R and |p| < KM) and SUDgzq.m HG($07 7m)”n

1 _ 42 satisfies

{ —0w — Tr(a(t,x)D?v) + V(t,x) - Dv + f(t,x) =0
o(T,z) = Gz, z, m*(T)) — G(x3, 2, m*(T))

Proof. The map v :=u

1
where V(t,x) = / H,(z,2%,sDu'(t,2) + (1 — s)Du*(t,z), m*(t))ds and
0

f(t,x) == H(xg, @, Du' (t, ), m' (1)) — H(x§, @, Du' (t, ), m*(1)).
By Proposition (applied with £ =1 and n — 1), we have

sup [u' (t) = u*(t)|n—1 < (1 + CT)|G (g, -,m"(T) = G5, ,m*(T)) a1+ CT sup_|f(t)]n-1
te[0,T7] te[to,T]

< (1 + CT){[Lipg 5,1 (G)]da(m! (T),m*(T)) + [Lipy%, (G)] | — 5]}

+ C’T( sup dg(ml(t),mz(t)) + |:c(1) - ac(z)|) ,
tE[to,T]

where the constant C' depends on H and on sup;e(o 7y [V (£)] n—1, hence on sup;eo 7y [u* (t) |n, supiepo 7 |4 ()],
which are estimated thanks to Proposition [5.1}

In our next step, we consider the solution to the Fokker-Planck equation

oym(t,z) — ZDij(am(t,:c)Th(t,x)) — div((t, z)Hy(zo, 2, Du(t, z),m(t)) = 0 in (ty, T) x R? )
Th(to) = mo ! in Rd

where (m(t))ers,, 77 is given and u satisfies . Let us recall that, under the assumptions of Proposition
there exists a unique weak solution m € C%([to, T], P2) to (43).

Proposition 5.3. Assume that
|D2Glloo < M, [D3,Gllo < M, Lipg(G) + Lip{*(G) < M. (44)

Then there exists a constant Cpr > 0, only depending on M, ||a|2 and the regularity of H, such that, for
any mt,m? e C([0,T), P2), v}, 22 € R and m{, m2 € Py, if ut and u? are the corresponding solutions
to the HJ equation with xg = xf and if My, Mo are the corresponding solutions to starting from
m} and mg respectively, then

sup d3(m'(t),m2(t)) < (1 + Oy T)d3(mg, m3) + CuT ( sup da(m!(t),m2(t)) + | — a2 2) .
tE[tQ,T] tE[tO,T]
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Proof. We can represent m'(t) as the law of X; where E[| X} — XZ|?] = d3(m}, m3) and X* solves

t t
X! =X} —/ Hp(:cg,X;',Dui(s,X;‘),mi(s))ds+\/§/ o(s, X)) dBs,
0 0
so that
E[|X; - X{[’] <E[|Xg - X§I]

w2 [ (X0 (o L Dt () X2 D 0) s
0
+E [/0 Tr ((O’(S,Xsl) - U(S,Xf))(o(s,Xsl) — U(S,Xz))*) ds|] <E [|X& - Xg\z]

t
 CuE [ [0 = X2 D! = )5, X + B (5) m?(5) + [ x3|2>ds]
0

where Cj; depends on the Lipschitz regularity of H,, in R% x R% x B(Kjr) x Py (where K is defined in

Proposition [5.1)), on sup, |u!(¢)]z2, and on the Lipschitz regularity of o. We infer from Gronwall’s Lemma
that

E[1X, - X7"] < 1+ CuDE[| X5 — X3J?]
b OnT <sup 1Dt — )OI+ sup d2m!(6),m? (1)) + |oh 22 )
t te[to,T]
As E[| X} — X2I?] = d3(m{, m3) and d3(m!(t),m3(t)) < E[|X} — X}|?], we obtain:
sup d3(m'(t),m*(t)) < (1 + CnT)d3(mg, m)
tE[to,T]
b OnT <sup 1Dt — )OI+ sup 3! (6),m2 (1)) + |oh a3 ) .
¢ te[to,T]

We estimate the term sup, || D(u!—u?)(t)||%, by Proposition (withn = 2): since Lip, ; (G) and Lipy°(G)
are estimated by , we deduce, for some (possibly different) constant Cy:

sup d3(m'(t),m2(t)) < (1 + Oy T)d3(my, m3) + CuT ( sup di(m!(t),m2(t)) + |« — x2 2) .
tE[tU,T] tE[tU,T]
O

Collecting the estimates in Propositions [5.1} [5.2] and [5.3] yields the well-posedness of the MFG system
and estimates on the solution:

Proposition 5.4. Fix M > 0 and assume that holds true and that |G|, < M holds. Then there
exists Thy, Car > 0, depending on M, n, Cy, v and

n
sup |la(t)|ln + sup D IDG py H (o, p,m) oo,
te[0,Ta] |p‘<KM,:coe]Rd0,mEP2 k=0

(where K is given in Proposition such that, for any T € (0,Tyr), for any (to,mg) € [0,T] x Pa,
there exists a unique solution to the MFG system . This solution satisfies

sup |u(t)|n < [G(zo, -, m(T))|n + CuT.

te [tQ,T]

Moreover, if (to,m$) and (to,m3) are two initial conditions in [0,T] x Py and z§,x3 € R%, and if
(ut,m') and (u?,m?) are the corresponding solutions to the MFG system with vo = z} and x¢ = 2
respectively, then

sup do(m!(t),m*(t)) < (1 + CyT)da(m, mi) + OpT|xh — 23],
te[to,T]
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and
o 1 0) =20y < O (b mi) + ) — )
+ (1 + CuT){[Lip , 1 (G)](d2(mg, m) + |25 — x5]) + [Lipy2y (G)]lwg — 5]}
Proof. The existence and uniqueness result come from a standard fixed point argument on C([to, T'], P2)

for T small enough (say T' < Ty where CpyThr < 1/2, Cpy being given by the previous Propositions).
For the stability with respect to the initial condition, one first uses the estimate in Proposition with

mt = m':
sup d3(m'(t),m*(t)) < (1 + CyT)d3(mg, m3) + OnT ( sup d3(m!(t),m*(t)) + |zp — 23 2) .
te[to,T] te[to,T]
Thus, as CyT < 1/2, one obtains

s[up ]dg(ml(t)JnQ(t)) < (1+ C’MT)dg(m(l),mg) + CMT|:13(1) — x§|,
te(to, T

modifying C if necessary. Plugging this estimate into the estimate for the u® in Proposition gives
the result. O

5.2 The first order linearized system

Next we consider the linearized system

(i) —dw — Tr(a(t,z)D?v) + Hy(zg,z, Du,m(t)) - Dv + g—i(xo,:m Du,m(t))(p(t)) = R1(t, )
in (to,T) x R?
(i1) O — Z Dij(a; ;p) — div(pHp(x0, @, Du,m(t))) — div(mH,, Dv)
—div(m%(p)) = div(Ra(t,z)) in (to,T) x R?

0G
| (@) plto) = po,  o(T,2) = 5

(zo, 2, m(T))(p(T)) + Ry(x) ~ inR?

(45)
where (u, m) solves and H and its derivatives are evaluated at (xq, z, Du(t, ), m(t)). In this section,
we work under the conditions given in Proposition so that admits a unique solution, in particular
we always assume that T < Ty, where Ty is given by Proposition 5.4 Our goal now is to establish
estimates for (v, p) in dependence of G and u; we implicitly assume that G(xg, -, m) is sufficiently regular
(say, Cp) so that u inherits the same order of regularity (from (42)).

The data of equation are zg € R, pg e C7% Ry € C°([0,T],C; 1), Ry € C°([0,T],C~*~D)
and R3 € C’g“l. Here n > 2 and k£ > 1. By a solution to , we mean a pair (v, p) such that v €
CO([0,T7],Cy' ) satisfies (45)-(i) (integrated in time) with terminal condition v(T,-) = 2< (g, -, m(T))(p(T))+
R3(-) and p e C°([0,T], C’b_(k_l)) is a solution in the sense of distributions to (45)-(ii) with initial condi-
tion p(to) = po.

Proposition 5.5. Let us fit M > 0, n > 2 and k = 1. Under the assumptions of Proposition and if

0G
— |1k < M, 46
I e (46)
then there exist constants Trr,Cae > 0, depending on M, n, k, supiepo ry [u(t)|n: supsepo,r lu(t)[k+1,
such that for T < Ty there exists a unique solution (v, p) to , and this solution satisfies
sup [o(®)la-1 <
te[to,T]
0G
(14 Cu D)5 (@02 AT, y) -3k { lpoll—k + Tsup [ Ra(t)] ey + Tsup [ Ra (t)]y (47)

H+ CuDRalas 4 CuT (1450 R Os + 1 el ).
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as well as

sup [p(t)]-x < (1+CuT)|pol -

te[to,T] (48)
+CMT(Slt1P [R:()]: + sup |R2(t)]| - (k—1) + [ R3]n-1)-

Moreover, we have, for anyr <n —1,

sup (D500l < 1+ CuT) (| D25 o mD)AD) |+ 1Dzl )

te[0,T (49)

+CuT (llpol -k + supy | R(t)|n—1 + sup, [Ra(t)| - (x—1) + | R3] n—1)-

Proof. After proving the a priori estimates, the existence of a solution can be obtained using a continuation
argument (see [9] for details). The uniqueness is an obvious consequence of the estimates. So it remains
to prove the estimates. To simplify the expression, we omit the dependence of the constant C' with respect
to M. Fix t; € [to,T], z1 € CF for k€ {1,...,n — 1}. Let z be the solution to

—0yz — Tr(a(t, ) D?2) + Hy(xo, z, Du,m(t)) - Dz =0 in (to,t1) x R9,
- d (50)
2(t1,-) = z1(x) in R®.

According to Proposition (with & = 1), we have

sup [2(t)[r < (1 + CT)|z1 ]k,

tefto,t1]

where C' depends on the regularity of @ and H and on sup, |u(t)|x+1. Then, by duality,

h 0H. b
/ z1p(t1) / z(to)po — / / (HppDv - Dz + Tp(p) -Dz)m — / Dz Ry
R4 Rd to JRd m to JRd

(31
< [=@)lklpoll -k + ClDz]o (T|Dvoo +/ p@)k) + Tsup [[2(6) | B2 - ge-1)
to
t1
< (1+CT)lal (pou + 0 (11Dt [ o)1) + TRl ).
to
where | Ra|_(x—1) := sup; [ Ra(t)| - (k—1). Thus, taking the supremum over |z < 1, we obtain:

t1
lp(t) |k < (1 + CT)|lpo] -k + CT(|Dv]o + |R2|—(x-1)) + 0/ lp() ] —-
to

Since this holds for all ¢ € (tg, T], by Gronwall’s inequality we obtain

sup [ p(t)|-x < (1 + CT)lpol-k + CT(|Dv]oo + [R2]-x-1y)- (51)
te[to,T]

Next we apply Proposition (with k& = 1) to the HJ equation satisfied by v: we have, for any r < n—1,

suplo(®)l, < (1+CT)Jo(D)], +CTCy, (52)

where C depends on sup, [|a(t)|,—1, on the regularity of H, on sup, |u(t)|,, and where Cy is estimated
by

0H
Cr = sup | < (o, -, Du(t, ), m(6))(p(£)) |n-1 + [Rafln-1 < Csup lp(t)]—k + | Rilln-1, (53)
where we used the inequality

oH oH

I5,,, (@o, - Dut, -), m())(p(t)) ln—1 < |5~ (20, - Dult, o), m(t), -) P(O)] - -
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Again we notice here that the right-hand side is estimated through the regularity of H and sup, |u(t)],.
Similarly we estimate, for r <n —1,

0G

[l < 115, @o, s m(T)) sk sup [p(E) |- + | Bs]lr- (54)

Collecting the estimates in (51)), (52)), (53)), (54)), we find, for r < n — 1:
0G
s [0l <0+ CT) 2 (7)) (1 + O ol s+ OT(Dvr + 1Rl )] (55)

+ [ R (1 + CT) + CT(|lpoll—k + T(|Dv]loo + | R2ll- (k1)) + | R1[ln-1)-
We first consider this inequality for » = 1. Recall that H%Hl;k < M. So, if we choose Tjs > 0 such that
(14 CTy)MCTy + CT3y < 1,

we obtain for T'< Ty and n = 2. Then from we infer (48)) (with a constant only depending on
sup, |u(t)||x+1). Having now estimated | Dv|, we deduce from (55)) that holds.
To obtain , we apply again Proposition to the HJ equation satisfied by v, together with

estimates and . O

5.3 The second order linearized system

Next we study the second order linearization of the MFG system. Given (u,m) a solution to and
(v, p) and (v', p) two solutions to with arbitrary Ry, Ra, Rs and R}, R, R5, we consider a solution
(w, p) to

0H
(i) —0yw — Tr(aD?*w) + H, - Dw + %(u(t))
2 H , , oM, . oH, .
W(P(t)vp (t)) + HppDv - Dv' + %(P) -Dv + %(P) Dv = Ry(t,x)
in (to,T) x R?

(i4) o — Y Diglaign) — div(uH,) — div(mHyy Dw) — divim 22 (4)) — div(pHyp D)

o om
H H
—div(p%—mp(p’)) — div(p'HppDv) — div(mHppp, DvDv') — div(mééimpp(p’)Dv) (56)
0H 0H H -
T / p Pt pp AT p NY — s
(2 (1)) — div(m 222 () Do) — die(m S22 (. f)) = div(Ro(t. )

in (to,T) x R?
2

(i) plto) =0, w(T,z) = %(l‘o,%m(T))(P(T)apl(T))

+%(f”0»x»m(T))(/~t(T)) + Ry(z) inR?

where H and its derivatives are evaluated at (zo, x, Du(t,z), m(t)). Here again we work under the condi-
tions assumed in the previous Sections which guarantee the existence, uniqueness and enough regularity
for (u,m) as well as for the solutions of the linearized system. In particular, we always assume that
T < Tyr, where Ty is now given by Proposition The goal now is to establish estimates for (w, 1) in
terms of G as well as of (u,m) and (v, p), (v', p).

