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Splitting methods and short time existence for the master

equations in mean field games

Pierre Cardaliaguet∗ Marco Cirant† Alessio Porretta‡

January 24, 2020

Abstract

We develop a splitting method to prove the well-posedness, in short time, of solutions for two
master equations in mean field game (MFG) theory: the second order master equation, describing
MFGs with a common noise, and the system of master equations associated with MFGs with a major
player. Both problems are infinite dimensional equations stated in the space of probability measures.
Our new approach simplifies, shortens and generalizes previous existence results for second order
master equations and provides the first existence result for systems associated with MFG problems
with a major player.
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1 Introduction

The paper is dedicated to a construction of a solution of the so-called “master equations” in mean field
game theory (MFG). These equations have been introduced by Lasry and Lions and discussed by Lions
in [27]. Let us recall that mean field games describe the behavior of infinitely many agents in interaction.
We consider here two problems: the master equation with common noise and the master equation with
a major player. We present a general approach valid for both problems.

Let us first discuss the master equation with common noise. In this problem, the agents are subject
to a common source of randomness. The master equation is then a second order equation in the space of
measures and reads as follows:
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´BtUpt, x,mq ´ Trppapt, xq ` a0pt, xqqD2
xxUpt, x,mqq `Hpx,DxUpt, x,mq,mq

´

ˆ
Rd

Trppapt, yq ` a0pt, yqqD2
ymUpt, x,m, yqq dmpyq

`

ˆ
Rd
DmUpt, x,m, yq ¨Hppy,DxUpt, y,mq,mq dmpyq

´2

ˆ
Rd

Tr
“

σ0pt, yqpσ0pt, xqqTD2
xmUpt, x,m, yq

‰

mpdyq

´

ˆ
R2d

Trrσ0pt, yqpσ0pt, y1qqTD2
mmUpt, x,m, y, y

1qsmpdyqmpdy1q “ 0

in p0, T q ˆ Rd ˆ P2

UpT, x,mq “ Gpx,mq in Rd ˆ P2

(1)

In the above equation, the unknown U “ Upt, x,mq is scalar valued and depends on the time variable
t P r0, T s, the space variable x P Rd and the distribution of the agents m P P2 (P2 is the space of Borel
probability measures with finite second order moment); the derivatives DmU and D2

mmU refer to the
derivative with respect to the probability measure (see subsection 2.2); the maps H “ Hpx, p,mq and
G “ Gpx,mq reflect the running and terminal costs of the agents. The matrix valued function a “ apt, xq
is the volatility term corresponding to idiosyncratic noise of the small players while a0 “ a0pt, xq “
σ0pσ0qT pt, xq is the volatility corresponding to the common noise.

As explained by Lions [27], the master equation can be understood as a non-linear transport equation
in the space of probability measures. When a0 “ 0 (i.e., in the so-called first order master equation), the
characteristics of this transport equation are given by the MFG system: if we fix an initial time t0 and
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an initial probability measure m0 on Rd, and if the pair pu,mq is a solution of the MFG system

$

&

%

piq ´Btu´ Trpapt, xqD2uq `Hpx,Du,mptqq “ 0 in pt0, T q ˆ Rd
piiq Btm´

ř

i,j Dijpai,jmq ´ divpmHppx,Du,mptqq “ 0 in pt0, T q ˆ Rd
piiiq mpt0q “ m0, upT, xq “ Gpx,mpT qq in Rd

(2)

then we expect the equality
Upt, x,mptqq “ upt, xq @t P rt0, T s. (3)

The interpretation of the MFG system (2) is the following: the map u is the value function of a typical
small agent (anticipating the evolution of the population density pmptqq) and accordingly solves the
Hamilton-Jacobi equation (2)-(i). When this agent plays in an optimal way, the drift in the dynamic of
its state is given by the term ´Hppx,Du,mptqq. By a mean field argument (assuming that the noise of
the agents are independent), the resulting evolution of the population density m̃ satisfies the Kolmogorov
equation

$

&

%

Btm̃´
ÿ

i,j

Dijpai,jm̃q ´ divpm̃Hppx,Du,mptqq “ 0 in pt0, T q ˆ Rd

mpt0q “ m0 in Rd

In an equilibrium configuration, i.e., when agents anticipate correctly the evolving measure, one has
m̃ “ m and therefore the population density m solves (2)-(ii).

The existence/uniqueness of the solution for the MFG system is rather well understood: it relies on
Schauder estimates, fixed point methods and monotonicity arguments (see, in particular, [24, 25]). From
the well-posedness of the MFG system, one can derive the existence of a solution to the first order master
equation “quite easily”: one just needs to define the map U by (3) with t “ t0 and check that the map U
thus defined is a classical solution to the first order master equation. This is the path followed in [17, 28]
(when there is no diffusion at all: a “ a0 ” 0) and in [16] (when a ą 0 is constant and a0 “ 0). See also
[9] for a similar result (in the torus) using PDE linearization techniques.

When a0 ı 0 (i.e., for the second order master equation, or master equation with a common noise),
the characteristics are now given by the system of SPDEs (called “stochastic MFG system”):
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dupt, xq “
“

´Trppa` a0qpt, xqD2upt, xqq `Hpx,Dupt, xq,mptqq

´
?

2Trpσ0pt, xqDvpt, xqq
‰

dt` vpt, xq ¨ dWt in p0, T q ˆ Rd,
dmpt, xq “

“

ÿ

i,j

Dijpppaijq ` a
0
ijqpt, xqmpt, xqq ` div

`

mp, xqDpHpx,Dupt, xq,mptqq
˘‰

dt

´divpmpt, xq
?

2σ0pt, xqdWt

˘

, in p0, T q ˆ Rd,
upT, xq “ Gpx,mpT qq, mp0q “ m0, in Rd

(4)

In the above system, pWtq is the common noise (here a Brownian motion) and the unknown is the triplet
pu,m, vq, where the new variable v (a random vector field in Rd) ensures the solution u of the backward
Hamilton-Jacobi (HJ) equation to be adapted to the filtration generated by the common noise pWtq. The
analysis of this system is much more involved than the deterministic one: Schauder estimates are no
longer available and the usual fixed point methods based on compactness arguments can no longer be
applied. One has to replace them by continuation methods, which are much heavier to handle, see [9].
Besides the PDE approach we just mentioned, MFG with common noise can also be handled through a
probabilistic formulation: see the pioneering result [12], as well as [2, 21] and the monograph [11]. Once
the analysis of the stochastic MFG system has been performed, one can proceed with the construction
of the second order master equation as in the first order case, defining the map U by (3) for t “ t0,
where u is now the u´component of the solution of the stochastic MFG system (upt0, ¨q turns out to be
deterministic). However, here again, the verification that the map U defined so far is smooth enough to
satisfy (1) requires a lot of work: see [9] and [11].

Let us finally recall another approach, suggested by P.-L. Lions in the seminar [29]: it consists in
writing the equation for the quantity DmU as an hyperbolic equation in a Hilbert space of random vari-
ables. The construction requires, however, convexity conditions on the system with respect to the space
variable (but no uniform ellipticity for the matrix a).
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We now discuss the second equation considered in this paper: the master equation corresponding to
MFG models with a major player. It reads as follows:
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piq ´BtU
0 ´∆x0U

0 `H0px0, Dx0U
0,mq ´

ˆ
Rd

divyDmU
0pt, x0,m, yqdmpyq

`

ˆ
Rd
DmU

0pt, x0,m, yq ¨Hppx0, y,DxUpt, x0, y,mq,mqdmpyq “ 0

in p0, T q ˆ Rd0 ˆ P2,

piiq ´BtU ´∆xU ´∆x0U `Hpx0, x,DxU,mq ´

ˆ
Rd

divyDmUpt, x0, x,m, yqdmpyq

`Dx0U ¨H
0
p px0, Dx0U

0pt, x0,mq,mq

`

ˆ
Rd
DmUpt, x0, x,m, yq ¨Hppx0, y,DxUpt, x0, y,mq,mqdmpyq “ 0

in p0, T q ˆ Rd0 ˆ Rd ˆ P2,

piiiq U0pT, x0,mq “ G0px0,mq, in Rd0 ˆ P2,

pivq UpT, x0, x,mq “ Gpx0, x,mq in Rd0 ˆ Rd ˆ P2.

(5)

In the above system, U0 “ U0pt, x0,mq corresponds to the payoff at equilibrium for a major player in-
teracting with a crowd in which each agent has at equilibrium a payoff given by U “ Upt, x0, x,mq. Here
m is the distribution law of the agents. Notice that each agent is influenced by the major player whereas
the latter is only influenced by the distribution of the whole population. Mean field games with a major
player have been first discussed by Huang in [20] and several notions of equilibria, in different contexts,
have been proposed in the literature since then: see [5, 6, 7, 8, 11, 13, 14, 15, 26]. The above system
has been introduced by Lasry and Lions in [26]. In the companion paper [10], we explain how the above
master equation is related to the approach by Carmona and al. [13, 14, 15]. Concerning the existence
of a solution, [15] shows the existence of an equilibrium in short time for the case of a finite state space,
[26] proves the existence of a solution to the master equation still in the finite state space framework and
notes that the Hilbertian techniques described in [29] could be adapted to the master equation with a
major player (5).

The purpose of this paper is to introduce a different path towards the construction of a solution to
the second order master equation and to the master equation with a major player, using as a building
block the construction of a solution to the first order master equation. For the second order master
equation, we justify this point of view by the fact that the deterministic MFG system and the first order
master equation are much easier to manipulate than the stochastic MFG system. Our approach allows
for instance to build solutions of the second order master equation (in short time) under more general
assumptions than in [9, 11]. For the MFG problem with a major player, we prove for the first time the
(short time) well-posedness of the associated system of master equations in continuous space.

Let us first explain our ideas for the master equation with common noise (1). In contrast to previous
works, we do not use directly the representation formula (3) (for t “ t0) for the solution of the second order
master equation. Instead, we somehow decompose the second order master equation as the superposition
of the first order master equation:
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%

´BtU ´ Trpapt, xqD2
xxUq `Hpx,DxU,mq ´

ˆ
Rd

Trpapt, yqD2
ymUq dmpyq

`

ˆ
Rd
DmU ¨Hppy,DxU,mq dmpyq “ 0 in p0, T q ˆ Rd ˆ P2

UpT, x,mq “ Gpx,mq in Rd ˆ P2

(6)
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and of a linear second order master equation:
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%

´BtU ´ Tr
“

σ0pσ0qT pt, xqD2
xxU

‰

´

ˆ
Rd

Tr
“

σ0pσ0qT pt, yqD2
ymU

‰

mpdyq

´2

ˆ
Rd

Tr
“

σ0pt, yqpσ0pt, xqqTD2
xmU

‰

mpdyq

´

ˆ
R2d

Trrσ0pt, yqpσ0pt, y1qqTD2
mmU smpdyqmpdy

1q “ 0

in p0, T q ˆ Rd ˆ P2

UpT, x,mq “ Gpx,mq in Rd ˆ P2

(7)

The solution to this linear second order master equation is just given by a Feynman-Kac formula, and
thus it is very easy to handle. Then we use Trotter-Kato formula, alternating the two equations in short
time intervals to build in the limit a solution of the full equation (1). If the technique is quite transparent,
its actual implementation requires some care. Indeed, one has to check that, at each step of the process,
the regularity of the solution does not deteriorate too much, meaning at least in a linear way in time.
The aim of Section 6 is precisely to quantify this deterioration for the solution U of the first order master
equation (6), as well as for its derivatives in the measure variable. As the solution of (6) is built by using
the representation formula (3) (where t “ t0) presented above, one has first to do the analysis on the
MFG system (2) and this is the aim of Section 5. Note that we are able to control the regularity of the
linear second order equation (7) only when the matrix a0 is constant. Hence we only prove the short time
existence of a solution to (1) in that case.

For the problem with a major player, we argue in a similar way: we view equation (5) as the super-
position of two systems: the first one is a first order system of master equations (for a fixed x0):
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%

piq ´BtU
0 ´

ˆ
Rd

divyDmU
0pt, x0,m, yqdmpyq

`

ˆ
Rd
DmU

0pt, x0,m, yq ¨Hppx0, y,DxUpt, x0, y,mq,mqdmpyq “ 0

piiq ´BtU ´∆xU `Hpx0, x,DxU,mq ´

ˆ
Rd

divyDmUpt, x0, x,m, yqdmpyq

`

ˆ
Rd
DmUpt, x0, x,m, yq ¨Hppx0, y,DxUpt, x0, y,mq,mqdmpyq “ 0

It turns out that this system can be handled by the method of characteristics. As for the second one, it
is a simple system of HJ equations (for fixed x,m):

"

piq ´BtU
0 ´∆x0

U0 `H0px0, Dx0
U0,mq “ 0

piiq ´BtU ´∆x0U `Dx0U ¨H
0
p px0, Dx0U

0pt, x0,mq,mq “ 0 .

The idea of splitting time is not completely new in the framework of mean field games. For instance, the
construction, given in [12], of (weak) equilibria for MFG problems with common noise relies on a time
splitting. The main difference is that it is done at the level of the MFG equilibrium, while we do the
construction at the (stronger) level of the master equation. One consequence is that, with our approach,
the construction of a solution to the stochastic MFG system (in short time, though) is straightforward
once the solution of the master equation is built, while deriving a solution of the master equation from
the stochastic MFG system is much trickier. Let us also quote the paper in preparation [1] in which the
authors use a splitting technique similar to the one described above to compute numerically the solution
of MFGs with a major player.

Let us finally point out that, in this paper, we do not address at all the problem of the existence of a
solution on a large time interval. For the first and second order master equation, this question is related
to the Lasry-Lions monotonicity condition [24, 25]. The existence of a solution on a large time interval
can be obtained under this condition either by the Hilbertian approach, as explained in [29], or by a
continuation method, as in [16] and [11] or even directly by using the long time existence of a solution
for the MFG system, as in [9]. Let us recall that, when the monotonicity condition is not fulfilled, the
solution to the second order master equation is expected to develop shocks (i.e., discontinuities) in finite
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time. Note also that a structure condition similar to the monotonicity condition is not known for MFGs
with a major player.

The paper is organized in the following way. In Section 2 we fix the notation, we recall the definition
of derivatives in the space of measures and state our main assumptions. The main existence results
for the second order master equation (equation (1)) and for the system of master equations for MFG
with a major player (system (5)) are collected in Sections 3 and 4 respectively. Both sections require
estimates on the first order master equations. As first order master equations are built by the method of
characteristics involving the solutions of classical MFG systems (2), Section 5 first provides estimates for
these systems. Then Section 6 is devoted to the first order master equations. We complete the paper by
appendices in which we prove short-time estimates for the standard Hamilton-Jacobi equations (Section
A) and we discuss several facts on maps defined on the space of measures (differentiability, interpolation
and Ascoli Theorem, Section B).

Acknowledgement. The first author was partially supported by the ANR (Agence Nationale de
la Recherche) project ANR-16-CE40-0015-01 and by the AFOSR grant FA9550-18-1-0494. The second
author was partially supported by the Fondazione CaRiPaRo Project “Nonlinear Partial Differential
Equations: Asymptotic Problems and Mean-Field Games” and the Programme “FIL-Quota Incentivante”
of University of Parma, co-sponsored by Fondazione Cariparma. The third author was partially supported
by Indam (Gnampa national project 2018) and by FSMP (Foundation Sciences Mathématiques de Paris).

2 Notation and assumptions

2.1 Notation

Throughout the paper, we work in the euclidean space Rd (with d P N, d ě 1), endowed with the scalar
product px, yq Ñ x ¨ y and the distance | ¨ |. Given T ą 0 and a map φ : p0, T q ˆ Rd Ñ R, we denote by
Btφ the derivative of φ with respect to the time-variable, by Bxiφ its partial derivative with respect to
the i´th space variable (i “ 1, . . . , d) and by Dφ the gradient with respect to the space variable.

For n P N, we denote by Cnb the set of maps φ : Rd Ñ R which are n´times differentiable with
continuous and bounded derivatives: in particular, C0

b is the set of continuous and bounded maps.

Given φ P Cnb and a multi-index k “ pk1, . . . , kdq P Nd, with length |k| :“
řd
i“1 ki ď n, we denote by

Bkφ “ B
k1

Bx
k1
1

. . . B
kd

Bx
kd
d

φ (or briefly φk) the k´th derivative of φ. We also denote by Dnφ (n P N, n ě 1) the

vector pBkφq|k|“n. The norm of φ in Cnb is

}φ}n :“
n
ÿ

r“0

sup
x

¨

˝

ÿ

|α|“r

|Bαφpxq|2

˛

‚

1{2

“

n
ÿ

r“0

}Drφ}8.

For n “ 0, we use indifferently the notation }φ}0 or }φ}8.
For pn1, . . . , nkq P Nk (k P N, k ě 2), we denote by Cn1,...,nk

b the space of functions φ : Rd1ˆ¨ ¨ ¨ˆRdk Ñ
R (di ě 1) having continuous and bounded derivatives Dl1

x1
¨ ¨ ¨Dlk

xk
φ for all l1 ď n1, . . . , lk ď nk, endowed

with the norm

}φ}n1,...,nk “ }φp¨x1 , . . . , ¨xkq}n1,...,nk :“
ÿ

l1ďn1,...,lkďnk

}Dl1
x1
¨ ¨ ¨Dlk

xk
φ}8,

where now px1, . . . , xkq stands for a generic element Rd1 ˆ Rdk .
We denote by C´n the dual space of Cnb , endowed with the usual norm

}ρ}´n :“ sup
}φ}nď1

ρpφq @ρ P C´n.

Finally, when a map φ “ φpt, xq depends also on time t belonging to an interval I, we often write
suptPI }φptq}n for suptPI }φpt, ¨q}n. We use a corresponding notation for a map ρ P C0pr0, T s, C´kq.
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Throughout the paper, P stands for the set of Borel probability measures on Rd and for k ě 1, Pk
stands for the set of measures in P with finite moment of order k: namely,

Mkpmq :“

ˆˆ
Rd
|x|kmpdxq

˙1{k

ă `8 if m P Pk.

The set Pk is endowed with the distance (see for instance [4, 30, 31])

dkpm,m
1q “ inf

π

ˆˆ
Rd
|x´ y|kπpdx, dyq

˙1{k

, @m,m1 P Pk,

where the infimum is taken over the couplings π between m and m1, i.e., over the Borel probability
measures π on Rd ˆ Rd with first marginal m and second marginal m1. Note that P2 Ă P1 and d1 ď d2

by Cauchy-Schwarz inequality. We will often use the fact that, if φ : Rd Ñ R is Lipschitz continuous with
a Lipschitz constant L ě 0, then

ˇ

ˇ

ˇ

ˇ

ˆ
Rd
φpxqpm´m1qpdxq

ˇ

ˇ

ˇ

ˇ

ď Ld1pm,m
1q, @m,m1 P P1.

Moreover, d1pm,m
1q is the smallest constant for which the above inequality holds for any L´Lipschitz

continuous map φ (see for instance [30, 31]). Given m P P and φ P C0
b , the image φ7m of m by φ is the

element of P defined by
ˆ
Rd
fpxq m7φpdxq “

ˆ
Rd
fpφpxqqmpdxq @f P C0

b .

2.2 Derivatives in the space of measures

We now define the derivative in the space P2. For this, we follow mostly the definition and notations
introduced in [9] (in a slightly different context) and which are reminiscent of earlier approaches: see
[3, 4] and the references in [11]. We say that a map U : P2 Ñ R is C1 if there exists a continuous and
bounded map δU

δm : P2 ˆ Rd Ñ R such that

Upm1q ´ Upmq “

ˆ 1

0

ˆ
Rd

δU

δm
pp1´ sqm` sm1, yqpm1 ´mqpdyqds @m,m1 P P2. (8)

Note that the restriction on δU
δm to be continuous on the entire space Rd and globally bounded is restrictive:

it will however simplify our forthcoming construction. The map δU
δm is defined only up to an additive

constant that we fix with the conventionˆ
Rd

δU

δm
pm, yqmpdyq “ 0 @m P P2. (9)

We say that the map U is continuously L´differentiable (in short: L´C1) if U is C1 and if y Ñ δU
δm pm, yq

is everywhere differentiable with a continuous and globally bounded derivative on P2 ˆ Rd. We denote
by

DmUpm, yq :“ Dy
δU

δm
pm, yq

this L´derivative. In view of the discussion in [9], DmU coincides with the Lions derivative as introduced
in [27] and discussed in [11]. In particular, it estimates the Lipschitz regularity of U in P2 (Remark 5.27
in [11]):

|Upmq ´ Upm1q| ď d2pm,m
1q sup
µPP2

ˆˆ
Rd
|DmUpµ, yq|

2µpdyq

˙1{2

@m,m1 P P2. (10)

Of course one can also estimate the Lipschitz regularity of U through the d1 norm, as

|Upmq ´ Upm1q| ď d1pm,m
1q sup
µPP2

}DmUpµ, ¨q}8 ď d2pm,m
1q sup
µPP2

}DmUpµ, ¨q}8 . (11)
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Note that, with our boundedness convention, if U is continuously L´differentiable, then U is automati-
cally globally Lipschitz continuous.

When U is smooth enough, we often see the map δU
δm as a linear map on C´k by

δU

δm
pmqpρq “ xρ,

δU

δm
pm, ¨qyC´k,Ck @ρ P C´k.

We say that U is C2 if δU
δm is C1 in m with a continuous and bounded derivative: namely δ2U

δm2 “
δ
δm p

δU
δm q : P2 ˆ Rd ˆ Rd Ñ R is continuous in all variables and bounded. We say that U is twice

L´differentiable if the map DmU is L´differentiable with respect to m with a second order derivative
D2
mmU “ D2

mmUpm, y, y
1q which is continuous and bounded on P2 ˆ Rd ˆ Rd with values in Rdˆd.

When a map U : RdˆP2 Ñ R is of class Cnb with respect to the space variable, uniformly with respect
to the measure variable, we often set

}U}n :“ sup
mPP2

}Up¨,mq}n. (12)

We use similar notation for a map U depending on several space variables and on a measure.
When a map U : Rd ˆ P2 Ñ R is Lipschitz continuous with respect to m, uniformly with respect to

the space variable in some Cn norm, we define LipnpUq as the smallest constant C such that

}Up¨,m1q ´ Up¨,m2q}n ď Cd2pm1,m2q @m,m1 P P2.

Namely:

LipnpUq :“ sup
m1‰m2

}Up¨,m1q ´ Up¨,m2q}n

d2pm1,m2q
.

More generally, if U : pRdqk ˆ P2 Ñ R (for k P N, k ě 1) is Lipschitz continuous in the measure variable
in some Cn1,...,nk

b norm (where ni P N for i “ 1, . . . , k), then we set

Lipn1,...,nk
pUq :“ sup

m1‰m2

}Up¨x1
, . . . , ¨xk ,m1q ´ Up¨x1

, . . . , ¨xk ,m2q}n1,...,nk

d2pm1,m2q
.

We will typically use this notation for the derivatives of a map U : Rd ˆ P2 Ñ R: indeed we will often
have to estimate quantities of the form

Lipn1,n2
pDmUq :“ sup

m1‰m2

}DmUp¨x,m1, ¨yq ´DmUp¨x,m2, ¨yq}n1,n2

d2pm1,m2q

and

Lipn1,n2,n3
pD2

mmUq :“ sup
m1‰m2

}D2
mmUp¨x,m1, ¨y, ¨y1q ´D

2
mmUp¨x,m2, ¨y, ¨y1q}n1,n2,n3

d2pm1,m2q
.

Concerning the Lipschitz continuity with respect to one of the entries xi, we will use the following
notation:

Lipxin1,...,ni´1,ni`1,...,nk
pUq :“

sup
m,x1

i‰x
2
i

}Up¨x1
, . . . , ¨xi´1

, x1i , ¨xi`1
, . . . , ¨xk ,mq ´ Up¨x1

, . . . , ¨xi´1
, x2i , ¨xi`1

, . . . , ¨xk ,mq}n1,...,ni´1,ni`1,...,nk

|x1i ´ x
2
i |

.

Further norms: In order to estimate the y´dependence of a derivative with respect to the measure
of a map U “ Upx,mq, we systematically proceed by duality method, testing this derivative against
distributions. This yields to the following norms, for n, k P N (note the the subtle difference in notation
between } ¨ }n,k and } ¨ }n;k):

›

›

›

›

δU

δm

›

›

›

›

n;k

:“ sup
mPP2

n
ÿ

r“0

sup
xPRd,ρPC0

c

}ρ}´k“1

¨

˝

ÿ

|α|“r

ˇ

ˇ

ˇ

ˇ

Bαx
δU

δm
px,mqpρq

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1{2

“ sup
mPP2

n
ÿ

r“0

sup
xPRd,ρPC0

c ,
}ρ}´k“1

ˇ

ˇ

ˇ

ˇ

Dr
x

δU

δm
px,mqpρq

ˇ

ˇ

ˇ

ˇ

,

›

›

›

›

δ2U

δm2

›

›

›

›

n;k,k1
:“ sup

mPP2

n
ÿ

r“1

sup
xPRd,ρ,ρ1PC0

c ,

}ρ}´k“}ρ
1
}´k1“1

ˇ

ˇ

ˇ

ˇ

Dr
x

δ2U

δm2
px,mqpρ, ρ1q

ˇ

ˇ

ˇ

ˇ

.
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For maps U “ Upx1, x2,mq depending on two (or more) space variables, we use the transparent notation
} ¨ }n1,n2;k (and, if n1 “ 0 (say), we simply set } ¨ }n2,k “ } ¨ }0,n2;k). Finally, we use similar notation for
the Lipschitz norms, setting, for instance for a map U “ Upx,mq,

Lipn;k,k1
´ δ2U

δm2

¯

:“ sup
m1‰m2

d2pm1,m2q
´1

n
ÿ

r“0

sup
xPRd,ρ,ρ1PC0

c

}ρ}´k“}ρ
1
}´k1“1

ˇ

ˇ

ˇ

ˇ

Dr
x

δ2U

δm2
px,m2qpρ, ρ

1q ´Dr
x

δ2U

δm2
px,m1qpρ, ρ

1q

ˇ

ˇ

ˇ

ˇ

.

Some comment about the norms we just introduced are now in order. We discuss the norm } ¨ }n;k to
fix the ideas. With these notations, we have, if U “ Upx,mq is smooth enough,

}
δU

δm
p¨,mqpρq}n ď }

δU

δm
}n;k}ρ}´k,

for every fixed m P P2. Inequalities of this type are used throughout the text. Next we note that the
norms supmPP2

} ¨ }n,k and } ¨ }n;k are equivalent if we know a priori that δU{δm “ δU{δmpx,m, yq is in

Cn,kb . In general we do not have this information, but only know that δU{δm is (at least) continuous. In
this case, we use the following remark:

Lemma 2.1. Let k P N with k ě 1 and u P C0 be such that

θ :“ sup
ρPC0

c , }ρ}´k“1

ˆ
Rd
upyqρpyqdy ă `8. (13)

Then u P Ck´1
b with }u}k´1 ď Ckθ (where Ck depends on d and k) and, for any β P Nd with |β| “ k´ 1,

Bβu is θ´Lipschitz continuous.

Remark 2.2. In particular, if δU
δm P Cn,0b and

›

›

δU
δm

›

›

n;k
is finite for some n, k P N with k ě 1, then

δU
δm P Cn,k´1

b and
}δU{δm}n,k´1 ď Cn,k}δU{δm}n;k

for some constant Cn,k depending in addition on dimension only. Moreover, the derivatives of the form
Bαx B

β
y
δU
δm for |α| ď n and β ď k ´ 1 are Lipschitz continuous with respect to y and thus—by (11)—also

with respect to m, with a Lipschitz constant bounded by
›

›

δU
δm

›

›

n;k
.

Proof. For k “ 1, we have, approximating Dirac masses by continuous maps with compact support: for
any x, y P Rd,

|upxq| ď θ}δx}´1 “ θ and |upxq ´ upyq| ď θ}δx ´ δy}´1 “ θ|x´ y|.

This proves the claim for k “ 1. Let now assume that (13) holds for k “ 2. Then u can be extended to
an element T in pC´2q1 with norm }T } ď θ, such that T pρq “

´
udρ for any Radon measure ρ. As, for

any v P Rd,
lim

hÑ0,v1Ñv
h´1pδx`hv1 ´ δxq “ ´Bvδx in C´2,

we infer that
lim

hÑ0,v1Ñv
h´1pupx` hv1q ´ upxqq “ ´T pBvδxq.

The map px, vq Ñ Bvδx being continuous in C´2 with }Bvδx}´2 ď |v|, u is in C1 with }Du} ď θ. Then,
arguing as for k “ 1, one can easily check that Du is θ´Lipschitz continuous. So the result also holds for
k “ 2. The proof can be completed in the same way for any k by induction.

2.3 Assumptions on the data

We state here the assumptions needed on a, H and G for the existence of a classical solution to the second
order master equation (1) and to the master equation (5) for the MFG problem with a major player.
These assumptions are in force throughout the paper. Note that they are common to both problems (1)
and (5) since both require the same kind of estimates on the first order master equation (see Section 6).

9



We assume that the map a : r0, T sˆRd Ñ Rdˆd can be written as a “ σσT where σ : r0, T sˆRd Ñ Rd
(M P N, M ě 1) is bounded in Cnb with respect to the space variable, uniformly with respect to the
time variable, for some n ě 4. We also assume that the following uniform ellipticity condition holds:

apt, xq ě C´1
0 Id, }Da}8 ď C0 , (14)

for some C0 ą 0.
We assume that the map H : Rd0 ˆ Rd ˆ Rd ˆ P2 Ñ R satisfies the growth condition

sup
x0PRd0 , xPRd, mPP2

|DxHpx0, x, p,mq| ď C0p1` |p|
γq, @p P Rd, (15)

for some γ ą 1. We also suppose that, for any R ą 0, the quantities

}Hp¨x0
, ¨x, ¨p,mq}3,n,n`1,

›

›

›

›

δH

δm
p¨x0

, ¨x, ¨p,m, ¨yq

›

›

›

›

2,n´1,n,k

,

›

›

›

›

δ2H

δm2
p¨x0

, ¨x, ¨p,m, ¨y, ¨y1q

›

›

›

›

1,n´2,n´1,k´1,k´1

,

and Lip1,n´3,n´2,k´1,k´1p
δ2H
δm2 q are bounded for |p| ď R, m P P2 and x0 P Rd0 , for any k P t2, . . . , n´ 1u.

Note that we could also allow for a time dependence for H without changing at all the arguments: we
will not do so to simplify a little the notation. For the second order master equation, the Hamiltonian
H actually does not depend on x0, but this dependence is important to handle the MFG problem with
a major player.

As for the initial condition G : Rd0 ˆ Rd ˆ P2 Ñ R, we assume that G is of class C2 with respect to
all variables and that the quantities

}Gp¨x0
, ¨x,mq}3,n,

›

›

›

›

δG

δm
p¨x0

, ¨x,m, ¨yq

›

›

›

›

2,n´1,k

,

›

›

›

›

δ2G

δm2
p¨x0

, ¨x,m, ¨y, ¨y1q

›

›

›

›

1,n´2,k´1,k´1

,

Lip1,n´3,k´2,k´2p
δ2G

δm2
qp¨x0

, ¨x,m, ¨y, ¨y1q,

are bounded uniformly with respect to m P P2. Here again, for the second order master equation, the
terminal condition G does not depend on x0, but this dependence is needed in the MFG problem with a
major player.

