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We develop a splitting method to prove the well-posedness, in short time, of solutions for two master equations in mean field game (MFG) theory: the second order master equation, describing MFGs with a common noise, and the system of master equations associated with MFGs with a major player. Both problems are infinite dimensional equations stated in the space of probability measures. Our new approach simplifies, shortens and generalizes previous existence results for second order master equations and provides the first existence result for systems associated with MFG problems with a major player.

Splitting methods and short time existence for the master equations in mean field games

Introduction

The paper is dedicated to a construction of a solution of the so-called "master equations" in mean field game theory (MFG). These equations have been introduced by Lasry and Lions and discussed by Lions in [27]. Let us recall that mean field games describe the behavior of infinitely many agents in interaction.

We consider here two problems: the master equation with common noise and the master equation with a major player. We present a general approach valid for both problems. Let us first discuss the master equation with common noise. In this problem, the agents are subject to a common source of randomness. The master equation is then a second order equation in the space of measures and reads as follows: Trrσ 0 pt, yqpσ 0 pt, y 1 qq T D 2 mm U pt, x, m, y, y 1 qsmpdyqmpdy 1 q " 0 in p0, T q ˆRd ˆP2 U pT, x, mq " Gpx, mq in

R d ˆP2 (1) 
In the above equation, the unknown U " U pt, x, mq is scalar valued and depends on the time variable t P r0, T s, the space variable x P R d and the distribution of the agents m P P 2 (P 2 is the space of Borel probability measures with finite second order moment); the derivatives D m U and D 2 mm U refer to the derivative with respect to the probability measure (see subsection 2.2); the maps H " Hpx, p, mq and G " Gpx, mq reflect the running and terminal costs of the agents. The matrix valued function a " apt, xq is the volatility term corresponding to idiosyncratic noise of the small players while a 0 " a 0 pt, xq " σ 0 pσ 0 q T pt, xq is the volatility corresponding to the common noise.

As explained by Lions [27], the master equation can be understood as a non-linear transport equation in the space of probability measures. When a 0 " 0 (i.e., in the so-called first order master equation), the characteristics of this transport equation are given by the MFG system: if we fix an initial time t 0 and an initial probability measure m 0 on R d , and if the pair pu, mq is a solution of the MFG system $ & % piq ´Bt u ´Trpapt, xqD 2 uq `Hpx, Du, mptqq " 0 in pt 0 , T q ˆRd piiq B t m ´ři,j D ij pa i,j mq ´divpmH p px, Du, mptqq " 0 in pt 0 , T q ˆRd piiiq mpt 0 q " m 0 , upT, xq " Gpx, mpT qq in R d

(2)

then we expect the equality U pt, x, mptqq " upt, xq @t P rt 0 , T s.

(

) 3 
The interpretation of the MFG system (2) is the following: the map u is the value function of a typical small agent (anticipating the evolution of the population density pmptqq) and accordingly solves the Hamilton-Jacobi equation ( 2)-(i). When this agent plays in an optimal way, the drift in the dynamic of its state is given by the term ´Hp px, Du, mptqq. By a mean field argument (assuming that the noise of the agents are independent), the resulting evolution of the population density m satisfies the Kolmogorov equation $ & % B t m ´ÿ i,j D ij pa i,j mq ´divp mH p px, Du, mptqq " 0 in pt 0 , T q ˆRd mpt 0 q " m 0 in R d

In an equilibrium configuration, i.e., when agents anticipate correctly the evolving measure, one has m " m and therefore the population density m solves ( 2)-(ii).

The existence/uniqueness of the solution for the MFG system is rather well understood: it relies on Schauder estimates, fixed point methods and monotonicity arguments (see, in particular, [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF]). From the well-posedness of the MFG system, one can derive the existence of a solution to the first order master equation "quite easily": one just needs to define the map U by (3) with t " t 0 and check that the map U thus defined is a classical solution to the first order master equation. This is the path followed in [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF][START_REF] Mayorga | Short time solution to the master equation of a first order mean field game[END_REF] (when there is no diffusion at all: a " a 0 " 0) and in [START_REF] Chassagneux | Classical solutions to the master equation for large population equilibria[END_REF] (when a ą 0 is constant and a 0 " 0). See also [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF] for a similar result (in the torus) using PDE linearization techniques.