The data of the problem are Ry € C°([0,T],Cr~?), Ry € C°([0,T],C~* V) and R3 € Cp'%. By
a solution to (56), we mean a pair (w, y) such that w e C°([0,T],C;?) satisfies (56)-(i) (integrated
in time) with the terminal condition in (56)-(iii) and p € C°([0,7T],C~*) solves ii) in the sense
of distributions with vanishing initial condition. Here we assume n > 3 and k > 2; the reason for this
condition is just because we wish to keep the regularity threshold of (w, u) consistent with what stated
previously for (u,m) and for (v, p). In general, the estimates below apply to any degree of k,n but this
is obviously a cascade regularity: an estimate of w in C’g“z requires an estimate of v in 05“1 and of u
in C, while an estimate of y in C~* requires an estimate of p in C~(*+~1).
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Proposition 5.6. Let us fit M >0, n >3 and k > 1. Under the assumptions of Proposition[5.4), and if
. ) holds, there exist Thy > 0, depending on M and the regularity of H, such that for any T € (0, Tas],
system has a unique solution which satisfies

s w2
< (Ut O (155 0 (D). ok et D) ) 1 (D) ey + Bl
om
oG - N
FOMT+ 15 Tn-2a) (509 IR0 (02 + sup | Ra(o)]-e-

+Rk_1,]€R;€_1,k + Rk—l,n—lR;c—l,n—l)

(57)

for some Cyy depending on M, on the regularity of H as well as on n, k, supyefo 7y |tlln—1, SuPsefo,r 14/ k41,
and

sup [0 < CarT((1+ 155 0, ), 11 ) Dy [T
. k M 5m2 057 I 1;k—1,k—1 —(k—1) —(k—1

+ sup |Ri(t)|1 + sup [Ra(t)|-(k—1) + [R5l + Rec1x Ry s + Rk71,273§<_1,2) ; (58)
te[0,T7] te[0,T]

where Cyy depends on M, the reqularity of H, n, k. supyepo,7 |u|k+1, and where we have set, fork,j = 1:
Ri—1j = Slip(HP(t) =1y + [v(®)];) k-1, 1= Sltlp(HP'(t)||—(k—1) + 0" @)1;) -

In addition, if
0G
— ln—2;k < M,
15, In—2 < M

then we have, for any r <n — 2, (t,zq) € [0,T] x R,

D7t Vo < (|D2 S . m(E) AT). 0 D))+ IDZRS )1

G /
+CMT(H 5 (@0, m(T), ) [n—2ik—1 k-1 P(T) |- (o) 1P (T) | (k-1 (59)

+sup | Ry (t)|n—2 + sup |Ra(t)|_(s—1) + | R3n—2 + Re—14R)_1x + kal,nflR;cfl,nfl>'
t t

Remark 5.7. We recall that the quantities |p(T)|—(x—1) and Ri_1,; are estimated from and (48).
In particular, we have

Ri-1k < (1+CuT)C (Ipol (k-1) +SupHRz( )= (k-2 +SupHRl( )|k+Rs||k> ;

for some constant C' depending on H% lw(t)|k+1, and similarly
Ri-in-1 < (L+CuT)C (lpoll--1) +sup; [Ra(t)| - k-2) + [ Rsn—1 + sup; [ Ry () ]n-1)

|w(t)|n. Of course the same holds for p’,v" accordingly.

for a constant C' depending on | 3<

Proof. We omit the proof of the well-posedness of the system, which is a consequence of the estimates
(as for Proposition . To simplify the expression, we also omit the dependence of the constant C' with
respect to M. We first estimate p by duality. Fix t; € [to,T], z1 € CF for k€ {1,...,n — 1}. Let 2 be
the solution to (50]). Recall that Proposition (with & = 1) implies that there is a constant C' > 0,
depending on sup, |u(t)|k+1, such that

sup |z(8)[x < (L + CT) |z [x-

tE[to,tl]
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Then
0H,
/ w(t)z1 = / Dz - mepr +m—2(u) + pHppDV' + p'Hpp Do
Rd Rd om

H, 5H
2

H2 (ps ") + R2(t,x)) }

0H, dHp, )
+m—5m( p)Dv + m—=22 5 P (p)Dv’ —l—m(S

Hence

t1
/R ultn)s < CT|Dwlo| el + CD2). / J14(s)]—eds
to
+OT (s ()] -1y 0D 10 (D)l -+ 500 /1)1 ey 00 o)) sup 1=(0)l
+OT (sup [o(0)] -1y sp [ ()] 1y ) sup |0 + CT | Dv] o | Do | Do

+CT (0 (1) |- 1) 1DV e + 50D 1/ ()] i1y | D]z + 51D [0(8)] -1y 5p [0/ ()] 1)) 1Dl
+OT | Bal- ety sup [2(8)

where the constant C depends on the regularity of the function H and on sup, |u(t)|r. Taking the
supremum over ||z1[x < 1, we infer that:

el <c | o) -sds + CT{ 1wl + |l e
0
+ (sup o0y + sup Jo(®)] ) (50 16/ () |- + sup [0/ (1)) -
By Gronwall’s inequality, we obtain
sup (1) |- < CT{|Dwleo +sup | Ra(t) |-y + Rier kR 14 (60)

where C' depends on the regularity of the function H and on sup, |u(t)|x+1. From Proposition (with
k =1), we have

2 ~
sup )l < (1+CT) (|52 (D), 9 (DD 2+ 32 (TN -2+ Bila-2) +CT 50 L (D)2, (61)
where
702) = D) + SR o0), 0(0)) + Hyp Do D+ 02 ) D!+ 22 (1) Dy (1),

We estimate

0H .
sup [ f(t)[ln—2 < (\\5—(3307-x,Du(t, @), m(t), y) [n—2: sup | () -k + | R1[n—2
t m t

+Csupy (o) |- 1) + [0 ln—0) (" (B (k-1) + Hv’(t)Hn—l))

for a constant C' depending on the regularity of H and on sup, |u(t)|,—1. So we conclude, using also

(60),
Sp | £z < CT(IDwlo +Rims kRic 1+ [Bell i) )

+sup, | Rifn—z + CRi—1,n-1Rp_1 1 -

Similarly, again from we get
0G 0G ~
I5 (T2 < OT |5 = 1T, -z (IDw e + Rt 4R+ Bl
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and

G D) Tz < 1E (w0, (D), )] 6Ty ()]
om2 piL ), p n—2 S Sm2 Zo, ML)y ) ln—2;k—1,k—1(|0 —(k=1)llP —(k—1) -

Then, we find

52G -
sup lu(®la-z < (14 CT) (150 ocsm(T) -2 ia oD D]ty + Vil

0G ~
+CT (14 |55 fn2) (IDwlo + |Rell 1) + Ri-1Ri 1 1)
+CT (HR1 ln—2 + kal,nflmcq,nq)

where now the constant C' depends on both sup, |u(t)|r+1 and sup, |u(t)|,—1-

For n = 3, if we choose T" small enough (depending on [ $* 1 x and sup, |lu(t)]2) we estimate | Dw|q.
Then, plugging this estimate into gives (58) (with a constant only depending on sup, |u(t)|k+1)-
Finally, we deduce for n > 3.

For any r < n — 2, 29 € R% and t € [0,T], the estimate on Djw follows again from Proposition
(with k = 1), that gives, arguing as before,

DLt e < (1 4+ CT) (1DES (o), (1)) o+ 1D (T e + |DE o)

+CTsup | (O
2 ~
< (I 25 ‘i( (), (D))o + D5 Rsllc) + (1 CT)| 5 o m(6), )z smp i(6)]

- - - %G
+ CT(HRle2 B2l o1y + [ Ralln—2 + | 53 (20, -, m(T), , Min—2ik—1. k-1 (D) | = e=1y 10" (T) | = k1)

/ !
+ Ri—16Rk—1 1 + kalmfl/R’kfl,nfl)v

that yields the desired claim using (58)). O

By gathering together Proposition [5.5 and Proposition we deduce the following three corollaries,
which will be useful in the derivation of second order estimates for the solution of the master equation.

Corollary 5.8. Let M >0,n >3 and k€ {2,...,n— 1}, and assume that

52G
IIGHnH\ \In1k+H S In—2k-1h-1 < M.

Let (u, m) be the unique solution to in some interval [0, Trs] given by Proposz'tz'on and let (v, p)
and (v, p') be two solutions to with Ry = Ry = R3 =0 and initial conditions po, Py respectively.

Then there exists a constant Cyy such that the solution (w, i) to correspondmg to (u,m), (v, p)
and (v',p') and with Ry = Ry = Ry = 0 satisfies, for any T € (0, TM) <n—2:

2

: 0°G
sup|Dyw(t, z)| < sup | Dy < (w0, 2, m(T))(p(T)m’(T))‘ + Cu T poll - o1yl 06 |- k-1)

where Cyy depends on M, as well as on ||a|, and the regularity of H.

Proof. We first notice that

11 <M

)

. 0G
Lipg,1(G) < sup | £ (20, m, )

ZTo,m

hence we are in the position to apply Proposition[5.4] and there exists a time Ths > 0 such that the unique
solution (u,m) to satisfies u € C}' with an estimate depending on M and sup,, ,, |G (2o, ;™M) |-
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From Proposition [5.6] we have

1Dzt e < | D32 (o, m(T) (p(T), (7))
+CnT (1) |-yl ()] -y + Rt kR + R tn 1R 11 )-

On the other hand, we know from Proposition [5.5] that
sup [o@)ln-1 < (1 + CuT)I3E [n-1:6-1 l£0] - (k1)

sup [ p(t)|—k-1) < (1 + CuT) flpo (-1

which allows us to estimate Ry_1 5 and Ri_1,,—1. Here the constant depends on sup, [u(t)|,. A similar
estimate holds for (v', p’). Therefore, we conclude the desired estimate. O

Corollary 5.9. Under the assumptions of Corollary[5.8, suppose in addition that

0G
xo 5
Let (u,m) be the unique solution to in [0, Ta], let (v, p) be a solution to with R = Ry = R3 =0

and initial condition po, and, for any |l| 1, 1 € R, (v, p') be a solution to with zero initial
condition and with

I1Dsy = lln—2k—1 < M.

Ry(t,z) = —6I$OH(yo7x,Du(t,x),m(t))
Ry(t,x) = m(t,z)d., Hy(yo, x, Du(t,z), m(t)) (62)
Ry(t, ) = 04, G(yo, x,m(T)).

Then there exists a constant Ciy such that the solution (w', u!) to corresponding to (u,m), (v, p)
and (v', p') and with

- 0H
Ry(t,z) = —8;0Hp(x07m, Du, m(t))Dv — 620%(%,% Du,m(t))(p(t)),

]:Zg(t x) = p&l H,(zo,z, Du,m(t)) + m@iOpr(xo,x, Du,m(t))Dv + m&io%(p), (63)
~ oG
Rs(z) = 5205 (2o, 2, m(T))(p(T)),
satisfies, for any T € (0,Tp), r <n—2,
1/2 i
sup( 3] DLl (1,2)?) < swp DD 0 (g, m(T) (| + CurTlpol sy,

ll=1
where Cyr depends on M, as well as on |a|, and the regularity of H.

Proof. We first notice that

sup | R1(t) 2 + sup | B2 ()]~ -1y < Csup (Jo(O)ln-1 + o)1)

for a constant depending on the regularity of H, on sup, |u(t)|,—1 and on sup, |u(t)|x. However, the
latter term is bounded by sup, [u(t)|l,_1 since k < n — 1. Next we estimate the terms (v, p), (v!, p') and
u!: we have, from Proposition and Proposition

sup [o)n-1 < (1 + CrT) S n—10-1 | p0 ]| - 6—1) < Carllpoll— -1

Sup lp()|=k-1) < (1 +CuT) |pol - -1y,
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and o
sup, [0t < {1+ CoDIF0 fosgs + CuT} < o,
sup 10O -k-1) <CuT,  |u']-x < CruTlpol -
We note that the w! solve linear equations with the same diffusion and the same drift. So, combining

Proposition [A77] with the inequalities above and arguing as in the proof of Proposition [5.6] gives, for any
r<n-—2,

sup( Z \D;wl(t7x)|2) 2 <
=1
1+ emysup( 3 (102 o), 00 + 1920 () + 13, 3 (Al ) e urll s

lt/=1

. oG 2\ 1/2
<sup( Y] (10504, 2 (0 ()| + CurTlipol -e-1)) ) +CorTlipol s,

=1
where we have omitted the dependence of G with respect to (xg,x, m(T')). This gives the result. O

Corollary 5.10. Under the assumptions of C’omllary suppose in addztzon that | D2 G(zo,-,m)[n—2 <
M. Fiz 1,1' e N% with || = |l'| = 1. Let (u,m) be the unique solution to in [0, TM] and let (v, pt),
(', p") be the solution to with zero initial condition and with R17R2,R3 and R}, R, R given by

forl andl’ respectz'vely.
Let (wh", ubv) be the solution to corresponding to (u,m), (v!, p!) and (v*, p") and with

- H r OH
R (¢, 2) = (a“l H +é. H,Dv" + ! H,Duv' + agog (0" (1) + 2" gm (pl(t)))
RS (t,) = pl'ol Hy + ol Hy +m(dl HypDo' + 0L H,,Du')
§H, , 6H , (64)
11 1 l Pl I+1
+ (O (p7) + Oy 5 E () + iy H
~ ’ ’ 6G / ’ (5G
R (t.2) = 01" G (wo, 2, m(T)) + Dy == (w0, 2, m(T)) (p" (1) + 0y = (o, 2, m(T)) (p(T))

where H and its derivatives are computed at (xo, x, Du(t,x),m(t)). Then there exists a constant Cpy such
that, for any T € (0,Tr), r < n —2:

1/2
sup(z |D” ) < sup |D;D§OG(9L’0, m(T)| + CuT,

RN
where Cyy depends on M, as well as on ||a,, and the regularity of H.