Additional assumptions for the MFG problem with a major player. This problem involves
in addition a Hamiltonian H0 : Rd0 ˆ Rd0 ˆ P2 Ñ R and a terminal condition G0 : Rd0 ˆ P2 Ñ R. We
assume that the map H0 satisfies the growth property

sup
x0PRd0 , mPP2

|Dx0,pH
0px0, p,mq| ` |D

2
x0,pH

0px0, p,mq| ď C0p|p|
γ ` 1q, (16)

for some γ ą 1. We also suppose that, for any R ą 0, the quantities

}H0p¨x0
, ¨p,mq}3,4,

›

›

›

›

δH0

δm
p¨x0

, ¨p,m, ¨yq

›

›

›

›

2,3,k

,

›

›

›

›

δ2H0

δm2
p¨x0

, ¨p,m, ¨y, ¨y1q

›

›

›

›

1,2,k´1,k´1

,

and Lip0,1,k´2,k´2p
δ2H
δm2 q are bounded for |p| ď R, m P P2 and x0 P Rd0 , for any k P t2, . . . , n´ 1u.

The initial condition G0 : Rd0 ˆ P2 Ñ R is assumed to be of class C2 with respect to the measure
variable and the quantities

}G0p¨,mq}3,

›

›

›

›

δG0

δm
p¨,m, ¨q

›

›

›

›

2,k

,

›

›

›

›

δ2G0

δm2
p¨x0 ,m, ¨y, ¨y1q

›

›

›

›

1,k´1,k´1

,

Lip0,k´2,k´2p
δ2G0

δm2
qp¨x0

,m, ¨y, ¨y1q,

are supposed to be bounded uniformly with respect to m P P2.

Throughout the proofs, we assume that the time horizon T is small, say T ď 1. We denote by C and
CM a constant which might change from line to line and which depends only on the data of the problem,
i.e., on a, H and H0—the dependence in G and G0 being always explicitly written—and, for CM , on the
additional real number M . In some proofs, when there is no ambiguity, we drop the M dependence of
CM to simplify the expressions.
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3 The second order master equation

The aim of the section is to show the short-time existence of the second order master equation:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´BtUpt, x,mq ´ Trppapt, xq ` a0qD2
xxUpt, x,mqq `Hpx,DxUpt, x,mq,mq

´

ˆ
Rd

Trppapt, yq ` a0qD2
ymUpt, x,m, yqq dmpyq

`

ˆ
Rd
DmUpt, x,m, yq ¨Hppy,DxUpt, y,mq,mq dmpyq

´2

ˆ
Rd

Tr
“

a0D2
xmUpt, x,m, yq

‰

mpdyq

´

ˆ
R2d

Trra0D2
mmUpt, x,m, y, y

1qsmpdyqmpdy1q “ 0

in p0, T q ˆ Rd ˆ P2 ,
UpT, x,mq “ Gpx,mq in Rd ˆ P2 ,

(17)

where a0 is a symmetric positive definite dˆ d matrix (independent of time and space).

Definition 3.1. We say that U : r0, T s ˆ Rd ˆ P2 Ñ R is a classical solution of (17) if U and its
derivatives involved in (17) exist, are continuous in all variables and are bounded, and if (17) holds.

Our main result is the following short time existence Theorem:

Theorem 3.2. Under the assumptions of Subsection 2.3, there exists a time T ą 0 such that the second
order master equation (17) has a classical solution U on r0, T s .

We shall not prove here the uniqueness of the solution to (17), which holds under our assumptions:
this point has been often discussed in the literature (see [9, 11] for instance). The reader may notice
that we cannot handle a second order master equation with a space dependent matrix a0 “ a0pt, xq. The
reason is that we do not know how to extend the estimate in Proposition 3.3 to the space dependent case.

The proof of Theorem 3.2 is given at the end of the section, after a few preliminary steps. The key
idea is to use a Trotter-Kato scheme alternating the first order master equation as in (6) and a linear
second order master equation. The analysis of the first order master equation, being quite technical, is
postponed to Section 6 below. We now discuss the linear second order master equation.

3.1 The linear second order master equation

In this section we consider the (forward) second order linear master equation

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

BtUpt, x,mq ´ Tr
“

a0D2
xxUpt, x,mq

‰

´

ˆ
Rd

Tr
“

a0D2
ymUpt, x,m, yq

‰

mpdyq

´2

ˆ
Rd

Tr
“

a0D2
xmUpt, x,m, yq

‰

mpdyq

´

ˆ
R2d

Trra0D2
mmUpt, x,m, y, y

1qsmpdyqmpdy1q “ 0

in p0, T q ˆ Rd ˆ P2 ,
Up0, x,mq “ Gpx,mq in Rd ˆ P2 .

(18)

Let Γ be the fundamental solution of the equation associated with a0:

"

BtΓpt, xq ´ Tr
“

a0D2
xxΓpt, xq

‰

“ 0 in p0,`8q ˆ Rd,
Γp0, xq “ δ0pxq in Rd,

and, given a map G : Rd ˆ P2 Ñ R of class C2 in px,mq, let us set

Upt, x,mq “

ˆ
Rd
Gpξ, pid´ x` ξq7mqΓpt, x´ ξqdξ @pt, x,mq P r0, T s ˆ Rd ˆ P2.
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Proposition 3.3. The map U is a classical solution to the second order equation (18). Moreover, there
exists a constant C ą 0 (depending only on n, k and a0), such that

sup
tPr0,T s

}Uptq}n ď p1` CT q sup
mPP2

}G}n

and, for k P t2, . . . , n´ 1u,

sup
tPr0,T s

›

›

›

›

δU

δm
ptq

›

›

›

›

n´1;k

ď p1` CT q

›

›

›

›

δG

δm

›

›

›

›

n´1;k

,

sup
tPr0,T s

›

›

›

›

δ2U

δm2
ptq

›

›

›

›

n´2;k´1,k´1

ď p1` CT q

›

›

›

›

δ2G

δm2

›

›

›

›

n´2;k´1,k´1

and

sup
tPr0,T s

Lipn´3;k´2,k´2p
δ2U

δm2
ptqq ď p1` CT qLipn´3;k´2,k´2p

δ2G

δm2
q .

Remark 3.4. If we assume that, for some constant M ,

}G}n `

›

›

›

›

δG

δm

›

›

›

›

n´1;k

`

›

›

›

›

δ2G

δm2

›

›

›

›

n´2;k´1,k´1

` Lipn´3;k´2,k´2p
δ2G

δm2
q ďM,

then the above estimates can be rewritten in the form:

sup
tPr0,T s

p}Uptq}n `

›

›

›

›

δU

δm
ptq

›

›

›

›

n´1;k

`

›

›

›

›

δ2U

δm2
ptq

›

›

›

›

n´2;k´1,k´1

` Lipn´3;k´2,k´2p
δ2U

δm2
ptqqq

ď }G}n `

›

›

›

›

δG

δm

›

›

›

›

n´1;k

`

›

›

›

›

δ2G

δm2

›

›

›

›

n´2;k´1,k´1

` Lipn´3;k´2,k´2p
δ2G

δm2
q ` CMT,

for some constant CM depending on n, k, a0 and M .

In order to prove this Proposition, we need two Lemmas, the proof of which are easy and left to the
reader.

Lemma 3.5. Let U : P2 Ñ R be L´C1 and let φ : Rd Ñ Rd be of class C1 with bounded derivative. Let
us set V pmq “ Upφ7mq. Then V is L´ C1 with

DmV pm, yq “ pDφpyqq
TDmUpφ7m,φpyqq.

Lemma 3.6. Let U : P2 Ñ R be L´ C1 and let V px,mq “ Uppid` xq7mq. Then V is of class C1 with

DxV px,mq “

ˆ
Rd
DmUppid` xq7m,x` yqdmpyq.

Proof of Proposition 3.3. Let us first note that

Upt, x,mq “

ˆ
Rd
Gpξ, pid´ x` ξq7mqΓpt, x´ ξqdξ “

ˆ
Rd
Gpx´ z, pid´ zq7mqΓpt, zqdz.

In particular, U is C1 in t, C2 in x and has second order derivatives which are C2 in the space variables
with, in view of Lemma 3.5 and Lemma 3.6,

DxUpt, x,mq “

ˆ
Rd
DxGpx´ y, pid´ yq7mqΓpt, yqdy,

D2
xUpt, x,mq “

ˆ
Rd
D2
xGpx´ y, pid´ yq7mqΓpt, yqdy,
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DmUpt, x,m, yq “

ˆ
Rd
DmGpx´ z, pid´ zq7m, y ´ zqΓpt, zqdz,

and

D2
mUpt, x,m, y, y

1q “

ˆ
Rd
D2
mGpx´ z, pid´ zq7m, y ´ z, y

1 ´ zqΓpt, zqdz.

This easily implies the estimates on U and its derivatives.
On the other hand, since pid ´ wq7rpid ´ zq7ms “ pid ´ z ´ wq7m, we have, for any t P p0, T q and

h P p0, T ´ tq,

ˆ
Rd
Upt, x´ z, pid´ zq7mqΓph, zqdz

“

ˆ
Rd

ˆ
Rd
Gpx´ z ´ w, pid´ z ´ wq7mqΓph, zqΓpt, wqdwdz

“

ˆ
Rd
Gpx´ u, pid´ uq7mq

ˆˆ
Rd

Γph, u´ wqΓpt, wqdw

˙

du

“

ˆ
Rd
Gpx´ u, pid´ uq7mqΓpt` h, uqdu “ Upt` h, x,mq.

So, taking the derivative with respect to h ą 0 in the above expression:

BtUpt` h, x,mq “

ˆ
Rd
Upt, x´ z, pid´ zq7mqBtΓph, zqdz.

Integrating by parts and using Lemma 3.5 and Lemma 3.6:

BtUpt` h, x,mq “

ˆ
Rd
Upt, x´ z, pid´ zq7mq

´

Tr
“

a0D2
zzΓph, zq

‰

¯

dz

“

ˆ
Rd

´

Tr
“

a0D2
xxUpt, x´ z, pid´ zq7mq

‰

` 2

ˆ
Rd

Tr
“

a0D2
xmUpt, x´ z, pid´ zq7m, y ´ zq

‰

mpdyq

`

ˆ
Rd

Tr
“

a0D2
ymUpt, x´ z, pid´ zq7m, y ´ zq

‰

mpdyq

`

ˆ
Rd

ˆ
Rd

Tr
“

a0D2
mmUpt, x´ z, pid´ zq7m, y ´ z, y

1 ´ zq
‰

mpdyqmpdy1q
¯

Γph, zqqdz.

Letting hÑ 0 we obtain

BtUpt, x,mq “ Tr
“

a0D2
xxUpt, x,mq

‰

` 2

ˆ
Rd

Tr
“

a0D2
xmUpt, x,m, yq

‰

mpdyq

`

ˆ
Rd

Tr
“

a0D2
ymUpt, x,m, yq

‰

mpdyq `

ˆ
Rd

ˆ
Rd

Tr
“

a0D2
mmUpt, x,m, y, y

1q
‰

mpdyqmpdy1q.

So U is a solution to (18).

3.2 Existence of a solution

3.2.1 Definition of the semi-discrete scheme

Let us fix some horizon T ą 0 (small) and a step-size τ :“ T {p2Nq (where N P N, N ě 1). We set
tk “ kT {p2Nq, k P t0, 2Nu. We define by backward induction a continuous map UN “ UN pt, x,mq, with
UN : r0, T s ˆ Rd ˆ P2 Ñ R, as follows: we require that

(i) UN satisfies the terminal condition

UN pT, x,mq “ Gpx,mq @px,mq P Rd ˆ P2,

13



(ii) UN solves the backward linear second order master equation

´BtU
N ´ 2Tr

“

a0D2
xxU

N
‰

´ 2

ˆ
Rd

Tr
“

a0D2
ymU

N
‰

mpdyq

´4

ˆ
Rd

Tr
“

a0D2
xmU

N
‰

mpdyq ´ 2

ˆ
R2d

Trra0D2
mmU

N smpdyqmpdy1q “ 0
(19)

on time intervals of the form pt2j`1, t2j`2q, for j “ 0, . . . , N ´ 1,

(iii) UN solves the first order master equation

´BtU
N ´ 2TrpaD2

xxU
N q ` 2Hpx,DxU

N ,mq ´ 2

ˆ
Rd

TrpaD2
ymU

N q dmpyq

`2

ˆ
Rd
DmU

N ¨Hppy,DxU
N ,mq dmpyq “ 0

(20)

on time intervals of the form pt2j , t2j`1q, for j “ 0, . . . , N ´ 1.

Our aim is to show that, if the time horizon is short enough, UN converges to a solution of the second
order master equation as N Ñ `8.

3.2.2 Estimates of UN

For n ě 4 and k P t3, . . . , n´ 1u, let

M :“ }G}n `

›

›

›

›

δG

δm

›

›

›

›

n´1;k

`

›

›

›

›

δ2G

δm2

›

›

›

›

n´2;k´1,k´1

` Lipn´3;k´2,k´2p
δ2G

δm2
q ` 1. (21)

Lemma 3.7. There exists TM ą 0 such that, for any T P p0, TM s and N ě 1, we have

sup
tPr0,T s

p}UN ptq}n ` }
δUN

δm
ptq}n´1;k `

›

›

›

›

δ2UN

δm2
ptq

›

›

›

›

n´2;k´1,k´1

` Lipn´3;k´2,k´2

ˆ

δ2UN

δm2
ptq

˙

q ďM.

Moreover:

• The maps UN , DxU
N , D2

xxU
N are globally Lipschitz continuous in pt, x,mq, uniformly with respect

to N .

• The maps DmU , DmDxU
N , DyDmU

N are Holder continuous in pt, x,m, yq, uniformly with respect
to N , in any set of the form

tpt, x,m, yq P r0, T s ˆ Rd ˆ P2 ˆ Rd, M2pmq ď R, |y| ď Ru , (22)

(where M2pmq “ p
´
Rd |y|

2mpdyqq1{2).

• The map D2
mU

N is Holder continuous in pt, x,m, y, y1q, uniformly with respect to N , in any set of
the form

tpt, x,m, y, y1q P r0, T s ˆ Rd ˆ P2 ˆ Rd ˆ Rd, M2pmq ď R, |y|, |y1| ď Ru . (23)

Proof. In order to prove the estimate, we use Proposition 3.3 as well as Propositions 6.1, 6.6, 6.8 (in
Section 6 below). Let TM be the smallest positive constant associated with these Propositions. Let also
CM be the largest constant in Propositions 3.3, 6.1, 6.6 and 6.8. We assume without loss of generality
that TM ă 1{p2CM q and we fix T P p0, TM s.

We define the sequence pθkqk“0,...,2N by

θ2j “M ´ 1` CM
T

N
pN ´ jq , j “ 0, . . . , N.

As TM ď 1{p2CM q, we have θ2j ďM for any T P p0, TM s and N ě 1.

14



Now, using Propositions 6.1, 6.6, 6.8 and 3.3 one checks by backward induction that

sup
tPrt2j ,t2j`2s

#

}UN ptq}n ` }
δUN

δm
ptq}n´1;k `

›

›

›

›

δ2UN

δm2
ptq

›

›

›

›

n´2;k´1,k´1

`Lipn´3;k´2,k´2

ˆ

δ2UN

δm2
ptq

˙*

ď θ2j ďM @j “ 0, . . . , N ´ 1.

(24)

Indeed, assume that this is true for j ` 1; Proposition 3.3 (see also Remark 3.4), applied in the interval
rt2j`1, t2j`2s and with the terminal condition UN pt2j`2, ¨, ¨q which satisfies (24) by assumption, implies
that

sup
tPrt2j`1,t2j`2s

#

}UN ptq}n ` }
δUN

δm
ptq}n´1;k `

›

›

›

›

δ2UN

δm2
ptq

›

›

›

›

n´2;k´1,k´1

`Lipn´3;k´2,k´2

ˆ

δ2UN

δm2
ptq

˙*

ď θ2j`2 `
CMT

2N
.

Then using Propositions 6.1, 6.6, 6.8 for the interval rt2j , t2j`1s and the terminal condition UN pt2j`1, ¨, ¨q
for which (24) now holds, one gets:

sup
tPrt2j ,t2j`1s

#

}UN ptq}n ` }
δUN

δm
ptq}n´1;k `

›

›

›

›

δ2UN

δm2
ptq

›

›

›

›

n´2;k´1,k´1

`Lipn´3;k´2,k´2

ˆ

δ2UN

δm2
ptq

˙*

ď θ2j`2 `
CMT

N
“ θ2j ,

so (24) holds for j. Since the first step (j “ N ´ 1) can be proved similarly using the very definition of
M in (21), we can conclude that (24) holds for every j “ 0, . . . , N ´ 1.

We now prove the second part of the Lemma. As UN solves (19) on the time intervals pt2j`1, t2j`2q

and (20) on time intervals pt2j , t2j`1q, we obtain directly, by the space estimates proved above:

sup
t,m
}BtUpt, ¨,mq}n´2 ď CM , (25)

where CM does not depend on N .
Let now l P Nd with |l| ď 2. By (25) and the fact that }UN }n is bounded for n ą |l|, DlUN is

uniformly Lipschitz continuous in t and x. Moreover, since }δUN{δm}n´1;k is bounded (for k ě 1),
DlUN is uniformly Lipschitz continuous in m as well by Remark 2.2 since |l| ď n´ 1.

Next we prove the uniform continuity ofDl
xD

r
yDmU

N for |l|, |r| ď 1. First we recall that }δUN{δm}n´1;k

is bounded, so that }DmU
N }n´1;k´1 is bounded, with n´1 ě 2 and k´1 ě 2. Therefore Dl

xD
r
yDmU

N is

uniformly Lipschitz continuous in px, yq (for y, this is Remark 2.2). Second, recall that }δ2UN{δm2}n´2;k´1,k´1

is bounded, so that } δ
δmDmU

N }n´2;k´2,k´1 is bounded as well, with n ě 3 and k ě 3: therefore
Dl
xD

r
yDmU

N is uniformly Lipschitz continuous in m. As we have already proved that UN is uniformly

Lipschitz continuous in t, we can deduce from Lemma B.4 below applied to UN that DmU
N is also Holder

continuous in time in any set of the form (22).
Finally we consider D2

mmU
N “ D2

mmU
N pt, x,m, y, y1q. Since }δ2UN{δm}n´2;k´1,k´1 and

Lipn´3;k´2,k´2

´

δ2UN

δm2

¯

are bounded, with n ě 4 and k ě 3, D2
mmU

N is uniformly Lipschitz continuous in

px,m, y, y1q. Applying Lemma B.4 to the map DmU
N , which is Holder continuous in time in sets of the

form (22) (as we have seen above) and such that D2
mmU is uniformly Lipschitz in pm, y, y1q, we deduce

that D2
mmU

N is also Holder continuous in time, uniformly in N , in sets of the form (23). So we conclude
that D2

mmU
N is uniformly Holder continuous in all variables.

3.2.3 Proof of Theorem 3.2

Proof of Theorem 3.2. In view of Lemma 3.7, the maps UN , DxU
N , D2

xxU
N , DmU

N , DmDxU
N , DyDmU

N

and D2
mU

N are locally Holder continuous in all variables, uniformly with respect to N . So, by a version
of Arzela-Ascoli Theorem (see Lemma B.5 below), there is a subsequence denoted in the same way such
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that UN , DxU
N , D2

xxU
N , DmU

N , DmDxU
N , DyDmU

N and D2
mU

N converge pointwisely in m and
locally uniformly in time-space to some maps U , DxU , D2

xxU , V , DxV , DyV and W . Moreover, using
the integral formula (8), is easy to check that V “ DmU and W “ D2

mU .
By the equation satisfied by UN , we have, for any 0 ď s ă t ď T ,

UN pt, x,mq ´ UN ps, x,mq

“ ´

N´1
ÿ

k“0

ˆ t2k`2

t2k`1

2
!

Tr
“

a0D2
xxU

N
‰

`

ˆ
Rd

Tr
“

a0D2
ymU

N
‰

mpdyq

` 2

ˆ
Rd

Tr
“

a0D2
xmU

N
‰

mpdyq `

ˆ
R2d

Tr
“

a0D2
mmU

N
‰

mpdyqmpdy1q
)

1rs,tspτqdτ

´

N´1
ÿ

k“0

ˆ t2k`1

t2k

2
!

TrpaD2
xxU

N q ´Hpx,DxU
N ,mq

`

ˆ
Rd

TrpaD2
ymU

N q mpdyq ´

ˆ
Rd
DmU

N ¨Hppy,DxU
N ,mq mpdyq

)

1rs,tspτqdτ.

Since, as N tends to infinity, the maps

tÑ
N´1
ÿ

k“0

1rt2k`1,t2k`2sptq and tÑ
N´1
ÿ

k“0

1rt2k,t2k`1sptq

weakly converge to the constant 1{2 and since the space integrals in the above equation converge point-
wisely to the corresponding quantities for the limit U , we obtain by the dominated convergence Theorem:

Upt, x,mq ´ Ups, x,mq

“ ´

ˆ t

s

´

Tr
“

a0D2
xxU

‰

`

ˆ
Rd

Tr
“

a0D2
ymU

‰

dm

` 2

ˆ
Rd

Tr
“

a0D2
xmU

‰

dm`

ˆ
R2d

Tr
“

a0D2
mmU

‰

dmb dm

` TrpaD2
xxUq ´Hpx,DxU,mq

`

ˆ
Rd

TrpaD2
ymUq dm´

ˆ
Rd
DmU ¨Hppy,DxU,mq dm

¯

dτ,

so that U is a classical solution to (17).

3.3 Existence of the solution to the stochastic MFG system

An easy consequence of the existence of a solution to the master equation is the well-posedness of the
stochastic MFG system:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dupt, xq “
“

´Trppa` a0qpt, xqD2upt, xqq `Hpx,Dupt, xq,mptqq

´
?

2Trpσ0Dvpt, xqq
‰

dt` vpt, xq ¨ dWt in p0, T q ˆ Rd,
dmpt, xq “

“

ÿ

i,j

Dijpppaijq ` a
0
ijqpt, xqmpt, xqq ` div

`

mp, xqHppx,Dupt, xq,mptqq
˘‰

dt

´divpmpt, xq
?

2σ0dWt

˘

, in p0, T q ˆ Rd,
upT, xq “ Gpx,mpT qq, mp0q “ m0, in Rd

(26)

We say that pu,m, vq is a classical solution to (26) if u, m and v are random with values in C0pr0, T s, C2
b q,

C0pr0, T s,P2q and C0pr0, T s, C1
b pRd,Rdqq respectively and adapted to the filtration generated by W and

if the backward HJ equation is satisfied in a classical sense:

upt, xq “ Gpx,mpT qq ´

ˆ T

t

`

´Trppa` a0qps, xqD2ups, xqq `Hpx,Dups, xq,mpsqq

´
?

2Trpσ0Dvps, xqq
˘

ds´

ˆ T

t

vps, xq ¨ dWs
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while the Fokker-Planck equation is satisfied in the sense of distributions: for any φ P C8c pr0, T q ˆ Rdq,

0 “

ˆ
Rd
φp0, xqm0pdxq

`

ˆ T

0

ˆ
Rd

´

Trppa` a0qps, xqD2φps, xq ´Dφps, xq ¨Hppx,Dups, xq,mpsqq
¯

mps, dxqds

`
?

2

ˆ T

0

ˆ
Rd
ppσ0qTDφps, xqmps, dxq ¨ dWs.

Theorem 3.8. Under the assumptions of Theorem 3.2, there exists a time T ą 0 for which the stochastic
MFG system (26) has a classical solution pu,m, vq in r0, T s. Moreover,

vpt, xq “
?

2

ˆ
Rd
pσ0qTDmUpt, x,mptq, yqmpt, dyq, (27)

where U is the solution to the second order master equation (17).

Proof. Let m be the solution to the stochastic McKean-Vlasov equation:

$

’

’

&

’

’

%

dmpt, xq “
“

ÿ

i,j

Dijppai,j ` a
0
i,jqpt, xqmpt, xqq ` div

`

mpt, xqHppx,DUpt, x,mptqq,mptqq
˘‰

dt

´divpmpt, xq
?

2σ0dWt

˘

, in p0, T q ˆ Rd,
mp0, dxq “ m0, in Rd

(28)

Existence of a solution for this system can be obtained, for instance, as the mean field limit of the SDE

#

dXN,i
s “ ´HppX

N,i
s , DxUpt,X

N,i
s ,mN

XN
s
q,mN

XN
s
qds`

?
2σps,XN,i

s qdBis `
?

2σ0ps,XN,i
s qdWs

XN,i
0 “ X̄N,i

0

where X̄N,i
0 is a family of i.i.d. r.v. of law m0 and where mN

XN
s
“

1

N

N
ÿ

i“1

δXN,is
. Indeed, one can show that

the family of laws of pmN
XN
s
q is tight in C0pr0, T s,P2q and that its limit is a solution to (28). Uniqueness

for (28) comes from the regularity of U and Gronwall’s Lemma.
Then one can use the Itô’s formula in [9, Theorem A.1] (see also [11, Theorem 11.13]) to derive that

upt, xq :“ Upt, x,mptqq solves the backward stochastic HJ equation

$

&

%

dupt, xq “
“

´Trppa` a0qpt, xqD2upt, xqq `Hpx,Dupt, xq,mptqq

´
?

2Trpσ0Dvpt, xqq
‰

dt` vpt, xq ¨ dWt in p0, T q ˆ Rd,
upT, xq “ Gpx,mpT qq in Rd

where v is given by (27). Note that, by the regularity of U , u and v have the required regularity.
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4 The master equation for MFGs with a major player

In this section we investigate the well-posedness of the master equation associated with the MFG problem
with a major player. The unknown pU0, Uq solves the system of master equations:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

piq ´BtU
0pt, x0,mq ´∆x0

U0pt, x0,mq `H
0px0, Dx0

U0pt, x0,mq,mq

´

ˆ
Rd

divyDmU
0pt, x0,m, yqdmpyq

`

ˆ
Rd
DmU

0pt, x0,m, yq ¨Hppx0, y,DxUpt, x0, y,mq,mqdmpyq “ 0

in p0, T q ˆ Rd0 ˆ P2,
piiq ´BtUpt, x0, x,mq ´∆xUpt, x0, x,mq ´∆x0

Upt, x0, x,mq
`Hpx0, x,DxUpt, x0, x,mq,mq

´

ˆ
Rd

divyDmUpt, x0, x,m, yqdmpyq `Dx0
U ¨H0

p px0, Dx0
U0pt, x0,mq,mq

`

ˆ
Rd
DmUpt, x0, x,m, yq ¨Hppx0, y,DxUpt, x0, y,mq,mqdmpyq “ 0

in p0, T q ˆ Rd0 ˆ Rd ˆ P2,

piiiq U0pT, x0,mq “ G0px0,mq, in Rd0 ˆ P2,

pivq UpT, x0, x,mq “ Gpx0, x,mq in Rd0 ˆ Rd ˆ P2.

(29)

Definition 4.1. Let U0 : r0, T sˆRd0ˆP2 Ñ R and U : r0, T sˆRd0ˆRdˆP2 Ñ R. We say that pU0, Uq
is a classical solution of (29) if U0 and U and their derivatives involved in (29) exist, are continuous in
all variables and are bounded, and if (29) holds.

Throughout this part, assumptions in Subsection 2.3 are in force. Our main result is the following:

Theorem 4.2. Under the assumptions of Subsection 2.3, there exists a time T ą 0 and a classical
solution pU0, Uq to (29) on the time interval r0, T s, which is, in addition, such that Dx0

U0 and Dx0,xU
are uniformly Lipschitz continuous in the space and measure variables.

The result can be easily extended to non constant diffusions. We work here with a constant diffusion
to simplify the notation.

The idea of the proof follows a similar splitting method as we did in Section 3, by dividing the
time interval r0, T s into rt2k, t2k`1q and rt2k`1, t2k`2q, where tk “ kT {p2Nq, k P t0, 2Nu. This time we
alternate the two following problems: in rt2k`1, t2k`2q we solve, for a fixed x0 P Rd0 , the first order system
of master equations in Rd ˆ P2:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

piq ´BtU
0 ´ 2

ˆ
Rd

divyDmU
0pt, x0,m, yqdmpyq

`2

ˆ
Rd
DmU

0pt, x0,m, yq ¨Hppx0, y,DxUpt, x0, y,mq,mqdmpyq “ 0 ,

piiq ´BtU ´ 2∆xU ` 2Hpx0, x,DxU,mq ´ 2

ˆ
Rd

divyDmUpt, x0, x,m, yqdmpyq

`2

ˆ
Rd
DmUpt, x0, x,m, yq ¨Hppx0, y,DxUpt, x0, y,mq,mqdmpyq “ 0 ,

(30)

while on rt2k, t2k`1q we solve for a fixed px,mq P Rd ˆ P2 the system of HJ equations in Rd0 :

"

piq ´BtU
0 ´ 2∆x0

U0 ` 2H0px0, Dx0
U0,mq “ 0 ,

piiq ´BtU ´ 2∆x0U ` 2Dx0U ¨H
0
p px0, Dx0U

0pt, x0,mq,mq “ 0 .
(31)

The (technical) analysis of System (30) is postponed to Section 6. We now concentrate on System
(31). In order to write the estimate, we need to treat the pair of maps pU0, Uq simultaneously: this
requires specific notation that we discuss first.
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4.1 Analysis of the simple system of HJ equations

In this section we consider the system

$

’

’

&

’

’

%

piq ´BtU
0pt, x0;mq ´∆x0U

0pt, x0;mq `H0px0, Dx0U
0pt, x0;mq,mq “ 0 in p0, T q ˆ Rd0

piiq ´BtUpt, x0;x,mq ´∆x0
Upt, x0;x,mq

`Dx0
Upt, x0;x,mq ¨H0

p px0, Dx0
U0pt, x0,mq,mq “ 0 in p0, T q ˆ Rd0

piiiq U0pT, x0;mq “ G0px0,mq in Rd0 , UpT, x0;x,mq “ Gpx0, x,mq in Rd0 ,

(32)

where px,mq P Rd ˆ P2 are fixed. The main part of this subsection consists in proving estimates on the
solution pU0, Uq to (32).

4.1.1 Notation for the norms

In this section, we are dealing with pairs of maps pV 0, V q “ pV 0px0,mq, V px0, x,mqq which might also
depend on time t, not indicated here. The way we compute the norms is crucial in order to match all the
estimates. We use the following norms:

›

›pV 0, V q
›

›

n
:“ sup

mPP2

n
ÿ

r“0

sup
x0PRd0 ,xPRd

`

|V 0px0,mq|
2 ` |Dr

xV px0, x,mq|
2
˘1{2

,

›

›

›

›

δpV 0, V q

δm

›

›

›

›

n;k

:“ sup
mPP2

n
ÿ

r“0

sup
x0PRd0 ,xPRd,
ρPC0

b ,}ρ}´k“1

˜

ˇ

ˇ

ˇ

ˇ

δV 0

δm
px0,mqpρq

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

Dr
x

δV

δm
px0, x,mqpρq

ˇ

ˇ

ˇ

ˇ

2
¸1{2

,

›

›

›

›

δ2pV 0, V q

δm2

›

›

›

›

n;k,k

:“ sup
mPP2

n
ÿ

r“0

sup
x0PRd0 ,xPRd,

ρ,ρ1PC0
b ,}ρ}´k“}ρ

1
}´k“1

˜

ˇ

ˇ

ˇ

ˇ

δ2V 0

δm2
px0,mqpρ, ρ

1q

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

Dr
x

δ2V

δm2
px0, x,mqpρ, ρ

1q

ˇ

ˇ

ˇ

ˇ

2
¸1{2

and

Lipn;k,k

´δ2pV 0, V q

δm2

¯

:“ sup
m1‰m2

d2pm1,m2q
´1

›

›

›

›

δ2

δm2

`

V 0pm2q ´ V
0pm1q, V pm2q ´ V pm1q

˘

›

›

›

›

n;k,k

“ sup
m1‰m2

d2pm1,m2q
´1

n
ÿ

r“0

sup
x0 P Rd0 , x P Rd,

ρ, ρ1 P C0
b , }ρ}´k “ }ρ

1
}´k “ 1

˜

ˇ

ˇ

ˇ

ˇ

δ2V 0

δm2
px0,m2qpρ, ρ

1q ´
δ2V 0

δm2
px0,m1qpρ, ρ

1q

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

Dr
x

δ2V

δm2
px0, x,m2qpρ, ρ

1q ´Dr
x

δ2V

δm2
px0, x,m1qpρ, ρ

1q

ˇ

ˇ

ˇ

ˇ

2
¸1{2

.