When a 0 ı 0 (i.e., for the second order master equation, or master equation with a common noise), the characteristics are now given by the system of SPDEs (called "stochastic MFG system"): 

In the above system, pW t q is the common noise (here a Brownian motion) and the unknown is the triplet pu, m, vq, where the new variable v (a random vector field in R d ) ensures the solution u of the backward Hamilton-Jacobi (HJ) equation to be adapted to the filtration generated by the common noise pW t q. The analysis of this system is much more involved than the deterministic one: Schauder estimates are no longer available and the usual fixed point methods based on compactness arguments can no longer be applied. One has to replace them by continuation methods, which are much heavier to handle, see [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF].

Besides the PDE approach we just mentioned, MFG with common noise can also be handled through a probabilistic formulation: see the pioneering result [START_REF] Carmona | Mean field games with common noise[END_REF], as well as [START_REF] Ahuja | Wellposedness of mean field games with common noise under a weak monotonicity condition[END_REF][START_REF] Lacker | Translation invariant mean field games with common noise[END_REF] and the monograph [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I & II[END_REF]. Once the analysis of the stochastic MFG system has been performed, one can proceed with the construction of the second order master equation as in the first order case, defining the map U by (3) for t " t 0 , where u is now the u´component of the solution of the stochastic MFG system (upt 0 , ¨q turns out to be deterministic). However, here again, the verification that the map U defined so far is smooth enough to satisfy (1) requires a lot of work: see [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF] and [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I & II[END_REF].

Let us finally recall another approach, suggested by P.-L. Lions in the seminar [START_REF] Lions | Estimées nouvelles pour les équations quasilinéaires[END_REF]: it consists in writing the equation for the quantity D m U as an hyperbolic equation in a Hilbert space of random variables. The construction requires, however, convexity conditions on the system with respect to the space variable (but no uniform ellipticity for the matrix a).

(5) In the above system, U 0 " U 0 pt, x 0 , mq corresponds to the payoff at equilibrium for a major player interacting with a crowd in which each agent has at equilibrium a payoff given by U " U pt, x 0 , x, mq. Here m is the distribution law of the agents. Notice that each agent is influenced by the major player whereas the latter is only influenced by the distribution of the whole population. Mean field games with a major player have been first discussed by Huang in [START_REF] Huang | Large-population LQG games involving a major player: the Nash certainty equivalence principle[END_REF] and several notions of equilibria, in different contexts, have been proposed in the literature since then: see [START_REF] Bensoussan | Mean field Stackelberg games: Aggregation of delayed instructions[END_REF][START_REF] Bensoussan | Mean field games with a dominating player[END_REF][START_REF] Buckdahn | Nonlinear stochastic differential games involving a major player and a large number of collectively acting minor agents[END_REF][START_REF] Caines | Mean field estimation for partially observed LQG systems with major and minor agents[END_REF][START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I & II[END_REF][START_REF] Carmona | Finite state mean field games with major and minor players[END_REF][START_REF] Carmona | An alternative approach to mean field game with major and minor players, and applications to herders impacts[END_REF][START_REF] Carmona | A probabilistic approach to mean field games with major and minor players[END_REF][START_REF] Lasry | Mean-field games with a major player[END_REF]. The above system has been introduced by Lasry and Lions in [START_REF] Lasry | Mean-field games with a major player[END_REF]. In the companion paper [START_REF] Cardaliaguet | Remarks on Nash equilibria in mean field game models with a major player[END_REF], we explain how the above master equation is related to the approach by Carmona and al. [START_REF] Carmona | Finite state mean field games with major and minor players[END_REF][START_REF] Carmona | An alternative approach to mean field game with major and minor players, and applications to herders impacts[END_REF][START_REF] Carmona | A probabilistic approach to mean field games with major and minor players[END_REF]. Concerning the existence of a solution, [START_REF] Carmona | A probabilistic approach to mean field games with major and minor players[END_REF] shows the existence of an equilibrium in short time for the case of a finite state space, [START_REF] Lasry | Mean-field games with a major player[END_REF] proves the existence of a solution to the master equation still in the finite state space framework and notes that the Hilbertian techniques described in [START_REF] Lions | Estimées nouvelles pour les équations quasilinéaires[END_REF] could be adapted to the master equation with a major player [START_REF] Bensoussan | Mean field Stackelberg games: Aggregation of delayed instructions[END_REF].