Proof. We can estimate (v}, p!) and (v, p'') and pb¥ REY and Ré’l/—exactly as in the
previous Corollary. Moreover, as the wh! solve a HJ with the same diffusion and the same drift term,
we can use Proposition to bound the sum (3}, ,, |[Dhwht (¢, z)|?)/2:

SUP(Z | Dy )1/2 < sup( Y (10505 Gao, -, m(T))| + C’MT)Q)l/ e
b Ny T

which gives the required estimate after rearranging. O

6 Estimates on the first order master equation

In this section, we complete our program by proving regularity results for the solutions of the various first
order master equations encountered in the previous sections. We mainly consider the first order master
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equation:
7(725U(t, Lo, T, m) - Tr(a(tv x)D:QEIU(tﬂ Zo, T, m)) + H(:Ijo, z, DIU(t’ Zo, T, m)’ m)

- / Tr(a(t, y) D2, U (t, 20, ,m, y)) m(dy)
) :
(65)
+ﬁ DmU(tv Zo, X, M, y) : Hp((E(], Y, DIU(tv Z0,Y, m)7 m) m(dy) =0in (07 T) x Rd . P2

R,
U(T,zo,x,m) = G(xg,z,m) in R x Py .

In the above equation, o € R% is considered as a parameter. Our aim is to build a solution to this
equation and study its regularity. The method for finding a solution to is well-known: if we set

U(th‘r()vxamO) = u(to,.]f) (66)

where (u,m) is the solution to (40]), then U is a solution to (65]).
In order to study the Major-Minor agents’ problem, we also have to consider a linear master equation

~oU° ~ [ Trla(t,p)D3,U° 0, m. ) mldy)
R

+/ D, Ut 20, m,y) - Hy(zo,y, DU (t, 70, y,m), m)dm(y) = 0 (67)
UO(T7 méR,dm) = Go(xmm) in R x Py,
where U is the solution to . In this case, we build the solution U° by the simple formula:
U (to, w0, mo) = G° (w9, m(T)), (68)

where (u,m) is also the solution to .

Our aim is to show that, if G and G° are regular enough, then and @ have classical solutions,
given by the above representation formulas. Moreover, we show that the regularity of these solutions
only deteriorate linearly in time. This last point is the key result in order to build later solutions to the
second order master equation and to the master equation for the Major-Minor agents’ problem.

Throughout the section, the assumptions of Subsection on a, H, G and G° are in force.

6.1 First order differentiability of U and U°

Proposition 6.1. For any M > 0, there exists Tyy > 0 and Ky > 0, depending on Cy and v and
[Dalw, and there exists Cpy > 0, depending also onn, k€ {2,...,n—1}, sup, |a(t)|, and the regularity
of H such that, if

<M, (69)
n—1;k

and if T € (0,T], then the map U defined by is a classical solution to , and satisfies

0G
61 + | 5o

sup [|U(t)[n < |Gln + CuT
€[0,7T7]

te[0

Moreover, for any |a] <n—1, ﬁg‘g—% is of class C' in m, and for ke {2,...,n —1},
oU 0G
sup ||—(¥) < H + CuT.
te[0,T7] om n—1:k om n—1:k

Remark 6.2. We show in the proof the following representation:

oU

T(t07w07$7m07y)p0(dy) = U(t07.’II) (70)

Rd 0T

where (u,m) is the solution of the MFG system and (v, p) is the solution of the linearized system
with right-hand side Ry = Ry = Rs = 0 and with initial condition (tg, po). Note that the normalization
condition (9)) is satisfied because, if one chooses py = mo, then (v, p) = (0,m).
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The proof relies on the following lemma, in which we also provide estimates to obtain later one the
differentiability of U with respect to zg.

Lemma 6.3. Under the assumptions of Proposition we fix (to,mgp), (to,m1) € [0,T) x P2, yo,& €
R? with |¢] < 1. Let (u,m) be the solution to with ©g = yo and with initial condition (tg,mo),
and, for h € (0,1), let (up,myp) be the solution to with xg = yo + £h and with initial condition
(to, (1 — h)ymo + hmy). Let also (v, p) be the solution to associated with (u,m), xg = yo and with

Ri(t,x) = —Hy, (Yo, z, Du(t,x),m(t)) - £
Ry(t,x) = m(t, x)Hypop(yo, x, Du(t, x), m(t)) - § (71)
R3(t7x) = Gzo(y()vxvm(T)) '5»

and initial condition (tg,m1 —mo). Then there exists a constant C (independent of h) such that

sup |lup(t) — u(t) — ho(t)|n—1 < Ch? (72)
tE[to,T]
and
sup ||mp(t) —m(t) — hp(t)|_r < ChZ. (73)
te[to,T]

Remark 6.4. The goal of this Lemma is to identify the first order derivatives g—g and D, ,U. The

constant C' above will depend on the regularity of H and G as well as on supye, 11 | w(t)[n; however this
18 not detailed later since it will not be relevant; indeed, and are only used for letting h — 0.

Proof. We set
op(t, ) = up(t, ) —u(t,x) — ho(t,z), pu(t,x) = mp(t,z) —m(t,z) — hp(t, x).
Then the pair (vp, pr) solves
5 §H
=0y, — Tr(a(t, z)D*vy,) + Hp(yo, x, Du, m(t)) - Duy, + %(yo,x, Du,m(t))(pn(t)) = Rp1(t, )
in (to, T) x R?
Ospn — Z D;j(a; ;pn) — div(ppHp(z, Du,m(t)) — div(mHp,(x, Du,m(t))Duvy)
v §H
—div(m(s—ﬂf(a:,Du, m(t))(pn)) = div(Ryp 2(t, z)) in (to,T) x RY
0G .
pu(to) =0, wn(T,2) = == (2, m(T))(pn(T)) + Rus(z)  in R

where

B (t,2) = = (H(yo + €, 2, Dun(t, ), mi(4)) = H(yo,w, Dult, ), m(1))

— Hp(yo, z, Du(t, z), m(t)) - D(un(t,z) — u(t,z)) — %(ym z, Du(t, z), m(t))(mu(t) — m(t))
- hHa:o(yowrv Du(t7x)7m<t)) : 6);
Ry o(t, x) = mp(t, x)Hp(yo + Eh, x, Dup(t, ), mp(t)) — m(t, ) Hp(yo, x, Du(t, x), m(t))
- (mh(tax) —m(t,x))Hp(yo,x Du(t,a: )
—m(t, z)Hpp(yo, v, Du(t, z), m(t))D(u

“s

up —u)(t, x)
— hm(t, x)Hyop(yo, x, Du(t, ), m(t)) - €
0H,
m(t, z) " E(yo, x, Du(t, ), m(t))(mn(t) — m(t)),
Rp3(z) = G(yo + Eh, z,mp(T)) — G(yo, z, m(T)) — g%(yo,xvm(T))(mh(T) —m(T))

- hGﬂCo (y07x’m(T)) ! g
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Next we estimate Ry 1, Ry 2 and Ry, 3. As

Ry = */0 {(Hp(ﬂfnx,pf(tﬁv),mf(t)) — Hy(yo, , Du(t, ), m(t))) - D(un(t,z) — u(t, x))
+ (HZO ('TT"r7pT(t7$)7mT(t)) - Hwo (y07 l‘,DU,(t, x),m(t))) ' hf

oH

# [ Gorlarsaupe(ta).me(0,) = 51 . Dutt ), (), ) (a8 = m(6) () }

where x, := (1 — 7)yo + 7(yo + &h), pr := (1 — 7)Du(t, ) + TDup(t,z) and m, (¢, z) := (1 — 7)m(t,z) +
Tmy(t, x), we have

[ R 1)1 < C(Jun(t) = w(®)]7 + h* + d3(ma(t), m(1))),
In the same way,
| Bh.slln-1 < C(d3(ma(T), m(T)) + h?)
< CJun(T) — u(T)|5 + d3(ma(T), m(T)) + 1?).
Finally, for £ > 2, we have
1Bn.2(8)| - (k1)

" o<t Jre b 2) (H’”(xo’ 2, Dup(t, x), ma(t)) = Hy(yo, @, Du(t, z), m(t))) (ma(t,dz) — m(t, dz))

+ [ 0ltsa) (Hylo, . Dun(ts ) mn (1)) — Hy(yo, 7, Du(t, ), m(1))
— Haop(yo, z, Du(t, x),m(t)) - h§
— Hyp(o, 7, Dut, ), m(®)D(un — ) (12) — 2y 2, Dt ), m(8))(ma (1) — m(0) ), da)
< C(Jun — ul} + d3(ma(t), m(1)) + )
By Proposition here exist constants Ty, Car > 0, depending on M, n, k, supseo 1y [u]n, such that,
if T'< Ty and 1f (69)) holds, then

sup o < (14 OuT)Ruslhos + O (0l s (Ohcs-+ 01 B0
te[0,T

< (sup lun(0) ~ w12 + sup a3 (01 m(e) + ).

We then infer by Proposition [5.4] and the definition of vj, that

sup [un(t) — u(t) — ho(t)[n_1 < C(d3((1 — h)mgo + hmy,mg) + h?) < Ch2.
tE[to,T]

The estimate of pj, comes from Proposition [5.5]in the same way. O

Proof of Proposition [0.1., Proposition and the representation formula imply the estimate on
[U(,-,m)|n. Let us now show that the map U given by is differentiable with respect to m. Fix
xo € R% (tg,my), (to,m1) € [0,T) x Pa, let (u,m), (un, mp) and (v, p) be as in Lemmawith £ =0,
SO R1 = R2 = R3 = 0. Then

sup un(t) — u(t) — hv(t)[n-1 < o(h).
tE[to,T]

Taking ¢t = tg, this implies that

HU(tQ,ZCo, : (1 — h)mo + hml) — U(to,IQ, ~,m0) — h’U(to, ')”n—l < O(h)
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So, if we choose m; = 4, for a fixed y € R?, we have just proved that the map U(h;mo,y) =
U(to, zo,, (1 — h)mg + hd,) has a derivative at h = 0 and that this derivative is given by v(to,z). Note
that the map (mqg,y) — v(to, x; mo,y) is continuous and bounded thanks to the estimates in Proposition
and the uniqueness of the solution. So we can apply Lemma which says that U is C! in m with

oU
v(to,x) = %(towo,ﬂ%moa y)

Then by linearity and continuity one easily checks that (| and the normalization condition @[) hold. A
similar argument applies to derlvatlves of ngr]L with respect to x.

Next we check that U solves (65)). Let us start with m(ty) = mg with a smooth density. Then (u,m)
is a classical solution and, as

U(t,zo,x,m(t)) = u(t,x) Y(t,z) € [to, T] x R,
we have, for any h > 0 and in view of the equation for m:

u(to + h,x) —u(to,x) = Ulto + h,zo,x,m(to + b)) — Ul(to, xo, z, m(to))

foth o 5U
/ Sm (tO + h , L0, T, m( )7y)atm<t’y)dydt + U(tO + h,.'L'[), I‘7,’n(t0)) - U(to,,’]}o,x,m(to))
to R4

to+h
_/ D U(tO +h » L0 I,m(t)7y) : Hp($0a y7Da:u<t7 y)7m(t>)m(t?y)dydt

t0+h
/ / y)D2,U(t, xo,,m,y)) m(dy)dt
+ U t() + h xo, T, m(to)) U(to,l’o,(ﬂ,m(to)).

On the other hand, by the equation for wu,

to+h
u(to + h,x) —u(to,x) = / : (—Tr(a(t,x)Dzu(t,x)) + H(xg, z, Du(t, z), m(t)))dt

to

to+h
:/ ' (—Tr(a(t,x)DizU(t,xo,x,m(t)))+H(aco,x,DIU(Lx07m,m(t)),m(t)))dt.

to

So

U(tO + h,l‘o,-’lf, mO) - U(th Zo, T, mO)

to+h
= / DmU(tO + h Zo, T, m(t) Z/) : Hp(mana DwU(taxmyam(t))a m(t))m(ta y)dydt

to+h
/ / D U(t7x07x7m7y)) m(dy)dt

to+h
+/ : (—Tr(a(t,x)Din(t,xo,x,m(t)))+H(a:o,x,DwU(t,xo,x,m(t)),m(t)))dt.

to

Therefore U has a time-derivative at (tg, o, x, mg) and
atU(t()y Zo, T, mO) = /d DmU(tO; Zo, T, Mo, y) : HP(ZEO» Y, DxU(t()v Zo,Y, mO)v mO))mO(y)dy
R,
- / Tr(a(t07y)Dsz(tovm()axvmvy)) m(dy)
Rd
— Tr(a(to, ) D2, U(to, z0, 2, m0)) + H (0, z, D U(t, xg, T, mo), mg).
This shows that U satisfies at any point (to, o, z, mg) where mg has a smooth density. The general

case can be treated by a density argument, since the right-hand side of the above equation is continuous
in (t07 Zo, T, mO)'
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Let us now explain the estimates on g—%. In view of , and Proposition we have, for any
r<n-—1,

oU
D55 to, 20, o) (po) | = [ D5(to, w0, )|
m [ee)

oG

ok ool + Car T pol k-

Taking the sup over po with |po|_r < 1, 2o € R, summing over » < n — 1 and then taking the sup over

t,m gives the estimate on 2Z. Notice that the estimate given by Proposition depends on sup, ||u(t)|»

om
(we use here that & < n— 1); but this latter term is estimated in terms of M only, because of Proposition

[5-4) and since |G(zo, -, m)|, < M. O

Proposition 6.5. Under the assumptions of Proposition [6.1}, let M,Th,Car > 0 be given accordingly.
Assume, in addition, that T € (0,Ty] and

+ [Day G20, -, m) 1 < M. (74)

0 0 6G°
sup ‘G (xo,m)’ + |DmOG (xo,m)’ + [|—(zo,m, ")
n—1;k

To,m om

Then, the map U° defined by 1s a classical solution to . In addition, U° and U are differentiable
with respect to xy and satisfy

sngwO, )W) < cNey +CuT. (75)
sup| sy (U U)(1)] | < |(D2yG*, D1y @)| _ +CuiT. (76)

and
ap| CoD| | <|MSD s onr ™)

As we will see in the proof, it is possible to estimate U° and U separately. However we will need the
specific form of the estimate in the analysis of the MFG problem with a major player.