We define in a similar way the quantities Lipx0
n pD

2
x0
V 0, D2

x0
V q, Lipn;kp

δV 0
x0

δm ,
δVx0
δm q and LipnpD

2
x0
V 0, D2

x0
Uq.

Note that arguing as in Remark 2.2, a control on
›

›

›

δpV 0,V q
δm

›

›

›

n;k
yields a control on

›

›

›

δV 0

δm

›

›

›

n,k´1
and

›

›

δV
δm

›

›

n,k´1
, and similarly for

›

›

›

δ2pV 0,V q
δm2

›

›

›

n;k,k
, Lipn;k,k

´

δ2pV 0,V q
δm2

¯

, ...

4.1.2 Basic regularity of pU0, Uq

We recall that H0 satisfies the assumptions of Section 2.3, in particular condition (16) is in force.

Proposition 4.3. Fix M ą 0 and n ě 3. There are constants KM , TM ą 0, depending on M , C0 and
γ, and a constant CM ą 0 depending on

sup
|p|ďKM

sup
mPP2

3
ÿ

k“0

}Dk
px0,pq

H0p¨, p,mq}8 `
3
ÿ

k“0

}Dk
px0,pq

H0
p p¨, p,mq}8,
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such that, if
ř2
k“0

`

}DkG0}8`}D
k
x0
G}0,n´k

˘

`

´

Lipx0
n´3pD

2
x0
G0, D2

x0
Gq

¯

ďM , then, for any T P p0, TM q,

we have

sup
t

´
›

›

›
pU0, Uqptq

›

›

›

n
`

›

›

›
Dx0

pU0, Uqptq
›

›

›

n´1
`

›

›

›
D2
x0
pU0, Uqptq

›

›

›

n´2
` pLipx0

n´3pD
2
x0
pU0, Uqptqqq

¯

ď

›

›

›
pG0, Gq

›

›

›

n
`

›

›

›
Dx0

pG0, Gq
›

›

›

n´1
`

›

›

›
D2
x0
pG0, Gqq

›

›

›

n´2
` pLipx0

n´3pD
2
x0
pG0, Gqqq ` CMT.

Proof. To estimate }pU0, Uq}n it suffices to apply successively Proposition A.8 with r “ 0 and l ď n, and
to sum over l. The argument to estimate first and higher order derivatives with respect to x0 is identical:
apply successively Proposition A.8 with r “ 1 and l ď n´ 1 (for }pDx0

U0, Dx0
Uq}n´1), with r “ 2 and

l ď n´ 2 (for }pD2
x0
U0, D2

x0
Uq}n´2) and finally with r “ 3 and l ď n´ 3 (for the Lipschitz bound in x0

of D2
x0
pU0, Uq).

4.1.3 First order differentiability in m

Proposition 4.4. Under the assumptions of Proposition 4.3, the pair pU0, Uq is of class C1 with respect to
m, as well as its derivatives with respect to x appearing below, and, for any fixed px,m, ρq P RdˆP2ˆC

´k

the derivative

pv0, vq “
´δU0

δm
pt, x0;mqpρq,

δU

δm
pt, x0;x,mqpρq

¯

solves,

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

piq ´Btv
0 ´∆x0v

0 `
δH0

δm
px0, Dx0U

0,mqpρq

`H0
p px0, Dx0

U0,mq ¨Dx0
v0 “ 0 in p0, T q ˆ Rd0 ,

piiq ´Btv ´∆x0v `Dx0v ¨H
0
p px0, Dx0U

0,mq

`Dx0
U ¨

˜

δH0
p

δm
px0, Dx0

U0,mqpρq `H0
pppx0, Dx0

U0,mqDx0
v0

¸

“ 0 in p0, T q ˆ Rd0 ,

piiiq v0pT, x0;mq “
δG0

δm
px0,mqpρq, vpT, x0, x;mq “

δG

δm
px0, x,mqpρq in Rd0 .

(33)

Suppose in addition that, for k ě 2,

sup
x0,m

´

}
δG0

δm
}k ` }

δG

δm
}n´1;k ` }

δG0
x0

δm
}k´1 ` }

δGx0

δm
}n´2;k´1 `

`

Lipx0

n´3;k´2p
δG0

x0

δm
,
δGx0

δm
q
˘

¯

ďM.

Then there exists TM , CM ą 0 such that, for any T P p0, TM q, we have

sup
t

´
›

›

›

δpU0, Uq

δm
ptq

›

›

›

n´1;k
`

›

›

›

δpU0
x0
, Ux0

q

δm
ptq

›

›

›

n´2;k´1
` pLipx0

n´3;k´2p
δU0

x0

δm
,
δUx0

δm
qptqq

¯

ď

´
›

›

›

δpG0, Gq

δm

›

›

›

n´1;k
`

›

›

›

δpG0
x0
, Gx0

q

δm

›

›

›

n´2;k´1
` Lipx0

n´3;k´2p
δG0

x0

δm
,
δGx0

δm
q

¯

` CMT,

where CM depends on M , r, n, k and on the regularity of H0.

Proof. In order to show that U0 is C1 with respect to m, let us define

Û0pt, x0; s,m, yq :“ U0pt, x0, p1´ sqm` sδyq.

Then, as Ĥ0 :“ H0px0, p, p1´ sqm` sδyq and ĝ0 :“ G0px0, p1´ sqm` sδyq are of class C1 with respect to

the parameter s P r0, 1s, the map Û0 is C1 in s and its derivative v̂0pt, x0;m, yq :“ pdÛ0{dsqpt, x0; 0,m, yq
solves the linearized equation

$

’

&

’

%

´Btv̂
0 ´∆x0

v̂0 `
δH0

δm
px0, Dx0

U0,m, yq `H0
p px0, Dx0

U0,mq ¨Dx0
v̂0 “ 0 in p0, T q ˆ Rd0 ,

v̂0pT, x0q “
δG0

δm
px0,m, yq in Rd0 .
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By uniqueness and parabolic regularity, the solution to this equation depends continuously of the param-
eters pm, yq. Hence Lemma B.1 states that U0 is C1 in m with δU0{δmpt, x0,m, yq “ v̂0pt, x0;m, yq.

Next we consider the linear equation satisfied by U . By our previous discussion on U0, the vector
field

pt, x0q Ñ H0
p px0, Dx0U

0pt, x0,mq,mq

is C1 with respect to m. For ps,m, yq P r0, 1s ˆ P2 ˆ Rd0 , the map Ûpt, x0; s, x,m, yq :“ Upt, x0, x, p1 ´
sqm` sδyq solves a linear equation in which the vector field

V̂ pt, x0; s,m, yq :“ H0
p px0, Dx0U

0pt, x0; p1´ sqm` sδyq, p1´ sqm` sδyq

and the terminal condition ĝpx0;x, s,m, yq :“ Gpx0, x, p1 ´ sqm ` sδyq are C1 in s. Then Û is C1 in s

and its derivative v̂pt, x0;x,m, yq :“ pd{dsqÛpt, x0; 0, x,m, yq solves the linear equation

$

’

’

’

&

’

’

’

%

´Btv̂ ´∆x0 v̂ `Dx0 v̂ ¨H
0
p px0, Dx0U

0,mq

`Dx0
U ¨

ˆ

δHp

δm
px0, Dx0

U0,m, yq `Hpppx0, Dx0
U0,mqDx0

v̂0
˙

“ 0 in p0, T q ˆ Rd0 ,

v̂pT, x0;x,m, yq “
δG

δm
px0, x,m, yq in Rd0 .

As the solution to this equation depends continuously of the parameters pm, yq, Lemma B.1 states that
U is C1 in m with δU{δmpt, x0, x,m, yq “ v̂pt, x0;x,m, yq. This proves that the derivative pv̂0, v̂q “
pδU0{δm, δU{δmqpt, x0, x,m, yq solves (33) with ρ “ δy.

Hence, for any ρ P C0
b , the pair pv0, vq “ p δU

0

δm pt, x0;mqpρq, δUδm pt, x0;x,mqpρqq solves a linear system
of the form (113) in which the drifts

V 0pt, x0;mq :“ H0
p px0, Dx0

U0pt, x0,mq,mq

and
V pt, x0;x,mq :“ H0

pppx0, Dx0
U0pt, x0,mq,mqDx0

Upt, x0;xq

are bounded in class C1
b and C0,n´1

b X C1,n´2
b respectively, while the source terms

f0pt, x0;mq :“
δH0

δm
px0, Dx0U

0,mqpρq

and

fpt, x0;x,mq :“ Dx0Upt, x0;xq ¨
δH0

p

δm
px0, Dx0U

0,mqpρq

are in C1
b and C0,n´1

b X C1,n´2
b respectively, thanks to Proposition 4.3. We then use Proposition A.9

successively to obtain the estimates: first with r “ 0 and l ď n´ 1, we get

´

|
δU0

δm
pt, x0;mqpρq|2 ` |Dl

x

δU

δm
pt, x0;x,mqpρq|2

¯1{2

ď

p1` CT q sup
x0,x

´

|
δG0

δm
px0;mqpρq|2 ` |Dl

x

δG

δm
px0;x,mqpρq|2

¯1{2

` CT.

Then by taking the supremum over }ρ}´k “ 1, x0, x and summing over l ď n ´ 1 we find the estimate

for } δpU
0,Uq
δm }n´1;k. An analogous application of Proposition A.9 with r “ 1 and l ď n ´ 2 provides the

bound for }
δpU0

x0
,Ux0 q

δm }n´2;k´1, while the Lipschitz estimate in x0 for p
δU0

x0

δm ,
δUx0
δm q is obtained similarly

with r “ 2, and l ď n´ 3.

21



4.1.4 Second order differentiability with respect to m

Proposition 4.5. Under the assumptions of Proposition 4.4, k ě 3, the pair pU0, Uq (and its derivatives
with respect to x) is of class C2 with respect to m and, for any fixed px,m, ρ, ρ1q P Rd ˆ P2 ˆ C

´pk´1q ˆ

C´pk´1q the derivative pw0, wq “ pδ2U0{δm2pt, x0;mqpρ, ρ1q, δ2U{δm2pt, x0;x,mqpρ, ρ1q q solves

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

piq ´Btw
0 ´∆x0

w0 `H0
p px0, Dx0

U0,mq ¨Dx0
w0 `

δ2H0

δm2
px0, Dx0

U0,mqpρ, ρ1q

`H0
pppx0, Dx0U

0,mqDx0v
0 ¨Dx0pv

1q0 `
δH0

p

δm
px0, Dx0

U0,mqpρq ¨Dx0
pv1q0

`
δH0

p

δm
px0, Dx0U

0,mqpρ1q ¨Dx0v
0 “ 0 in p0, T q ˆ Rd0

piiq ´Btw ´∆x0
w `H0

p px0, Dx0
U0,mq ¨Dx0

w

`Dx0
v ¨

˜

δH0
p

δm
px0, Dx0

U0,mqpρ1q `H0
pppx0, Dx0

U0,mqDx0
pv1q0

¸

`Dx0
v1 ¨

˜

δH0
p

δm
px0, Dx0

U0,mqpρq `H0
pppx0, Dx0

U0,mqDx0
v0

¸

`Dx0U ¨
´δH0

pp

δm
px0, Dx0U

0,mqpρqDx0pv
1q0 `

δ2H0
p

δm2
px0, Dx0U

0,mqpρ, ρ1q

`H0
ppppx0, Dx0

U0,mqDx0
v0Dx0

pv1q0 `
δH0

pp

δm
px0, Dx0

U0,mqpρ1qDx0
v0

`H0
pppx0, Dx0

U0,mqDx0
w0

¯

“ 0 in p0, T q ˆ Rd0

piiiq w0pT, x0;mq “
δ2G0

δm2
px0,mqpρ, ρ

1q, wpT, x0;x,mq “
δ2G

δm2
px0, x,mqpρ, ρ

1q in Rd0 ,

(34)

where pv0, vq, ppv1q0, v1q are the solutions to (33) associated with ρ and ρ1 respectively. Moreover, if

›

›

›

›

δ2pG0, Gq

δm2

›

›

›

›

n´2;k´1,k´1

` Lipx0

n´3;k´2,k´2p
δ2G0

δm2
,
δ2G

δm2
q ďM,

then there exists TM , CM ą 0 such that, for any T P p0, TM q,

sup
t

´

›

›

›

›

δ2pU0, Uq

δm2
ptq

›

›

›

›

n´2;k´1,k´1

` pLipx0

n´3;k´2,k´2p
δ2U0

δm2
,
δ2U

δm2
qptqq

¯

ď

´

›

›

›

›

δ2pG0, Gq

δm2

›

›

›

›

n´2;k´1,k´1

` Lipx0

n´3;k´2,k´2p
δ2G0

δm2
,
δ2G

δm2
q

¯

` CMT.

Proof. The differentiability of δU0{δm and of δU{δm and the representation formula (34) can be estab-
lished as for U0 and U in Proposition 4.4. To prove the estimate, we use Proposition A.9 with

V 0pt, x0;mq :“ H0
p px0, Dx0U

0pt, x0,mq,mq

and
V pt, x0x;mq :“ H0

pppx0, Dx0U
0pt, x0,mq,mqDx0Upt, x0, xq,

which are bounded in class C1
b and C0,n´1

b X C1,n´2
b respectively, while the source terms

f0pt, x0;mq :“
δ2H0

δm2
px0, Dx0

U0,mqpρ, ρ1q `H0
pppx0, Dx0

U0,mqDx0
v0 ¨Dx0

pv1q0

`
δH0

p

δm
px0, Dx0U

0,mqpρq ¨Dx0pv
1q0 `

δH0
p

δm
px0, Dx0U

0,mqpρ1q ¨Dx0v
0
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and

fpt, x0, x;mq :“ Dx0v ¨

˜

δH0
p

δm
px0, Dx0U

0,mqpρ1q `H0
pppx0, Dx0U

0,mqDx0pv
1q0

¸

`Dx0
v1 ¨

˜

δH0
p

δm
px0, Dx0

U0,mqpρq `H0
pppx0, Dx0

U0,mqDx0
v0

¸

`Dx0
U ¨

´δH0
pp

δm
px0, Dx0

U0,mqpρqDx0
pv1q0 `

δ2H0
p

δm2
px0, Dx0

U0,mqpρ, ρ1q

`H0
ppppx0, Dx0

U0,mqDx0
v0Dx0

pv1q0 `
δH0

pp

δm
px0, Dx0

U0,mqpρ1qDx0
v0
¯

are in C0
b and C0,n´2

b respectively, thanks to Propositions 4.3 and 4.4. By Proposition A.9, with r “ 0

and n ´ 2 we obtain the estimates for } δ
2
pU0,Uq
δm2 }n´2;k´1,k´1. The Lipschitz bound in x0 of p δ

2U0

δm2 ,
δ2U
δm2 q

follows analogously.

4.1.5 Lipschitz regularity of the second order derivatives

We finally address the Lipschitz regularity of second order derivatives of U0 and U with respect to m
and x0.

Proposition 4.6. Under the assumptions of Proposition 4.5 and if, in addition,

Lipn´3;k´2,k´2p
δ2G0

δm2 ,
δ2G
δm2 q ďM, then we have,

sup
t
pLipn´3;k´2,k´2p

δ2U0

δm2
,
δ2U

δm2
qptqq ď Lipn´3;k´2,k´2p

δ2G0

δm2
,
δ2G

δm2
q ` CMT,

where the constant CM depend on the regularity of H and H0 and on M .

Proof. Let px, ρ, ρ1q P RdˆC´pk´2qˆC´pk´2q, m1,m2 P P2, pU0,1, U1q be the solution to (32) associated
with px,m1q and pU0,2, U2q be the solution associated with px,m2q. We denote by pv0,1, v1q, ppv1q0,1, pv1q1q
(resp. pv0,2, v2q, ppv1q0,2, pv1q2q) the corresponding solutions to the first order linearized system (33)
associated with ρ and ρ1, and by pw0,1, w1q (resp. pw0,2, w2q) the corresponding solution of the second
order linearized system (34). We want to estimate the difference pz0, zq :“ pw0,2 ´ w0,1, w2 ´ w1q. We
have

$

’

’

’

’

’

&

’

’

’

’

’

%

´Btz
0 ´∆x0

z0 `H0
p px0, Dx0

U0,1pt, x0,m
1q,m1q ¨Dx0

z0 ` f0 “ 0,
´Btz ´∆x0

z `Dx0
z ¨H0

p px0, Dx0
U0,1,m1q ´H0

pppx0, Dx0
U0,1,mqDx0

U1 ¨Dx0
z0 ` f “ 0

z0pT q “
δ2G0

δm2
px0,m

2qpρ, ρ1q ´
δ2G0

δm2
px0,m

1qpρ, ρ1q,

zpT q “
δ2G

δm2
px0, x,m

2qpρ, ρ1q ´
δ2G

δm2
px0, x,m

1qpρ, ρ1q ,

where

f0 :“pH0
p px0, Dx0U

0,2,m2q ´H0
p px0, Dx0U

0,1,m1qq ¨Dx0w
0,2

`
δ2H0

δm2
px0, Dx0

U0,2,m2qpρ, ρ1q ´
δ2H0

δm2
px0, Dx0

U0,1,m1qpρ, ρ1q

`H0
pppx0, Dx0U

0,2,m2qDx0v
0,2 ¨Dx0pv

1q0,2 ´H0
pppx0, Dx0U

0,1,m1qDx0v
0,1 ¨Dx0pv

1q0,1

`
δH0

p

δm
px0, Dx0U

0,2,m2qpρq ¨Dx0pv
1q0,2 ´

δH0
p

δm
px0, Dx0U

0,1,m1qpρq ¨Dx0pv
1q0,1

`
δH0

p

δm
px0, Dx0

U0,2,m2qpρ1q ¨Dx0
v0,2 ´

δH0
p

δm
px0, Dx0

U0,1,m1qpρ1q ¨Dx0
v0,1
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and

f :“Dx0w
2 ¨

`

H0
p px0, Dx0U

0,2,m2q ´H0
p px0, Dx0U

0,1,m1q
˘

`Dx0v
2 ¨

˜

δH0
p

δm
px0, Dx0U

0,2,m2qpρ1q `H0
pppx0, Dx0U

0,2,m2qDx0pv
1q0,2

¸

´Dx0
v1 ¨

˜

δH0
p

δm
px0, Dx0U

0,1,m1qpρ1q `H0
pppx0, Dx0U

0,1,m1qDx0pv
1q0,1

¸

`Dx0
pv1q2 ¨

˜

δH0
p

δm
px0, Dx0

U0,2,m2qpρq `H0
pppx0, Dx0

U0,2,m2qDx0
v0,2

¸

´Dx0
pv1q1 ¨

˜

δH0
p

δm
px0, Dx0

U0,1,m1qpρq `H0
pppx0, Dx0

U0,1,m1qDx0
v0,1

¸

`Dx0U
2 ¨

´δH0
pp

δm
px0, Dx0U

0,2,m2qpρqDx0pv
1q0,2 `

δ2H0
p

δm2
px0, Dx0U

0,2,m2qpρ, ρ1q

`H0
ppppx0, Dx0U

0,2,m2qDx0v
0,2Dx0pv

1q0,2 `
δH0

pp

δm
px0, Dx0U

0,2,m2qpρ1qDx0v
0,2

¯

`

´

H0
pppx0, Dx0U

0,2,mqDx0U
2 ´H0

pppx0, Dx0U
0,1,mqDx0U

1
¯

¨Dx0w
0,2

´Dx0U
1 ¨

´δH0
pp

δm
px0, Dx0

U0,1,m1qpρqDx0
pv1q0,1 `

δ2H0
p

δm2
px0, Dx0

U0,1,m1qpρ, ρ1q

`H0
ppppx0, Dx0

U0,1,m1qDx0
v0,1Dx0

pv1q0,1 `
δH0

pp

δm
px0, Dx0

U0,1,m1qpρ1qDx0
v0,1

¯

.

Proposition 4.4 (for the representation of the pv0,i, viq) and Proposition 4.5 (for their Lipschitz regularity
in m and in x0) imply in particular that

sup
t

`

}Dx0
pv0,2 ´ v0,1q}8 ` }Dx0

pv2 ´ v1q}0,n´3

˘

ď Cd2pm1,m2q

and hence we have, using also Proposition 4.5,

sup
t

`

}f0}8 ` }f}0,n´3

˘

ď Cd2pm
1,m2q.

Using Proposition A.9 (with r “ 0), we obtain, for any l ď n´ 3,

sup
t,x0,x

p|z0pt, x0q|
2 ` |Dl

xzpt, x0, xq|
2q1{2

ď p1` CT q sup
x0,x

´

ˇ

ˇ

ˇ

ˇ

δ2G0

δm2
px0,m

2qpρ, ρ1q ´
δ2G0

δm2
px0,m

1qpρ, ρ1q

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

Dl
x

δ2G

δm2
px0, x,m

2qpρ, ρ1q ´Dl
x

δ2G

δm2
px0, x,m

1qpρ, ρ1q

ˇ

ˇ

ˇ

ˇ

2
¯1{2

` CTd2pm
1,m2q,

which gives the claim.

We complete this section by stating similar estimates on the Lipschitz regularity of the other second
order derivatives:

Proposition 4.7. Under the assumptions of Proposition 4.5 and if, in addition, Lipn´3;k´2p
δG0

x0

δm ,
δGx0
δm q`

Lipn´3pD
2
x0
G0, D2

x0
Gq ďM , then we have,

sup
t
pLipn´3;k´2p

δU0
x0

δm
,
δUx0

δm
qptqq ď Lipn´3;k´2p

δG0
x0

δm
,
δGx0

δm
q ` CMT
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and

sup
t
pLipn´3pD

2
x0
U0, D2

x0
Uqptqq ď Lipn´3pD

2
x0
G0, D2

x0
Gq ` CMT,

where the constant CM depend on the regularity of H and H0 and on M .

As the proof is completely similar to the proof of Proposition 4.6, we omit it.

4.2 Existence of a solution

4.2.1 Definition of the semi-discrete scheme

Let us fix some horizon T ą 0 (small) and a step-size τ :“ T {p2Nq (where N P N, N ě 1). We set
tk “ kT {p2Nq, k P t0, 2Nu. We define by backward induction the continuous maps U0,N “ U0,N pt, x0,mq
and UN “ UN pt, x0, x,mq as follows: we require that

(i) pU0,N , UN q satisfies the terminal condition:

U0,N pT, x0,mq “ G0px0,mq, U
N pT, x0, x,mq “ Gpx0, x,mq @px0, x,mq P Rd ˆ Rd0 ˆ P2,

(ii) for x0 P Rd0 fixed, pU0,N , UN q solves the backward system of first order master equations:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

piq ´BtU
0 ´ 2

ˆ
Rd

divyDmU
0pt, x0,m, yqdmpyq

`2

ˆ
Rd
DmU

0pt, x0,m, yq ¨Hppx0, y,DxUpt, x0, y,mq,mqdmpyq “ 0

piiq ´BtU ´ 2∆xU ` 2Hpx0, x,DxU,mq ´ 2

ˆ
Rd

divyDmUpt, x0, x,m, yqdmpyq

`2

ˆ
Rd
DmUpt, x0, x,m, yq ¨Hppx0, y,DxUpt, x0, y,mq,mqdmpyq “ 0

(35)

on time intervals of the form pt2j`1, t2j`2q, for j “ 0, . . . , N ´ 1,

(iii) for px,mq P Rd ˆ P2 fixed, pU0,N , UN q solves the backward system of HJ equations:

"

piq ´BtU
0 ´ 2∆x0

U0 ` 2H0px0, Dx0
U0,mq “ 0

piiq ´BtU ´ 2∆x0U ` 2Dx0U ¨H
0
p px0, Dx0U

0pt, x0,mq,mq “ 0
(36)

on time intervals of the form pt2j , t2j`1q, for j “ 0, . . . , N ´ 1.

Our aim is to show that, if the time horizon is short enough, pU0,N , UN q converges to a solution of
the master equation for MFGs with a major player as N Ñ `8.

4.2.2 Proof of the existence of a solution

For n ě 4 and k P t3, . . . , n´ 1u, let

M :“ 1`
›

›

›
pG0, Gq

›

›

›

n
`

›

›

›
Dx0

pG0, Gq
›

›

›

n´1
`

›

›

›
D2
x0
pG0, Gq

›

›

›

n´2
` pLipx0

n´3pD
2
x0
G0, D2

x0
Gqq

`

›

›

›

δpG0, Gq

δm

›

›

›

n´1;k
`

›

›

›

δpG0
x0
, Gx0

q

δm

›

›

›

n´2;k´1
` pLipx0

n´3;k´2p
δG0

x0

δm
,
δGx0

δm
qq

`

›

›

›

›

δ2pG0, Gq

δm2

›

›

›

›

n´2;k´1,k´1

` pLipx0

n´3;k´2,k´2p
δ2G0

δm2
,
δ2G

δm2
qq

` pLipn´3;k´2,k´2p
δ2G0

δm2
,
δ2G

δm2
qq ` pLipn´3;k´2p

δG0
x0

δm
,
δGx0

δm
qq ` pLipn´3pD

2
x0
G0, D2

x0
Gqq.
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Lemma 4.8. There exists TM ą 0, depending on the regularity of H0, H and on M , such that, for any
T P p0, TM s and N ě 1, we have, for any t P r0, T s,

›

›

›
pU0, Uqptq

›

›

›

n
`

›

›

›
Dx0

pU0, Uqptq
›

›

›

n´1
`

›

›

›
D2
x0
pU0, Uqptq

›

›

›

n´2
` pLipx0

n´3pD
2
x0
U0, D2

x0
Uqptqq

`

›

›

›

δpU0, Uq

δm
ptq

›

›

›

n´1;k
`

›

›

›

δpU0
x0
, Ux0q

δm
ptq

›

›

›

n´2;k´1
` pLipx0

n´3;k´2p
δU0

x0

δm
,
δUx0

δm
qptqq (37)

`

›

›

›

›

δ2pU0, Uq

δm2
ptq

›

›

›

›

n´2;k´1,k´1

` pLipx0

n´3;k´2,k´2p
δ2U0

δm2
,
δ2U

δm2
qptqq

` pLipn´3;k´2,k´2p
δ2U0

δm2
,
δ2U

δm2
qptqq ` pLipn´3;k´2p

δU0
x0

δm
,
δUx0

δm
qptqq ` pLipn´3pD

2
x0
U0, D2

x0
Uqptqq ď M.

Moreover:

• The maps U0,N and UN are globally Lipschitz continuous in all variables and their first and second
space derivatives are globally Holder continuous in all variables, uniformly with respect to N .

• The maps DmU
0,N and DmU

N are Holder continuous in pt, x0,m, yq and pt, x0, x,m, yq respectively,
uniformly with respect to N , in any set of the form

tpt, x0,m, yq P r0, T s ˆ Rd0 ˆ P2 ˆ Rd, M2pmq ď R, |y| ď Ru

and tpt, x0, x,m, yq P r0, T s ˆ Rd0 ˆ Rd ˆ P2 ˆ Rd, M2pmq ď R, |y| ď Ru (38)

respectively (where M2pmq “ p
´
Rd |y|

2mpdyqq1{2).

Proof. We only sketch the proof, since it is exactly the same as for the second order master equation (see
Lemma 3.7). The proof of (37) can be established by collecting the estimates in Propositions 6.5, 6.7
and 6.9 in Section 6 below, which provide the bounds on intervals of the form pt2j`1, t2j`2q, and, for the
intervals of the form pt2j , t2j`1q, by Proposition 4.3, 4.4, 4.5 and 4.6.

The Lipschitz regularity in space of U0,N and UN and of their first and second order space derivatives
follows immediately from (37). As DmU

0,N and DmU
N are bounded according to (37), U0,N and UN

and their first and second order space derivatives are also Lipschitz continuous in m. Finally, since U0,N

and UN satisfy the equations (35) and (36), the bounds in (37) show that BtU
0,N and BtU

N are bounded
and therefore that U0,N and UN are also Lipschitz continuous in time. The global Holder regularity of
the first and second space derivatives of U0,N and UN then follows by interpolation (Lemma B.2).

The Lipschitz regularity in space and in measure of DmU
0,N and DmU

N is a consequence of (37)
while the Holder regularity in time in sets of the form (38) comes from interpolation (Lemma B.4).

Proof of Theorem 4.2. It relies exactly on the same argument as in the proof of Theorem 3.2 and we omit
it.

4.3 Uniqueness of the solution

We finally address the uniqueness of the solution of the master equation for MFGs with a major player:

Theorem 4.9. Let pU0,1, U1q and pU0,2, U2q be two classical solutions to (29) defined on the time interval
r0, T s and such that Dx0

U0,1 and Dx0,xU
1 are uniformly Lipschitz continuous in the space and measure

variables. Then pU0,1, U1q “ pU0,2, U2q.

Proof. Let pt0, x̄0, m̄0q P r0, T q ˆ Rd0 ˆ P2 be an initial condition, Z be a random variable with law m̄0

and let pX0
t ,mt, Xtq be the solution to

$

’

’

&

’

’

%

dX0
t “ ´H

0
p pX

0
t , Dx0

U0,1pt,X0
t ,mtq,mtqdt`

?
2dW 0

t in p0, T q
dmt “

`

∆mt ` divpmtHppX
0
t , x,DxU

1pt,X0
t , x,mtq,mtqq

˘

dt in p0, T q ˆ Rd
dXt “ ´HppX

0
t , Xt, DxU

1pt,X0
t , Xt,mtqdt`

?
2dWt in p0, T q

X0
t0 “ x̄0, mt0 “ m̄0, Xt0 “ Z
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where pW 0
t q and pWtq are Brownian motions, pW 0

t q, pWtq and Z being independent. As DxU
0,1 and

DxU
1 are globally Lipschitz continuous, the above system has a unique solution. Note that mt is the

conditional law of Xt given pW 0
s qsďt.

We compute the variation of U0,1 along pt,X0
t ,mtq:

dU0,1pt,X0
t ,mtq “

´

BtU
0,1 `∆x0U

0,1 ´H0
p pX

0
t , Dx0U

0,1,mtq ¨Dx0U
0,1

´

ˆ
Rd
DmU

0,1 ¨HppX
0
t , y,DxU

1pt,X0
t , y,mtq,mtqmtpdyq `

ˆ
Rd

divyDmU
0,1mtpdyq

¯

dt

`
?

2Dx0
U0,1 ¨ dW 0

t ,

where, unless specified otherwise, U0,1 and its space derivatives are computed at pt,X0
t ,mtq while DmU

0,1

and its space derivatives are computed at pt,X0
t ,mt, yq. In view of the equation satisfied by U0,1, we find

dU0,1pt,X0
t ,mtq “

´

H0pX0
t , Dx0

U0,1,mtq ´H
0
p pX

0
t , Dx0

U0,1,mtq ¨Dx0
U0,1

¯

dt

`
?