The purpose of this paper is to introduce a different path towards the construction of a solution to the second order master equation and to the master equation with a major player, using as a building block the construction of a solution to the first order master equation. For the second order master equation, we justify this point of view by the fact that the deterministic MFG system and the first order master equation are much easier to manipulate than the stochastic MFG system. Our approach allows for instance to build solutions of the second order master equation (in short time) under more general assumptions than in [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF][START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I & II[END_REF]. For the MFG problem with a major player, we prove for the first time the (short time) well-posedness of the associated system of master equations in continuous space.

Let us first explain our ideas for the master equation with common noise [START_REF] Achdou | Models for the Economy of Oil[END_REF]. In contrast to previous works, we do not use directly the representation formula (3) (for t " t 0 ) for the solution of the second order master equation. Instead, we somehow decompose the second order master equation as the superposition of the first order master equation: It turns out that this system can be handled by the method of characteristics. As for the second one, it is a simple system of HJ equations (for fixed x, m):

"
piq ´Bt U 0 ´∆x0 U 0 `H0 px 0 , D x0 U 0 , mq " 0 piiq ´Bt U ´∆x0 U `Dx0 U ¨H0 p px 0 , D x0 U 0 pt, x 0 , mq, mq " 0 .

The idea of splitting time is not completely new in the framework of mean field games. For instance, the construction, given in [START_REF] Carmona | Mean field games with common noise[END_REF], of (weak) equilibria for MFG problems with common noise relies on a time splitting. The main difference is that it is done at the level of the MFG equilibrium, while we do the construction at the (stronger) level of the master equation. One consequence is that, with our approach, the construction of a solution to the stochastic MFG system (in short time, though) is straightforward once the solution of the master equation is built, while deriving a solution of the master equation from the stochastic MFG system is much trickier. Let us also quote the paper in preparation [START_REF] Achdou | Models for the Economy of Oil[END_REF] in which the authors use a splitting technique similar to the one described above to compute numerically the solution of MFGs with a major player.

Let us finally point out that, in this paper, we do not address at all the problem of the existence of a solution on a large time interval. For the first and second order master equation, this question is related to the Lasry-Lions monotonicity condition [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF]. The existence of a solution on a large time interval can be obtained under this condition either by the Hilbertian approach, as explained in [START_REF] Lions | Estimées nouvelles pour les équations quasilinéaires[END_REF], or by a continuation method, as in [START_REF] Chassagneux | Classical solutions to the master equation for large population equilibria[END_REF] and [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I & II[END_REF] or even directly by using the long time existence of a solution for the MFG system, as in [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF]. Let us recall that, when the monotonicity condition is not fulfilled, the solution to the second order master equation is expected to develop shocks (i.e., discontinuities) in finite time. Note also that a structure condition similar to the monotonicity condition is not known for MFGs with a major player.

The paper is organized in the following way. In Section 2 we fix the notation, we recall the definition of derivatives in the space of measures and state our main assumptions. The main existence results for the second order master equation (equation [START_REF] Achdou | Models for the Economy of Oil[END_REF]) and for the system of master equations for MFG with a major player (system [START_REF] Bensoussan | Mean field Stackelberg games: Aggregation of delayed instructions[END_REF]) are collected in Sections 3 and 4 respectively. Both sections require estimates on the first order master equations. As first order master equations are built by the method of characteristics involving the solutions of classical MFG systems [START_REF] Ahuja | Wellposedness of mean field games with common noise under a weak monotonicity condition[END_REF], Section 5 first provides estimates for these systems. Then Section 6 is devoted to the first order master equations. We complete the paper by appendices in which we prove short-time estimates for the standard Hamilton-Jacobi equations (Section A) and we discuss several facts on maps defined on the space of measures (differentiability, interpolation and Ascoli Theorem, Section B).
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Notation and assumptions 2.1 Notation

Throughout the paper, we work in the euclidean space R d (with d P N, d ě 1), endowed with the scalar product px, yq Ñ x ¨y and the distance | ¨|. Given T ą 0 and a map φ : p0, T q ˆRd Ñ R, we denote by B t φ the derivative of φ with respect to the time-variable, by B xi φ its partial derivative with respect to the i´th space variable (i " 1, . . . , d) and by Dφ the gradient with respect to the space variable.