Proof. Differentiability of U with respect to zy can be checked as for its differentiability with respect to
m: let &€ be any unit vector of R%, (u,m), (up,my,) and (v, p) be as in Lemmawith my = mg. Then,
by Proposition [5.5] and the fact that

SUp [Ba(t) ln—1 + sup [ Ba(t) - e—1) < C, [Raln-1 < sup [Guy (@0, -, m(T))n-1 (78)

ZTo,m
one has
HU(tO; To + h§7 '7m0) - U(t07$07 '7m0) - hU(to, ')anl < O(h)a
and so
Us, (to, o, x,mg) - & = v(to, x). (79)

To show the differentiability of U° with respect to m we proceed as in the proof of Proposition
Fix 29 € R%, (tg,mo), (to,m1) € [0,T) x Pa, let (u,m), (up, ms) and (v, p) be as in Lemmawith E=0,
SO Rl = R2 = R3 = (0. Then

sup | pn(t)[-x < o(h),
te[to,T]

where pj (¢, 2) = mp(t,x) — m(t,x) — hp(t, z). This inequality and Proposition imply
o 0 8GO
|G o, mi (1)) = GO (o, m(T)) = h5 (o, m(T))(p(T))] < | T

1 0 0
L (e = () 4 7ma (1),0) = 5 aom().0) ) ) = ) ) ]

< o(da(mp(T),m(T)) + h) < o(h). (80)

20,m(T)) (p(T))
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For y € R? choose now my = 4, then

dG°
U0<t0,.’170, (1 — h)mo + héy) - UO(to,l’mmo) — h%(xo,m(T))(p(T)) < O(h)

Note that pg — p(T) is linear and continuous as a map from C~* onto itself. Apply then Lemma to
get that U° is C' in m with

sU° 5G°

—_— = — T T)). 1

e (to,0,m0,9) = 5 (a0, m(T)) (p(T) (s1)
Moreover, one can check as in the proof of Proposition that U solves @ (here it is even simpler,
and based on the fact that by definition of U°, U%(t + h, zo, m(to + h)) — U%(to, 20, m(tp)) = 0).

Concerning the differentiability of U° with respect to zg, let & be any unit vector of R, (u,m),

(un,my,) and (v, p) be as in Lemma [6.3 with m; = mg. Then,

GO (un + &b ma(T)) ~ GOy, m(T) ~ AGS, (s m(T)) - € —~ A (o, (1)) ()| <
|G (yo + &h, mn(T)) — G°(yo, ma(T)) — hGY, (yo, mn(T)) - €| +
h|G2, (yo, mn(T)) — G2, (yo, m(T))| +
8GO

G2 (7)) = (o, () = () (D)

The third term of this inequality can be treated as in . Therefore,

0
Uo(to,y() + fh,mo) - Uo(to, yo,mo) — hGgO(yo,m(T)) f — h%(ymm(T))(P(T))‘ < O(h>7
hence it follows that
0
DU (10,20, m0) - € = G2, (20, m(T)) - € + o (a, m(T)) (p(T)). (82)

We now prove the estimates. By Proposition [5.1] and the representation formulas and (68), we
have, for any zo € R%, m e Py and r < n,
U°(t, w0, m)|* + | DLU (¢, 20, 2, m)[* = |G°(xo, m(T))* + | Dyu(t, z)|?
< |Gz, m(T))|* + (sup | DLG(zg, 2, m(T))| + CyyT)?

1/2

2
< (16" @o, m(T)) 2 + sup | D5 G (wo, 2, m(T)2) ' + Cu T,

(where we used that 22 + (y + 2)% < ((2? + y?)'/? + 2)? for nonnegative reals x,y, z) which gives (75).
Next we prove . For |I] = 1, | € N%  we represent a;OUO and 6IZOU by and respectively,
where (v}, p!) is as in Lemma [6.3| with € = ¢;, m1 = mg (so that ph = 0). Then we have, for r < n — 1,

1L U (t, wo, m) | + | Dyl Ut o, 2,m)|?

li=1
-5

ll]=1

0
2%, (o, m(T)) + (o, m(D) (D) + D! 1,

Note that sup, [p(t)|-x < CuT by Proposition As the v! solve HJ equations with the same diffusion
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and the same drift, Proposition and imply that
1/2 1/2
sup( Z |Drvl\2) < (1+CT) sup( Z |Drvl(T)|2> +CuT

=1 =1

< (1+CT) sup( Z (| DL 52(960, ,m(T),)

o=t

X xTo

(T)| -k + |D}0%, G(xo, , m(T))|)2)1/2 4Oy T

1/2
< sup( (DL, Glao, z,m(T))| + CMT)2) +CyT < sup( Y. |Dyél Gz, z,m(T))*)? + CuT,

x x

ll|=1 ll|=1
while
0
10t U0tz m)P < Y (16,600, m(D)| + 15 (o, m(T) (o (T))
[1]=1 l1]=1
< (18, G (20, m(T)) + CuT)? < (( 3 ek, G (zo, m (T))|2)1/2+OMT)2.

t]=1 li=1

Using that ((z + 2)% + (y + 2)%)1/2 < (22 + y?)Y/2 + v/22, we obtain

1/2
sup Z |(3l Uo(t, xo,m)\2+|Dgﬁio (t, mo,x,m)\Q
To\l=1
o 2 rAl 2\ /2
<sup( 3 |05, G (@0, m(@)[ +|D}ék, Glao,z.m(T)PP)  + CuiT,
[l]=1

from which we derive , by taking the sup over x(, summing over r and finally taking the sup over m.
For (77), let (v, p) be as in Lemmawith my —mg = po€ CFand £ =0, as in and (70). We
have, for any r <n — 1,

U 0

O o)) + D22 ez, = |2

2
= |5, (zo,m (T))(p(T))’ + [ Dyu(t, ).
So again by Proposition

20 bz o)|” -+ [ D2 .0, ) )|

<2 ) )|+ (10 D22 (g, (D) )| + Tl )’

2

1 5GO 2 | 6G 2\ 1/?
<lsup|p(>|_k(] (w0, m(T) (p(T))| +\D%<wo,x,m<T>><p<T>>l> +CMT1 Io(D)I2

2

) 8GO 2 | 4G 2\ /2 )
<(1+CuT)?| sup (\ (w0, m(T))(p)| +‘D$(xo,$7m(T))(P)‘) +OnT| ool
2ol k=1 \ 0 om
This gives . O

6.2 Second order differentiability of U and U°

Proposition 6.6. Let U be the solution of (65) given by (66| . Letn >3 and k € {2 .,n—1}. Suppose,
in addition to the assumptions of Proposztzon that G is of class C? and that H 5m2 (xo, Sy ) In—2ik—1,6—1 <

M. Then there exists Tpy > 0 (depending on M and on the data but not on G) such that, if T € (0, T,
the map U is C? with respect to the measure variable and the parameter xy, and satisfies

52U G
sup HW( Min—2:k—1,k— 1\|| 2Hn 2:k—1,k—1 + CnmT.
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Proof. Our first goal is to show that 0U /dm is differentiable with respect to m. Let (to, mg) € [0,T) x Pa,
v,y € R? and

(u, m) (respectively (up,mp)) be the solution of the MFG system with initial condition (¢g,mg)
(respectively (to, (1 — h)mg + hdy)),

e (v,p) (respectively (v, p’)) be the solution of the first order linearized system with zero right-
hand side, initial condition (to,d,) (respectively (to,d,/)) and where the Hamiltonian and its deriva-
tives are evaluated at (zo, z, Du(t, z), m(t)),

o (On, pn) be the solution to the first order linearized system with zero right-hand side, with initial
condition (%o, J,)) and where the Hamiltonian and its derivatives are evaluated at (zo, z, Dup (¢, ), mp(t)),

e (w, 1) be the solution to the second order linearized system associated with (u, m), (v, p), (v, p)
and with right-hand side 0.

Recall (see (70)) that
- U
’Uh(t(),x) = %(th Zo, T, (1 - h)m() + hay’7y)7
’U(t(),(L') = %(t05m07x5m07y)a and ’l)/<t07.’17) = %(t07$0;m>m07y/>

so we expect w(tg, ) to represent the derivative in m of §U/dm, namely %(to, Xo, T, Mo, Y, Y').
We consider

({)hvﬁh) = (6h7p~h) - (’U,p) - h(wvﬂ)
Let us first note that, by Proposition [5.4] we have

sup ](Hﬂh(t,x) —u(t,x)|pn-1 + dg(mh(t),m(t))) < Cda((1 — h)mg + héy,mg) < Ch. (84)

tE[tg,T

Next we claim that

sup._[3n(t,2) = v{t. ) |u—s + [7n(t) — p(8)|_gs_1) < Ch. (85)
te [to ,T]

Indeed, the pair (9, pn) — (v, p) solves the first order linearized system , associated with (u, m), initial
condition (tg,0) and with a right-hand side given by

Rpa(t,z) = — ((Hp(azo,x, Dup, ma(t)) — Hp(xo, , Du, m(t))) - Diy,

+ (%(xo,x,Duh,mh(t)) - %(x()?x’D“’m(t)))(ﬁh(t»)

Ry o(t, x) =pn(Hp(xo, z, Dup, mp(t)) — Hp(zo, x, Du, m(t)))
+ (mpHpp(x0, x, Dup, mp) — mHy, (2, , Du,m)) - Doy,

0H 0H -
+ <mh67ﬂf(x07xa Duh; mh) - mT’n’f(mO’ x,Du,m)) (ph)

Rialt.2) = (3o o ma(T) = 50 (a0, 0.m(T) ) (5 (T).

Applying Proposition and using we infer that holds.
In view of the equations satisfied by (0p, pn), (v, p) and (w, ), the pair (Op, pp) solves the first order

linearized system ([45]), associated with (u,m), initial condition (t,0) and with

Rya(t,z) = — [(Hp(xo,x,Duh,mh(t)) — Hy(z0, 2, Du,m(t))) - Disy

— hHyp(x0, x, Du,m(t))Dv - Dv' — h%&(xo, x, Du,m(t))(p'(t)) - Dv
m

+ (%(fml',Duh,mh(t)) - g—i(:ﬂmx,Du,m(t)))(ﬁh(t))
_ h%(xmx, Du, m(t))(p(t),p/(t)) — h%(wo,x, Du,m(t))(p(t)) - Dv’],
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- 0H
Rpo(t,x) = pp (Hp(mo,a:,Duh,mh(t)) — H,,) — hp(prDv’ + —p(p/))—i—

om
- 0H
Doy, - (thpp(:co, x, Dup, mp(t)) — mep) — hDv - (p’pr +m 57217 (') + meppDv’)-i-
oHy OHp  0H, r Oy 0*Hp
(mh 5m (l‘o,.’lﬁ‘,DUh,’leh(t)) -—m om )(ph) - h<p Sm + mDv" - sm )(p) —hm 5777,2 (p7p )7
5G ) 5G N 52G ,
Ris(@) =2 (.. (D)) = 2 (a0, m(T)) (50(T)) — b 0,2, m (D)) (). (T))

(for brevity, H, and its derivatives in R}, o are evaluated at (zo,z, Du, m(t)), unless otherwise specified).
Using

sup |lup(t) — u(t) — hv'(t)n_2 < Ch?, sup [mp(t) —m(t) — hp'(t)|—g—1) < Ch? (86)
te(to,T] te(to,T]

(see and in Lemma as well as the above estimate 7 we have

sup (IRn1(t, )n—2 + | Rn2(t, )| —e—1) + |Rn3(t,)|n-2) < Ch*.

Then Proposition and the representation formula implies that

oU U
”%(tovx% ) (1 - h)mo + h(sy’vy) - %(to,xo, 'amOvy) - hw(th ')HH*Q

= |n(to, ) — v(to, ) — hw(to, ) [n—2 < sup |95, (t) [ n—2 < CH2.

Note that we also have
sup | (t) — p(t) — hu(t)|-x < Ch*. (87)
te[to,T]
Hence, we can apply Lemma as in the proof of Proposition and infer that 60U /dm has a derivative
in m given by w:
52U ,
7(1507 o, T, Mo, Y, Y ) = 'lU(t(], .’E)

om?
If, in general, w is the solution to the second order linearized system (56| associated with (v, p), (v/, p)
(having initial data (tg, po) and (tg, pj) respectively) and with R; = 0, R; = 0, ¢ = 1,...3, then by a
linearity argument one may also conclude that

52U
D) (th Zo, T, Mo, Y, yl)p()(dy)p{) (dyl) = w(t03 {E) (88)
om
Rd
Thus, the estimate on gig follows from Corollary which gives
52U G
||W(t073307 Moy s ) [n—gik—1,h-1 < Hm(%, Sm(T), ) ln—2k—1,.6—1 + CuT, (89)
using the fact that sup |p(t)[ —x—1) < (1 + CuT) |poll—(k—1) and that the same holds for p'. O
t

Next we discuss the second order regularity of U and U° with respect to m and zq.