2Dx0
U0,1 ¨ dW 0

t .

We proceed in the same way for U0,2 and obtain, in view of the equation satisfied by U0,2:

dU0,2pt,X0
t ,mtq “

´

H0pX0
t , Dx0

U0,2,mtq ´H
0
p pX

0
t , Dx0

U0,1,mtq ¨Dx0
U0,2

`

ˆ
Rd
DmU

0,2 ¨ pHppX
0
t , y,DxU

2pt,X0
t , y,mtq,mtq ´HppX

0
t , y,DxU

1pt,X0
t , y,mtqq,mtqmtpdyq

¯

dt

`
?

2Dx0
U0,2 ¨ dW 0

t ,

where, unless specified otherwise, U0,2 and its space derivatives are computed at pt,X0
t ,mtq while DmU

0,2

and its space derivatives are computed at pt,X0
t ,mt, yq. Therefore

dpU0,2 ´ U0,1q2 “ 2pU0,2 ´ U0,1q

´

H0pX0
t , Dx0

U0,2,mtq ´H
0pX0

t , Dx0
U0,1,mtq

´H0
p pX

0
t , Dx0

U0,1,mtq ¨ pDx0
U0,2 ´Dx0

U0,1q

`

ˆ
Rd
DmU

0,2 ¨ pHppX
0
t , y,DxU

2pt,X0
t , y,mtq,mtq ´HppX

0
t , y,DxU

1pt,X0
t , y,mtq,mtqqmtpdyq

¯

dt

` 2pDx0U
0,2 ´Dx0U

0,1q2dt` 2
?

2pU0,2 ´ U0,1qpDx0U
0,2 ´Dx0U

0,1q ¨ dW 0
t .

Let us set U0,i
t “ U0,ipt,X0

t ,mtq (for i “ 1, 2). We integrate in time between s P rt0, T s and T , take
expectation and use the fact that U0,1

T “ U0,2
T “ G0pX0

T ,mT q:

0 “E
”

pU0,2
s ´ U0,1

s q2 `

ˆ T

s

2pU0,2
t ´ U0,1

t q

´

H0pX0
t , Dx0

U0,2,mtq ´H
0pX0

t , Dx0
U0,1,mtq

´H0
p pX

0
t , Dx0

U0,1,mtq ¨ pDx0
U0,2 ´Dx0

U0,1q

`

ˆ
Rd
DmU

0,2 ¨ pHppX
0
t , y,DxU

2pt,X0
t , y,mtq,mtq ´HppX

0
t , y,DxU

1pt,X0
t , y,mtq,mtqqmtpdyq

¯

dt

` 2

ˆ T

s

|Dx0U
0,2 ´Dx0U

0,1|2dt
ı

.

Thanks to the regularity of the solutions, we have by Cauchy-Schwarz inequality and for any ε ą 0:

0 ěE
”

pU0,2
s ´ U0,1

s q2 ´

ˆ T

s

´

CεpU
0,2
t ´ U0,1

t q2 ` ε|Dx0
pU0,2 ´ U0,1q|2

` ε

ˆ
Rd
|DxpU

2 ´ U1qpt,X0
t , y,mtq|

2mtpdyq
¯

dt` 2

ˆ T

s

|Dx0
pU0,2 ´ U0,1q|2 dt

ı

.
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So, for ε small enough, we obtain

0 ěE
”

pU0,2
s ´ U0,1

s q2 ´

ˆ T

s

´

CεpU
0,2
t ´ U0,1

t q2 ` ε

ˆ
Rd
|DxpU

2 ´ U1qpt,X0
t , y,mtq|

2mtpdyq
¯

dt

`

ˆ T

s

|Dx0
pU0,2 ´ U0,1q|2dt

ı

.

We argue in the same way for U it :“ U ipt,X0
t , Xt,mtq (i “ 1, 2) and find:

0 ěE
”

pU2
s ´ U

1
s q

2 ´

ˆ T

s

´

CεpU
2
t ´ U

1
t q

2 ` ε|Dx0
pU0,2 ´ U0,1q|2

` ε

ˆ
Rd
|DxpU

2 ´ U1qpt,X0
t , y,mtq|

2mtpdyq
¯

dt`

ˆ T

s

|Dx0
pU2 ´ U1q|2 ` |DxpU

2 ´ U1q|2 dt
ı

.

We add the last two inequalities to obtain:

0 ěE
”

pU0,2
s ´ U0,1

s q2 ` pU2
s ´ U

1
s q

2 ´

ˆ T

s

´

CεppU
0,2
t ´ U0,1

t q2 ` pU2
t ´ U

1
t q

2q

` ε|Dx0
pU0,2 ´ U0,1q|2 ` 2ε

ˆ
Rd
|DxpU

2 ´ U1qpt,X0
t , y,mtq|

2mtpdyq
¯

dt (39)

`

ˆ T

s

´

|Dx0
pU0,2 ´ U0,1q|2 ` |Dx0

pU2 ´ U1q|2 ` |DxpU
2 ´ U1q|2

¯

dt
ı

.

Note that, as mt is the conditional law of Xt given pW 0
uquďt, we have

E
”

|DxpU
2 ´ U1qpt,X0

t , Xt,mtq|
2
ı

“ E
”

E
”

|DxpU
2 ´ U1qpt,X0

t , Xt,mtq|
2 | pW 0

uquďt

ıı

“ E
”

ˆ
Rd
|DxpU

2 ´ U1qpt,X0
t , y,mtq|

2mtpdyq
ı

since X0
t and Xt are adapted to pW 0

uquďt. Plugging this relation into (39) we find therefore, for ε ą 0
small enough,

0 ěE
”

pU0,2
s ´ U0,1

s q2 ` pU2
s ´ U

1
s q

2 ´

ˆ T

s

´

CεppU
0,2
t ´ U0,1

t q2 ` pU2
t ´ U

1
t q

2qdt

` p1{2q

ˆ T

s

|Dx0
pU0,2 ´ U0,1q|2 ` |Dx0

pU2 ´ U1q|2 ` |DxpU
2 ´ U1q|2 dt

ı

.

We conclude by Gronwall’s inequality that, for any t P rt0, T s,

E
”

pU0,2pt,X0
t ,mtq ´ U

0,1pt,X0
t ,mtqq

2 ` pU2pt,X0
t , Xt,mtq ´ U

1pt,X0
t , Xtmtqq

2
ı

“ 0.

For t “ t0, we have therefore U0,2pt0, x̄0, m̄0q “ U0,1pt0, x̄0, m̄0q and

U1pt0, x̄0, Z, m̄0q “ U2pt0, x̄0, Z, m̄0q a.s.

If m̄0 has a positive density, the fact that the law of Z is m̄0 easily implies the equality of U1 and U2

at any point pt0, x̄0, x, m̄0q for x P Rd. We conclude by density of such laws and by continuity of the
U i’s.

5 Estimates on the MFG system

We are now left to prove the estimates on the first order master equations considered in the two pre-
vious sections. As the solutions of these equations are built by a method of characteristics, where the
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characteristics are the solutions of the MFG system, we first need to discuss the well-posedness and the
regularity properties of this system:

$

’

’

’

’

&

’

’

’

’

%

piq ´Btupt, xq ´ Trpapt, xqD2upt, xqq `Hpx0, x,Dupt, xq,mptqq “ 0 in pt0, T q ˆ Rd,
piiq Btmpt, xq ´

ÿ

i,j

Dijpai,jpt, xqmpt, xqq ´ divpmpt, xqHppx0, x,Dupt, xq,mptqqq “ 0

in pt0, T q ˆ Rd,
piiiq mpt0q “ m0, upT, xq “ Gpx0, x,mpT qq in Rd.

(40)

Here x0 P Rd0 is treated as a fixed parameter. We also present similar results for the corresponding
linearized systems. These estimates are motivated by the construction and the regularity of the first
order master equation in the next section.

Let us first explain the notion of solution to (40). Fix pt0,m0q P r0, T s ˆ P2 and x0 P Rd0 . We say
that pu,mq is a solution to (40) if u P C0prt0, T s, C

2
b q satisfies

upt, xq “ Gpx0, x,mpT qq `

ˆ T

t

pTrpaps, xqD2ups, xqq ´Hpx0, x,Dups, xq,mpsqqqds @t P rt0, T s

and if m P C0prt0, T s,P2q solves the Fokker-Planck equation in the sense of distributions: for any φ P
C8c pr0, T q ˆ Rdq,

0 “

ˆ
Rd
φp0, xqm0pdxq

`

ˆ T

0

ˆ
Rd
pTrpaps, xqD2φps, xqq ´Dφps, xq ¨Hppx0, x,Dups, xq,mpsqqqmps, dxqds .

The assumptions on a, H and G given in Subsection 2.3 are in force throughout the section.

5.1 Well-posedness and regularity of the MFG system

We discuss here the well-posedness of the MFG system (40) and provide several estimates. Let us start
with the Hamilton-Jacobi (HJ) equation (general estimates on this equation are given in the Appendix
A).

Proposition 5.1. For any M ą 0, there exist TM ą 0, LM ą 0, depending on C0 and γ given in
assumptions (14) and (15), such that, if supx0,m }Gpx0, ¨,mq}1 ďM , then, for any T P p0, TM q and any
m P C0pr0, T s,P2q, the solution u to the HJ equation

"

´Btupt, xq ´ Trpapt, xqD2upt, xqq `Hpx0, x,Dupt, xq,mptqq “ 0 in pt0, T q ˆ Rd
upT, xq “ Gpx0, x,mpT qq in Rd (41)

satisfies
sup

tPrt0,T s

}u}1 ď sup
x0,m

}Gpx0, ¨,mq}1 ` LMT .

Henceforth, we set KM :“ supx0,m }Gpx0, ¨,mq}1 ` LMTM .

If, in addition, supx0,m }Gpx0, ¨,mq}n ďM , then there exists CM ą 0, depending on n, C0, γ and

sup
tPr0,TM s

}aptq}n ` sup
|p|ďKM ,x0PRd0 ,mPP2

n
ÿ

k“0

}Dk
px,pqHpx0, ¨, p,mq}8,

such that u satisfies, for any T P p0, TM q, x0 P Rd0 and r ď n,

sup
tPrt0,T s,xPRd

|Dr
xupt, xq| ď sup

xPRd
|Dr

xGpx0, x,mpT qq| ` CMT.

Therefore, for any x0 P Rd0 ,

sup
tPrt0,T s

}uptq}n ď sup
m
}Gpx0, ¨,mq}n ` CMT. (42)
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Proof. Use Propositions A.1 and A.6.

Next we discuss the dependence of the solution u of (41) with respect to pmptqqtPrt0,T s and x0 P Rd0 .
We stress that, hereafter, we currently use the preliminary gradient estimate suptPrt0,TM s }uptq}1 ď KM

which is obtained as a first step in Proposition 5.1. In particular, the Hamiltonian Hpx0, x, p,mq will be
systematically estimated for |p| ď KM .

Proposition 5.2. If the assumptions of Proposition 5.1 are satisfied so that (42) holds true, then there
exists TM ą 0 such that, for T P p0, TM q and any t0 P r0, T s, for any m1,m2 P C0pr0, T s,P2q and any
x10, x

2
0 P Rd0 , if u1 and u2 are the corresponding solutions to the HJ equation (41), then we have, for

n ě 2,

sup
tPrt0,T s

}u1ptq ´ u2ptq}n´1 ď CM T
`

sup
tPrt0,T s

d2pm
1ptq,m2ptqq ` |x10 ´ x

2
0|
˘

` p1` CMT q
 

rLip0,n´1pGqsd2pm
1pT q,m2pT qq ` rLipx0

n´1pGqs|x
1
0 ´ x

2
0|
(

where CM depends on the same quantities as in Proposition 5.1 as well as on Lipn´1,npHpx0, ¨, ¨,mqq,

Lipx0
n´1,npHpx0, ¨, ¨,mqq (for x P Rd and |p| ď KM ) and supx0,m }Gpx0, ¨,mq}n.

Proof. The map v :“ u1 ´ u2 satisfies
"

´Btv ´ Trpapt, xqD2vq ` V pt, xq ¨Dv ` fpt, xq “ 0
vpT, xq “ Gpx10, x,m

1pT qq ´Gpx20, x,m
2pT qq

where V pt, xq “

ˆ 1

0

Hppx, x
2
0, sDu

1pt, xq ` p1´ sqDu2pt, xq,m2ptqqds and

fpt, xq :“ Hpx10, x,Du
1pt, xq,m1ptqq ´Hpx20, x,Du

1pt, xq,m2ptqq.

By Proposition A.7 (applied with k “ 1 and n´ 1), we have

sup
tPr0,T s

}u1ptq ´ u2ptq}n´1 ď p1` CT q}Gpx
1
0, ¨,m

1pT qq ´Gpx20, ¨,m
2pT qq}n´1 ` CT sup

tPrt0,T s

}fptq}n´1

ď p1` CT q
 

rLip0,n´1pGqsd2pm
1pT q,m2pT qq ` rLipx0

n´1pGqs|x
1
0 ´ x

2
0|
(

` CT
`

sup
tPrt0,T s

d2pm
1ptq,m2ptqq ` |x10 ´ x

2
0|
˘

,

where the constant C depends onH and on suptPr0,T s }V ptq}n´1, hence on suptPr0,T sr}u
1ptq}n, suptPr0,T s }u

2ptq}ns,
which are estimated thanks to Proposition 5.1.

In our next step, we consider the solution to the Fokker-Planck equation
$

&

%

Btm̃pt, xq ´
ÿ

i,j

Dijpai,jpt, xqm̃pt, xqq ´ divpm̃pt, xqHppx0, x,Dupt, xq,mptqq “ 0 in pt0, T q ˆ Rd

m̃pt0q “ m0 in Rd
(43)

where pmptqqtPrt0,T s is given and u satisfies (41). Let us recall that, under the assumptions of Proposition
5.1, there exists a unique weak solution m̃ P C0prt0, T s,P2q to (43).

Proposition 5.3. Assume that

}DxG}8 ďM , }D2
xxG}8 ďM , Lip0,1pGq ` Lipx0

1 pGq ďM . (44)

Then there exists a constant CM ą 0, only depending on M , }a}2 and the regularity of H, such that, for
any m1,m2 P C0pr0, T s,P2q, x

1
0, x

2
0 P Rd0 and m1

0,m
2
0 P P2, if u1 and u2 are the corresponding solutions

to the HJ equation (41) with x0 “ xi0 and if m̃1, m̃2 are the corresponding solutions to (43) starting from
m1

0 and m2
0 respectively, then

sup
tPrt0,T s

d2
2pm̃

1ptq, m̃2ptqq ď p1` CMT qd
2
2pm

1
0,m

2
0q ` CMT

˜

sup
tPrt0,T s

d2
2pm

1ptq,m2ptqq ` |x10 ´ x
2
0|

2

¸

.
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Proof. We can represent m̃iptq as the law of Xi
t where Er|X1

0 ´X
2
0 |

2s “ d2
2pm

1
0,m

2
0q and Xi solves

Xi
t “ Xi

0 ´

ˆ t

0

Hppx
i
0, X

i
s, Du

ips,Xi
sq,m

ipsqqds`
?

2

ˆ t

0

σps,Xi
sqdBs,

so that

E
“

|X1
t ´X

2
t |

2
‰

ď E
“

|X1
0 ´X

2
0 |

2
‰

` 2E
„ˆ t

0

pX1
s ´X

2
s q ¨

`

Hppx
1
0, X

1
s , Du

1,m1ptqq ´Hppx
2
0, X

2
s , Du

2,m2ptqq
˘

ds



` E
„ˆ t

0

Tr
`

pσps,X1
s q ´ σps,X

2
s qqpσps,X

1
s q ´ σps,X

2
s qq

˚
˘

ds|



ď E
“

|X1
0 ´X

2
0 |

2
‰

` CME
„ˆ t

0

p|X1
s ´X

2
s |

2 ` |Dpu1 ´ u2qps,X1
s q|

2 ` d2
2pm

1psq,m2psqq ` |x10 ´ x
2
0|

2qds



where CM depends on the Lipschitz regularity of Hp in Rd0 ˆRdˆBpKM qˆP2 (where KM is defined in
Proposition 5.1), on supt }u

1ptq}2, and on the Lipschitz regularity of σ. We infer from Gronwall’s Lemma
that

E
“

|X1
t ´X

2
t |

2
‰

ď p1` CMT qE
“

|X1
0 ´X

2
0 |

2
‰

` CMT

˜

sup
t
}Dpu1 ´ u2qptq}28 ` sup

tPrt0,T s

d2
2pm

1ptq,m2ptqq ` |x10 ´ x
2
0|

2

¸

.

As Er|X1
0 ´X

2
0 |

2s “ d2
2pm

1
0,m

2
0q and d2

2pm̃
1ptq, m̃2ptqq ď E

“

|X1
t ´X

2
t |

2
‰

, we obtain:

sup
tPrt0,T s

d2
2pm̃

1ptq, m̃2ptqq ď p1` CMT qd
2
2pm

1
0,m

2
0q

` CMT

˜

sup
t
}Dpu1 ´ u2qptq}28 ` sup

tPrt0,T s

d2
2pm

1ptq,m2ptqq ` |x10 ´ x
2
0|

2

¸

.

We estimate the term supt }Dpu
1´u2qptq}28 by Proposition 5.2 (with n “ 2): since Lip0,1pGq and Lipx0

1 pGq
are estimated by (44), we deduce, for some (possibly different) constant CM :

sup
tPrt0,T s

d2
2pm̃

1ptq, m̃2ptqq ď p1` CMT qd
2
2pm

1
0,m

2
0q ` CMT

˜

sup
tPrt0,T s

d2
2pm

1ptq,m2ptqq ` |x10 ´ x
2
0|

2

¸

.

Collecting the estimates in Propositions 5.1, 5.2 and 5.3 yields the well-posedness of the MFG system
and estimates on the solution:

Proposition 5.4. Fix M ą 0 and assume that (44) holds true and that }G}n ď M holds. Then there
exists TM , CM ą 0, depending on M , n, C0, γ and

sup
tPr0,TM s

}aptq}n ` sup
|p|ďKM ,x0PRd0 ,mPP2

n
ÿ

k“0

}Dk
px,pqHpx0, ¨, p,mq}8,

(where KM is given in Proposition 5.1) such that, for any T P p0, TM q, for any pt0,m0q P r0, T s ˆ P2,
there exists a unique solution to the MFG system (40). This solution satisfies

sup
tPrt0,T s

}uptq}n ď }Gpx0, ¨,mpT qq}n ` CMT.

Moreover, if pt0,m
1
0q and pt0,m

2
0q are two initial conditions in r0, T s ˆ P2 and x10, x

2
0 P Rd0 , and if

pu1,m1q and pu2,m2q are the corresponding solutions to the MFG system (40) with x0 “ x10 and x0 “ x20
respectively, then

sup
tPrt0,T s

d2pm
1ptq,m2ptqq ď p1` CMT qd2pm

1
0,m

2
0q ` CMT |x

1
0 ´ x

2
0| ,

31



and

sup
tPrt0,T s

}u1ptq ´ u2ptq}n´1 ď CMT
`

d2pm
1
0,m

2
0q ` |x

1
0 ´ x

2
0|
˘

` p1` CMT q
 

rLip0,n´1pGqspd2pm
1
0,m

2
0q ` |x

1
0 ´ x

2
0|q ` rLipx0

n´1pGqs|x
1
0 ´ x

2
0|
(

.

Proof. The existence and uniqueness result come from a standard fixed point argument on C0prt0, T s,P2q

for T small enough (say T ď TM where CMTM ď 1{2, CM being given by the previous Propositions).
For the stability with respect to the initial condition, one first uses the estimate in Proposition 5.3 with
m̃i “ mi:

sup
tPrt0,T s

d2
2pm

1ptq,m2ptqq ď p1` CMT qd
2
2pm

1
0,m

2
0q ` CMT

˜

sup
tPrt0,T s

d2
2pm

1ptq,m2ptqq ` |x10 ´ x
2
0|

2

¸

.

Thus, as CMT ď 1{2, one obtains

sup
tPrt0,T s

d2pm
1ptq,m2ptqq ď p1` CMT qd2pm

1
0,m

2
0q ` CMT |x

1
0 ´ x

2
0|,

modifying CM if necessary. Plugging this estimate into the estimate for the ui in Proposition 5.2 gives
the result.

5.2 The first order linearized system

Next we consider the linearized system
$

’

’

’

’
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piq ´Btv ´ Trpapt, xqD2vq `Hppx0, x,Du,mptqq ¨Dv `
δH

δm
px0, x,Du,mptqqpρptqq “ R1pt, xq

in pt0, T q ˆ Rd

piiq Btρ´
ÿ

i,j

Dijpai,jρq ´ divpρHppx0, x,Du,mptqqq ´ divpmHppDvq

´divpm
δHp

δm
pρqq “ divpR2pt, xqq in pt0, T q ˆ Rd

piiiq ρpt0q “ ρ0, vpT, xq “
δG

δm
px0, x,mpT qqpρpT qq `R3pxq in Rd

(45)
where pu,mq solves (40) and H and its derivatives are evaluated at px0, x,Dupt, xq,mptqq. In this section,
we work under the conditions given in Proposition 5.4 so that (40) admits a unique solution, in particular
we always assume that T ď TM , where TM is given by Proposition 5.4. Our goal now is to establish
estimates for pv, ρq in dependence of G and u; we implicitly assume that Gpx0, ¨,mq is sufficiently regular
(say, Cnb ) so that u inherits the same order of regularity (from (42)).

The data of equation (45) are x0 P Rd0 , ρ0 P C
´k, R1 P C

0pr0, T s, Cn´1
b q, R2 P C

0pr0, T s, C´pk´1qq

and R3 P C
n´1
b . Here n ě 2 and k ě 1. By a solution to (45), we mean a pair pv, ρq such that v P

C0pr0, T s, Cn´1
b q satisfies (45)-(i) (integrated in time) with terminal condition vpT, ¨q “ δG

δm px0, ¨,mpT qqpρpT qq`

R3p¨q and ρ P C0pr0, T s, C
´pk´1q
b q is a solution in the sense of distributions to (45)-(ii) with initial condi-

tion ρpt0q “ ρ0.

Proposition 5.5. Let us fix M ą 0, n ě 2 and k ě 1. Under the assumptions of Proposition 5.4, and if

}
δG

δm
}1;k ďM, (46)

then there exist constants TM , CM ą 0, depending on M , n, k, suptPr0,T s }uptq}n, suptPr0,T s }uptq}k`1,
such that for T ď TM there exists a unique solution pv, ρq to (45), and this solution satisfies

sup
tPrt0,T s

}vptq}n´1 ď

p1` CMT q}
δG

δm
px0, ¨x,mpT q, ¨yq}n´1;k

ˆ

}ρ0}´k ` T sup
t
}R2ptq}´pk´1q ` T sup

t
}R1ptq}1

˙

`p1` CMT q}R3}n´1 ` CMT

ˆ

1` sup
t
}R1ptq}n´1 ` }R2}´pk´1q

˙

,

(47)
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as well as

sup
tPrt0,T s

}ρptq}´k ď p1` CMT q }ρ0}´k

`CMT psup
t
}R1ptq}1 ` sup

t
}R2ptq}´pk´1q ` }R3}n´1q.

(48)

Moreover, we have, for any r ď n´ 1,

sup
tPr0,T s

}Dr
xvptq}8 ď p1` CMT q

ˆ

›

›

›
Dr
x

δG

δm
px0, ¨,mpT qqpρpT qq

›

›

›

8
` }Dr

xR3}8

˙

`CMT
`

}ρ0}´k ` supt }Rptq}n´1 ` supt }R2ptq}´pk´1q ` }R3}n´1

˘

.

(49)

Proof. After proving the a priori estimates, the existence of a solution can be obtained using a continuation
argument (see [9] for details). The uniqueness is an obvious consequence of the estimates. So it remains
to prove the estimates. To simplify the expression, we omit the dependence of the constant C with respect
to M . Fix t1 P rt0, T s, z1 P C

k
b for k P t1, . . . , n´ 1u. Let z be the solution to

"

´Btz ´ Trpapt, xqD2zq `Hppx0, x,Du,mptqq ¨Dz “ 0 in pt0, t1q ˆ Rd,
zpt1, ¨q “ z1pxq in Rd. (50)

According to Proposition A.7 (with k “ 1), we have

sup
tPrt0,t1s

}zptq}k ď p1` CT q}z1}k,

where C depends on the regularity of a and H and on supt }uptq}k`1. Then, by duality,

ˆ
Rd
z1ρpt1q “

ˆ
Rd
zpt0qρ0 ´

ˆ t1

t0

ˆ
Rd
pHppDv ¨Dz `

δHp

δm
pρq ¨Dzqm´

ˆ t1

t0

ˆ
Rd
Dz ¨R2

ď }zpt0q}k}ρ0}´k ` C}Dz}8

ˆ

T }Dv}8 `

ˆ t1

t0

}ρptq}´k

˙

` T sup
t
}zptq}k}R2}´pk´1q

ď p1` CT q}z1}k

ˆ

}ρ0}´k ` C

ˆ

T }Dv}8 `

ˆ t1

t0

}ρptq}´k

˙

` T }R2}´pk´1q

˙

,

where }R2}´pk´1q :“ supt }R2ptq}´pk´1q. Thus, taking the supremum over }z1}k ď 1, we obtain:

}ρpt1q}´k ď p1` CT q}ρ0}´k ` CT
`

}Dv}8 ` }R2}´pk´1q

˘

` C

ˆ t1

t0

}ρptq}´k.

Since this holds for all t1 P pt0, T s, by Gronwall’s inequality we obtain

sup
tPrt0,T s

}ρptq}´k ď p1` CT q}ρ0}´k ` CT
`

}Dv}8 ` }R2}´pk´1q

˘

. (51)

Next we apply Proposition A.7 (with k “ 1) to the HJ equation satisfied by v: we have, for any r ď n´1,

sup
t
}vptq}r ď p1` CT q}vpT q}r ` CTC1, (52)

where C depends on supt }aptq}n´1, on the regularity of H, on supt }uptq}n, and where C1 is estimated
by

C1 “ sup
t
}
δH

δm
px0, ¨, Dupt, ¨q,mptqqpρptqq}n´1 ` }R1}n´1 ď C sup

t
}ρptq}´k ` }R1}n´1 , (53)

where we used the inequality

}
δH

δm
px0, ¨, Dupt, ¨q,mptqqpρptqq}n´1 ď }

δH

δm
px0, ¨, Dupt, ¨xq,mptq, ¨q}n´1,k}ρptq}´k .
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Again we notice here that the right-hand side is estimated through the regularity of H and supt }uptq}n.
Similarly we estimate, for r ď n´ 1,

}vpT q}r ď }
δG

δm
px0, ¨,mpT qq}r;k sup

t
}ρptq}´k ` }R3}r. (54)

Collecting the estimates in (51), (52), (53), (54), we find, for r ď n´ 1:

sup
t
}vptq}r ďp1` CT q}

δG

δm
px0, ¨,mpT q, ¨q}r;k

!

p1` CT q}ρ0}´k ` CT p}Dv}8 ` }R2}´pk´1qq

)

(55)

` }R3}rp1` CT q ` CT
`

}ρ0}´k ` T p}Dv}8 ` }R2}´pk´1qq ` }R1}n´1

˘

.

We first consider this inequality for r “ 1. Recall that } δGδm}1;k ďM . So, if we choose TM ą 0 such that

p1` CTM qMCTM ` CT 2
M ă 1,

we obtain (47) for T ď TM and n “ 2. Then from (51) we infer (48) (with a constant only depending on
supt }uptq}k`1). Having now estimated }Dv}8, we deduce from (55) that (47) holds.

To obtain (49), we apply again Proposition A.7 to the HJ equation satisfied by v, together with
estimates (53) and (48).

5.3 The second order linearized system

Next we study the second order linearization of the MFG system. Given pu,mq a solution to (40) and
pv, ρq and pv1, ρ1q two solutions to (45) with arbitrary R1, R2, R3 and R11, R

1
2, R

1
3, we consider a solution

pw, µq to
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piq ´Btw ´ TrpaD2wq `Hp ¨Dw `
δH

δm
pµptqq

`
δ2H

δm2
pρptq, ρ1ptqq `HppDv ¨Dv

1 `
δHp

δm
pρq ¨Dv1 `

δHp

δm
pρ1q ¨Dv “ R̃1pt, xq

in pt0, T q ˆ Rd

piiq Btµ´
ÿ

i,j

Dijpai,jµq ´ divpµHpq ´ divpmHppDwq ´ divpm
δHp

δm
pµqq ´ divpρHppDv

1q

´divpρ
δHp

δm
pρ1qq ´ divpρ1HppDvq ´ divpmHpppDvDv

1q ´ divpm
δHpp

δm
pρ1qDvq

´divpρ1
δHp

δm
pρqq ´ divpm

δHpp

δm
pρqDv1q ´ divpm

δ2Hp

δm2
pρ, ρ1qq “ divpR̃2pt, xqq

in pt0, T q ˆ Rd

piiiq µpt0q “ 0, wpT, xq “
δ2G

δm2
px0, x,mpT qqpρpT q, ρ

1pT qq

`
δG

δm
px0, x,mpT qqpµpT qq ` R̃3pxq in Rd

(56)

where H and its derivatives are evaluated at px0, x,Dupt, xq,mptqq. Here again we work under the condi-
tions assumed in the previous Sections which guarantee the existence, uniqueness and enough regularity
for pu,mq as well as for the solutions of the linearized system. In particular, we always assume that
T ď TM , where TM is now given by Proposition 5.5. The goal now is to establish estimates for pw, µq in
terms of G as well as of pu,mq and pv, ρq, pv1, ρ1q.

The data of the problem are R̃1 P C
0pr0, T s, Cn´2

b q, R̃2 P C
0pr0, T s, C´pk´1qq and R̃3 P C

n´2
b . By

a solution to (56), we mean a pair pw, µq such that w P C0pr0, T s, Cn´2
b q satisfies (56)-(i) (integrated

in time) with the terminal condition in (56)-(iii) and µ P C0pr0, T s, C´kq solves (56)-(ii) in the sense
of distributions with vanishing initial condition. Here we assume n ě 3 and k ě 2; the reason for this
condition is just because we wish to keep the regularity threshold of pw, µq consistent with what stated
previously for pu,mq and for pv, ρq. In general, the estimates below apply to any degree of k, n but this
is obviously a cascade regularity: an estimate of w in Cn´2

b requires an estimate of v in Cn´1
b and of u

in Cnb , while an estimate of µ in C´k requires an estimate of ρ in C´pk´1q.
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Proposition 5.6. Let us fix M ą 0, n ě 3 and k ě 1. Under the assumptions of Proposition 5.4, and if
(46) holds, there exist TM ą 0, depending on M and the regularity of H, such that for any T P p0, TM s,
system (56) has a unique solution which satisfies

supt }wptq}n´2

ď p1` CMT q
´

}
δ2G

δm2
px0, ¨,mpT q, ¨, ¨q}n´2;k´1,k´1}ρpT q}´pk´1q}ρ

1pT q}´pk´1q ` }R̃3}n´2

¯

`CMT p1` }
δG

δm
}n´2,kq

ˆ

sup
t
}R̃1ptq}n´2 ` sup

t
}R̃2ptq}´pk´1q

`Rk´1,kR1k´1,k `Rk´1,n´1R1k´1,n´1

¯

(57)

for some CM depending on M , on the regularity of H as well as on n, k, suptPr0,T s }u}n´1, suptPr0,T s }u}k`1,
and

sup
t
}µptq}´k ď C̃MT

´´

1` }
δ2G

δm2
px0, ¨,mpT q, ¨, ¨q}1;k´1,k´1

¯

}ρpT q}´pk´1q}ρ
1pT q}´pk´1q

` sup
tPr0,T s

}R̃1ptq}1 ` sup
tPr0,T s

}R̃2ptq}´pk´1q ` }R̃3}1 `Rk´1,kR1k´1,k `Rk´1,2R1k´1,2

¯

, (58)

where C̃M depends on M , the regularity of H, n, k, suptPr0,T s }u}k`1, and where we have set, for k, j ě 1:

Rk´1,j :“ sup
t
p}ρptq}´pk´1q ` }vptq}jq , R1k´1,j :“ sup

t
p}ρ1ptq}´pk´1q ` }v

1ptq}jq .

In addition, if

}
δG

δm
}n´2;k ďM,

then we have, for any r ď n´ 2, pt, x0q P r0, T s ˆ Rd0 ,

}Drwpt, ¨q}8 ď
´
›

›

›
Dr
x

δ2G

δm2
px0, ¨,mpT qqpρpT q, ρ

1pT qq
›

›

›

8
` }Dr

xR̃3p¨q}8

¯

` CMT
´

}
δ2G

δm2
px0, ¨,mpT q, ¨, ¨q}n´2;k´1,k´1}ρpT q}´pk´1q}ρ

1pT q}´pk´1q (59)

` sup
t
}R̃1ptq}n´2 ` sup

t
}R̃2ptq}´pk´1q ` }R̃3}n´2 `Rk´1,kR1k´1,k `Rk´1,n´1R1k´1,n´1

¯

.

Remark 5.7. We recall that the quantities }ρpT q}´pk´1q and Rk´1,j are estimated from (47) and (48).
In particular, we have

Rk´1,k ď p1` CMT qC

ˆ

}ρ0}´pk´1q ` sup
t
}R2ptq}´pk´2q ` sup

t
}R1ptq}k ` }R3}k

˙

,

for some constant C depending on } δGδm}k;k´1 and supt }uptq}k`1, and similarly

Rk´1,n´1 ď p1` CMT qC
`

}ρ0}´pk´1q ` supt }R2ptq}´pk´2q ` }R3}n´1 ` supt }R1ptq}n´1

˘

for a constant C depending on } δGδm}n;k´1 and supt }uptq}n. Of course the same holds for ρ1, v1 accordingly.

Proof. We omit the proof of the well-posedness of the system, which is a consequence of the estimates
(as for Proposition 5.5). To simplify the expression, we also omit the dependence of the constant C with
respect to M . We first estimate µ by duality. Fix t1 P rt0, T s, z1 P C

k
b for k P t1, . . . , n ´ 1u. Let z be

the solution to (50). Recall that Proposition A.7 (with k “ 1) implies that there is a constant C ą 0,
depending on supt }uptq}k`1, such that

sup
tPrt0,t1s

}zptq}k ď p1` CT q}z1}k.
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Then ˆ
Rd
µpt1qz1 “ ´

!

ˆ t1

t0

ˆ
Rd
Dz ¨

´

mHppDw `m
δHp

δm
pµq ` ρHppDv

1 ` ρ1HppDv

`ρ
δHp

δm
pρ1q ` ρ1

δHp

δm
pρq `mHpppDvDv

1

`m
δHpp

δm
pρ1qDv `m

δHpp

δm
pρqDv1 `m

δ2Hp

δm2
pρ, ρ1q ` R̃2pt, xq

¯)

.

Hence

ˆ
Rd
µpt1qz1 ď CT }Dw}8}Dz}8 ` C}Dz}8

ˆ t1

t0

}µpsq}´kds

`CT
´

sup
t
}ρptq}´pk´1q sup

t
}v1ptq}k ` sup

t
}ρ1ptq}´pk´1q sup

t
}vptq}k

¯

sup
t
}zptq}k

`CT
´

sup
t
}ρptq}´pk´1q sup

t
}ρ1ptq}´pk´1q

¯

sup
t
}zptq}k ` CT }Dv}8}Dv

1}8}Dz}8

`CT
´

sup
t
}ρptq}´pk´1q}Dv

1}8 ` sup
t
}ρ1ptq}´pk´1q}Dv}8 ` sup

t
}ρptq}´pk´1q sup

t
}ρ1ptq}´pk´1q

¯

}Dz}8

`CT }R̃2}´pk´1q sup
t
}zptq}k ,

where the constant C depends on the regularity of the function H and on supt }uptq}k. Taking the
supremum over }z1}k ď 1, we infer that:

}µpt1q}´k ď C

ˆ t1

t0

}µpsq}´kds` CT
!

}Dw}8 ` }R̃2}´pk´1q

`

´

sup
t
}ρptq}´pk´1q ` sup

t
}vptq}k

¯´

sup
t
}ρ1ptq}´pk´1q ` sup

t
}v1ptq}k

¯)

.

By Gronwall’s inequality, we obtain

sup
t
}µptq}´k ď CT

!

}Dw}8 ` sup
t
}R̃2ptq}´pk´1q `Rk´1,kR1k´1,k

)

, (60)

where C depends on the regularity of the function H and on supt }uptq}k`1. From Proposition A.7 (with
k “ 1), we have

sup
t
}wptq}n´2 ď p1`CT q

´

}
δ2G

δm
pρpT q, ρ1pT qq}n´2`}

δG

δm
pµpT qq}n´2`}R̃3}n´2

¯

`CT sup
t
}fptq}n´2, (61)

where

fpt, xq “
δH

δm
pµptqq `

δ2H

δm2
pρptq, ρ1ptqq `HppDv ¨Dv

1 `
δHp

δm
pρq ¨Dv1 `

δHp

δm
pρ1q ¨Dv ´ R̃1pt, xq.

We estimate

sup
t
}fptq}n´2 ď

´

}
δH

δm
px0, ¨x, Dupt, ¨xq,mptq, ¨yq}n´2;k sup

t
}µptq}´k ` }R̃1}n´2

`C suptp}ρptq}´pk´1q ` }vptq}n´1qp}ρ
1ptq}´pk´1q ` }v

1ptq}n´1q

¯

for a constant C depending on the regularity of H and on supt }uptq}n´1. So we conclude, using also
(60),

sup
t
}fptq}n´2 ď C T

´

}Dw}8 `Rk´1,kR1k´1,k ` }R̃2}´pk´1q

¯

` supt }R̃1}n´2 ` CRk´1,n´1R1k´1,n´1 .

Similarly, again from (60) we get

}
δG

δm
pµpT qq}n´2 ď CT }

δG

δm
px0, ¨,mpT q, ¨q}n´2;k

´

}Dw}8 `Rk´1,kR1k´1,k ` }R̃2}´pk´1q

¯
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and

}
δ2G

δm2
pρpT q, ρ1pT qq}n´2 ď }

δ2G

δm2
px0, ¨,mpT q, ¨, ¨q}n´2;k´1,k´1}ρpT q}´pk´1q}ρ

1pT q}´pk´1q .

Then, we find

sup
t
}wptq}n´2 ď p1` CT q

ˆ

}
δ2G

δm2
px0, ¨,mpT q, ¨, ¨q}n´2;k´1,k´1}ρpT q}´pk´1q}ρ

1pT q}´pk´1q ` }R̃3}n´2

˙

`CT p1` }
δG

δm
}n´2;kq

´

}Dw}8 ` }R̃2}´pk´1q `Rk´1,kR1k´1,k

¯

`CT
´

}R̃1}n´2 `Rk´1,n´1R1k´1,n´1

¯

where now the constant C depends on both supt }uptq}k`1 and supt }uptq}n´1.
For n “ 3, if we choose T small enough (depending on } δGδm}1,k and supt }uptq}2) we estimate }Dw}8.

Then, plugging this estimate into (60) gives (58) (with a constant only depending on supt }uptq}k`1).
Finally, we deduce (57) for n ą 3.

For any r ď n´ 2, x0 P Rd0 and t P r0, T s, the estimate (59) on Dr
xw follows again from Proposition

A.7 (with k “ 1), that gives, arguing as before,

}Dr
xwpt, ¨q}8 ď p1` CT q

´

}Dr
x

δ2G

δm2
pρpT q, ρ1pT qq}8 ` }D

r
x

δG

δm
pµpT qq}8 ` }D

r
xR̃3}8

¯

` CT sup
t
}fptq}n´2

ď

´

}Dr
x

δ2G

δm2
pρpT q, ρ1pT qq}8 ` }D

r
xR̃3}8

¯

` p1` CT q}
δG

δm
px0, ¨,mptq, ¨q}n´2;k sup

t
}µptq}´k

` CT
´

}R̃1}n´2 ` }R̃2}´pk´1q ` }R̃3}n´2 ` }
δ2G

δm2
px0, ¨,mpT q, ¨, ¨q}n´2;k´1,k´1}ρpT q}´pk´1q}ρ

1pT q}´pk´1q

`Rk´1,kR1k´1,k `Rk´1,n´1R1k´1,n´1

¯

,

that yields the desired claim using (58).

By gathering together Proposition 5.5 and Proposition 5.6, we deduce the following three corollaries,
which will be useful in the derivation of second order estimates for the solution of the master equation.

Corollary 5.8. Let M ą 0, n ě 3 and k P t2, . . . , n´ 1u, and assume that

}G}n ` }
δG

δm
}n´1;k ` }

δ2G

δm2
}n´2;k´1,k´1 ďM .

Let pu,mq be the unique solution to (40) in some interval r0, TM s given by Proposition 5.4, and let pv, ρq
and pv1, ρ1q be two solutions to (45) with R1 “ R2 “ R3 “ 0 and initial conditions ρ0, ρ10 respectively.

Then there exists a constant CM such that the solution pw, µq to (56) corresponding to pu,mq, pv, ρq
and pv1, ρ1q and with R̃1 “ R̃2 “ R̃3 “ 0 satisfies, for any T P p0, TM q, r ď n´ 2:

sup
t,x
|Dr

xwpt, xq| ď sup
x

ˇ

ˇ

ˇ
Dr
x

δ2G

δm2
px0, x,mpT qqpρpT q, ρ

1pT qq
ˇ

ˇ

ˇ
` CMT }ρ0}´pk´1q}ρ

1
0}´pk´1q

where CM depends on M , as well as on }a}n and the regularity of H.

Proof. We first notice that

Lip0,1pGq ď sup
x0,m

}
δG

δm
px0, ¨,m, ¨q}1,1 ďM

hence we are in the position to apply Proposition 5.4, and there exists a time TM ą 0 such that the unique
solution pu,mq to (40) satisfies u P Cnb with an estimate depending on M and supx0,m }Gpx0, ¨,mq}n.
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From Proposition 5.6, we have

}Dr
xwpt, ¨q}8 ď

›

›

›
Dr
x
δ2G
δm2 px0, ¨,mpT qqpρpT q, ρ

1pT qq
›

›

›

8

`CMT
´

}ρpT q}´pk´1q}ρ
1pT q}´pk´1q `Rk´1,kR1k´1,k `Rk´1,n´1R1k´1,n´1

¯

.

On the other hand, we know from Proposition 5.5 that

sup
t
}vptq}n´1 ď p1` CMT q}

δG
δm}n´1;k´1 }ρ0}´pk´1q

sup
t
}ρptq}´pk´1q ď p1` CMT q }ρ0}´pk´1q ,

which allows us to estimate Rk´1,k and Rk´1,n´1. Here the constant depends on supt }uptq}n. A similar
estimate holds for pv1, ρ1q. Therefore, we conclude the desired estimate.

Corollary 5.9. Under the assumptions of Corollary 5.8, suppose in addition that

}Dx0

δG

δm
}n´2;k´1 ďM.

Let pu,mq be the unique solution to (40) in r0, TM s, let pv, ρq be a solution to (45) with R1 “ R2 “ R3 “ 0
and initial condition ρ0, and, for any |l| “ 1, l P Rd0 , pvl, ρlq be a solution to (45) with zero initial
condition and with

R1pt, xq “ ´B
l
x0
Hpy0, x,Dupt, xq,mptqq

R2pt, xq “ mpt, xqBlx0
Hppy0, x,Dupt, xq,mptqq

R3pt, xq “ B
l
x0
Gpy0, x,mpT qq.

(62)

Then there exists a constant CM such that the solution pwl, µlq to (56) corresponding to pu,mq, pv, ρq
and pvl, ρlq and with

R̃1pt, xq “ ´B
l
x0
Hppx0, x,Du,mptqqDv ´ B

l
x0

δH

δm
px0, x,Du,mptqqpρptqq,

R̃2pt, xq “ ρBlx0
Hppx0, x,Du,mptqq `mB

l
x0
Hpppx0, x,Du,mptqqDv `mB

l
x0

δHp

δm
pρq,

R̃3pxq “ B
l
x0

δG

δm
px0, x,mpT qqpρpT qq,

(63)

satisfies, for any T P p0, TM q, r ď n´ 2,

sup
t,x

´

ÿ

|l|“1

|Dr
xw

lpt, xq|2
¯1{2

ď sup
x

ˇ

ˇ

ˇ
Dr
xDx0

δG

δm
px0, x,mpT qqpρpT qq

ˇ

ˇ

ˇ
` CMT }ρ0}´pk´1q,

where CM depends on M , as well as on }a}n and the regularity of H.

Proof. We first notice that

sup
t
}R̃1ptq}n´2 ` sup

t
}R̃2ptq}´pk´1q ď C sup

t

`

}vptq}n´1 ` }ρptq}´pk´1q

˘

for a constant depending on the regularity of H, on supt }uptq}n´1 and on supt }uptq}k. However, the
latter term is bounded by supt }uptq}n´1 since k ď n´ 1. Next we estimate the terms pv, ρq, pvl, ρlq and
µl: we have, from Proposition 5.5 and Proposition 5.6,

sup
t
}vptq}n´1 ď p1` CMT q}

δG
δm}n´1;k´1 }ρ0}´pk´1q ď CM }ρ0}´pk´1q

sup
t
}ρptq}´pk´1q ď p1` CMT q }ρ0}´pk´1q ,
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and

supt }v
lptq}n´1 ď

"

p1` CMT q}
δG

δm
}n´1;k´1 ` CMT

*

ď CM ,

sup
t
}ρlptq}´pk´1q ď CMT, }µl}´k ď CMT }ρ0}´pk´1q.

We note that the wl solve linear equations with the same diffusion and the same drift. So, combining
Proposition A.7 with the inequalities above and arguing as in the proof of Proposition 5.6 gives, for any
r ď n´ 2,

sup
x

´

ÿ

|l|“1

|Dr
xw

lpt, xq|2
¯1{2

ď

p1` CT q sup
x

´

ÿ

|l|“1

´

|Dr
x

δ2G

δm2
pρpT q, ρlpT qq| ` |Dr

x

δG

δm
pµlpT qq| ` |Dr

xB
l
x0

δG

δm
pρlpT qq|

¯2¯1{2

`CMT }ρ0}´pk´1q

ď sup
x

´

ÿ

|l|“1

´

|Dr
xB
l
x0

δG

δm
pρlpT qq| ` CMT }ρ0}´pk´1q

¯2¯1{2

`CMT }ρ0}´pk´1q,

where we have omitted the dependence of G with respect to px0, x,mpT qq. This gives the result.

Corollary 5.10. Under the assumptions of Corollary 5.9, suppose in addition that }D2
x0
Gpx0, ¨,mq}n´2 ď

M. Fix l, l1 P Nd0 with |l| “ |l1| “ 1. Let pu,mq be the unique solution to (40) in r0, TM s and let pvl, ρlq,
pvl

1

, ρl
1

q be the solution to (45) with zero initial condition and with R1, R2, R3 and R11, R
1
2, R

1
3 given by

(62) for l and l1 respectively.
Let pwl,l

1

, µl,l
1

q be the solution to (56) corresponding to pu,mq, pvl, ρlq and pvl
1

, ρl
1

q and with

R̃l,l
1

1 pt, xq “ ´
´

Bl`l
1

x0
H ` Blx0

HpDv
l1 ` Bl

1

x0
HpDv

l ` Blx0

δH

δm
pρl

1

ptqq ` Bl
1

x0

δH

δm
pρlptqq

¯

R̃l,l
1

2 pt, xq “ ρl
1

Blx0
Hp ` ρ

lBl
1

x0
Hp `mpB

l
x0
HppDv

l1 ` Bl
1

x0
HppDv

lq

`mpBlx0

δHp

δm
pρl

1

q ` Bl
1

x0

δHp

δm
pρlqq `mBl`l

1

x0
Hp

R̃l,l
1

3 pt, xq “ B
l`l1

x0
Gpx0, x,mpT qq `D

l
x0

δG

δm
px0, x,mpT qqpρ

l1pT qq ` Bl
1

x0

δG

δm
px0, x,mpT qqpρ

lpT qq ,

(64)

where H and its derivatives are computed at px0, x,Dupt, xq,mptqq. Then there exists a constant CM such
that, for any T P p0, TM q, r ď n´ 2:

sup
t,x

´

ÿ

l,l1

|Dr
xw

l,l1pt, xq|2
¯1{2

ď sup
x
|Dr

xD
2
x0
Gpx0, ¨,mpT qq| ` CMT,

where CM depends on M , as well as on }a}n and the regularity of H.

Proof. We can estimate pvl, ρlq and pvl
1

, ρl
1

q and µl,l
1

—and therefore R̃l,l
1

1 and R̃l,l
1

2 —exactly as in the

previous Corollary. Moreover, as the wl,l
1

solve a HJ with the same diffusion and the same drift term,
we can use Proposition A.7 to bound the sum p

ř

l,l1 |D
r
xw

l,l1pt, xq|2q1{2:

sup
t,x

´

ÿ

l,l1

|Dr
xw

l,l1pt, xq|2
¯1{2

ď sup
x

´

ÿ

l,l1

p|Dr
xB
l`l1

x0
Gpx0, ¨,mpT qq| ` CMT q

2
¯1{2

` CMT,

which gives the required estimate after rearranging.

6 Estimates on the first order master equation

In this section, we complete our program by proving regularity results for the solutions of the various first
order master equations encountered in the previous sections. We mainly consider the first order master
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equation:

$

’

’

’

’

’

&

’

’

’

’

’

%

´BtUpt, x0, x,mq ´ Trpapt, xqD2
xxUpt, x0, x,mqq `Hpx0, x,DxUpt, x0, x,mq,mq

´

ˆ
Rd

Trpapt, yqD2
ymUpt, x0, x,m, yqq mpdyq

`

ˆ
Rd
DmUpt, x0, x,m, yq ¨Hppx0, y,DxUpt, x0, y,mq,mq mpdyq “ 0 in p0, T q ˆ Rd ˆ P2

UpT, x0, x,mq “ Gpx0, x,mq in Rd ˆ P2 .

(65)

In the above equation, x0 P Rd0 is considered as a parameter. Our aim is to build a solution to this
equation and study its regularity. The method for finding a solution to (65) is well-known: if we set

Upt0, x0, x,m0q :“ upt0, xq (66)

where pu,mq is the solution to (40), then U is a solution to (65).
In order to study the Major-Minor agents’ problem, we also have to consider a linear master equation

$

’

’

’

&

’

’

’

%

´BtU
0 ´

ˆ
Rd

Trpapt, yqD2
ymU

0pt, x0,m, yqq mpdyq

`

ˆ
Rd
DmU

0pt, x0,m, yq ¨Hppx0, y,DxUpt, x0, y,mq,mqdmpyq “ 0

U0pT, x0,mq “ G0px0,mq in Rd ˆ P2,

(67)

where U is the solution to (65). In this case, we build the solution U0 by the simple formula:

U0pt0, x0,m0q “ G0px0,mpT qq, (68)

where pu,mq is also the solution to (40).
Our aim is to show that, if G and G0 are regular enough, then (65) and (67) have classical solutions,

given by the above representation formulas. Moreover, we show that the regularity of these solutions
only deteriorate linearly in time. This last point is the key result in order to build later solutions to the
second order master equation and to the master equation for the Major-Minor agents’ problem.

Throughout the section, the assumptions of Subsection 2.3 on a, H, G and G0 are in force.

6.1 First order differentiability of U and U0

Proposition 6.1. For any M ą 0, there exists TM ą 0 and KM ą 0, depending on C0 and γ and
}Da}8, and there exists CM ą 0, depending also on n, k P t2, . . . , n´ 1u, supt }aptq}n and the regularity
of H such that, if

}G}n `

›

›

›

›

δG

δm

›

›

›

›

n´1;k

ďM, (69)

and if T P p0, TM s, then the map U defined by (66) is a classical solution to (65), and satisfies

sup
tPr0,T s

}Uptq}n ď }G}n ` CMT

Moreover, for any |α| ď n´ 1, Bαx
δU
δm is of class C1 in m, and for k P t2, . . . , n´ 1u,

sup
tPr0,T s

›

›

›

›

δU

δm
ptq

›

›

›

›

n´1;k

ď

›

›

›

›

δG

δm

›

›

›

›

n´1;k

` CMT.

Remark 6.2. We show in the proof the following representation:
ˆ
Rd

δU

δm
pt0, x0, x,m0, yqρ0pdyq “ vpt0, xq (70)

where pu,mq is the solution of the MFG system (40) and pv, ρq is the solution of the linearized system (45)
with right-hand side R1 “ R2 “ R3 “ 0 and with initial condition pt0, ρ0q. Note that the normalization
condition (9) is satisfied because, if one chooses ρ0 “ m0, then pv, ρq “ p0,mq.
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The proof relies on the following lemma, in which we also provide estimates to obtain later one the
differentiability of U with respect to x0.

Lemma 6.3. Under the assumptions of Proposition 6.1, we fix pt0,m0q, pt0,m1q P r0, T q ˆ P2, y0, ξ P
Rd with |ξ| ď 1. Let pu,mq be the solution to (40) with x0 “ y0 and with initial condition pt0,m0q,
and, for h P p0, 1q, let puh,mhq be the solution to (40) with x0 “ y0 ` ξh and with initial condition
pt0, p1´ hqm0 ` hm1q. Let also pv, ρq be the solution to (45) associated with pu,mq, x0 “ y0 and with

R1pt, xq “ ´Hx0
py0, x,Dupt, xq,mptqq ¨ ξ

R2pt, xq “ mpt, xqHx0ppy0, x,Dupt, xq,mptqq ¨ ξ

R3pt, xq “ Gx0
py0, x,mpT qq ¨ ξ,

(71)

and initial condition pt0,m1 ´m0q. Then there exists a constant C (independent of h) such that

sup
tPrt0,T s

}uhptq ´ uptq ´ hvptq}n´1 ď Ch2 (72)

and
sup

tPrt0,T s

}mhptq ´mptq ´ hρptq}´k ď Ch2 . (73)

Remark 6.4. The goal of this Lemma is to identify the first order derivatives δU
δm and Dx0

U . The
constant C above will depend on the regularity of H and G, as well as on suptPrt0,T s }uptq}n; however this
is not detailed later since it will not be relevant; indeed, (72) and (73) are only used for letting hÑ 0.

Proof. We set

vhpt, xq “ uhpt, xq ´ upt, xq ´ hvpt, xq, ρhpt, xq “ mhpt, xq ´mpt, xq ´ hρpt, xq.

Then the pair pvh, ρhq solves

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´Btvh ´ Trpapt, xqD2vhq `Hppy0, x,Du,mptqq ¨Dvh `
δH

δm
py0, x,Du,mptqqpρhptqq “ Rh,1pt, xq

in pt0, T q ˆ Rd

Btρh ´
ÿ

i,j

Dijpai,jρhq ´ divpρhHppx,Du,mptqq ´ divpmHpppx,Du,mptqqDvhq

´divpm
δHp

δm
px,Du,mptqqpρhqq “ divpRh,2pt, xqq in pt0, T q ˆ Rd

ρhpt0q “ 0, vhpT, xq “
δG

δm
px,mpT qqpρhpT qq `Rh,3pxq in Rd

where

Rh,1pt, xq “ ´
´

Hpy0 ` ξh, x,Duhpt, xq,mhptqq ´Hpy0, x,Dupt, xq,mptqq

´Hppy0, x,Dupt, xq,mptqq ¨Dpuhpt, xq ´ upt, xqq ´
δH

δm
py0, x,Dupt, xq,mptqqpmhptq ´mptqq

´ hHx0
py0, x,Dupt, xq,mptqq ¨ ξ

¯

,

Rh,2pt, xq “ mhpt, xqHppy0 ` ξh, x,Duhpt, xq,mhptqq ´mpt, xqHppy0, x,Dupt, xq,mptqq

´ pmhpt, xq ´mpt, xqqHppy0, x,Dupt, xq,mptqq

´mpt, xqHpppy0, x,Dupt, xq,mptqqDpuh ´ uqpt, xq

´ hmpt, xqHx0ppy0, x,Dupt, xq,mptqq ¨ ξ

´mpt, xq
δHp

δm
py0, x,Dupt, xq,mptqqpmhptq ´mptqq,

Rh,3pxq “ Gpy0 ` ξh, x,mhpT qq ´Gpy0, x,mpT qq ´
δG

δm
py0, x,mpT qqpmhpT q ´mpT qq

´ hGx0
py0, x,mpT qq ¨ ξ.
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Next we estimate Rh,1, Rh,2 and Rh,3. As

Rh,1 “ ´

ˆ 1

0

!

pHppxτ , x, pτ pt, xq,mτ ptqq ´Hppy0, x,Dupt, xq,mptqqq ¨Dpuhpt, xq ´ upt, xqq

` pHx0pxτ , x, pτ pt, xq,mτ ptqq ´Hx0py0, x,Dupt, xq,mptqqq ¨ hξ

`

ˆ
Rd
p
δH

δm
pxτ , x, pτ pt, xq,mτ ptq, yq ´

δH

δm
py0, x,Dupt, xq,mptq, yqqpmhptq ´mptqqpdyq

)

dτ

where xτ :“ p1´ τqy0 ` τpy0 ` ξhq, pτ :“ p1´ τqDupt, xq ` τDuhpt, xq and mτ pt, xq :“ p1´ τqmpt, xq `
τmhpt, xq, we have

}Rh,1ptq}n´1 ď C
`

}uhptq ´ uptq}
2
n ` h

2 ` d2
2pmhptq,mptqq

˘

,

In the same way,

}Rh,3}n´1 ď Cpd2
2pmhpT q,mpT qq ` h

2q

ď Cp}uhpT q ´ upT q}
2
n ` d2

2pmhpT q,mpT qq ` h
2q.

Finally, for k ě 2, we have

}Rh,2ptq}´pk´1q

“ sup
}φ}k´1ď1

ˆ
Rd
φpt, xq

´

Hppx0, x,Duhpt, xq,mhptqq ´Hppy0, x,Dupt, xq,mptqq
¯

pmhpt, dxq ´mpt, dxqq

`

ˆ
Rd
φpt, xq

´

Hppx0, x,Duhpt, xq,mhptqq ´Hppy0, x,Dupt, xq,mptqq

´Hx0ppy0, x,Dupt, xq,mptqq ¨ hξ

´Hpppy0, x,Dupt, xq,mptqqDpuh ´ uqpt, xq ´
δHp

δm
py0, x,Dupt, xq,mptqqpmhptq ´mptqq

¯

mpt, dxq

ď Cp}uh ´ u}
2
2 ` d2

2pmhptq,mptqq ` h
2q.

By Proposition 5.5, there exist constants TM , CM ą 0, depending on M , n, k, suptPr0,T s }u}n, such that,
if T ď TM and if (69) holds, then

sup
tPr0,T s

}vhptq}n´1 ď p1` CMT q}Rh,3}n´1 ` CMT

ˆ

sup
t
}Rh,1ptq}n´1 ` sup

t
}Rh,2ptq}´pk´1q

˙

ď C

ˆ

sup
t
}uhptq ´ uptq}

2
n ` sup

t
d2
2pmhptq,mptqq ` h

2

˙

.

We then infer by Proposition 5.4 and the definition of vh that

sup
tPrt0,T s

}uhptq ´ uptq ´ hvptq}n´1 ď Cpd2
2pp1´ hqm0 ` hm1,m0q ` h

2q ď Ch2.

The estimate of ρh comes from Proposition 5.5 in the same way.

Proof of Proposition 6.1. Proposition 5.4 and the representation formula (66) imply the estimate on
}Upt, ¨,mq}n. Let us now show that the map U given by (66) is differentiable with respect to m. Fix
x0 P Rd0 , pt0,m0q, pt0,m1q P r0, T q ˆ P2, let pu,mq, puh,mhq and pv, ρq be as in Lemma 6.3 with ξ “ 0,
so R1 “ R2 “ R3 “ 0. Then

sup
tPrt0,T s

}uhptq ´ uptq ´ hvptq}n´1 ď ophq.

Taking t “ t0, this implies that

}Upt0, x0, ¨, p1´ hqm0 ` hm1q ´ Upt0, x0, ¨,m0q ´ hvpt0, ¨q}n´1 ď ophq.
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So, if we choose m1 “ δy for a fixed y P Rd, we have just proved that the map Ûph;m0, yq “
Upt0, x0, x, p1´ hqm0 ` hδyq has a derivative at h “ 0 and that this derivative is given by vpt0, xq. Note
that the map pm0, yq ÞÑ vpt0, x;m0, yq is continuous and bounded thanks to the estimates in Proposition
5.5 and the uniqueness of the solution. So we can apply Lemma B.1 which says that U is C1 in m with

vpt0, xq “
δU

δm
pt0, x0, x,m0, yq.

Then by linearity and continuity one easily checks that (70) and the normalization condition (9) hold. A
similar argument applies to derivatives of δU

δm with respect to x.
Next we check that U solves (65). Let us start with mpt0q “ m0 with a smooth density. Then pu,mq

is a classical solution and, as

Upt, x0, x,mptqq “ upt, xq @pt, xq P rt0, T s ˆ Rd,

we have, for any h ą 0 and in view of the equation for m:

upt0 ` h, xq ´ upt0, xq “ Upt0 ` h, x0, x,mpt0 ` hqq ´ Upt0, x0, x,mpt0qq

“

ˆ t0`h

t0

ˆ
Rd

δU

δm
pt0 ` h, x0, x,mptq, yqBtmpt, yqdydt` Upt0 ` h, x0, x,mpt0qq ´ Upt0, x0, x,mpt0qq

“ ´

ˆ t0`h

t0

ˆ
Rd
DmUpt0 ` h, x0, x,mptq, yq ¨Hppx0, y,Dxupt, yq,mptqqmpt, yqdydt

`

ˆ t0`h

t0

ˆ
Rd

Trpapt, yqD2
ymUpt, x0, x,m, yqq mpdyqdt

` Upt0 ` h, x0, x,mpt0qq ´ Upt0, x0, x,mpt0qq.

On the other hand, by the equation for u,

upt0 ` h, xq ´ upt0, xq “

ˆ t0`h

t0

´

´Trpapt, xqD2upt, xqq `Hpx0, x,Dupt, xq,mptqq
¯

dt

“

ˆ t0`h

t0

´

´Trpapt, xqD2
xxUpt, x0, x,mptqqq `Hpx0, x,DxUpt, x0, x,mptqq,mptqq

¯

dt.

So

Upt0 ` h, x0, x,m0q ´ Upt0, x0, x,m0q

“

ˆ t0`h

t0

ˆ
Rd
DmUpt0 ` h, x0, x,mptq, yq ¨Hppx0, y,DxUpt, x0, y,mptqq,mptqqmpt, yqdydt

´

ˆ t0`h

t0

ˆ
Rd

Trpapt, yqD2
ymUpt, x0, x,m, yqq mpdyqdt

`

ˆ t0`h

t0

´

´Trpapt, xqD2
xxUpt, x0, x,mptqqq `Hpx0, x,DxUpt, x0, x,mptqq,mptqq

¯

dt.