Proposition 6.7. Let U° and U be the solutions of and respectively. Suppose, in addition to
the assumptions of Propositions[6.5 and[6.6, that we have

5(G°,G)

om

2 0
| ) ’ 52(G°,G) o
n—2k—1

n—2;k—1,k—1

D2,(6°,6)

e
n—2

om?
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Then there exists Tay > 0 (depending on M and on the data but not on G) such that, if T € (0,Tys], the
maps UY and U are C? with respect to the measure variable and o, and

sup HDiO(UO,U)(t)H <H(D§OG0,D§OG)H + Oy,

n—2 n—2
S(U°,U) (G, G)
Slip HDIO om (t) n—2;k—1 = H o om n—2;k—1 * CMT
Moreover,
2(770 20
|20 N luta conr
t om n—2k—1,k—1 om n—2k—1,k—1

Proof. Step 1. The differentiability of 6U/dm with respect to xg can be achieved exactly as for its differ-
entiability with respect to m in Proposition For any direction & € R%, let

o (u,m) (respectively (up, mp)) be the solution of the MFG system with initial condition (¢g,mg)
and parameters xy and xg + h¢ respectively,

e (v,p) (respectively (v/,p’)) be the solution of the first order linearized system with zero right-
hand side (respectively right-hand side as in (71))), initial condition (t,d,) (respectively (to,0)) and
where the Hamiltonian and its derivatives are evaluated at (xq, z, Du(t, ), m(t)),

e (On, pn) be the solution to the first order linearized system with zero right-hand side, with
initial condition (t¢,d,) and where the Hamiltonian and its derivatives are evaluated at (z¢ +
hé, x, Duh(tv ’JJ), mh(t))a

e (w, ;1) be the solution to the second order linearized system associated with (v, p), (v, p’) (and
(u,m)), and with right-hand side

Rl(tvw) = _Hﬂé’op(mOvmv Dmm(t))f - Dv — 65;0 (.’Eo,.r, Duvm(t))(p(t)) -,

5H,,
Foa(t,2) = pHaap (50,0, Dt m(0))€ + mHzypp (0,7, Dy m(£)€ Do +m ™22 (p)e,

_ 0Gy,,
 om

R3($)

(zo, z,m(T))(p(T)) - &,
so that

- oU
’Uh(to,.’t) = (to,l’o-f—hf,x,mo,y),
om

oU
'U(t07 .’E) = %(tOv Zo, T, Mo, y)7 and ’U/(to, .’E) = Umo (t07 Zo, T, mO) : g
Then we find %(to,mo, x,mo,y) - & = w(ty, ), and if one replaces §, by an arbitrary pg € C—(=1) a5
the initial datum for p, the following representation holds:
oU,
5m° (to, zo, z,mo)(po) - & = w(to, ). (90)

Step 2. The second order differentiability of U with respect to zg can be checked in a similar way: let
(u,m) and (up, mp) be as before,

e (v,p), (O, pr) be the solutions of the first order linearized system with right-hand side as in
, initial condition (tg,0), and Hamiltonian and its derivatives evaluated at (xg, x, Du(t, ), m(t))
and (zg + h&, x, Duy(t,x), mp(t)) respectively,

e (w,u) be the solution to the second order linearized system associated with (v, p), (v/,p') =
(v,p) (and (u,m)), and with right-hand side R, Ro, R3 given by (64).
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Then we find
DgOU(to,xo,x,mo)g -& = w(to, ). (91)

Step 3. We now prove the regularity of U°. To show that §U°/dm is differentiable with respect to m,
let (tg,mo) € [0,T) x P2, y,4 € R? and

e (u,m) (respectively (up, mp)) be the solution of the MFG system with initial condition (¢g, mg)
(respectively (to, (1 — h)mqg + hdy)),

e (v,p) (respectively (v, p’)) be the solution of the first order linearized system with zero right-
hand side, initial condition (o, d,) (respectively (to,d,)) and where the Hamiltonian and its deriva-
tives are evaluated at (zo,x, Du(t, x), m(t)),

e (Up, pr,) be the solution to the first order linearized system with zero right-hand side, with initial
condition (to, J,)) and where the Hamiltonian and its derivatives are evaluated at (xo, z, Dup (¢, ), mp(t)),

e (w, ;1) be the solution to the second order linearized system associated with (v, p), (v, p’) (and
(u,m)), and with right-hand side 0,

as in the proof of differentiability of JU/0m with respect to m in Proposition Note that

sUo 8GO 5
%(tovmoa (1 —h)mo + héy,y) = %(xmmh(T))(Ph(T)%
sU° 8GO

57m(t07960,m07?/) = 5—m(x0,m(T))(p(T)).

Therefore, using and

0 0
cZG (o, ma(T))(pn(T)) — %(wo,m(T))(p(T))
20 0
(S o, TN (7). (1)) + 2 (g, m(T)) (1) )| < €1

Lemma then implies that (to, xo, -, y) has a derivative, and by linearity, if u is the solution to the
second order linearized system 1.’ associated with (v, p), (v/, p’) (that in turn have initial data (¢g, po)
and (o, p) respectively and with zero right-hand side), then

2770 20 0
[t 0., o Yoo )dy') = 5, o (D) (D), (D)) + (oo, (T (D). (92)

Hence, by the representation formula for 62U /6>m, Proposition and Corollary we have,
forr<n-—2,

2770
%(@xo,mo)(m,ﬁo ‘ ‘DI(s UQ(t Zo, T, ’rno)(po,pa)‘2
2,70 0
= (‘%(ﬂco,m(T))(P(T)W/(T))’ + ‘%(xo,m(T))(u(T))D2 + |Dhw(t, )2
52GY )
< (| Gz o D), 9T + Crr oy -5

52 2
+ (sup D2 2 (w0, 2, m(T) (o(T), (7)) + CasTlool -l

< {Sup 1 (‘526’0
Io(T) ==yl 2" (T = (k—1) \I 6m?

2
X (14 CuT) + CuTY 1ol oy 962 oy,

(@0.m(T) (D). @)+ | D2 % g m() (o). 1))

(where we use that (z + 2)? + (y + 2)? < (2% + y*)¥/? + 22)?, for z,y,z = 0). Taking the square root,
§2(U°,U)
om?

then sup over zg, po and p{ and summing over r < n — 2 gives the estimate on H .
n—2k—1,k—1
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Differentiability of 6U°/dm with respect to zo follows analogous lines: (v,p), (v',p’), (On,pn) and
(w, u) have to be changed according to Step 1. By , we have, using the notations of Corollary
and for any r < n — 2:

5U° > | 0U 2
Z 520%(%»%0,”10,1/)@0)‘ +‘Dxa§cg%(tax07xam0)(p0)’ =
=1
8GO 52GY ex 2 ,
L ) + S o), () + S )|+ | Dpt 1, )
om om om

[1]=1

where G° and its derivatives are all evaluated at (o, m(T')). We obtain the bounds on (52, 6(2];10) by

using Propositions and Corollary

Finally, second order differentiability of U° with respect to ¢, and the corresponding bound, can be
obtained similarly: let I,I' € R% with |I| = |I/| = 1, (v', p}), (", p") and (w"', ) be as in Corollary
(.10l Note that

’ ’ 5GO ’ ’ 6GO (SQGO / 6GO 4
I+ i To (1 l o (1 l l N
O U b, 0, m0) = 2551 GO+ 0%, Z222 (' (1)) + 08, 2222 (0! (1) 52 (01 (), (1) S (1),

while 0L+ U (to, w9, mo) is given by polarizing the representation formula (9I). We can then conclude by
Propositions [5.5] [5.6] and Corollary [5.10] O

6.3 Uniform continuity estimates on second order derivatives

Proposition 6.8. Let U be the solution of given by andn =>4, ke {3,...,n—1}. Suppose,
in addition to the assumptions of Proposition[6.6, that

. %G
Lip, 35212 <W> < M. (93)

Then there exists Thy > 0 (depending on M and on the data but not on G), such that

52U 52G
Li : — ()] < Lip, ot 01 ol —= CuT.
Slzp Pp—3:k—2,k—2 (5m2( )) S;IOP Py —3:k—2,k—2 <5m2) +Cp

Proof. We establish for later use a slightly stronger estimate involving the dependence with respect to
xo. This is used in Proposition [6.9| below. Let (to, m1,m2) € [0,T] x P2 and x}, 23 € R% be fixed. We
use the representation formula (88)) for 62U /dm?(to, xh, m1) and 62U /dm>(to, 3, m2). In particular we
let, for i = 1,2,

e (u',m") be the solution to the MFG system starting from m; at time to with H (and G)
evaluated at (x},x, Du(t,x),m*(t)) (and (z{,z, m*(T))),

o (v, p;) (respectively (v}, p})) be the solution of the first order linearized system with zero
right-hand side, initial condition (to, po) (respectively (to, p(,)) and where the Hamiltonian and its
derivatives are evaluated at (xf), z, Du’(t, ), m*(t)),

o (w', pu') be the solution to the second order linearized system associated with (v;, p;), (v}, p})
(and z},u’,m*), and with zero right-hand side.

We aim at estimating (w, i) := (w! — w?, u! — p?), since

_ 2U 1 / 52U 2 /
w(to’x) = W(tmxo’%ml)(ﬂmpo) - W(t07$07$7m2)(/’07ﬂo)~ (94)

We first set (T, p) := (v1—v2, p1 —p2) and (¥, p') := (v} —v}h, pj —ph). The pair (7, p) solves the first or-
der linearized system with zero initial datum, H and its derivatives evaluated at (z3, z, Dul(t,x), m'(t)),

51



and right-hand side

Ry(t,r) = —(H; - H,f) - Dvg — (% - %)(Pz(t)),
SH! SH?
Ry(t,x) = pg(H; - Hg) + (mlH;p - m2H§p)Dv2 + (mld—nf - mzé—nf)(pg),
SGY  6G?
Rs(z) = (% - %)(Pz(T))y

where H* and its derivatives correspond to H and its derivatives evaluated at (z,z, Du'(t,z), mi(t)).
By Proposition [5.5 we have

sup  [[vi(t)]n-1 < Cllpol —(k—2), sup [pi(t)|—(x—2) < (1 +CT) | pol - (r—2), (95)
te[to,T] te[to,T]

where C' depends on the regularity of 6G/dm, H,,, Hy,,, m" and sup, |[u’|,. Note that, by the above
estimates and Proposition [5.4

Sup | B () -2 + 5up | Re(8) |- k-2) + [ Rslln—2 < C(da(m1,m2) + |20 — 25]) lpol—k—2);

and therefore by Proposition (applied ton —1 > 2 and k — 2 > 1) we obtain
sup [5(t)n—2 < CT(da(m1, ma2) + |25 — 25|) |poll—(r—2). (96)

sup |p(t)]l-(5-1) < CT (dz(ma, me) + |20 — @5]) lpoll—(k—2)- (97)

Completely analogous estimates hold for v}, p; and their differences ¥', 7.
We now proceed by estimating (@, i), which solves the first order linearized system with zero initial
datum, H and its derivatives evaluated at (z{,x, Dul(t,z),m!(t)), and right-hand side

— SHY 6H?
Ru(t,2) o= —((Hy — HY) - Du? + (5 = S) (42(1)
§2H?! §2H?
+ W(Pl(t%/ﬂ(t» - W(pQ(t)7pl2(t)) + H,,Dvy - Dvj — H. Dvy - Dv}
SH! SH? SH! 2
+ = L(p1) - Dvj = =2 (p) - Dty + =L (p}) - Doy — =L () - Du),
) 2007l g2 gl o 2772 2 15H137 25H3 2 1,
Ro(t,x) := pu*(H H)+ (m H m~“H? )Dw* + (m"——= — m*“—— +pH. Dv
P P pp pp Sm Sm. H P1 pp Uy
— poHY,Dvh + pi H),Dvy — phH? Dvy + m' H ,, Doy Dv} —m® H}, Doy D)
52H! 52 H? SH! SH?
+ mlwgp(ﬂhpﬁ) - WQW;(P%PIQ) +p1 57;: (P1) = p2 57: (p2)
1 SH? SH!
+ P (p1) = ph s (p2) + ' —E(p) Doy
SH? SH! 2
2 () Duy -+ 2 (1) D — 22 () D
and
— 532Gt , 52G? , SGY  5G?
R3 () 5=W(p1(T),p1(T)) - W(p2(T)ap2(T)) + (% - %)(Mz(T»

Recall also that Proposition and Remark (applied to n — 1 and k — 1) yield

sup [w () [n—s < (1 + CT)|poll—k—2) | 06| - (5—2) sup [ ()= k—1) < CTlpoll—k—2) o6 | —h—2)-  (98)
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By the previous inequalities, , and (@ we get

sup IR (t) -3 + sup IR ()] - (k1) < CT(d2(ma,ma) + |25 — 23] ool - (k—2) 16— (k—2)-

Similarly, using also the Lipschitz regularity of 60G/dm,

52G

om?
+ CT(da(my, mz) + |25 — 25]) |poll— k—2) 06| - (5—2).

Then, recalling that @ = w' — w? satisfies , we obtain in view of in Proposition and for any

r<n-—3J,

52U 9 52U

T 5m g(tOsz’mQ) D;(s 2(t0,x(1),m1)

Falhos <1+ CT)|[ S5 w3, m2() — 2 b (1) Il =) lb o2

Hn—S;k72,k72

K

0;k—2,k—2 (99)
L 0%G 52G 1 9
< (1+ OuT)| Dy (e (1)) = Dy s (agoma (D)) o CasT (ol ma) + [ — a)).

Choosing x} = 23, summing over r < n — 3 and recalling Pr0p051t10n and (| . ) then gives the claim.

Note that we have also the following inequality for i = u' that will be useful in the next
proposition:
P I (8) = 1? Ok < CT(da(mr, ma) + |25 — 3 ])pol - k—2) 1£6] - k—-2)- (100)
telto,
O

Finally we establish the Lipschitz regularity of the second order derivatives of G and G with respect
to g and m.