Therefore U has a time-derivative at pt0, x0, x,m0q and

BtUpt0, x0, x,m0q “

ˆ
Rd
DmUpt0, x0, x,m0, yq ¨Hppx0, y,DxUpt0, x0, y,m0q,m0qqm0pyqdy

´

ˆ
Rd

Trpapt0, yqD
2
ymUpt0, x0, x,m, yqq mpdyq

´ Trpapt0, xqD
2
xxUpt0, x0, x,m0qq `Hpx0, x,DxUpt, x0, x,m0q,m0q.

This shows that U satisfies (65) at any point pt0, x0, x,m0q where m0 has a smooth density. The general
case can be treated by a density argument, since the right-hand side of the above equation is continuous
in pt0, x0, x,m0q.
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Let us now explain the estimates on δU
δm . In view of (69), (70) and Proposition 5.5, we have, for any

r ď n´ 1,

›

›

›
Dr
x

δU

δm
pt0, x0, ¨,m0qpρ0q

›

›

›

8
“ }Dr

xvpt0, x0, ¨q}8

ď p1` CMT q}D
r
x

δG

δm
px0, ¨,mpT q, ¨q}0;k}ρ0}´k ` CMT }ρ0}´k.

Taking the sup over ρ0 with }ρ0}´k ď 1, x0 P Rd0 , summing over r ď n´ 1 and then taking the sup over
t,m gives the estimate on δU

δm . Notice that the estimate given by Proposition 5.5 depends on supt }uptq}n
(we use here that k ď n´1); but this latter term is estimated in terms of M only, because of Proposition
5.4 and since }Gpx0, ¨,mq}n ďM .

Proposition 6.5. Under the assumptions of Proposition 6.1, let M,TM , CM ą 0 be given accordingly.
Assume, in addition, that T P p0, TM s and

sup
x0,m

ˇ

ˇG0px0,mq
ˇ

ˇ`
ˇ

ˇDx0
G0px0,mq

ˇ

ˇ`

›

›

›

›

δG0

δm
px0,m, ¨q

›

›

›

›

n´1;k

` }Dx0
Gpx0, ¨,mq}n´1 ďM. (74)

Then, the map U0 defined by (68) is a classical solution to (67). In addition, U0 and U are differentiable
with respect to x0 and satisfy

sup
t

›

›

›
pU0, Uqptq

›

›

›

n
ď

›

›

›
pG0, Gq

›

›

›

n
` CMT. (75)

sup
t

›

›

›
Dx0

pU0, Uqptq
›

›

›

n´1
ď

›

›

›
pDx0

G0, Dx0
Gq

›

›

›

n´1
` CMT. (76)

and

sup
t

›

›

›

δpU0, Uq

δm
ptq

›

›

›

n´1;k
ď

›

›

›

δpG0, Gq

δm

›

›

›

n´1;k
` CMT. (77)

As we will see in the proof, it is possible to estimate U0 and U separately. However we will need the
specific form of the estimate in the analysis of the MFG problem with a major player.

Proof. Differentiability of U with respect to x0 can be checked as for its differentiability with respect to
m: let ξ be any unit vector of Rd0 , pu,mq, puh,mhq and pv, ρq be as in Lemma 6.3 with m1 “ m0. Then,
by Proposition 5.5 and the fact that

sup
t
}R1ptq}n´1 ` sup

t
}R2ptq}´pk´1q ď C, }R3}n´1 ď sup

x0,m
}Gx0

px0, ¨,mpT qq}n´1 (78)

one has
}Upt0, x0 ` hξ, ¨,m0q ´ Upt0, x0, ¨,m0q ´ hvpt0, ¨q}n´1 ď ophq,

and so
Ux0

pt0, x0, x,m0q ¨ ξ “ vpt0, xq. (79)

To show the differentiability of U0 with respect to m we proceed as in the proof of Proposition 6.1.
Fix x0 P Rd, pt0,m0q, pt0,m1q P r0, T qˆP2, let pu,mq, puh,mhq and pv, ρq be as in Lemma 6.3 with ξ “ 0,
so R1 “ R2 “ R3 “ 0. Then

sup
tPrt0,T s

}ρhptq}´k ď ophq,

where ρhpt, xq “ mhpt, xq ´mpt, xq ´ hρpt, xq. This inequality and Proposition 5.4 imply

ˇ

ˇ

ˇ
G0px0,mhpT qq ´G

0px0,mpT qq ´ h
δG0

δm
px0,mpT qqpρpT qq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

δG0

δm
px0,mpT qqpρhpT qq

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˆ 1

0

ˆ
Rd

ˆ

δG0

δm
px0, p1´ τqmpT q ` τmhpT q, yq ´

δG0

δm
px0,mpT q, yq

˙

pmhptq ´mptqqpdyq dτ
ˇ

ˇ

ˇ

ď opd2pmhpT q,mpT qq ` hq ď ophq. (80)
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For y P Rd choose now m1 “ δy, then

ˇ

ˇ

ˇ
U0pt0, x0, p1´ hqm0 ` hδyq ´ U

0pt0, x0,m0q ´ h
δG0

δm
px0,mpT qqpρpT qq

ˇ

ˇ

ˇ
ď ophq.

Note that ρ0 ÞÑ ρpT q is linear and continuous as a map from C´k onto itself. Apply then Lemma B.1 to
get that U0 is C1 in m with

δU0

δm
pt0, x0,m0, yq “

δG0

δm
px0,mpT qqpρpT qq. (81)

Moreover, one can check as in the proof of Proposition 6.1 that U0 solves (67) (here it is even simpler,
and based on the fact that by definition of U0, U0pt0 ` h, x0,mpt0 ` hqq ´ U

0pt0, x0,mpt0qq “ 0).
Concerning the differentiability of U0 with respect to x0, let ξ be any unit vector of Rd, pu,mq,

puh,mhq and pv, ρq be as in Lemma 6.3 with m1 “ m0. Then,

ˇ

ˇ

ˇ
G0py0 ` ξh,mhpT qq ´G

0py0,mpT qq ´ hG
0
x0
py0,mpT qq ¨ ξ ´ h

δG0

δm
py0,mpT qqpρpT qq

ˇ

ˇ

ˇ
ď

ˇ

ˇG0py0 ` ξh,mhpT qq ´G
0py0,mhpT qq ´ hG

0
x0
py0,mhpT qq ¨ ξ

ˇ

ˇ`

h
ˇ

ˇG0
x0
py0,mhpT qq ´G

0
x0
py0,mpT qq

ˇ

ˇ`
ˇ

ˇ

ˇ

ˇ

G0py0,mhpT qq ´G
0py0,mpT qq ´ h

δG0

δm
py0,mpT qqpρpT qq

ˇ

ˇ

ˇ

ˇ

.

The third term of this inequality can be treated as in (80). Therefore,

ˇ

ˇ

ˇ
U0pt0, y0 ` ξh,m0q ´ U

0pt0, y0,m0q ´ hG
0
x0
py0,mpT qq ¨ ξ ´ h

δG0

δm
py0,mpT qqpρpT qq

ˇ

ˇ

ˇ
ď ophq,

hence it follows that

Dx0
U0pt0, x0,m0q ¨ ξ “ G0

x0
px0,mpT qq ¨ ξ `

δG0

δm
px0,mpT qqpρpT qq . (82)

We now prove the estimates. By Proposition 5.1 and the representation formulas (66) and (68), we
have, for any x0 P Rd0 , m P P2 and r ď n,

|U0pt, x0,mq|
2 ` |Dr

xUpt, x0, x,mq|
2 “ |G0px0,mpT qq|

2 ` |Dr
xupt, xq|

2

ď |G0px0,mpT qq|
2 ` psup

x
|Dr

xGpx0, x,mpT qq| ` CMT q
2

ď

´

`

|G0px0,mpT qq|
2 ` sup

x
|Dr

xGpx0, x,mpT q|
2
˘1{2

` CMT
¯2

,

(where we used that x2 ` py ` zq2 ď ppx2 ` y2q1{2 ` zq2 for nonnegative reals x, y, z) which gives (75).
Next we prove (76). For |l| “ 1, l P Nd0 , we represent Blx0

U0 and Blx0
U by (82) and (79) respectively,

where pvl, ρlq is as in Lemma 6.3 with ξ “ el, m1 “ m0 (so that ρl0 “ 0). Then we have, for r ď n´ 1,

ÿ

|l|“1

|Blx0
U0pt, x0,mq|

2 ` |Dr
xB
l
x0
Upt, x0, x,mq|

2

“
ÿ

|l|“1

ˇ

ˇ

ˇ
Blx0

G0px0,mpT qq `
δG0

δm
px0,mpT qqpρ

lpT qq
ˇ

ˇ

ˇ

2

` |Dr
xv
lpt, xq|2

Note that supt }ρptq}´k ď CMT by Proposition 5.6. As the vl solve HJ equations with the same diffusion
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and the same drift, Proposition A.7, (74) and (78) imply that

sup
x

´

ÿ

|l|“1

|Drvl|2
¯1{2

ď p1` CT q sup
x

´

ÿ

|l|“1

|DrvlpT q|2
¯1{2

` CMT

ď p1` CT q sup
x

´

ÿ

|l|“1

p}Dr
x

δG

δm
px0, ¨,mpT q, ¨q}0;k}ρpT q}´k ` |D

r
xB
l
x0
Gpx0, x,mpT qq|q

2
¯1{2

` CMT

ď sup
x

´

ÿ

|l|“1

p|Dr
xB
l
x0
Gpx0, x,mpT qq| ` CMT q

2
¯1{2

` CMT ď sup
x
p
ÿ

|l|“1

|Dr
xB
l
x0
Gpx0, x,mpT qq|

2q1{2 ` CMT,

while

ÿ

|l|“1

|Blx0
U0pt, x0,mq|

2 ď
ÿ

|l|“1

´

|Blx0
G0px0,mpT qq| ` |

δG0

δm
px0,mpT qqpρ

lpT qq|
¯2

ď
ÿ

|l|“1

p|Blx0
G0px0,mpT qq ` CMT q

2 ď

´

`

ÿ

|l|“1

|Blx0
G0px0,mpT qq|

2
˘1{2

` CMT
¯2

.

Using that ppx` zq2 ` py ` zq2q1{2 ď px2 ` y2q1{2 `
?

2z, we obtain

sup
x

¨

˝

ÿ

|l|“1

|Blx0
U0pt, x0,mq|

2 ` |Dr
xB
l
x0
Upt, x0, x,mq|

2

˛

‚

1{2

ď sup
x

´

ÿ

|l|“1

ˇ

ˇBlx0
G0px0,mpT qq

ˇ

ˇ

2
` |Dr

xB
l
x0
Gpx0, x,mpT qq|

2
¯1{2

` CMT,

from which we derive (76), by taking the sup over x0, summing over r and finally taking the sup over m.
For (77), let pv, ρq be as in Lemma 6.3 with m1 ´m0 “ ρ0 P C

´k and ξ “ 0, as in (81) and (70). We
have, for any r ď n´ 1,

ˇ

ˇ

ˇ

δU0

δm
pt, x0,mqpρ0q

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ
Dr
x

δU

δm
pt, x0, x,mqpρ0q

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

δG0

δm
px0,mpT qqpρpT qq

ˇ

ˇ

ˇ

2

` |Dr
xvpt, xq|

2.

So again by Proposition 5.5,

ˇ

ˇ

ˇ

δU0

δm
pt, x0,mqpρ0q

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ
Dr
x

δU

δm
pt, x0, x,mqpρ0q

ˇ

ˇ

ˇ

2

ď

ˇ

ˇ

ˇ

δG0

δm
px0,mpT qqpρpT qq

ˇ

ˇ

ˇ

2

`

´

sup
x

ˇ

ˇ

ˇ
Dr
x

δG

δm
px0, ¨,mpT qqpρpT qq

ˇ

ˇ

ˇ
` CMT }ρpT q}´k

¯2

ď

«

sup
x

1

}ρpT q}´k

ˆ

ˇ

ˇ

ˇ

δG0

δm
px0,mpT qqpρpT qq

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ
Dr
x

δG

δm
px0, x,mpT qqpρpT qq

ˇ

ˇ

ˇ

2
˙1{2

` CMT

ff2

}ρpT q}2´k

ď p1` CMT q
2

«

sup
x,}ρ}´k“1

ˆ

ˇ

ˇ

ˇ

δG0

δm
px0,mpT qqpρq

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ
Dr
x

δG

δm
px0, x,mpT qqpρq

ˇ

ˇ

ˇ

2
˙1{2

` CMT

ff2

}ρ0}
2
´k,

This gives (77).

6.2 Second order differentiability of U and U0

Proposition 6.6. Let U be the solution of (65) given by (66). Let n ě 3 and k P t2, . . . , n´1u. Suppose,

in addition to the assumptions of Proposition 6.1, that G is of class C2 and that } δ
2G
δm2 px0, ¨,m, ¨, ¨q}n´2;k´1,k´1 ď

M . Then there exists TM ą 0 (depending on M and on the data but not on G) such that, if T P p0, TM s,
the map U is C2 with respect to the measure variable and the parameter x0, and satisfies

sup
tPr0,T s

}
δ2U

δm2
ptq}n´2;k´1,k´1 ď }

δ2G

δm2
}n´2;k´1,k´1 ` CMT.
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Proof. Our first goal is to show that δU{δm is differentiable with respect to m. Let pt0,m0q P r0, T qˆP2,
y, y1 P Rd and

• pu,mq (respectively puh,mhq) be the solution of the MFG system (40) with initial condition pt0,m0q

(respectively pt0, p1´ hqm0 ` hδy1q),

• pv, ρq (respectively pv1, ρ1q) be the solution of the first order linearized system (45) with zero right-
hand side, initial condition pt0, δyq (respectively pt0, δy1q) and where the Hamiltonian and its deriva-
tives are evaluated at px0, x,Dupt, xq,mptqq,

• pṽh, ρ̃hq be the solution to the first order linearized system (45) with zero right-hand side, with initial
condition pt0, δyq and where the Hamiltonian and its derivatives are evaluated at px0, x,Duhpt, xq,mhptqq,

• pw, µq be the solution to the second order linearized system (56) associated with pu,mq, pv, ρq, pv1, ρ1q
and with right-hand side 0.

Recall (see (70)) that

ṽhpt0, xq “
δU

δm
pt0, x0, x, p1´ hqm0 ` hδy1 , yq,

vpt0, xq “
δU

δm
pt0, x0, x,m0, yq, and v1pt0, xq “

δU

δm
pt0, x0, x,m0, y

1q

(83)

so we expect wpt0, ¨q to represent the derivative in m of δU{δm, namely δ2U
δm2 pt0, x0, x,m0, y, y

1q.
We consider

pv̂h, ρ̂hq :“ pṽh, ρ̃hq ´ pv, ρq ´ hpw, µq.

Let us first note that, by Proposition 5.4, we have

sup
tPrt0,T s

´

}ũhpt, xq ´ upt, xq}n´1 ` d2pmhptq,mptqq
¯

ď Cd2pp1´ hqm0 ` hδy1 ,m0q ď Ch. (84)

Next we claim that

sup
tPrt0,T s

}ṽhpt, xq ´ vpt, xq}n´2 ` }ρ̃hptq ´ ρptq}´pk´1q ď Ch. (85)

Indeed, the pair pṽh, ρ̃hq´pv, ρq solves the first order linearized system (45), associated with pu,mq, initial
condition pt0, 0q and with a right-hand side given by

Rh,1pt, xq “ ´
´

`

Hppx0, x,Duh,mhptqq ´Hppx0, x,Du,mptqq
˘

¨Dṽh

`
`δH

δm
px0, x,Duh,mhptqq ´

δH

δm
px0, x,Du,mptqq

˘

pρ̃hptqq
¯

Rh,2pt, xq “ρ̃hpHppx0, x,Duh,mhptqq ´Hppx0, x,Du,mptqqq

` pmhHpppx0, x,Duh,mhq ´mHpppx0, x,Du,mqq ¨Dṽh

`

´

mh
δHp

δm
px0, x,Duh,mhq ´m

δHp

δm
px0, x,Du,mq

¯

pρ̃hq

Rh,3pt, xq “

ˆ

δG

δm
px0, x,mhpT qq ´

δG

δm
px0, x,mpT qq

˙

pρ̃hpT qq.

Applying Proposition 5.5 and using (84) we infer that (85) holds.
In view of the equations satisfied by pṽh, ρ̃hq, pv, ρq and pw, µq, the pair pv̂h, ρ̂hq solves the first order

linearized system (45), associated with pu,mq, initial condition pt0, 0q and with

Rh,1pt, xq “ ´
”

`

Hppx0, x,Duh,mhptqq ´Hppx0, x,Du,mptqq
˘

¨Dṽh

´ hHpppx0, x,Du,mptqqDv ¨Dv
1 ´ h

δHp

δm
px0, x,Du,mptqqpρ

1ptqq ¨Dv

`

´δH

δm
px0, x,Duh,mhptqq ´

δH

δm
px0, x,Du,mptqq

¯

pρ̃hptqq

´ h
δ2H

δm2
px0, x,Du,mptqqpρptq, ρ

1ptqq ´ h
δHp

δm
px0, x,Du,mptqqpρptqq ¨Dv

1
ı

,
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Rh,2pt, xq “ ρ̃h

´

Hppx0, x,Duh,mhptqq ´Hp

¯

´ hρ
´

HppDv
1 `

δHp

δm
pρ1q

¯

`

Dṽh ¨
´

mhHpppx0, x,Duh,mhptqq ´mHpp

¯

´ hDv ¨
´

ρ1Hpp `m
δHpp

δm
pρ1q `mHpppDv

1
¯

`

´

mh
δHp

δm
px0, x,Duh,mhptqq ´m

δHp

δm

¯

pρ̃hq ´ h
´

ρ1
δHp

δm
`mDv1 ¨

δHpp

δm

¯

pρq ´ hm
δ2Hp

δm2
pρ, ρ1q,

Rh,3pxq “
δG

δm
px0, x,mhpT qqpρ̃hpT qq ´

δG

δm
px0, x,mpT qqpρ̃hpT qq ´ h

δ2G

δm2
px0, x,mpT qqpρpT q, ρ

1pT qq

(for brevity, Hp and its derivatives in Rh,2 are evaluated at px0, x,Du,mptqq, unless otherwise specified).
Using

sup
tPrt0,T s

}uhptq ´ uptq ´ hv
1ptq}n´2 ď Ch2, sup

tPrt0,T s

}mhptq ´mptq ´ hρ
1ptq}´pk´1q ď Ch2 (86)

(see (72) and (73) in Lemma 6.3) as well as the above estimate (84), we have

sup
t

`

}Rh,1pt, ¨q}n´2 ` }Rh,2pt, ¨q}´pk´1q ` }Rh,3pt, ¨q}n´2

˘

ď Ch2.

Then Proposition 5.5 and the representation formula (83) implies that

}
δU

δm
pt0, x0, ¨, p1´ hqm0 ` hδy1 , yq ´

δU

δm
pt0, x0, ¨,m0, yq ´ hwpt0, ¨q}n´2

“ }ṽhpt0, ¨q ´ vpt0, ¨q ´ hwpt0, ¨q}n´2 ď sup
t
}v̂hptq}n´2 ď Ch2.

Note that we also have
sup

tPrt0,T s

}ρ̃hptq ´ ρptq ´ hµptq}´k ď Ch2. (87)

Hence, we can apply Lemma B.1 as in the proof of Proposition 6.1 and infer that δU{δm has a derivative
in m given by w:

δ2U

δm2
pt0, x0, x,m0, y, y

1q “ wpt0, xq.

If, in general, w is the solution to the second order linearized system (56) associated with pv, ρq, pv1, ρ1q
(having initial data pt0, ρ0q and pt0, ρ

1
0q respectively) and with Ri “ 0, R̃i “ 0, i “ 1, . . . 3, then by a

linearity argument one may also conclude that

ˆ
Rd

δ2U

δm2
pt0, x0, x,m0, y, y

1qρ0pdyqρ
1
0pdy

1q “ wpt0, xq. (88)

Thus, the estimate on δ2U
δm2 follows from Corollary 5.8, which gives

}
δ2U

δm2
pt0, x0, ¨,m0, ¨, ¨q}n´2;k´1,k´1 ď }

δ2G

δm2
px0, ¨,mpT q, ¨, ¨q}n´2;k´1,k´1 ` CMT , (89)

using the fact that sup
t
}ρptq}´pk´1q ď p1` CMT q }ρ0}´pk´1q and that the same holds for ρ1.

Next we discuss the second order regularity of U and U0 with respect to m and x0.

Proposition 6.7. Let U0 and U be the solutions of (67) and (65) respectively. Suppose, in addition to
the assumptions of Propositions 6.5 and 6.6, that we have

›

›

›
D2
x0
pG0, Gq

›

›

›

n´2
`

›

›

›
Dx0

δpG0, Gq

δm

›

›

›

n´2;k´1
`

›

›

›

›

δ2pG0, Gq

δm2

›

›

›

›

n´2;k´1,k´1

ďM.
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Then there exists TM ą 0 (depending on M and on the data but not on G) such that, if T P p0, TM s, the
maps U0 and U are C2 with respect to the measure variable and x0, and

sup
t

›

›

›
D2
x0
pU0, Uqptq

›

›

›

n´2
ď

›

›

›
pD2

x0
G0, D2

x0
Gq

›

›

›

n´2
` CMT,

sup
t

›

›

›
Dx0

δpU0, Uq

δm
ptq

›

›

›

n´2;k´1
ď

›

›

›
Dx0

δpG0, Gq

δm

›

›

›

n´2;k´1
` CMT.

Moreover,

sup
t

›

›

›

›

δ2pU0, Uq

δm2
ptq

›

›

›

›

n´2;k´1,k´1

ď

›

›

›

›

δ2pG0, Gq

δm2

›

›

›

›

n´2;k´1,k´1

` CMT.

Proof. Step 1. The differentiability of δU{δm with respect to x0 can be achieved exactly as for its differ-

entiability with respect to m in Proposition 6.6. For any direction ξ P Rd0 , let

• pu,mq (respectively puh,mhq) be the solution of the MFG system (40) with initial condition pt0,m0q

and parameters x0 and x0 ` hξ respectively,

• pv, ρq (respectively pv1, ρ1q) be the solution of the first order linearized system (45) with zero right-
hand side (respectively right-hand side as in (71)), initial condition pt0, δyq (respectively pt0, 0q) and
where the Hamiltonian and its derivatives are evaluated at px0, x,Dupt, xq,mptqq,

• pṽh, ρ̃hq be the solution to the first order linearized system (45) with zero right-hand side, with
initial condition pt0, δyq and where the Hamiltonian and its derivatives are evaluated at px0 `
hξ, x,Duhpt, xq,mhptqq,

• pw, µq be the solution to the second order linearized system (56) associated with pv, ρq, pv1, ρ1q (and
pu,mq), and with right-hand side

R̃1pt, xq “ ´Hx0ppx0, x,Du,mptqqξ ¨Dv ´
δHx0

δm
px0, x,Du,mptqqpρptqq ¨ ξ,

R̃2pt, xq “ ρHx0ppx0, x,Du,mptqqξ `mHx0pppx0, x,Du,mptqqξ Dv `m
δHx0p

δm
pρqξ,

R̃3pxq “
δGx0

δm
px0, x,mpT qqpρpT qq ¨ ξ,

so that

ṽhpt0, xq “
δU

δm
pt0, x0 ` hξ, x,m0, yq,

vpt0, xq “
δU

δm
pt0, x0, x,m0, yq, and v1pt0, xq “ Ux0pt0, x0, x,m0q ¨ ξ.

Then we find
δUx0
δm pt0, x0, x,m0, yq ¨ ξ “ wpt0, xq, and if one replaces δy by an arbitrary ρ0 P C

´pk´1q as
the initial datum for ρ, the following representation holds:

δUx0

δm
pt0, x0, x,m0qpρ0q ¨ ξ “ wpt0, xq. (90)

Step 2. The second order differentiability of U with respect to x0 can be checked in a similar way: let
pu,mq and puh,mhq be as before,

• pv, ρq, pṽh, ρ̃hq be the solutions of the first order linearized system (45) with right-hand side as in
(71), initial condition pt0, 0q, and Hamiltonian and its derivatives evaluated at px0, x,Dupt, xq,mptqq
and px0 ` hξ, x,Duhpt, xq,mhptqq respectively,

• pw, µq be the solution to the second order linearized system (56) associated with pv, ρq, pv1, ρ1q “
pv, ρq (and pu,mq), and with right-hand side R̃1, R̃2, R̃3 given by (64).
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Then we find
D2
x0
Upt0, x0, x,m0qξ ¨ ξ “ wpt0, xq. (91)

Step 3. We now prove the regularity of U0. To show that δU0{δm is differentiable with respect to m,

let pt0,m0q P r0, T q ˆ P2, y, y1 P Rd and

• pu,mq (respectively puh,mhq) be the solution of the MFG system (40) with initial condition pt0,m0q

(respectively pt0, p1´ hqm0 ` hδy1q),

• pv, ρq (respectively pv1, ρ1q) be the solution of the first order linearized system (45) with zero right-
hand side, initial condition pt0, δyq (respectively pt0, δy1q) and where the Hamiltonian and its deriva-
tives are evaluated at px0, x,Dupt, xq,mptqq,

• pṽh, ρ̃hq be the solution to the first order linearized system (45) with zero right-hand side, with initial
condition pt0, δyq and where the Hamiltonian and its derivatives are evaluated at px0, x,Duhpt, xq,mhptqq,

• pw, µq be the solution to the second order linearized system (56) associated with pv, ρq, pv1, ρ1q (and
pu,mq), and with right-hand side 0,

as in the proof of differentiability of δU{δm with respect to m in Proposition 6.6. Note that

δU0

δm
pt0, x0, p1´ hqm0 ` hδy1 , yq “

δG0

δm
px0,mhpT qqpρ̃hpT qq,

δU0

δm
pt0, x0,m0, yq “

δG0

δm
px0,mpT qqpρpT qq.

Therefore, using (86) and (87)

ˇ

ˇ

ˇ

δG0

δm
px0,mhpT qqpρ̃hpT qq ´

δG0

δm
px0,mpT qqpρpT qq

´ h
´δ2G0

δm2
px0,mpT qqpρpT q, ρ

1pT qq `
δG0

δm
px0,mpT qqpµpT qq

¯
ˇ

ˇ

ˇ
ď Ch2 .

Lemma B.1 then implies that δU0

δm pt0, x0, ¨, yq has a derivative, and by linearity, if µ is the solution to the
second order linearized system (56) associated with pv, ρq, pv1, ρ1q (that in turn have initial data pt0, ρ0q
and pt0, ρ

1
0q respectively and with zero right-hand side), then

ˆ
Rd

δ2U0

δm2
pt0, x0,m0, y, y

1qρ0pdyqρ
1
0pdy

1q “
δ2G0

δm2
px0,mpT qqpρpT q, ρ

1pT qq `
δG0

δm
px0,mpT qqpµpT qq. (92)

Hence, by the representation formula (88) for δ2U{δ2m, Proposition 5.5, 5.6 and Corollary 5.8, we have,
for r ď n´ 2,

ˇ

ˇ

ˇ

δ2U0

δm2
pt, x0,m0qpρ0, ρ

1
0q

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ
Dr
x

δ2U

δm2
pt, x0, x,m0qpρ0, ρ

1
0q

ˇ

ˇ

ˇ

2

“

´
ˇ

ˇ

ˇ

δ2G0

δm2
px0,mpT qqpρpT q, ρ

1pT qq
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

δG0

δm
px0,mpT qqpµpT qq

ˇ

ˇ

ˇ

¯2

` |Dr
xwpt, xq|

2

ď

´
ˇ

ˇ

ˇ

δ2G0

δm2
px0,mpT qqpρpT q, ρ

1pT qq
ˇ

ˇ

ˇ
` CMT }ρ0}´pk´1q}ρ

1
0}´pk´1q

¯2

`

´

sup
x

ˇ

ˇ

ˇ
Dx

δ2G

δm2
px0, x,mpT qqpρpT q, ρ

1pT qq
ˇ

ˇ

ˇ
` CMT }ρ0}´pk´1q}ρ

1
0}´pk´1q

¯2

ď

!

sup
x

1

}ρpT q}´pk´1q}ρ1pT q}´pk´1q

´
ˇ

ˇ

ˇ

δ2G0

δm2
px0,mpT qqpρpT q, ρ

1pT qq
ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ
Dr
x

δ2G

δm2
px0, x,mpT qqpρpT q, ρ

1pT qq
ˇ

ˇ

ˇ

2¯1{2

ˆ p1` CMT q ` CMT
)2

}ρ0}
2
´pk´1q}ρ

1
0}

2
´pk´1q,

(where we use that px ` zq2 ` py ` zq2 ď ppx2 ` y2q1{2 ` 2zq2, for x, y, z ě 0). Taking the square root,

then sup over x0, ρ0 and ρ10 and summing over r ď n´ 2 gives the estimate on
›

›

›

δ2pU0,Uq
δm2

›

›

›

n´2;k´1,k´1
.
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Differentiability of δU0{δm with respect to x0 follows analogous lines: pv, ρq, pv1, ρ1q, pṽh, ρ̃hq and
pw, µq have to be changed according to Step 1. By (90), we have, using the notations of Corollary 5.9
and for any r ď n´ 2:

ÿ

|l|“1

ˇ

ˇ

ˇ
Blx0

δU0

δm
pt0, x0,m0, yqpρ0q

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ
Dr
xB
l
x0

δU

δm
pt, x0, x,m0qpρ0q

ˇ

ˇ

ˇ

2

“

ÿ

|l|“1

ˇ

ˇ

ˇ
Blx0

δG0

δm
pρpT qq `

δ2G0

δm2
pρpT q, ρlpT qq `

δG0

δm
pµlpT qq

ˇ

ˇ

ˇ

2

` |Dr
xw

lpt, xq|2,

where G0 and its derivatives are all evaluated at px0,mpT qq. We obtain the bounds on p
δU0

x0

δm ,
δUx0
δm q by

using Propositions 5.5, 5.6 and Corollary 5.9.
Finally, second order differentiability of U0 with respect to x0, and the corresponding bound, can be

obtained similarly: let l, l1 P Rd0 with |l| “ |l1| “ 1, pvl, ρlq, pvl
1

, ρl
1

q and pwl,l
1

, µl,l
1

q be as in Corollary
5.10. Note that

Bl`l
1

x0
U0pt0, x0,m0q “ B

l`l1

x0
G0`Blx0

δG0
x0

δm
pρl

1

pT qq`Bl
1

x0

δG0
x0

δm
pρlpT qq`

δ2G0

δm2
pρlpT q, ρl

1

pT qq`
δG0

δm
pµl,l

1

pT qq,

while Bl`l
1

x0
U0pt0, x0,m0q is given by polarizing the representation formula (91). We can then conclude by

Propositions 5.5, 5.6 and Corollary 5.10.

6.3 Uniform continuity estimates on second order derivatives

Proposition 6.8. Let U be the solution of (65) given by (66) and n ě 4, k P t3, . . . , n ´ 1u. Suppose,
in addition to the assumptions of Proposition 6.6, that

Lipn´3;k´2,k´2

ˆ

δ2G

δm2

˙

ďM. (93)

Then there exists TM ą 0 (depending on M and on the data but not on G), such that

sup
t

Lipn´3;k´2,k´2

ˆ

δ2U

δm2
ptq

˙

ď sup
x0

Lipn´3;k´2,k´2

ˆ

δ2G

δm2

˙

` CMT.

Proof. We establish for later use a slightly stronger estimate involving the dependence with respect to
x0. This is used in Proposition 6.9 below. Let pt0,m1,m2q P r0, T s ˆ P2

2 and x10, x
2
0 P Rd0 be fixed. We

use the representation formula (88) for δ2U{δm2pt0, x
1
0,m1q and δ2U{δm2pt0, x

2
0,m2q. In particular we

let, for i “ 1, 2,

• pui,miq be the solution to the MFG system (40) starting from mi at time t0 with H (and G)
evaluated at pxi0, x,Du

ipt, xq,miptqq (and pxi0, x,m
ipT qq) ,

• pvi, ρiq (respectively pv1i, ρ
1
iq) be the solution of the first order linearized system (45) with zero

right-hand side, initial condition pt0, ρ0q (respectively pt0, ρ
1
0q) and where the Hamiltonian and its

derivatives are evaluated at pxi0, x,Du
ipt, xq,miptqq,

• pwi, µiq be the solution to the second order linearized system (56) associated with pvi, ρiq, pv
1
i, ρ

1
iq

(and xi0, u
i,mi), and with zero right-hand side.

We aim at estimating pw̄, µ̄q :“ pw1 ´ w2, µ1 ´ µ2q, since

w̄pt0, xq “
δ2U

δm2
pt0, x

1
0, x,m1qpρ0, ρ

1
0q ´

δ2U

δm2
pt0, x

2
0, x,m2qpρ0, ρ

1
0q. (94)

We first set pv̄, ρ̄q :“ pv1´v2, ρ1´ρ2q and pv̄1, ρ̄1q :“ pv11´v
1
2, ρ

1
1´ρ

1
2q. The pair pv̄, ρ̄q solves the first or-

der linearized system (45) with zero initial datum, H and its derivatives evaluated at px10, x,Du
1pt, xq,m1ptqq,
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and right-hand side

R1pt, xq “ ´pH
1
p ´H

2
p q ¨Dv2 ´ p

δH1

δm
´
δH2

δm
qpρ2ptqq,

R2pt, xq “ ρ2pH
1
p ´H

2
p q ` pm

1H1
pp ´m

2H2
ppqDv2 ` pm

1
δH1

p

δm
´m2

δH2
p

δm
qpρ2q,

R3pxq “ p
δG1

δm
´
δG2

δm
qpρ2pT qq,

where Hi and its derivatives correspond to H and its derivatives evaluated at pxi0, x,Du
ipt, xq,miptqq.

By Proposition 5.5 we have

sup
tPrt0,T s

}viptq}n´1 ď C}ρ0}´pk´2q, sup
tPrt0,T s

}ρiptq}´pk´2q ď p1` CT q }ρ0}´pk´2q, (95)

where C depends on the regularity of δG{δm, Hx0
, Hx0p, m

i and supt }u
i}n. Note that, by the above

estimates and Proposition 5.4,

sup
t
}R1ptq}n´2 ` sup

t
}R2ptq}´pk´2q ` }R3}n´2 ď C

`

d2pm1,m2q ` |x
1
0 ´ x

2
0|
˘

}ρ0}´pk´2q,

and therefore by Proposition 5.5 (applied to n´ 1 ě 2 and k ´ 2 ě 1) we obtain

sup
t
}v̄ptq}n´2 ď C T

`

d2pm1,m2q ` |x
1
0 ´ x

2
0|
˘

}ρ0}´pk´2q, (96)

sup
t
}ρ̄ptq}´pk´1q ď CT

`

d2pm1,m2q ` |x
1
0 ´ x

2
0|
˘

}ρ0}´pk´2q. (97)

Completely analogous estimates hold for v1i, ρ
1
i and their differences v̄1, ρ̄1.

We now proceed by estimating pw̄, µ̄q, which solves the first order linearized system with zero initial
datum, H and its derivatives evaluated at px10, x,Du

1pt, xq,m1ptqq, and right-hand side

R1pt, xq :“ ´
´

pH1
p ´H

2
p q ¨Dw

2 ` p
δH1

δm
´
δH2

δm
qpµ2ptqq

`
δ2H1

δm2
pρ1ptq, ρ

1
1ptqq ´

δ2H2

δm2
pρ2ptq, ρ

1
2ptqq `H

1
ppDv1 ¨Dv

1
1 ´H

2
ppDv2 ¨Dv

1
2

`
δH1

p

δm
pρ1q ¨Dv

1
1 ´

δH2
p

δm
pρ2q ¨Dv

1
2 `

δH1
p

δm
pρ11q ¨Dv1 ´

δH2
p

δm
pρ12q ¨Dv2

¯

,

R2pt, xq :“ µ2pH1
p ´H

2
p q ` pm

1H1
pp ´m

2H2
ppqDw

2 ` pm1
δH1

p

δm
´m2

δH2
p

δm
qpµ2q ` ρ1H

1
ppDv

1
1

´ ρ2H
2
ppDv

1
2 ` ρ

1
1H

1
ppDv1 ´ ρ

1
2H

2
ppDv2 `m

1H1
pppDv1Dv

1
1 ´m

2H2
pppDv2Dv

1
2

`m1
δ2H1

p

δm2
pρ1, ρ

1
1q ´m

2
δ2H2

p

δm2
pρ2, ρ

1
2q ` ρ1

δH1
p

δm
pρ11q ´ ρ2

δH2
p

δm
pρ12q

` ρ11
δH1

p

δm
pρ1q ´ ρ

1
2

δH2
p

δm
pρ2q `m

1
δH1

pp

δm
pρ11qDv1

´m2
δH2

pp

δm
pρ12qDv2 `m

1
δH1

pp

δm
pρ1qDv

1
1 ´m

2
δH2

pp

δm
pρ2qDv

1
2

and

R3pxq :“
δ2G1

δm2
pρ1pT q, ρ

1
1pT qq ´

δ2G2

δm2
pρ2pT q, ρ

1
2pT qq ` p

δG1

δm
´
δG2

δm
qpµ2pT qq.

Recall also that Proposition 5.6 and Remark 5.7 (applied to n´ 1 and k ´ 1) yield

sup
t
}wiptq}n´3 ď p1` CT q}ρ0}´pk´2q}ρ

1
0}´pk´2q, sup

t
}µiptq}´pk´1q ď CT }ρ0}´pk´2q}ρ

1
0}´pk´2q. (98)
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By the previous inequalities, (95), (96) and (97) we get

sup
t
}R1ptq}n´3 ` sup

t
}R2ptq}´pk´1q ď CT pd2pm1,m2q ` |x

1
0 ´ x

2
0|q}ρ0}´pk´2q}ρ

1
0}´pk´2q.

Similarly, using also the Lipschitz regularity of δG{δm,

}R3}n´3 ďp1` CT q
›

›

›

δ2G

δm2
px20,m

2pT qq ´
δ2G

δm2
px10,m

1pT qq
›

›

›

n´3;k´2,k´2
}ρ0}´pk´2q}ρ

1
0}´pk´2q

` CT pd2pm1,m2q ` |x
1
0 ´ x

2
0|q}ρ0}´pk´2q}ρ

1
0}´pk´2q,

Then, recalling that w̄ “ w1 ´w2 satisfies (94), we obtain in view of (49) in Proposition 5.5 and for any
r ď n´ 3,

›

›

›
Dr
x

δ2U

δm2
pt0, x

2
0,m2q ´D

r
x

δ2U

δm2
pt0, x

1
0,m1q

›

›

›

0;k´2,k´2
(99)

ď p1` CMT q
›

›

›
Dr
x

δ2G

δm2
px20,m2pT qq ´D

r
x

δ2G

δm2
px10,m1pT qqq

›

›

›

0;k´2,k´2
` CMT pd2pm1,m2q ` |x

1
0 ´ x

2
0|q.

Choosing x10 “ x20, summing over r ď n´ 3 and recalling Proposition 5.4 and (93) then gives the claim.
Note that we have also the following inequality for µ̄ “ µ1 ´ µ2, that will be useful in the next

proposition:

sup
tPrt0,T s

}µ1ptq ´ µ2ptq}´k ď CT pd2pm1,m2q ` |x
1
0 ´ x

2
0|q}ρ0}´pk´2q}ρ

1
0}´pk´2q. (100)

Finally we establish the Lipschitz regularity of the second order derivatives of G0 and G with respect
to x0 and m.

Proposition 6.9. Let U be the solution of (65) given by (66) and U0 be the solution to (67) given by
(68). Suppose that the assumptions of Proposition 6.8 hold and that in addition:

Lipn´3;k´2,k´2p
δ2G0

δm2
,
δ2G

δm2
q ` Lipn´3;k´2p

δG0
x0

δm
,
δGx0

δm
q ` Lipn´3pD

2
x0
G0, D2

x0
Gq ďM

and

Lipx0

n´3;k´2,k´2p
δ2G0

δm2
,
δ2G

δm2
q ` Lipx0

n´3;k´2p
δG0

x0

δm
,
δGx0

δm
q ` Lipx0

n´3pD
2
x0
G0, D2

x0
Gq ďM ,

for some n ě 4 and k P t3, . . . , n´ 1u. Then

sup
t

Lipn´3;k´2,k´2p
δ2U0ptq

δm2
,
δ2Uptq

δm2
q ď Lipn´3;k´2,k´2p

δ2G0

δm2
,
δ2G

δm2
q ` CMT,

sup
t

Lipx0

n´3;k´2,k´2p
δ2U0ptq

δm2
,
δ2Uptq

δm2
q ď Lipx0

n´3;k´2,k´2p
δ2G0

δm2
,
δ2G

δm2
q ` CMT,

sup
t

Lipn´3;k´2p
δU0

x0
ptq

δm
,
δUx0ptq

δm
q ď Lipn´3;k´2p

δG0
x0

δm
,
δGx0

δm
q ` CMT,

sup
t

Lipx0

n´3;k´2p
δU0

x0
ptq

δm
,
δUx0

ptq

δm
q ď Lipx0

n´3;k´2p
δG0

x0

δm
,
δGx0

δm
q ` CMT,

and

Lipn´3pD
2
x0
U0ptq, D2

x0
Uptqq ď Lipn´3pD

2
x0
G0, D2

x0
Gq ` CMT,

Lipx0
n´3pD

2
x0
U0ptq, D2

x0
Uptqq ď Lipx0

n´3pD
2
x0
G0, D2

x0
Gq ` CMT.
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Proof. We will detail only the proof of Lipschitz estimates of pδ2U0{δm2, δ2U{δm2q. Lipschitz regular-
ity of δU0

x0
{δm and D2

x0
U0, δUx0

{δm and D2
x0
U can be proven by following identical lines using the

representation formulas that appear in the proof of Proposition 6.7.
Let us start with δ2U0{δm2. Let pt0,m1,m2q P r0, T s ˆ P2

2 and x10, x
2
0 P Rd be fixed. Let also, as in

the proof of the previous Proposition 6.7, for i “ 1, 2

• pui,miq be the solution to the MFG system (40) starting from mi at time t0 with H (and G)
evaluated at pxi0, x,Du

ipt, xq,miptqq (and pxi0, x,m
ipT qq ),

• pvi, ρiq (respectively pv1i, ρ
1
iq) be the solution of the first order linearized system (45) with zero

right-hand side, initial condition pt0, ρ0q (respectively pt0, ρ
1
0q) and where the Hamiltonian and its

derivatives are evaluated at pxi0, x,Du
ipt, xq,miptqq,

• pwi, µiq be the solution to the second order linearized system (56) associated with pvi, ρiq, pv
1
i, ρ

1
iq

(and pui,miq), and with zero right-hand side.

Recall that (92) provides a representation formula for δ2U0{δm2, that is

δ2U0

δm2
pt0, x

i
0,miqpρ0, ρ

1
0q “

δ2G0

δm2
pxi0,m

ipT qqpρipT q, ρ
1
ipT qq `

δG0

δm
pxi0,m

ipT qqpµipT qq,

and δ2U
δm2 pt0, x

i
0, x,miqpρ0, ρ

1
0q “ wipt0, xq. Let us recall the following inequalities

sup
tPrt0,T s

d2pm
1ptq,m2ptqq ď p1` CT qd2pm

1
0,m

2
0q ` CT |x

1
0 ´ x

2
0|,

sup
tPrt0,T s

}ρiptq}´pk´2q ď p1` CT q }ρ0}´pk´2q,

sup
tPrt0,T s

}ρ1iptq}´pk´2q ď p1` CT q }ρ
1
0}´pk´2q,

sup
tPrt0,T s

}ρ1ptq ´ ρ2ptq}´pk´1q ď CT
`

d2pm1,m2q ` |x
1
0 ´ x

2
0|
˘

}ρ0}´pk´2q,

sup
tPrt0,T s

}ρ11ptq ´ ρ
1
2ptq}´pk´1q ď CT

`

d2pm1,m2q ` |x
1
0 ´ x

2
0|
˘

}ρ10}´pk´2q,

sup
tPrt0,T s

}µiptq}´pk´1q ď CT }ρ0}´pk´2q}ρ
1
0}´pk´2q,

sup
tPrt0,T s

}µ1ptq ´ µ2ptq}´k ď CT pd2pm1,m2q ` |x
1
0 ´ x

2
0|q}ρ0}´pk´2q}ρ

1
0}´pk´2q,

that are consequences of Proposition 5.4, (95), (97), (98) and (100) respectively. Setting

θT :“ CT pd2pm1,m2q ` |x
1
0 ´ x

2
0|q}ρ0}´pk´2q}ρ

1
0}´pk´2q,

we obtain, using (99) also, for any r ď n´ 3,
ˇ

ˇ

ˇ

´δ2U0

δm2
pt, x10,m1q ´

δ2U0

δm2
pt, x20,m2q

¯

pρ0, ρ
1
0q

ˇ

ˇ

ˇ

2

` sup
x

ˇ

ˇ

ˇ
Dr
x

´ δ2U

δm2
pt, x10, x,m1q ´

δ2U

δm2
pt, x20, x,m2q

¯

pρ0, ρ
1
0q

ˇ

ˇ

ˇ

2

ď p1` CT q
!ˇ

ˇ

ˇ

δ2G0

δm2
px10,m

1pT qqpρ1pT q, ρ
1
1pT qq ´

δ2G0

δm2
px20,m

2pT qqpρ1pT q, ρ
1
1pT qq

ˇ

ˇ

ˇ
` θT

)2

` p1` CT q
!

sup
x

ˇ

ˇ

ˇ
Dr
x

δ2G

δm2
px10, x,m

1pT qqpρ1pT q, ρ
1
1pT qq ´D

r
x

δ2G

δm2
px20, x,m

2pT qqpρ1pT q, ρ
1
1pT qq

ˇ

ˇ

ˇ
` θT

)2

.

Choosing m1 “ m2 “ m and rearranging gives the Lipschitz estimates in x0:
ˇ

ˇ

ˇ

´δ2U0

δm2
pt, x10,mq ´

δ2U0

δm2
pt, x20,mq

¯

pρ0, ρ
1
0q

ˇ

ˇ

ˇ

2

` sup
x

ˇ

ˇ

ˇ
Dr
x

´ δ2U

δm2
pt, x10, x,mq ´

δ2U

δm2
pt, x20, x,mq

¯

pρ0, ρ
1
0q

ˇ

ˇ

ˇ

2

ď p1` CT q
!´

ˇ

ˇ

ˇ

δ2G0

δm2
px10,m

1pT qqpρ1pT q, ρ
1
1pT qq ´

δ2G0

δm2
px20,m

1pT qqpρ1pT q, ρ
1
1pT qq

ˇ

ˇ

ˇ

2

`

sup
x

ˇ

ˇ

ˇ
Dr
x

δ2G

δm2
px10, x,m

1pT qqpρ1pT q, ρ
1
1pT qq ´D

r
x

δ2G

δm2
px20, x,m

1pT qqpρ1pT q, ρ
1
1pT qq

ˇ

ˇ

ˇ

2¯1{2

`

` CT |x10 ´ x0|}ρ0}´pk´2q}ρ
1
0}´pk´2q

)2

,
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while the choice x10 “ x20 gives similarly the Lipschitz estimates in m.

A Estimates for solutions to HJ equations

A.1 Main estimates

In this section, we assume that the data a, h and g are smooth and we are looking for a priori estimates
on the smooth and globally bounded solution u to the HJ equation

"

´Btupt, xq ´ Trpapt, xqD2upt, xqq ` hpt, x,Dupt, xqq “ 0 in p0, T q ˆ Rd
upT, xq “ gpxq in Rd (101)

We always assume below that there exists C0 ą 0 and γ ě 1 such that

apt, xq ě C´1
0 Id, }Da}8 ď C0

and
|Dxhpt, x, pq| ď C0p1` |p|

γq

for every pt, x, pq P p0, T q ˆ Rd ˆ Rd.

Proposition A.1. (Lipschitz estimates.) For any M ą 0 there exists TM , CM ą 0, depending on M , C0

and γ, such that, if T P p0, TM q and }Dg}8 ďM , then

sup
tPr0,T s

}Duptq}8 ď }Dg}8 ` CMT

Proof. We use a standard Bernstein method. Let vpt, xq “
ř

i u
2
i pt, xq. Then

Btvpt, xq “ 2
ÿ

i

uipt, xqui,tpt, xq, vjpt, xq “ 2
ÿ

i

uipt, xquijpt, xq,

vjkpt, xq “ 2
ÿ

i

puikpt, xquijpt, xq ` uipt, xquijkpt, xqq.

Thus
´Btv ´ Trpapt, xqD2vpt, xqq

“ ´2
ÿ

i

uipt, xqui,tpt, xq ´ 2
ÿ

i,j,k

ajkpt, xqpuikpt, xquijpt, xq ` uipt, xquijkpt, xq

“ ´2
ÿ

i,j,k

ajkpt, xquikpt, xquijpt, xq ´ 2
ÿ

i

uipt, xqDi

`

Btu` Trpapt, xqD2upt, xqq
˘

`
ÿ

i,j,k

uipt, xqpajkqipt, xqujkpt, xq

where pajkqi denotes the xi-derivative of the element ajk of the matrix apt, xq.
Using the equation for u we find

´Btv ´ Trpapt, xqD2vpt, xqq

“ ´2
ÿ

i,j,k

ajkpt, xquikpt, xquijpt, xq ´ 2
ÿ

i

uipt, xq phipt, x,Dupt, xqq ` hppt, x,Dupt, xqq ¨Duipt, xqq

`
ÿ

i,j,k

uipt, xqpajkqipt, xqujkpt, xq.

(102)
Using our assumptions on a and h, we infer that

´Btv ´ Trpapt, xqD2vpt, xqq ` hppt, x,Dupt, xqq ¨Dvpt, xq

ď ´2C´1
0 |D2u|2 ` 2C0|Du|p1` |Du|

γq ` }Da}8|Du| |D
2u|

ď 2C0|Du|p1` |Du|
γq ` cd}Da}

2
8C0|Du|

2
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for some constant cd only depending on the dimension d. In particular, by maximum principle we estimate

}v}L8pQT q ď }Dg}
2
L8pQT q

` T
”

2C0}Du}L8pQT qp1` }Du}
γ
L8pQT q

q ` cd}Da}
2
8C0}Du}

2
L8pQT q

ı

(103)

which implies

}v}L8pQT q ď }Dg}
2
L8pQT q

` 4T 2C2
0 `

1

4
}Du}2L8pQT q

`Ĉ T }Du}2L8pQT q

”

}Du}γ´1
L8pQT q

` 1
ı (104)

for some Ĉ only depending on d and C0. Recall that }v}L8pQT q “ }Du}
2
L8pQT q

, and define TM as

TM “ min

#

1

2C0
M,

1

4Ĉp1` p2Mqγ´1q

+

.

Then it is easy to see that
}Du}L8pQT q ď 2M @T ď TM . (105)

Indeed, for T ă TM and }Du}L8pQT q ď 2M , (104) implies

}Du}2L8pQT q ď }Dg}
2
L8pQT q

` 4T 2
MC

2
0 `

1

4
}Du}2L8pQT q

`Ĉ TM }Du}
2
L8pQT q

“

p2Mqγ´1 ` 1
‰

ă }Dg}2L8pQT q `M
2 `

1

2
}Du}2L8pQT q

hence
}Du}L8pQT q ă 2M

whenever T ă TM and }Du}L8pQT q ď 2M . A continuity argument implies that

sup tT : }Du}L8pQT q ď 2Mu “ TM

so (105) holds true. Using this information, we deduce from (103) that

}Du}2L8pQT q ď }Dg}
2
L8pQT q

` CM T }Du}L8pQT q

where CM “ 2C0p1` p2Mq
γq ` cd}Da}

2
8C0 2M . Hence

ˆ

}Du}L8pQT q ´
1

2
CM T

˙2

ď }Dg}2L8pQT q `
1

4
C2
M T 2

which implies
}Du}L8pQT q ď CM T ` }Dg}L8pQT q .

Proposition A.2. (Lipschitz estimates, linear case.) We now assume that T ď 1 and that

|Dxhpt, x, pq| ď C1 ` C2|p| @pt, x, pq P p0, T q ˆ Rd ˆ Rd ,

for some constants C1, C2 ą 0. Then there exists a constant C, depending on C0, C2 and }Da}8 only,
such that

sup
tPr0,T s

}Duptq}8 ď }Dg}8p1` CT q ` CC1T.

Proof. Our starting point is inequality (102) in the previous proof. Using our assumptions on a and h
we get:

´Btv ´ Trpapt, xqD2vpt, xqq ` hppt, x,Dupt, xqq ¨Dvpt, xq

ď ´2C´1
0 |D2u|2 ` 2|Du|pC1 ` C2 |Du|q ` }Da}8|Du| |D

2u|

ď 2|Du|pC1 ` C2 |Du|q ` cd}Da}
2
8C0|Du|

2
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which implies

´Btv ´ Trpapt, xqD2vpt, xqq ` hppt, x,Dupt, xqq ¨Dvpt, xq ď λ v ` 2C1 v
1{2

where λ “ 2C2 ` cd}Da}
2
8C0. By the maximum principle we get

}v}L8pQT q ď eλT
´

2C1 T }v}
1{2
L8pQT q

` }Dg}28

¯

,

from which we derive that
}v}

1{2
L8pQT q

ď 2C1 T e
λT ` eλT {2 }Dg}8.

Since T ď 1 (and so eλT {2 ď 1` cλT ), the conclusion follows.

Proposition A.3. (Second order estimate.) Assume that h and a are of class C2
b . Then, for any M ą 0,

there are constants TM , CM ą 0, depending on M and on

sup
tPr0,T s

}aptq}2 ` sup
|p|ď}Du}8

}D2
xphp¨, ¨, pq}8 (106)

such that, if }D2g}8 ďM and T P p0, TM q, then

sup
tPr0,T s

}D2uptq}8 ď }D
2g}8 ` CMT.

If, in addition, h is affine in p, then there is a constant C, depending only on C0, suptPr0,T s }aptq}2 and

on }D2
xph}8, such that, for any T P p0, 1s,

sup
tPr0,T s

}D2uptq}8 ď p1` CT q}D
2g}8 ` CT sup

|p|ď}Du}8

}D2
xxhp¨, ¨, pq}8.

Proof. We use the Bernstein method again. Let wpt, xq “
ř

i,j u
2
ij . Then

´Btw ´ Trpapt, xqD2wpt, xqq

“ ´2
ÿ

i,j,k,l

aklpt, xquijkpt, xquijlpt, xq ´ 2
ÿ

i,j

uijpt, xqDi,j

˜

Btu`
ÿ

k,l

aklukl

¸

`2
ÿ

i,j,k,l

uijpt, xq ppaklqipt, xqujklpt, xq ` paklqjpt, xquiklpt, xq ` paklqijuklq .

So

´Btw ´ Trpapt, xqD2wpt, xqq

“ ´2
ÿ

i,j,k,l

akluijkuijl ´ 2
ÿ

i,j

uij phij ` hi,p ¨Duj ` hj,p ¨Dui ` hppDui ¨Duj ` hpDuijq

`2
ÿ

i,j,k,l

uijpt, xq ppaklqipt, xqujklpt, xq ` paklqjpt, xquiklpt, xq ` paklqijuklq

(107)

which yields, using the ellipticity of apt, xq,

´Btw ´ Trpapt, xqD2wpt, xqq ` hppt, x,Dupt, xqq ¨Dwpt, xq
ď ´2C´1

0 |D3u|2 ` Ch|D
2u|

`

1` |D2u| ` |D2u|2
˘

` C|D2u|
`

}a}1 |D
3u| ` }a}2 |D

2u|
˘

for some constant Ch depending on sup|p|ď}Du}8 }D
2
x,php¨, ¨, pq}8. Young’s inequality leads to

´Btw ´ Trpapt, xqD2wpt, xqq ` hppt, x,Dupt, xqq ¨Dwpt, xq
ď C|D2u|

`

1` |D2u| ` |D2u|2
˘

where now C depends on }a}2 as well. We conclude using maximum principle as in the proof of Proposition
A.1.
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If h is affine in p, then with the same estimates we deduce from (107):

´Btw ´ Trpapt, xqD2wpt, xqq ` hppt, x,Dupt, xqq ¨Dwpt, xq

ď |D2u|
`

2}Dxxh}8 ` C|D
2u|

˘

ď Cw ` 2 }Dxxh}8 |D
2u| ,

where C depends on }a}2, C0 and sup|p|ď}Du}8 }D
2
x,php¨, ¨, pq}8. The conclusion follows as in Lemma

A.2.

Proposition A.4. (Third order estimate) Assume that h and a (and the solution u) are of class C3
b .

Then there is a constant C, depending on }D2u}8, on }Da}8 ` }D
2a}8 ` }D

3a}8 and on

sup
|p|ď}Du}8

!

}D3
px,pqhp¨, ¨, pq}8 ` }hppp¨, ¨, pq}8

)

,

such that, for any T P p0, 1s,

sup
tPr0,T s

}D3uptq}8 ď p1` CT q}D
3g}8 ` CT,

Proof. Let w “
ř

ijk u
2
ijk. Then

´Btw ´ Trpapt, xqD2wpt, xqq

“ ´2
ÿ

i,j,k,l,m

almpt, xquijklpt, xquijkmpt, xq ´ 2
ÿ

i,j

uijkpt, xqDi,j,k

˜

Btu`
ÿ

l,m

almulm

¸

`2
ÿ

i,j,k,l,m

uijkpt, xq
´

palmqijkulm ` palmqijuklm ` palmqikujlm ` palmqjkuilm

`palmqiujklm ` palmqjuiklm ` palmqkuijlm

¯

So
´Btw ´ Trpapt, xqD2wpt, xqq

“ ´2
ÿ

i,j,k,l,m

almpt, xquijklpt, xquijkmpt, xq ´ 2
ÿ

i,j

uijkpt, xqDi,j,k thu

`2
ÿ

i,j,k,l,m

uijkpt, xq
´

palmqijkulm ` palmqijuklm ` palmqikujlm ` palmqjkuilm

`palmqiujklm ` palmqjuiklm ` palmqkuijlm

¯

.

(108)

As before, the coercivity of a implies

´2
ÿ

i,j,k,l,m

almpt, xquijklpt, xquijkmpt, xq ď ´2C´1
0 |D4u|2 ,

whereas last term in (108) is estimated as

2
ř

i,j,k,l,m uijkpt, xq
´

palmqijkulm ` palmqijuklm ` palmqikujlm ` palmqjkuilm

`palmqiujklm ` palmqjuiklm ` palmqkuijlm

¯

ď C´1
0 |D4u|2 ` |D3u|

`

2}D3a}8 |D
2u| ` C |D3u|

˘

,

for some C depending on C0 and }D2a}8. Finally, a direct computation of Di,j,k thu and a straightforward
estimate of all terms involved imply

´2
ř

i,j uijkpt, xqDi,j,k thu ď ´hppt, x,Dupt, xqq ¨Dwpt, xq

`C |D3u|
“

}D2h}8 |D
3u|p1` |D2u|q ` }D3h}8p1` |D

2u|3q
‰

.
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Hence, putting all together we deduce from (108):

´Btw ´ Trpapt, xqD2wpt, xqq ` hppt, x,Dupt, xqq ¨Dwpt, xq

ď C |D3u|
“

}D2h}8 |D
3u|p1` |D2u|q ` }D3h}8p1` |D

2u|3q
‰

`|D3u|
`

2}D3a}8 |D
2u| ` C |D3u|

˘

ď C|D3u|2 ` C|D3u| ,

where C depends also on }Dku}8 for k ď 2. We conclude as in Proposition A.2.

Lemma A.5. (Higher order estimate) Let n P N with n ě 3 and assume that h and a (and the solution
u) are of class Cnb . There is a constant C, depending on n, d, supt }uptq}n´1, supt }aptq}n and on

sup
|p|ď}Du}8

n
ÿ

k“0

}Dk
px,pqhp¨, ¨, pq}8, (109)

such that, for any T P p0, 1s,

sup
t
}Dnuptq}8 ď p1` CT q}D

ng}8 ` CT.

Proof. Let w :“
ÿ

|k|“n

u2k where the multi-index k “ pk1, . . . , kdq belongs to Nd and |k| “
ř

i ki. Then

´Btw ´ Trpapt, xqD2wpt, xqq

“ ´2
ÿ

|k|“n

ÿ

i,j

aijpt, xquk,ipt, xquk,jpt, xq ´ 2
ÿ

|k|“n

ukpt, xqDk

 

Btu` TrpaD2uq
(

`2
ÿ

|k|“n

uk
`

DkpTrpaD2uqq ´ TrpaD2ukq
˘

.

As n ě 3, a simple induction argument shows that Dkthu is of the form

Dk thu “ fk ` gk ¨D
nu` hp ¨Duk

where the map
fk “ fkpt, x,Dupt, xq, . . . , D

n´1upt, xqq

is a polynomial function of the derivatives of u up to order n ´ 1 with coefficients involving derivatives
of h with respect to px, pq up to order n computed at pt, x,Dupt, xqq, while

gk ¨D
nu “

ÿ

|ξ|“n´1

ÿ

z`ξ“k

Dz,phpt, x,Dupt, xqqDuξ ` hpppt, x,Dupt, xqqDuzDuξ ,

where ξ is any multi-index of length n´ 1, z is a multi-index of length 1 (z “ ej for some j P t1, . . . , du)
and ξ ` z “ k.

Therefore

´Btw ´ Trpapt, xqD2wpt, xqq ` hp ¨Dw

“ ´2
ÿ

i,j

ÿ

|k|“n

aijpt, xquk,ipt, xquk,jpt, xq ´ 2
ÿ

|k|“n

ukpt, xq pfk ` gk ¨D
nuq

`2
ÿ

|k|“n

uk
`

DkpTrpaD2uqq ´ TrpaD2ukq
˘

ď ´2C´1
0

ÿ

|k|“n

|Duk|
2 ` C|uk|p1` |uk|q

`2
ÿ

|k|“n

uk
`

DkpTrpaD2uqq ´ TrpaD2ukq
˘
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where C depends on supt }uptq}n´1 and the quantity in (109). Last term can be estimated as before: the
higher order quantity involves Duk, so we have through Young’s inequality

2
ÿ

|k|“n

uk
`

DkpTrpaD2uqq ´ TrpaD2ukq
˘

ď 2C´1
0

ÿ

|k|“n

|Duk|
2 ` C |uk|p1` |uk|q,

for some C depending on supt }aptq}n and supt }uptq}n´1. Finally, we conclude with maximum principle,
as in Lemma A.2.