Proposition 6.9. Let U be the solution of given by and U° be the solution to @ given by
(68). Suppose that the assumptions of Propositz'on 6.8 hold and that in addition:

. 32G0 §2@ 6G0 66’% .
Llpn73;k72,k72( Sm2 Sm2 )+ Lip,,_ 3ik— o= sm . om )+ L1pn73(DfmG07D§DG) <M

and

52G0 5@ 6GY, G,

Llpn 3;k—2,k—2 (5m2’6 2) Llpn 3;k— 2(W7 Sm )+L1pi0—3(Da2¢oG07D32?0G) <M?

for somen >4 and k€ {3,...,n—1}. Then

, S2U0(t) 82U (¢) 260 §°G
Sglepn73;k72,k72(W7 52 ) < Lip,_g.p 04— 2(5 5 5m )+ CuT,

0 2U°(t) 62U (t) G0 82G
Slszlpnf?);ka,ka(W’ dm? ) SLipY g ok 2(5 2 5m 2)+CMT
SUC () U, (t) 6GY, 4G,
sup Li ) Zo Lo Y < L3 ) Zo Zo T
blip 1pn—3,k—2( sm_ | om ) lpn—S,k—Q( sm ~ dm )+CM ’
SUC () U, (t) 6GY, G
LipZo . Zo —Zor /Y < Lip¥°. —— %o o T
Slip lp”*ik*?( dm  om ) lp""s?kd( om = dm )+ CuT,

and

Lipn73 (Dszvo UO (t)v Dio U(t)) < Lipn73 (Dgo G07 Da2:0 G) + CMT7
Lipy® 5(DZ U%(t), D2 U(t)) < Lipp° 4(D2,G°, D3 G) + CyT.
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Proof. We will detail only the proof of Lipschitz estimates of (§2U°/dm?, 62U /ém?). Lipschitz regular-
ity of §Ugo/5m and D?EOUO, 0Uz,/dm and D%OU can be proven by following identical lines using the
representation formulas that appear in the proof of Proposition
Let us start with 62U°/6m?. Let (to,m1,m2) € [0,T] x P2 and x},x3 € R? be fixed. Let also, as in
the proof of the previous Proposition fori=1,2
e (u',m") be the solution to the MFG system starting from m; at time ¢ty with H (and G)
evaluated at (x},x, Du'(t,x),m*(t)) (and (z{,z, m*(T))),
o (v, p;) (respectively (v}, p})) be the solution of the first order linearized system with zero
right-hand side, initial condition (o, po) (respectively (to,pp)) and where the Hamiltonian and its
derivatives are evaluated at (z,z, Du'(t, z), m'(t)),

o (Wi p )_be the solution to the second order linearized system associated with (v;, p;), (vl pl)
(and (u*,m")), and with zero right-hand side.

Recall that (| . provides a representation formula for 62U°/6m?, that is
5200 52G0 ) GO0 )
W(t()vx()amz)(po;p()) W(ﬂﬁmmz(T))(Pi(T)?P;(T)) + %(xf)’mz(T))(Mz(T»v
and g%(to, xh, ,m;)(po, ph) = w'(to,x). Let us recall the following inequalities

sup da(m!(t),m?(t)) < (1 + CT)da(my, md) + CT|xf — x|,

te[to,T)

sup |pi(t)]|—(k—2) < (1 + CT) | pol| - (r—2),
tE[tU, ]

sup ||Pz( M=te—2) < (1 +CT) llpoll— (k-2
te[to,T

sup ||Pl( ) = p2(t)|—k—1) < CT (d2(m1, m2) + |xg — 23])[ po] - (r—2),
te[to,T]

sup [0y (t) — p5 ()| - -1y < CT(d2(my, m2) + |z — 23]) [ 2] - (k—2)
tE[to,T]

sup “Mi(t)H—(k—l) < CT|pol| - (k-2 ||P6H—(k—2),
te[to,T)
S It (t) = 1 ()| =k < CT(da(my, m2) + |25 — 25]) |pol— k—2) |06 - (5—2).
€lto,

that are consequences of Proposition , , and ([100)) respectively. Setting
Or = CT(dz(mi,m2) + |25 — z5]) poll—k—2) 196 - (k-2
we obtain, using also, for any r <n — 3,

(2 oY s (S - )i
< (1 + O |2 (b ()01 (). 94 (7)) — S (a3 (1) 01 (). (1) + 01 )
+(1+0m)f u xg C (@b, m (D)) (1 (T), 94 (T)) - D;g%(xﬁ,x,m2(T))(p1(T),p'1(T))‘ +9T}2.
Choosing m; = my = m and rearranging gives the Lipschitz estimates in zo:
2 (- P s
< @+ en (X% @ m @)@, ) - £ (xo,ml(T))(pl(T),p’l(T))’2+
12 @ (D) (01 (1), 94(D)) — DL 5 (. (D) a0, ()| )+

2
+ CTlab = wollpol -2 I0b 52 | -
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while the choice z§ = x3 gives similarly the Lipschitz estimates in m. O

A Estimates for solutions to HJ equations

A.1 Main estimates

In this section, we assume that the data a, h and g are smooth and we are looking for a priori estimates
on the smooth and globally bounded solution u to the HJ equation

{ —opu(t,z) — Tr(a(t, ) D?*u(t, z)) + h(t,z, Du(t,z)) = 0 in (0,7) x R4 (101)

w(T,z) = g(x) in R?
We always assume below that there exists Cyp > 0 and v > 1 such that
a(t,x) = Co_lfd, HDaHoo < Cy

and
| D2h(t, z, p)| < Co(1 +[p|")
for every (t,x,p) € (0,T) x R? x R

Proposition A.1. (Lipschitz estimates.) For any M > 0 there exists Thy, Car > 0, depending on M, Cy
and v, such that, if T € (0,Typr) and |Dg|o < M, then

sup [Du(t)[o < |Dgloo + CarT

te[0,T7]

Proof. We use a standard Bernstein method. Let v(t,z) = >, u?(t,z). Then

o(t,x) = 2Zui(t,x)ui,t(t,x), vi(t,z) = 2Zui(t,x)uij (t, ),

vig(t,x) = ZZ(uik(t,x)uij(t, x) + u; (b, x)ujx (¢, ).

?

Thus
—0pv — Tr(a(t, ) D?v(t, z))

= —QZui(t,x)ui,t(t, x)—2 Z ajr(t, @) (wir (t, ©)ui; (¢, ) + wi(t, 2wk (t, ©)

i 0,5,k
=2 Z aji(t, o) uik(t, x)u;(t, x) — 2Zui(t,x)Di (Gpu + Tr(a(t, z)D?u(t, x)))
1,5,k i
+ Z ui(t7 x)(ajk)i(t7 x)ujk(t7 :L')

i3,k
where (a;r); denotes the x;-derivative of the element ;i of the matrix a(¢, z).
Using the equation for u we find

—0yv — Tr(a(t, x)D?v(t,z))
=2 Z a;k(t, x)uik (t, ©)ui; (t, ) — ZZui(t,x) (hi(t,z, Du(t,x)) + hy(t, x, Du(t, z)) - Du;(t,z))

i4.k i

+ 37 wilt, @) (agn)i(t 2)uju(t, ).
i,k
(102)
Using our assumptions on a and h, we infer that

—0pw — Tr(a(t, ) D*v(t,x)) + hy(t, x, Du(t,z)) - Dv(t, )
< =205 D*ul? + 2Co|Du|(1 + |Du|”) + || Da o | Du| | Dy
< 2Co|Dul(1 + |Du|") + ¢4 Da|?,Co| Dul?
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for some constant ¢4 only depending on the dimension d. In particular, by maximum principle we estimate
[vl=(@r) < D913 () + T [2Col Dl @0y (1 + 1Dl ) + cal Dal%Col Dulf e gy | (103)

which implies

0] L= (@r) < HDQHLOO(QT) +4T?CF + HDU’H%W(QT)

(104)
+CT Dl o) [HDuH  + 1]
for some C' only depending on d and Cy. Recall that vl ze(@ry = ||DuH2LOO(QT), and define Ty as
1 1
Ty = min{ — M, — .
2C) 401+ (2M)1)
Then it is easy to see that
Indeed, for T' < Ty and |Du| = (g, < 2M, (104) implies
1

”DUH%@(QT)A< HDQH%OO(QT) +4T3,C3 + ZHDUH%W(QT)

< HDg||2L°O(QT) +M? + §HDUH%%(QT)
hence

HDU”LCL(QT) <2M
whenever T' < Ty and |Du| =g,y < 2M. A continuity argument implies that
sup T+ [ Dulpn(y) < 2M} =
so (105) holds true. Using this information, we deduce from (103 that
|DulF e (gry < IDgT0 (@ry + Crt T | Dl Loy
where Cpy = 2Co(1 + (2M)7) + c4l|Dal%,Co 2M. Hence
1 ’ 2 Lo o
IDulrx(qr) — §CMT < D9l (gr + ZCJV[T
which implies
[Dullze(@ry < Cu T + [Dgl L (@) -
O

Proposition A.2. (Lipschitz estimates, linear case.) We now assume that T <1 and that
|Doht,@,p)| < C1+ Colpl  V(t,a,p) € (0,T) xR x RY,

for some constants C1,Cy > 0. Then there exists a constant C, depending on Cy, Ca and ||Dalls only,

such that
sup [Du(t)|o < |Dgllo(1+CT)+ CCLT
te[0,T7]

Proof. Our starting point is inequality (102) in the previous proof. Using our assumptions on a and h

we get:
—0w — Tr(a(t, ) D*v(t,z)) + hy(t, z, Du(t,z)) - Dv(t, )

—2051|D2u\2 + 2|Du|(Cy + Cs |Du|) + | Dal e | Dul |D2u|
< 2|Du|(Cy + Cy |Dul) + c4|Da|?,Co| Dul?
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which implies
— 0w — Tr(a(t, ) D*v(t, ) + hy(t, z, Du(t,z)) - Du(t,z) < Av + 20y v'/?

where \ = 2C5 + c¢4||Dal%,Co. By the maximum principle we get

1/2
[oln@r < T (201 Tl 2 g, + IDgl%)

from which we derive that o
[0l 72 gy <2C1 T + M2 | Dyl

AT/2

Since T'< 1 (and so e < 1+ ¢)\T), the conclusion follows. O

Proposition A.3. (Second order estimate.) Assume that h and a are of class Cg. Then, for any M > 0,
there are constants Ty, Cay > 0, depending on M and on

sup [a(t)|2 + sup D7 h( - p)]o (106)
t€[0,7) Ipl<IDulc

such that, if |D?glc < M and T € (0,T), then

sup [D*u(t)|oe < |D?*glloo + CuT.
te[0,T7]

If, in addition, h is affine in p, then there is a constant C, depending only on Co, supefo 1 la(t)|2 and
on |D2,h|w, such that, for any T € (0,1],

sup | D*u(t)|o < (1+CT)|D?gloo + CT  sup | DI h(-,p)]w.
te[0,T] [pI<[Dulloo

Proof. We use the Bernstein method again. Let w(t, ) = 3, ; uj;. Then
—0yw — Tr(a(t, 2)D*w(t, z))

=2 Z agt(t, @) (t, ©)uji(t, x) 22“%1 (t,x)D; ; <8tu+2aklukl>

i,7,k,l

+2 Z uij(t,x akl) (t x)u]kl(t l‘) (akl) (t x)ulkl(t l‘) (akl)ijukl) .
i,9,k,l

So

—0yw — Tr(a(t, ) D*w(t, x))
= -2 2 ARl Uik Us5] — 22 Uy (h” + hi’p . D’LLJ' + hj’p - Du; + hppD’LLi . DUj + hpDuij) ( )
i,5,k,1 1,7 107

+2 3wt @) (am)i(t, 2)wgn (8 ) + (arn) (8 2)win (t, ) + (ap)ijur)
4,9,k,l

which yields, using the ellipticity of a(¢, x),

—ow — Tr(a(t, ) D*w(t, x)) + hy(t, z, Du(t,z)) - Dw(t, z)
—2C; | D3ul? + Cp|D?u| (1 + |D?u| + |D?ul?) + C|D?u| (|al1 | D3ul + |a]2 |D?ul)

for some constant C), depending on supj,<pul.. IDZ ,h(:, -, p)llo. Young’s inequality leads to

—0yw — Tr(a(t, x) D*w(t, z)) + hy(t,z, Du(t,z)) - Dw(t, x)
C|D?u| (1 + |D?u| + |D?ul?)

where now C' depends on ||a|2 as well. We conclude using maximum principle as in the proof of Proposition

AT
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If h is affine in p, then with the same estimates we deduce from (107):
—0pw — Tr(a(t, x) D*w(t, x)) + hy(t, x, Du(t,z)) - Dw(t,z)
< [D?ul (2| Dazhloo + C|D?ul)
< Cw + 2| Dyyh oo |D?ul

where C' depends on a2, Co and supj,<pul.. |DZ ,h(:,,p)|lw- The conclusion follows as in Lemma
A2 O

Proposition A.4. (Third order estimate) Assume that h and a (and the solution u) are of class Cy.
Then there is a constant C, depending on |D*u|«, on |Dallew + | D?a|e + |D3a]w and on

sup {108, )Yl + I p) e }

pl<[ Dufoo

such that, for any T € (0,1],

sup | Du(t)]o < (1 + CT)[D?g|o0 + CT,
te[0,T]

Proof. Let w = 3,4 u3;;.. Then
—0yw — Tr(a(t, ) D*w(t,z))

=2 Z i (t, )i it (T, ) Wi m (T, ) — 22 Uik (t, ) D j 1 (@U + Z a1mU1m>

i,5,k,l,m i, lm
+2 Z Uijk(tvx)((alm)ijkulm + (aim)ijUkim + (@m)ikWjim + (Qim) jkWitm
%,5,k,l,m

+(aim)ihjkim + (Qim) jWikim + (alm)kuijlm)

So
—0yw — Tr(a(t, 2) D*w(t, z))

= -2 Z alm(t, Ji)uijkl(t, x)uijkm(t, $) - 22 uijk(t, .’L‘)Di’j,k {h}

i,7,k,l,m 7,7
108
+2 Z Uijk(t7$)<(alm)ijkulm + (atm)ijUkim + (Qim)ikWjim + (Gim) jkWitm (108)
i,3,k,l,m

H(A1m)iUjkim + (Qim) jWikim + (alm)kuijlm) .