Proposition A.6. (Higher order estimate, further informations) Let n P N with n ě 3 and assume that
h and a (and the solution u) are of class Cnb . For any M ą 0, there are constants KM , TM ą 0, depending
on M , C0 and γ, and a constant CM ą 0 depending on

sup
tPr0,TM s

}aptq}n ` sup
|p|ďKM

n
ÿ

k“0

}Dk
px,pqhp¨, ¨, pq}8,

such that, if }g}n ďM , then, for any T P p0, TM q and any r ď n, we have

sup
tPr0,T s

}Dr
xuptq}8 ď }D

r
xg}8 ` CMT

and therefore
sup
tPr0,T s

}uptq}n ď }g}n ` CMT. (110)

Proof. The proof is a straightforward combination of Propositions A.1, A.3 and Lemma A.5.

We finally address the same issue for (uncoupled) systems of linear parabolic equations: let pulql“1,...,k

solve the system

"

´Btu
l ´ Trpapt, xqD2ulq ` V pt, xq ¨Dul ` f lpt, xq “ 0 in p0, T q ˆ Rd

ulpT, xq “ glpxq in Rd

where a, V and the f l are bounded in Cnb independently of t P r0, 1s, for some n P N˚. Note that the
diffusion and the drift terms are independent of l.

Proposition A.7 (Higher order estimate, systems of affine equations). There is a constant C, depending
on k, d, supt }aptq}n and on supt }V ptq}n, such that, for any T P p0, 1s and for any r ď n,

sup
t,x

˜

k
ÿ

l“1

|Dr
xu

lpt, xq|2

¸1{2

ď p1` CT q sup
x

˜

k
ÿ

l“1

|Dr
xg
lpxq|2

¸1{2

` CT sup
l
p}gl}r ` sup

t
}f lptq}rq.

In particular, if k “ 1, for any r ď n

sup
tPr0,T s

}Dr
xuptq}8 ď p1` CT q}D

r
xg}8 ` CT sup

t
}Dr

xfptq}8.

The only small point here is that the supremum over x is outside the sum (and not inside as it would
be given by simply applying to each ul the previous Propositions).

Proof. The proof runs exactly along the same lines as before and so we just explain briefly the idea for
r “ 0. Let us consider vpt, xq “

řk
l“1pu

lpt, xqq2. Then v solves

´Btv ´ TrpaD2vq ` V ¨Dv “ ´2
k
ÿ

l“1

ulf l ´
ÿ

i,j,l

aiju
l
iu
l
j

We infer the result by using the positivity of a and the maximum principle.
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A.2 Systems with parameters

In this section we revisit the above estimates for specific systems of Hamilton-Jacobi equations involving
a parameter y. The motivation for the specific form of the system is the analysis of the MFG problems
with a major player. Note that here the variables-parameter couple px; yq plays the role of px0;xq in
the HJ system (32) analyzed throughout Section 4.1. As usual, we discuss linear and nonlinear systems
separately.

A.2.1 Nonlinear systems

Here we consider the system consisting in a coupling of a non-linear HJ equation with a linear one:
$

&

%

´Btu
0pt, xq ´∆u0pt, xq ` h0pt, x,Du0pt, xqq “ 0 in p0, T q ˆ Rd,

´Btupt, x; yq ´∆upt, x; yq ` h0ppt, x,Du
0pt, xqq ¨Dupt, x; yq ` fpt, x; yq “ 0 in p0, T q ˆ Rd,

u0pT, xq “ g0pxq, upT, xq “ gpx; yq in Rd,
(111)

where h0 : r0, T s ˆ Rd ˆ Rd Ñ R and f : r0, T s ˆ Rd ˆ Rd1 Ñ R (d1 being the space parameter of the
variable y) are smooth maps satisfying in addition the bounds:

|Dx,ph
0pt, x, pq| ` |D2

x,ph
0pt, x, pq| ď C0p|p|

γ ` 1q, (112)

for some γ ą 0 and C0 ą 0.

Proposition A.8. Let r, n P N and assume (in addition to (112)) that h0, h0p are of class Crb and that
f is bounded in Cr,nb independently of t P r0, 1s for some n P N. For any M ą 0, there are constants
KM , TM ą 0, depending on M , C0 and γ in (112), and a constant CM ą 0 depending on

sup
|p|ďKM

r
ÿ

k“0

}Dk
px,pqh

0p¨, ¨, pq}8 `
r
ÿ

k“0

}Dk
px,pqh

0
pp¨, ¨, pq}8, sup

t
}fptq}r,n

such that, if }g0}r ` }g}r,n ď M and T P p0, TM q, and if pu0, uq is the solution to (111), then we have,
for l ď n,

sup
t,x,y

´

|Dru0pt, xq|2 ` |Dr
xD

l
yupt, x; yq|2

¯1{2

ď sup
x,y

´

|Drg0pxq|2 ` |Dr
xD

l
ygpx; yq|2

¯1{2

` CMT.

Let us recall that Dr
xD

l
yu “ pB

β
xB

α
y uq|β|“r,|α|“l, hence |Dr

xD
l
yu|

2 “
ř

|β|“r,|α|“lpB
β
xB

α
y uq

2. Let us also

point out that the main difference compared to Proposition A.6 is that we need to estimate u0 and u at
the same time.

Proof. The proof uses the same technique as for a single Hamilton-Jacobi equation without parameter.
We explain only the main changes. We first prove the result for l “ 0.

By the maximum principle we can first bound |u0|2 ` |u|2 by }pg0q2 ` g2}8 ` CT . Next we address
the Lipschitz estimate. We claim that, for any M ą 0 and any n P N, if }Dg0}8 ` }Dxg}8 ď M , then
there exists TM and CM (depending on M , C0, n and γ in (112) only) such that

sup
t,x,y

´

|Du0pt, xq|2 ` |Dxupt, x; yq|2
¯1{2

ď sup
x,y

´

|Dg0pxq|2 ` |Dxgpx; yq|2
¯1{2

` CMT p1` sup
t
}Dxfptq}8q.

To this aim, let us set: vpt, xq “
d
ÿ

i“1

ppu0i q
2 ` puiq

2q. Then following the computation in the proof of

Proposition A.1, we find:

´ Btv ´∆vpt, xq

“ ´2
ÿ

i

`

u0iDxipBtu
0 `∆u0q ` uiDxipBtu`∆uq

˘

´ 2p|D2u0|2 ` |D2u|2q

“ ´2
ÿ

i

`

u0i ph
0
xi ` h

0
p ¨Du

0
i q ` uiph

0
p,xi ¨Du` h

0
ppDu

0
i ¨Du` h

0
p ¨Dui ` fiq

˘

´ 2p|D2u0|2 ` |D2u|2q,
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so that

´ Btv ´∆vpt, xq ` h0p ¨Dv

“ ´2
ÿ

i

`

u0ih
0
xi ` uiph

0
p,xi ¨Du` h

0
ppDu

0
i ¨Du` fiq

˘

´ 2p|D2u0|2 ` |D2u|2q.

Using our assumption on h0 we get

´ Btv ´∆vpt, xq ` h0p ¨Dv ď Cv1{2p|v|θ ` 1` }Dxf}8q,

for some C ą 0 and θ ą 0 which depend on C0 and γ only. We derive from this the Lipschitz estimate
thanks to the maximum principle exactly as in the proof of Proposition A.1.

The higher order estimates can be checked exactly as in Propositions A.3 and Lemma A.5, so we omit
the proof. Note that higher order estimates on Dru0 and Dru depend on Dr´1u0 and Dr´1u, but this
dependance affects the constant CM only.

Let us finally explain how to handle the derivative with respect to y: we note that Bαy u satisfies the
same linear equation as u with f replaced by Bαy f , and the final datum g is replaced by Bαy g. So, in order

to estimate DxD
l
ypu

0, uq for instance, we just set cl “ p
ř

|α|“l 1q
´1, vα “

řd
i“1pclpu

0
i q

2 ` pBαy uiq
2q and

w “
ř

|α|“l v
α. As above,

´ Btv
α ´∆vαpt, xq ` h0p ¨Dv

α ď Cpvαq1{2p|vα|θ ` 1` }DxB
α
y f}8q ď Cw1{2p|w|θ ` 1` }DxD

l
yf}8q,

and summing up one concludes the desired inequality, noting that w “
ř

|β|“1pB
β
xu

0q2`
ř

|β|“1,|α|“lpB
β
xB

α
y uq

2.

A.2.2 Linear systems

We also need to quantify the regularity of linear systems of the form

$

’

’

&

’

’

%

´Btu
0pt, xq ´∆u0pt, xq ` V 0pt, xq ¨Du0pt, xq ` f0pt, xq “ 0 in p0, T q ˆ Rd,

´Btupt, x; yq ´∆upt, x; yq ` V 0pt, xq ¨Dupt, x; yq ` V pt, x; yq ¨Du0pt, xq

`fpt, x; yq “ 0 in p0, T q ˆ Rd,
u0pT, xq “ g0pxq, upT, xq “ gpx; yq in Rd

(113)

Proposition A.9. Assume that, independently on t P p0, 1s, V 0, f0 are bounded in Cr, and V, f are
bounded Cr,nb for some r, n ě 0. Then, if pu0, uq is a solution of (113) which is bounded in Crb ˆ Cr,nb
and if }g0}r ` }g}r,n ďM , we have, for any T P p0, 1s, l ď n,

sup
t,x,y

´

|Dr
xu

0pt, xq|2 ` |Dr
xD

l
yupt, x; yq|2

¯1{2

ď sup
x,y

´

|Dr
xg

0pxq|2 ` |Dr
xD

l
ygpx; yq|2

¯1{2

` CMT,

where CM depends on M , the bounds on V 0, f0 and V, f in Cr and Cr,nb respectively.
In addition, for r “ 0 and l ď n, we have

sup
t,x,y

´

|u0pt, xq|2`|Dl
yupt, x; yq|2

¯1{2

ď p1`CT q sup
x,y

´

|g0pxq|2`|Dl
ygpx; yq|2

¯1{2

`CT p}f0}8`}D
l
yf}8q,

where C depends just on the bound of V 0 and V .

Proof. We first note that the derivatives of u with respect to the parameter y solve a system which has
the same structure as the one for u: so we just need to check the result for n “ 0, and proceed as in the
proof of Proposition A.8 for n ą 0.
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Let us start with the L8 bounds: We consider ṽ :“ pu0q2 ` u2. Then v satisfies

´Btṽ ´∆ṽ “ ´2u0
`

Btu
0 `∆u0

˘

´ 2u pBtu`∆uq ´ 2p|Du0|2 ` |Du|2q

“ ´2u0
´

V 0pt, xq ¨Du0pt, xq ` f0pt, xq
¯

´ 2u
´

V 0pt, xq ¨Dupt, xq

` V pt, x; yq ¨Du0pt, xq ` fpt, x; yq
¯

´ 2p|Du0|2 ` |Du|2q

ď Cṽ ` ṽ1{2p}f0}8 ` }f}8q,

where C depends on }V 0}8 and }V }8 only. This implies the result for r “ n “ 0.

We now check the C1 estimate. Let us set as usual vpt, xq “
řd
i“1ppu

0
i q

2 ` puiq
2q. Then

´ Btv ´∆vpt, xq “ ´2
ÿ

i

`

u0iDxipBtu
0 `∆u0q ` uiDxipBtu`∆uq

˘

´ 2p|D2u0|2 ` |D2u|2q

“ ´2
ÿ

i

´

u0i pV
0
xi ¨Du

0 ` V 0 ¨Du0i ` f
0
i q ` uipV

0
xi ¨Du` V

0 ¨Dui ` Vxi ¨Du
0 ` V ¨Du0i ` fiq

¯

´ 2p|D2u0|2 ` |D2u|2q

ď Cv ` v1{2p}Df0}8 ` }Dxf}8q,

where C depends on the C1 bound on V 0 and on V and on d only. This implies the estimate for r “ 1
and n “ 0.

As for the C2 estimate, let us set as usual wpt, xq “
řd
i,j“1ppu

0
ijq

2 ` puijq
2q. Then

´Btw ´∆wpt, xq ď Cw ` Cw1{2p1` }D2f0}8 ` }D
2
xf}8 ` }Du

0}8 ` }Dxu}8q,

where C depends on the C1 bound on V 0 and on V and on d only. We then get the estimate for r “ 2
and n “ 0 by the maximum principle and using the previous bounds for Du0, Du.

The estimate on higher order derivatives can be checked in a way similar and we omit the proof.

B Functions on P2

B.1 A criterium of differentiability

Here we introduce a simple criterium for a map U , depending of the measure, to be of class C1.

Lemma B.1. Let U : P2 Ñ R be continuous. For ps,m, yq P r0, 1s ˆ P2 ˆ Rd we set

Ûps;m, yq :“ Upp1´ sqm` sδyq.

If the map sÑ Ûps;m, yq has a derivative at s “ 0 and if its derivative at 0,
d

ds |s“0

Û : P2 ˆRd Ñ R is

continuous and bounded, then U is of class C1 with

δU

δm
pm, yq “

d

ds
Ûp0;m, yq.

Proof. We have to show that, for any m0,m1 P P2, we have

Upm1q ´ Upm0q “

ˆ 1

0

ˆ
Rd

d

ds
Ûp0; p1´ sqm0 ` sm1, yqpm1 ´m0qpdyq.

Before starting the proof, let us note that the continuity assumption of d
ds Û at s “ 0 implies its continuity

at any s P r0, 1s, replacing m by p1´ sqm` sδy.
Let us start by considering the case where m0 is fixed and m1 is an empirical measure: m1 “ mN

y :“
1
N

řN
k“1 δyk for some N P N, N ě 1, yk P Rd. The general case will be treated next by approximation.
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All the measures we are going to manipulate in the next lines belong to the set

K :“ tα0m0 `

N
ÿ

k“1

αkδyk , αk ě 0,
N
ÿ

k“0

αk “ 1u

which is compact in P2. So, by continuity of d
ds Û , if we fix ε ą 0, there exists δ P p0, 1{2q such that, if

m1,m2 P K with d2pm,m
1q ă δ and s P r0, δs, then

sup
k

ˇ

ˇ

ˇ

ˇ

d

ds
Ûps;m, ykq ´

d

ds
Ûp0;m1, ykq

ˇ

ˇ

ˇ

ˇ

ď ε. (114)

Our first step consists in showing that, for s ą 0 small enough (to be defined below) and for any m P K,
we have

ˇ

ˇ

ˇ

ˇ

Upp1´ sqm` smN
y q ´ Upmq ´ s

ˆ
Rd

d

ds
Ûp0;m, yqmN

y pdyq

ˇ

ˇ

ˇ

ˇ

ď Cpεs` s2q, (115)

where C depends on the sup norm of d
ds Û on r0, 1s ˆK ˆ tyk, k “ 1, . . . , Nu. In order to prove (115),

we define αk “
s

N´pN´kqs for k “ 0, . . . , N and note that

N
ź

l“k

p1´ αlq “ 1´
pN ` 1´ kqs

N
. (116)

We now define by induction

m0 “ m, mk “ p1´ αkqmk´1 ` αkδyk (117)

and using (116) we get

mN “

N
ź

k“1

p1´ αkqm` αnδyN `
N´1
ÿ

k“1

αkδyk

N
ź

l“k`1

p1´ αlq

“ p1´ sqm`
N
ÿ

k“1

δyk
s

N ´ pN ´ kqs
p1´

pN ´ kqs

N
q “ p1´ sqm` smN

y .

So, by the definition of mk`1 in function of mk in (117),

Upp1´ sqm` smN
y q ´ Upmq “

N´1
ÿ

k“0

Upmk`1q ´ Upmkq

“

N´1
ÿ

k“0

Ûpαk`1;mk, yk`1q ´ Ûp0;mk, yk`1q “

N´1
ÿ

k“0

ˆ αk`1

0

d

ds
Ûpτ ;mk, yk`1qdτ .

Let us assume that s P p0, δq. As s ă 1{2, we have αk ď 2s{N for any k, and thus

d2pmk,mq ď Cs

for a constant C which depends on m0 and on the yk (but not on m P K nor on s P p0, δq). We now
require that s is so small that Cs ă δ. Then, for any k and any τ P p0, αkq, we have by (114):

ˇ

ˇ

ˇ

ˇ

d

ds
Ûpτ ;mk, yk`1q ´

d

ds
Ûp0;m, yk`1q

ˇ

ˇ

ˇ

ˇ

ď ε.

We infer from this that
ˇ

ˇ

ˇ

ˇ

ˇ

Upp1´ sqm` smN
y q ´ Upmq ´

N´1
ÿ

k“0

αk`1
d

ds
Ûp0;m, yk`1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cε
N´1
ÿ

k“0

αk`1.
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As |αk ´ s{N | ď Cs2{N , we conclude that (115) holds.
The next step in the proof consists in showing that

Upe´1m0 ` p1´ e
´1qmN

y q ´ Upm0q “

ˆ e´1

0

ˆ
Rd

d

ds
Ûp0; p1´ τqm0 ` τm

N
y , yqm

N
y pdyq

dτ

1´ τ
. (118)

For this, let us now choose T P N large and let

mn “

ˆ

1´
1

T

˙n

m0 `

ˆ

1´

ˆ

1´
1

T

˙n˙

mN
y n P t0, . . . , T u.

We have

mn`1 “

ˆ

1´
1

T

˙

mn `
1

T
mN

y n P t0, . . . , T u.

So, by (115),

ˇ

ˇ

ˇ

ˇ

ˇ

UpmT q ´ Upm0q ´ T
´1

T´1
ÿ

n“0

ˆ
Rd

d

ds
Ûp0;mn, yqm

N
y pdyq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

T´1
ÿ

n“0

ˇ

ˇ

ˇ

ˇ

Upp1´ 1{T qmn ` p1{T qm
N
y q ´ Upmnq ´ T

´1

ˆ
Rd

d

ds
Ûp0;mn, yqm

N
y pdyq

ˇ

ˇ

ˇ

ˇ

ď C
T´1
ÿ

n“0

pε{T ` p1{T q2q ď Cpε` T´1q.

We let T Ñ `8 and then εÑ 0 to conclude by continuity of U and of d
ds Û that

Upe´1m0 ` p1´ e
´1qmN

y q ´ Upm0q “

ˆ 1

0

ˆ
Rd

d

ds
Ûp0; e´sm0 ` p1´ e

´sqmN
y , yqm

N
y pdyqds

“

ˆ e´1

0

ˆ
Rd

d

ds
Ûp0; p1´ τqm0 ` τm

N
y , yqm

N
y pdyq

dτ

1´ τ
.

This is (118).
By continuity of U and of d

ds Û and by density of the empirical measures, one obtains from (118) that,
for any measure m0,m1 P P2:

Upe´1m0 ` p1´ e
´1qm1q ´ Upm0q “

ˆ e´1

0

ˆ
Rd

d

ds
Ûp0; p1´ τqm0 ` τm1, yqm1pdyq

dτ

1´ τ
. (119)

Choosing m1 “ m0 then implies the normalization convention

ˆ
Rd

d

ds
Ûp0;m0, yqm0pdyq “ 0

for any m0 P P2. In particular, this yields

ˆ
Rd

d

ds
Ûp0; p1´ τqm0 ` τm1, yqm1pdyq “ p1´ τq

ˆ
Rd

d

ds
Ûp0; p1´ τqm0 ` τm1, yqpm1 ´m0qpdyq .

Inserting this relation in (119) gives the more standard form:

Upe´1m0 ` p1´ e
´1qm1q ´ Upm0q “

ˆ e´1

0

ˆ
Rd

d

ds
Ûp0; p1´ τqm0 ` τm1, yqpm1 ´m0qpdyqdτ.

Using again the continuity of U and of d
ds Û , one easily deduce from this the desired equality.
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B.2 Interpolation and Ascoli Theorem in P2

In the proof of Lemma 3.7, we have used two interpolation Lemmas. The first one is standard (see,
for instance, [22, Lemma II.3.1]): we recall it because we need a specific setting. The second one is an
adaptation to P2 of the same techniques.

Lemma B.2. Let W : r0, 1s ˆ Rd1 Ñ Rd2 be Holder continuous in time locally uniformly in space: for
any R ą 0, there exists C0,R ą 0 and αR ą 0 such that

|W pt, yq ´W ps, yq| ď C0,R|t´ s|
α @ps, t, yq P r0, 1s ˆ r0, 1s ˆ Rd1 with |y| ď R and |t´ s| ď αR,

and such that DyW is Holder continuous in space uniformly in time: there exists C1 ą 0 such that

|DyW pt, y0q ´DyW pt, y1q| ď C1|y0 ´ y1|
δ @pt, y1, y2q P r0, 1s ˆ Rd1 ˆ Rd1 .

Then DyW is Holder continuous in time locally uniformly in space:

|DyW pt, yq ´DyW ps, yq| ď CR |t´ s|
αδ
p1`δq

@ps, t, yq P r0, 1s ˆ r0, 1s ˆ Rd1 with |y| ď R and |t´ s| ď α1R,

for some constants CR ą 0 and α1R only depending on C0,R`1, αR`1, C1, α and δ.

Remark B.3. The proof below also shows that, if in addition W is Holder continuous in time uniformly
in space (i.e., C0,R and αR do not depend on R) and if DyW is bounded, then DyW is also Holder
continuous in time uniformly in space.

Proof. Fix y0, y1 P Rd with |y0| ď R and |y1| ď R` 1. Let yτ “ p1´ τqy0 ` τy1 for τ P r0, 1s. We have

ˇ

ˇ

ˇ

ˇ

ˆ 1

0

pDyW pt, yτ q ´DyW ps, yτ qq ¨ py1 ´ y0qdτ

ˇ

ˇ

ˇ

ˇ

“ |W pt, y1q ´W pt, y0q ´W ps, y1q `W ps, y0q| ď 2C0,R`1 |t´ s|
α .

So

|pDyW pt, y0q ´DyW ps, y0qq ¨ py1 ´ y0q| ď

ˇ

ˇ

ˇ

ˇ

ˆ 1

0

pDyW pt, y0q ´DyW pt, yτ qq ¨ py1 ´ y0qdτ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˆ 1

0

pDyW pt, yτ q ´DyW ps, yτ qq ¨ py1 ´ y0qdτ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˆ 1

0

pDyW ps, yτ q ´DyW ps, y0qq ¨ py1 ´ y0qdτ

ˇ

ˇ

ˇ

ˇ

ď 2C0,R`1|t´ s|
α ` 2C1|y1 ´ y0|

1`δ,

using also the Hölder continuity of DyW . Choosing y1 “ y0 ` hv, with |v| “ 1, we get

|rDyW pt, yq ´DyW ps, yqs ¨ v| ď
2C0,R`1

|h|
|t´ s|α ` 2C1|h|

δ .

Optimizing with respect to h P p0, αR`1s and |v| “ 1, we find the result for |t ´ s| ď α1R for a suitable
constant α1R depending on C0,R`1, α, C1 and δ.

Lemma B.4. Let W : r0, 1sˆP2 Ñ Rd2 be Holder continuous, locally in time and uniformly in measure:
there exists α P p0, 1s and, for any R ą 0 there exists C0,R ą 0 such that

|W pt,mq ´W ps,mq| ď C0,R|t´ s|
α @m P P2 with M2pmq ď R, @s, t P r0, 1s,

(where M2pmq “ p
´
Rd |y|

2mpdyqq1{2) and such that δW
δm and DmW are bounded and DmW is Holder

continuous with respect to the measure uniformly in time: there exists γ, δ P p0, 1s and C1 ą 0 such that

|DmW pt,m0, y0q ´DmW pt,m1, y1q| ď C1

`

dγ2pm0,m1q ` |y0 ´ y1|
δ
˘
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for any t P r0, 1s and any pmi, yiq P P2 ˆRd. Then DmW is Holder continuous in time locally uniformly
in pm, yq P P2ˆRd: for any R ą 0 , there exists a constant CR ą 0, depending on R, }DmW }8, C0,R`1,
C1, α, γ and δ, such that

|DmW pt,m, yq ´DmW ps,m, yq| ď CR|t´ s|
αγ{pp2`γqp1`δqq,

for any s, t P r0, 1s and any pm, yq P P2 ˆ Rd with |y| ď R and M2pmq ď R.

Proof. Let R ě 1. Fix m0,m1 P P2 with M2pmiq ď R and set mτ “ p1´ τqm0 ` τm1. Then
ˇ

ˇ

ˇ

ˇ

ˆ 1

0

ˆ
Rd

ˆ

δW

δm
pt,mτ , yq ´

δW

δm
ps,mτ , yq

˙

pm1 ´m0qpdyqdτ

ˇ

ˇ

ˇ

ˇ

“ |W pt,m1q ´W pt,m0q ´W ps,m1q `W ps,m0q|

ď 2C0,R|t´ s|
α .

As
ˇ

ˇ

ˇ

ˇ

ˆ
Rd

ˆ

δW

δm
pt,m0, yq ´

δW

δm
ps,m0, yq

˙

pm1 ´m0qpdyq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˆ 1

0

ˆ
Rd

ˆ

δW

δm
pt,mτ , yq ´

δW

δm
ps,mτ , yq

˙

pm1 ´m0qpdyqdτ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˆ 1

0

ˆ
Rd

ˆ

δW

δm
pt,mτ , yq ´

δW

δm
pt,m0, yq

˙

pm1 ´m0qpdyqdτ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˆ 1

0

ˆ
Rd

ˆ

δW

δm
ps,mτ , yq ´

δW

δm
ps,m0, yq

˙

pm1 ´m0qpdyqdτ

ˇ

ˇ

ˇ

ˇ

,

we obtain, by our Holder continuity assumption on DmW :
ˇ

ˇ

ˇ

ˇ

ˆ
Rd

ˆ

δW

δm
pt,m0, yq ´

δW

δm
ps,m0, yq

˙

pm1 ´m0qpdyq

ˇ

ˇ

ˇ

ˇ

ď 2C0|t´ s|
α ` sup

τPr0,1s

}DmW pt,mτ , ¨q ´DmW pt,m0, ¨q}8 d1pm0,m1q

` sup
τPr0,1s

}DmW ps,mτ , ¨q ´DmW ps,m0, ¨q}8 d1pm0,m1q

ď 2C0|t´ s|
α ` 2C1d

γ
2pm0,m1qd1pm0,m1q.

For any y0 P Rd with |y0| ď R, let m1 “ p1 ´ θqm0 ` θδy0 for some θ P p0, 1s to be chosen below. Note
that

d1pm1,m0q ď θ

ˆ
Rd
|y0 ´ x|m0pdxq ď θp|y0| ` pM2pm0qq

1{2q ď 2θR,

(since R ě 1) while

d2pm1,m0q ď pθ

ˆ
Rd
|y0 ´ x|

2m0pdxqq
1{2 ď p2θq1{2p|y0|

2 `M2
2 pm0qq

1{2 ď 2θ1{2R.

We get, by the convention on the derivative and our previous estimates:
ˇ

ˇ

ˇ

ˇ

δW

δm
pt,m0, y0q ´

δW

δm
ps,m0, y0q

ˇ

ˇ

ˇ

ˇ

“
1

θ

ˇ

ˇ

ˇ

ˇ

ˆ
Rd

ˆ

δW

δm
pt,m0, yq ´

δW

δm
ps,m0, yq

˙

pm1 ´m0qpdyq

ˇ

ˇ

ˇ

ˇ

ď
1

θ

”

2C0,R|t´ s|
α ` cC1R

1`γθ1`γ{2
ı

,

where c is universal. If |t ´ s| is small enough such that C0,R|t ´ s|α{pcC1R
1`γq ď 1, then we choose

θ1`γ{2 :“ C0,R|t´ s|
α{pcC1R

1`γq and obtain
ˇ

ˇ

ˇ

ˇ

δW

δm
pt,m0, y0q ´

δW

δm
ps,m0, y0q

ˇ

ˇ

ˇ

ˇ

ď cC
γ{p2`γq
0,R C

1{p1`γ{2q
1 R2p1`γq{p2`γq|t´ s|αγ{p2`γq , (120)
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where c is another universal constant.
To show the regularity in time of DmW , we just need to apply Lemma B.2 to δW {δm since, by (120),

δW {δm is locally Holder in time locally uniformly in space (the constant depending also on the measure)
and DyδW {δm “ DmW is globally bounded and Holder in y uniformly in time by assumption. We can
remove the smallness restriction on |t´ s| by using the fact that DmW is globally bounded.

In the proof of Theorem 3.2 we also used the following version of Arzela-Ascoli Theorem.

Lemma B.5. Let pX, dq be a locally compact space and WN : X ˆ P2 Ñ R be a family of uniformly
bounded and locally uniformly continuous maps: there exists x0 P X such that, for any R ą 0, there exists
a continuous nondecreasing modulus ωR : r0,`8q Ñ r0,`8q with ωRp0q “ 0 such that

|WN px,mq ´WN px1,m1q| ď ωRpdpx, x
1q ` d2pm,m

1qq, (121)

for any x, x1 P X and m,m1 P P2 with dpx, x0q ď R, dpx1, x0q ď R, M2pmq ď R, M2pm
1q ď R.

Then there exists a continuous map W : X ˆ P2 Ñ R and a subsequence (denoted in the same way)
such that pWN q converges to W pointwisely in m and locally uniformly in x: for any R ą 0 and any
m P P2,

lim
NÑ`8

sup
dpx,x0qďR

|WN px,mq ´W px,mq| “ 0 . (122)

The only (very small) issue in the result is that P2 is not locally compact, so that the standard
Arzela-Ascoli Theorem cannot be applied.

Proof. Let D be an enumerable dense family of XˆP2. By a diagonal argument we can find a subsequence
(denoted in the same way) such that, for any px,mq P D, pWN px,mqq converges to some W px,mq. Let
us note that, by our regularity assumption (121) and using the fact that X ˆ P2 is complete, W can be
extended to the whole space X ˆ P2 into a continuous map which satisfies

|W px,mq ´W px1,m1q| ď ωRpdpx, x
1q ` d2pm,m

1qq, (123)

for any x, x1 P X and m,m1 P P2 with dpx, x0q ď R, dpx1, x0q ď R, M2pmq ď R, M2pm
1q ď R.

We claim that, for any px,mq P X ˆ P2, pWN px,mqq converges to W px,mq. Indeed, fix ε ą 0,
R “ 2p1 ` dpx, x0q `M2pmqq. Then there is px1,m1q P D such that dpx1, x0q ď R, M2pm

1q ď R and
ωRppdpx, x

1q ` d2pm,m
1qq ď ε{3. Let also N0 be so large that |WN px1,m1q ´ W px1,m1q| ď ε{3 for

N ě N0. Then, for N ě N0, we have

|WN px,mq ´W px,mq|

ď |WN px,mq ´WN px1,m1q| ` |WN px1,m1q ´W px1,m1q| ` |W px1,m1q ´W px,mq| ď ε ,

where we used (121) and (123) in the last inequality.
It remains to show that (122) holds. Fix ε ą 0 and let η ą 0 be such that ωpηq ď ε{3. As X is locally

compact, we can find x1, . . . xn such that any point x P BXpx0, Rq is at a distance at most η from one of
the pxiqi“1,...,n. Let N0 be so large that |WN pxi,mq ´W pxi,mq| ď ε{3 for any i “ 1, . . . , n. Then, for
any x P BXpx0, Rq and any N ě N0, we have (for i such that dpx, xiq ď η, so that ωRpdpx, xiqq ď ε{3):

|WN px,mq ´W px,mq|

ď |WN px,mq ´WN pxi,mq| ` |W
N pxi,mq ´W pxi,mq| ` |W pxi,mq ´W px,mq| ď ε ,

where we used again (121) and (123) in the last inequality. This shows (122).
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[27] Lions, P.L. Cours au Collège de France. www.college-de-france.fr.

[28] Mayorga S. Short time solution to the master equation of a first order mean field game.
arXiv:1811.08964, 2018

[29] Lions P.-L. Estimées nouvelles pour les équations quasilinéaires. Seminar in Applied
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