As before, the coercivity of a implies

-2 Z A (t, )it (8, )i jrm (8, ) < —2C5 | D*ul?,
i,9,k,l,m

whereas last term in (108]) is estimated as
2% ikt Wijk(t, ) ((alm)ijkulm + (@m)ijtrim + (@m)ikWjim + (@im) jriom
+(aim)ijkim + (Qim) jWikim + (alm)kuijlm)
< Cy'|D*ul? + |D?u| (2| D%al|oe | D?ul + C |Dul) |

for some C' depending on Cj and |D?al|«. Finally, a direct computation of D; j  {h} and a straightforward
estimate of all terms involved imply

2%, it 2)Dy g k) < —hy(t, 2, Du(t,2)) - Dw(t, )
+C D] [|D*h] |D*ul(1 + |D?ul) + | D*hs(1 + [D%uf*)] .
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Hence, putting all together we deduce from :
—ow — Tr(a(t, ) D*w(t, x)) + hy(t, , Du(t,z)) - Dw(t, x)
< C|D%u| [|D*h]lo |D*ul(1 + |D?ul) + [D*hllo (1 + [ D?ul)]
+|D?ul (2| D%alle |D*u| + C | Dul)
< O|D*ul* + C|D3ul,
where C' depends also on |D*u|., for & < 2. We conclude as in Proposition O

Lemma A.5. (Higher order estimate) Let n € N with n > 3 and assume that h and a (and the solution
u) are of class CJ'. There is a constant C, depending on n, d, sup, |u(t)|n—1, sup; [|a(t)|, and on

Sup HD s K ap)HOC? (109)
IpI<| Dullo ;;) el

such that, for any T € (0,1],
sup [ D"u(t)]os < (1+CT)|D" gl + CT.
Proof. Let w := 2 uj where the multi-index k = (ki, ..., kq) belongs to N® and |k| = 3, k;. Then
|k|=n

—dyw — Tr(a(t, z)D*w(t, x))
=2 Z Zaij(t, x)ug i (t, )ug ;(t, ) — 2 Z uy(t, ) Dy {0pu + Tr(aD?u)}

\kl=n ij lk|=n
+2 Z uy, (Di(Tr(aD?u)) — Tr(aD?uy)) .
|k|=n

As n > 3, a simple induction argument shows that Dy{h} is of the form
Dk{h}sz+gk-D"u+hp-Duk

where the map

fe = fr(t,z, Du(t,z), ..., D”flu(t, x))
is a polynomial function of the derivatives of u up to order n — 1 with coefficients involving derivatives
of h with respect to (z,p) up to order n computed at (¢, z, Du(t,z)), while

gk - D™u = Z Z D, ,h(t,z, Du(t, z))Dug + hpp(t, x, Du(t, z))Du, Dug ,
|¢|=n—12+&=k

where ¢ is any multi-index of length n — 1, z is a multi-index of length 1 (z = e; for some j € {1,...,d})
and £ + 2z = k.
Therefore

—ow — Tr(a(t, ) D*w(t, z)) + hy - Dw
*222‘123 u;“tx)ukj(tx—2Zuktx)(fk+gk D"u)

4,7 |k|=n |k|=n
+2 Z uy, (Di(Tr(aD?u)) — Tr(aD?uy))
|k|=n
—2C5" ) [Dugl? + Clugl (1 + [ux])
|k|=n
+2 Z uy, (Di(Tr(aD?u)) — Tr(aD?uy))
|k|=n
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where C' depends on sup, |u(t)|l,—1 and the quantity in (109). Last term can be estimated as before: the
higher order quantity involves Duy, so we have through Young’s inequality

2 > g (Di(Tr(aD?u)) — Tr(aD%ux)) < 205" D [Dugl® + C lug|(1 + [ux)),
|k|=n |k|=n

for some C' depending on sup, |a(t)|, and sup, |u(t)|,—1. Finally, we conclude with maximum principle,
as in Lemma 0

Proposition A.6. (Higher order estimate, further informations) Let n € N with n > 3 and assume that
h and a (and the solution u) are of class Cf'. For any M > 0, there are constants Ky, Tahr > 0, depending
on M, Cy and vy, and a constant Cp; > 0 depending on

n
k
sup [a(t)|n+ sup Y [DE, A, p) oo,
te[0,Tn] [pISKwn p—

such that, if |glln < M, then, for any T € (0,Ths) and any r < n, we have

sup [ Dyu(t)|eo < [Diglew + CuT
te[0,T]

and therefore

sup u(t)n < [gln + CrnT. (110)
te[0,T7]
Proof. The proof is a straightforward combination of Propositions and Lemma O

We finally address the same issue for (uncoupled) systems of linear parabolic equations: let (u');—1,
solve the system

—opu! — Tr(a(t,z)D%ul) + V(¢,z) - Dul + fl(t,x) =0 in (0,T) x R?
ul(T, x) = g'(x) in R?

where a, V and the f! are bounded in CJ independently of ¢ € [0,1], for some n € N*. Note that the
diffusion and the drift terms are independent of [.

Proposition A.7 (Higher order estimate, systems of affine equations). There is a constant C, depending
on k, d, sup, |a(t)||ln and on sup, |V (t)|n, such that, for any T € (0,1] and for any r < n,

k 1/2 & 1/2
sup (Z |D;ul<t,x>|2> < (1+CT)sup <2|D;gl<x>|2> + CTsup(lg' |+ sup |1 (1))

LT \i=1 z \i=1
In particular, if k =1, for any r <n

s[up] IDzu®)]eo < (14 CT)|Dyglleo + CTSltlp 1D f ()]0
te[0,T

The only small point here is that the supremum over x is outside the sum (and not inside as it would
be given by simply applying to each u' the previous Propositions).

Proof. The proof runs exactly along the same lines as before and so we just explain briefly the idea for
r = 0. Let us consider v(t,z) = Zle(ul(t,x))Q. Then v solves

k
0w — Tr(aD*v) + V- Dv = —2 Z ul fl— aijuéug
=1 i3l

We infer the result by using the positivity of @ and the maximum principle.
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A.2 Systems with parameters

In this section we revisit the above estimates for specific systems of Hamilton-Jacobi equations involving
a parameter y. The motivation for the specific form of the system is the analysis of the MFG problems
with a major player. Note that here the variables-parameter couple (z;y) plays the role of (xo;z) in
the HJ system analyzed throughout Section As usual, we discuss linear and nonlinear systems
separately.

A.2.1 Nonlinear systems

Here we consider the system consisting in a coupling of a non-linear HJ equation with a linear one:

-0 (t,z) — Au®(t,z) + hO(t,z, Dul(t,x)) = 0 in (0,7) x R%,
—dru(t,x;y) — Ault, z;y) + hg(t,x, Du(t,x)) - Du(t,z;y) + f(t,x;y) = 0in (0,T) x R4, (111)
u(T,z) = ¢°(x), w(T,x) = g(z;y)  InR7,
where h0 : [0,7] x R? x R? — R and f : [0,7] x R x R — R (d; being the space parameter of the
variable y) are smooth maps satisfying in addition the bounds:

| Do ph? (8, 2,p)| + [DF ,h° (2, p)| < Collp|” + 1), (112)
for some v > 0 and Cy > 0.

Proposition A.8. Let r,n € N and assume (in addition to ([112)) that h°, h are of class Cj and that
f is bounded in C;"" independently of t € [0,1] for some n € N. For any M > 0, there are constants
K, Ty > 0, depending on M, Cy and «y in (112)), and a constant Cp; > 0 depending on

[

sup D [ D h0CD)lloe + D 1D ki (7, 9) o sup £ (1)
k=0

[PISKM —g

such that, if |g°] + |gl
forl <mn,

v <M and T € (0,Thr), and if (u®,u) is the solution to (111]), then we have,

1/2 1/2
sup (|D"°(t, 2)|? + | D Dhu(t,z;y)) < sup(|D7g° (@) + Dy Dhglasy)P)  + Cu T,
1,2,y z,y

Let us recall that DL D!u = (0505u) =y |a|=1, hence | DL DLul? = Zw|=r,|a|=z(@§5§““)2- Let us also
point out that the main difference compared to Proposition is that we need to estimate u® and u at
the same time.

Proof. The proof uses the same technique as for a single Hamilton-Jacobi equation without parameter.
We explain only the main changes. We first prove the result for I = 0.

By the maximum principle we can first bound [u°|? + |u|? by [/(¢)? + ¢*|e + CT. Next we address
the Lipschitz estimate. We claim that, for any M > 0 and any n € N, if |[Dg°|s + [|D2glec < M, then
there exists Thy and C)ps (depending on M, Cy, n and v in only) such that

1/2 1/2
sup (|Du0(t,x)\2 + \Dzu(t7m;y)|2) < Sup(|Dgo(ac)\2 + \ng(m;y)|2) +CuT(1+ Stzp [ Dz f(#)]loo)-
z,y

t,z,y

d
To this aim, let us set: v(t,z) = Z((u?)2 + (u;)?). Then following the computation in the proof of
i=1
Proposition we find:
— v — Av(t, )

= =2 (u! Dy, (2’ + Au®) + u; Dy, (Opu + Au)) — 2(|D*u®|* + |D?ul?)

= =237 (uf(hS, + hY - Duf) + ui(hY ,, - Du+ hd,Du - Du+ hY - Du; + f;)) — 2(|D*u’[* + | D?ul?),
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so that

— 0w — Av(t,x) + h) - Dv
- —22 (u0R®, + ui(hQ ,, - Du + hS,Dul - Du + fi)) — 2(|D*u°|? + | D?ul?).

Using our assumption on h® we get
— 0 — Av(t,z) + hY - Dv < Cv'2(jv|’ + 1+ | Dy flleo),

for some C' > 0 and 6 > 0 which depend on Cy and v only. We derive from this the Lipschitz estimate
thanks to the maximum principle exactly as in the proof of Proposition

The higher order estimates can be checked exactly as in Propositions [A73]and Lemma so we omit
the proof. Note that higher order estimates on D"u" and D" depend on D" 'u® and D"~ !u, but this
dependance affects the constant Cjp; only.

Let us finally explain how to handle the derivative with respect to y: we note that Jju satisfies the
same linear equation as u with f replaced by dy f, and the final datum g is replaced by dy/g. So, in order

to estimate D, D!, (u®,u) for instance, we just set ¢; = (2 ja=t )=t v = Z?=1(cl (uf)? + (05u;)*) and
w =3}, v" Asabove,

— O — Av(t,z) + hg - Dv® < C(va)1/2(|v”‘\9 + 1+ D20y floo) < Ow1/2(|w\6 +1+ ||DxD§/fHoo),

and summing up one concludes the desired inequality, noting that w = 2\5\:1 (0£u0)2+2m|:1 ‘a‘:l(ﬁf(?gu)z.

O
A.2.2 Linear systems
We also need to quantify the regularity of linear systems of the form
—owu’(t,z) — Aul(t, ) + VO(t,x) - Dul(t,z) + fO(t,x) =0 in (0,7) x R,
—0w(t, z;y) — Ault, z3y) + VO(t,2) - Dult,z;y) + V(t 239) - Du’(t, ) (113)
+f(t,z;y) =0  in(0,T) x RY,

uo(Tv z) = go(x)v uw(T,z) = g(z;y) in R

Proposition A.9. Assume that, independently on t € (0,1], VO, O are bounded in C, and V, f are
bounded Cy'" for some r,n = 0. Then, if (u°,u) is a solution of (113)) which is bounded in C} x Cy"
and if |g°]» + lg]|rn < M, we have, for any T € (0,1], I < n,

0 2 l 2 12
sup (|03l (¢, )| + | D Dut, x5 )

t,x,y

1/2
< Sup(\D;,gO(xﬂ2 + |D;D7l!g(x;y)|2) + CuT,

z,Y

where Cyy depends on M, the bounds on VO, fO and V, f in C" and Cp™ respectively.
In addition, for r =0 and | < n, we have

1/2 1/2
sup (|u°(t, )+ |Dju(ta:)”) < (1+CT)sup(|o”(@)P+1Dya(:)?)  +CT oot |D) f0)
sT,Y x,Y

where C depends just on the bound of V° and V.

Proof. We first note that the derivatives of u with respect to the parameter y solve a system which has
the same structure as the one for u: so we just need to check the result for n = 0, and proceed as in the
proof of Proposition for n > 0.
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Let us start with the L® bounds: We consider o := (u®)? + u?. Then v satisfies
—0¢0 — A = —2u° (Qpu® + Au®) — 2u (dyu + Au) — 2(|Du’|* + |Dul?)
= —2u° (Vo(t,x) - DUl (t, ) + fo(tw)) —2u (Vo(t,x) - Du(t, x)
+ V(twiy) - Du(t2) + f(taiy)) = 2D’ + [Duf?)
< Co+T2(| oo + f110)

where C' depends on |V, and |V||s only. This implies the result for » = n = 0.
We now check the C! estimate. Let us set as usual v(t,z) = Z?zl((u?)Q + (u;)?). Then

— 0w — Av(t,x) = —22 (u) Dy, (04’ + Au®) + u; Dy, (Gpu + Au)) — 2(|D*u’|* + |D?ul?)
= =23 (VS - D + VO Duf 4 f9) + iV - Du+ V- Dug + Vi, - Dul + V- Dul + f,))

—2(|D*u°|? + | D*ul?)
< Cv+02(|Df)o + | Daflo),

where C depends on the C' bound on V% and on V and on d only. This implies the estimate for r = 1

and n = 0.

As for the C? estimate, let us set as usual w(t,z) = Z?jzl((u?j)Q + (u37)?). Then

—0rw — Aw(t, z) < Cw + Cw' (1 + |D? 0o + | D3 flloo + [ Du’loo + | Dau]co),

where C' depends on the C* bound on V? and on V and on d only. We then get the estimate for r = 2
and n = 0 by the maximum principle and using the previous bounds for Du®, Du.
The estimate on higher order derivatives can be checked in a way similar and we omit the proof. [J

B Functions on P,

B.1 A criterium of differentiability
Here we introduce a simple criterium for a map U, depending of the measure, to be of class C*.

Lemma B.1. Let U : Py — R be continuous. For (s,m,y) € [0,1] x Py x R? we set

U(s;m,y) :=U((1 — s)m + sdy).

R d X
If the map s — U(s;m,y) has a derivative at s =0 and if its derivative at 0, — U : Py X R? > R s

ds [s=0
continuous and bounded, then U is of class C'' with
oU d -+
%(m, y) = £U(O,m,y)‘

Proof. We have to show that, for any mg, m; € P, we have
1 d .
Um) = Ulma) = [ [ 22005 (1= shmo -+ sma.y)(ms — mo) dy).
0 Jra dS

Before starting the proof, let us note that the continuity assumption of d%f] at s = 0 implies its continuity
at any s € [0, 1], replacing m by (1 — s)m + sd,,.

Let us start by considering the case where mg is fixed and my is an empirical measure: m; = mi,v =
% ng’zl Oy, for some NeN, N > 1, y, € R?. The general case will be treated next by approximation.
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All the measures we are going to manipulate in the next lines belong to the set

N

N
K = {agmgo + 2 0y, , ag =0, 2 ap =1}
k=0

k=1

which is compact in P3. So, by continuity of U, if we fix € > 0, there exists 0 € (0,1/2) such that, if
m’,m” € K with da(m,m’) < § and s € [0, §], then

sup (114)

d - d - )
P . P . <
i SU(Symyk) Is U0;m',yr)| < e

Our first step consists in showing that, for s > 0 small enough (to be defined below) and for any m € K,
we have

d ~
U((1—=s)m+ Smi,v) —U(m) — s/ dU(O;m,y)mi,v(dy)‘ < C(es + 5%), (115)
Rd AS
where C depends on the sup norm of %U on [0,1] x K x {yx, k=1,...,N}. In order to prove (115)),
we define oy, = m for k =0,..., N and note that
N
N+1—-k
[Ja—a)= o WH1=k)s (116)
N
I=k
We now define by induction
mg = m, my = (1 — ag)Mp—1 + iy, (117)
and using (116]) we get
N N-1 N
H 1704;6 m+an yN+ Z akéyk H (170&1)
k=1 k=1 I=k+1
s (N —k)s N
Z(l_s)m+§1§ykN—(N—k)s(1_ I )= (1—s)m+smy .

So, by the definition of myy1 in function of my in (117)),

U((1 = s)m + smi) Z (mi+1) — U(my)
N-1 ) B N=1 rowy g

= > Ulagsr;mp, geen) = UOsmp, ypsn) = ) / —U(T5mp, Y1 )dr -
k=0 ko Y0 ds

Let us assume that s € (0,d). As s < 1/2, we have oy, < 2s/N for any k, and thus
dy(my,m) <Cs

for a constant C' which depends on mg and on the y; (but not on m € K nor on s € (0,9)). We now
require that s is so small that C's < 4. Then, for any k and any 7 € (0, ay), we have by (114):

d -
—U(0;m, yr+1)

d -
’dsU(T;mk’ka) T s <€
We infer from this that
N-1
U((1-s)m+ sm Z ak+1 U(0;m, yr+1)| < Ce Z Qg1
k=0 k=0
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As |ay, — s/N| < Cs?/N, we conclude that (115]) holds.
The next step in the proof consists in showing that

U(e™tmg + (1 — e_l)mi,v) —U(myg) = / if](O; (1 =7)mg + Tmi,v,y)mi,v(dy) 1dTT. (118)
0 R -

For this, let us now choose T € N large and let

my = (1—;>nmo+ (1— (1—;>n>m§v nef{0,...,T}.

We have ) )
N
Mpy1 = <1 - T) My, + Ty ne{0,...,T}
So, by (L13)),
U -7t ny)mi (d
(mr) — Z . ds U (05, y)m (dy)
. N -1 d -
Z (1 =1/T)ymy + 1/T)md) = U(my) = T / —U(0;mp, y)md) (dy)
n=0 Rd ds
T—1

Z (¢/T + (1/T)?) < Ce+T7Y).

We let T'— +00 and then € — 0 to conclude by continuity of U and of d%f] that

1
Ule™'mo + (1 — 6_1)7”;\/) —U(mo) = / / iU(O; e *mo+ (1 — e_“")mi,v, y)mi,v(dy)ds
Rd

T

dr
/ / (1 —7)mo + Tmy, N oy)m (dy) 1 .
re d -
This is (118]).

By continuity of U and of d%U and by density of the empirical measures, one obtains from (118) that,
for any measure mg, my € Po:

d
Ul mo+(1—e)m U(myg) / / (1 =7)mo + ™my, )ml(dy)liT. (119)
]Rd — T
Choosing m; = myg then implies the normalization convention
d -
d*U(O;mo,y)mo(dy) =0
Rd AS

for any mg € Po. In particular, this yields

d

[, 0O+ ey pymay) = (=) [ 001~ rma + )y = o))

Inserting this relation in (119) gives the more standard form:

Ule Ymo + (1 — e Y)m U(mo) / /Rd (1 —7)mg + 7my,y)(m1 —mg)(dy)dr.

Using again the continuity of U and of U one easily deduce from this the desired equality. O
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B.2 Interpolation and Ascoli Theorem in P,

In the proof of Lemma we have used two interpolation Lemmas. The first one is standard (see,
for instance, [22] Lemma I1.3.1]): we recall it because we need a specific setting. The second one is an
adaptation to Ps of the same techniques.

Lemma B.2. Let W : [0,1] x R% — R% be Holder continuous in time locally uniformly in space: for
any R > 0, there exists Co.r > 0 and ar > 0 such that

[W(t,y) —W(s,y)| < Corlt—s|* Y(s,t,y) € [0,1] x [0,1] x R% with |y| < R and |t — s| < ag,
and such that DyW is Holder continuous in space uniformly in time: there exists C1 > 0 such that
|DyW (t,y0) — DyW (t,y1)| < Cilyo —wal®  V(t, 1, 92) € [0,1] x RT x R%.
Then DyW is Holder continuous in time locally uniformly in space:
D, W (t.) = DyW (s,y)] < Cr |t = s| 75
V(s,t,y) € [0,1] x [0,1] x R% with |y| < R and |t — 5| < o/,

for some constants Cr > 0 and o'y only depending on Co gy1, ar+1, C1, o and .

Remark B.3. The proof below also shows that, if in addition W is Holder continuous in time uniformly
in space (i.e., Cy r and ar do not depend on R) and if D,W is bounded, then D, W is also Holder
continuous in time uniformly in space.

Proof. Fix yo,y; € R? with |yo| < R and |y1| < R+ 1. Let y, = (1 — 7)yo + 7y for 7 € [0,1]. We have

‘/0 (DyW(t7yT) - DyW(svy'r)) : (yl - y())dT

= [W(t,y1) = Wt yo) = W(s, y1) + W(s, p0)| < 2C0,r1 [t — 5[ .

So

[(DyW (t,50) = DyW(s,40)) - (41 = yo)| < ‘/0 (DyW(t,y0) = DyW(t,yr)) - (yr = yo)dr

+ / (DyW(tay‘r) - DyW<3>y‘r)) : (yl - yo)dT + / (DyW(&yT) - DyW(SaﬁUO)> : (yl - yo)dT
0 0

< 2CO,R+1|t — S|a + 201|y1 — y0|1+5,

using also the Hélder continuity of D,W. Choosing y1 = yo + hv, with |v| = 1, we get

2Co,r+1

[Dy,W (t,y) = DyW(s,y)] - v| < ]

|t —s|* +2Cy|h)°.

Optimizing with respect to h € (0, ar+1] and |v| = 1, we find the result for |t — s| < o/ for a suitable
constant o/ depending on Cy r11, ¢, C1 and 6. O

Lemma B.4. Let W : [0, 1] x Py — R be Holder continuous, locally in time and uniformly in measure:
there exists a € (0,1] and, for any R > 0 there exists Co g > 0 such that

|[W(t,m) —W(s,m)| < Corlt —s|* Vm € Py with Ma(m) < R, Vs, t € [0, 1],

(where Ma(m) = ([pa ly|*m(dy))'/?) and such that % and D,,W are bounded and D,,W is Holder
continuous with respect to the measure uniformly in time: there exists ,0 € (0,1] and Cy > 0 such that

| D W (t,m0,90) — D W (t,m1,91)] < C1 (d3 (mo, m1) + |yo — y1|6)
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for any t € [0,1] and any (m;,y;) € Py x RL. Then D,,W is Holder continuous in time locally uniformly
in (m,y) € P x RY: for any R > 0, there exists a constant Cr > 0, depending on R, |[DmW |, Co r+1,
Cq, a,y and 9§, such that

| Do W (t,m,y) = Doy W (s,m, y)| < Cglt — 5|*7/ (20040,
for any s,t € [0,1] and any (m,y) € P2 x R with |y| < R and Ma(m) < R.

Proof. Let R > 1. Fix mg, m; € Py with Ma(m;) < R and set m, = (1 — 7)mg + 7m;. Then

' SW SW
/o /R (csm(t’mﬂy) ~om mﬂw) (m1 — mo)(dy)dr
= |W(t,my) — W(t,mo) — W(s,m1) + W(s,mp)|

< 2007R|t — 8|a .

As

~x

<|/ 1 / (‘Wu,mﬁy) oLl <s,m7,y>) (1 — mo) (dy)dr

+ 01 /Rd (?;Z(mey) - ?Z(t7m07y)> (m1 —mo)(dy)dr
T /01 /Rd (?;Z(S,mr,y) - ?jn/(svm()ay)> (mq —mo)(dy)dr| ,

we obtain, by our Holder continuity assumption on D,, W:

[ (G ttemo,s) = S suma.) ) 0m — mo)(a)|

< 20|t — 8|+ sup |Dy,W(t,ms,-) — Dp,W(t, m0, )|, di(mo, m1)
7€[0,1]

+ sup |DpW(s,ms,-) — Dy, W(s,my,-)
7€[0,1]

< QCo‘t — S|a + QCldg(mo,ml)dl(mo,ml).

| d1(m0,m1)

For any yo € R? with |yo| < R, let m1 = (1 — 0)mg + 03,, for some 6 € (0,1] to be chosen below. Note
that

di(my,mp) < 9/d lyo — z|mo(dz) < 0(|yo| + (Ma(mo))"/?) < 20R,
R
(since R = 1) while
dy(my, mg) < (9/ lyo — x|*mo(dx))? < (20)2(|yo|? + M3 (mo))"/? < 20'/2R.
Rd

We get, by the convention on the derivative and our previous estimates:

ow ow 1 oW ow
’(Sm(t,mo,yo) - %(Sammyo) 9 /Rd <(5m(t’m0’y) - M(S’mo’y)) (my — mo)(dy)‘

1
<37 [200,R|t _ sl colRlﬂolﬂ/?] :

where c is universal. If |t — s| is small enough such that Cy g|t — s|*/(cC1R**7) < 1, then we choose
01+7/2 .= Cy gt — 5|*/(cC1 R*™7) and obtain

oW

ow
‘ S (tmo, o) = = (s,mo, )| < OOy RIS EED el (120)
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where c¢ is another universal constant.

To show the regularity in time of D,, W, we just need to apply Lemmato O0W /ém since, by ,
W /dm is locally Holder in time locally uniformly in space (the constant depending also on the measure)
and D,0W /om = D, W is globally bounded and Holder in y uniformly in time by assumption. We can
remove the smallness restriction on |t — s| by using the fact that D,,W is globally bounded. O

In the proof of Theorem we also used the following version of Arzela-Ascoli Theorem.

Lemma B.5. Let (X,d) be a locally compact space and W : X x Py — R be a family of uniformly
bounded and locally uniformly continuous maps: there exists xo € X such that, for any R > 0, there exists
a continuous nondecreasing modulus wg : [0, +00) — [0, +00) with wr(0) = 0 such that

(W (z,m) = W (2',m)| < wr(d(w,2') + da(m,m')), (121)

for any x, 2’ € X and m,m’ € Py with d(z,x0) < R, d(z',z¢) < R, Ma(m) < R, Ma(m’) < R.

Then there exists a continuous map W : X x Py — R and a subsequence (denoted in the same way)
such that (W) converges to W pointwisely in m and locally uniformly in x: for any R > 0 and any
me 7)27

lim sup |[WH(xz,m) — W(z,m)| =0. (122)
N—+o0 d(z,x0)<R

The only (very small) issue in the result is that Py is not locally compact, so that the standard
Arzela-Ascoli Theorem cannot be applied.

Proof. Let D be an enumerable dense family of X xP,. By a diagonal argument we can find a subsequence
(denoted in the same way) such that, for any (z,m) € D, (W¥ (z,m)) converges to some W (z,m). Let
us note that, by our regularity assumption and using the fact that X x P is complete, W can be
extended to the whole space X x P into a continuous map which satisfies

W (z,m) — W (z',m")| < wr(d(z,z) + d2(m,m")), (123)

for any z,2' € X and m, m’ € Py with d(z,z0) < R, d(2',z0) < R, Ma(m) < R, Ma(m') < R.
We claim that, for any (z,m) € X x Py, (W (x,m)) converges to W(z,m). Indeed, fix ¢ > 0,
R = 2(1 4+ d(z,20) + Ma(m)). Then there is (z',m’) € D such that d(z/,z9) < R, M2(m’) < R and
wr((d(z,2') + da(m,m’)) < €/3. Let also Ny be so large that |[W/N(z',m’) — W(a',m')| < ¢/3 for
N = Ny. Then, for N > Ny, we have
|WN($7m) - W(x,m)|
< W (@,m) = W@ )| + W@, m') = W', m)| + W', m') — W(z,m)| <e,

where we used ((121)) and (123)) in the last inequality.
(122

It remains to show that (122) holds. Fix € > 0 and let > 0 be such that w(n) < ¢/3. As X is locally
compact, we can find x1, ...z, such that any point x € Bx(x, R) is at a distance at most 1 from one of
the (2;)i=1,..n- Let No be so large that [W¥ (z;,m) — W(z;,m)| < ¢/3 for any i = 1,...,n. Then, for
any x € Bx(zg, R) and any N > Ny, we have (for i such that d(x,z;) < n, so that wg(d(z, z;)) < €/3):

< W (z,m) = W (25, m)| + [WN (2i,m) — W (i, m)| + [W(zi,m) = W(z,m)| <e,

where we used again (121)) and (123) in the last inequality. This shows ([122]). O
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