For n P N, we denote by C n b the set of maps φ : R d Ñ R which are n´times differentiable with continuous and bounded derivatives: in particular, C 0 b is the set of continuous and bounded maps. Given φ P C n b and a multi-index k " pk 1 , . . . , k d q P N d , with length |k| :"

ř d i"1 k i ď n, we denote by B k φ " B k 1 Bx k 1 1 . . . B k d Bx k d d
φ (or briefly φ k ) the k´th derivative of φ. We also denote by D n φ (n P N, n ě 1) the vector pB k φq |k|"n . The norm of φ in C n b is

}φ} n :" n ÿ r"0 sup x ¨ÿ |α|"r |B α φpxq| 2 '1{2 " n ÿ r"0 }D r φ} 8 .
For n " 0, we use indifferently the notation }φ} 0 or }φ} 8 .

For pn 1 , . . . , n k q P N k (k P N, k ě 2), we denote by C n1,...,n k b the space of functions φ : R d1 ˆ¨¨¨ˆR d k Ñ R (d i ě 1) having continuous and bounded derivatives D l1 x1 ¨¨¨D l k x k φ for all l 1 ď n 1 , . . . , l k ď n k , endowed with the norm }φ} n1,...,n k " }φp¨x 1 , . . . , ¨xk q} n1,...,n k :"

ÿ l1ďn1,...,l k ďn k }D l1 x1 ¨¨¨D l k x k φ} 8 ,
where now px 1 , . . . , x k q stands for a generic element R d1 ˆRd k . We denote by C ´n the dual space of C n b , endowed with the usual norm }ρ} ´n :" sup }φ}nď1 ρpφq @ρ P C ´n.

Finally, when a map φ " φpt, xq depends also on time t belonging to an interval I, we often write sup tPI }φptq} n for sup tPI }φpt, ¨q} n . We use a corresponding notation for a map ρ P C 0 pr0, T s, C ´kq.

Throughout the paper, P stands for the set of Borel probability measures on R d and for k ě 1, P k stands for the set of measures in P with finite moment of order k: namely,

M k pmq :" ˆˆR d |x| k mpdxq ˙1{k ă `8 if m P P k .
The set P k is endowed with the distance (see for instance [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Rachev | Mass Transportation problems[END_REF][START_REF] Villani | Optimal transport, old and new[END_REF])

d k pm, m 1 q " inf π ˆˆR d |x ´y| k πpdx, dyq ˙1{k , @m, m 1 P P k ,
where the infimum is taken over the couplings π between m and m 1 , i.e., over the Borel probability measures π on R d ˆRd with first marginal m and second marginal m 1 . Note that P 2 Ă P 1 and d 1 ď d 2 by Cauchy-Schwarz inequality. We will often use the fact that, if φ : R d Ñ R is Lipschitz continuous with a Lipschitz constant L ě 0, then

ˇˇˇˆR d φpxqpm ´m1 qpdxq ˇˇˇď Ld 1 pm, m 1 q, @m, m 1 P P 1 .
Moreover, d 1 pm, m 1 q is the smallest constant for which the above inequality holds for any L´Lipschitz continuous map φ (see for instance [START_REF] Rachev | Mass Transportation problems[END_REF][START_REF] Villani | Optimal transport, old and new[END_REF]). Given m P P and φ P C 0 b , the image φ7m of m by φ is the element of P defined by ˆRd f pxq m7φpdxq "

ˆRd f pφpxqqmpdxq @f P C 0 b .

Derivatives in the space of measures

We now define the derivative in the space P 2 . For this, we follow mostly the definition and notations introduced in [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF] (in a slightly different context) and which are reminiscent of earlier approaches: see [START_REF] Albeverio | Analysis and geometry on configuration spaces[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] and the references in [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I & II[END_REF]. We say that a map U : P 2 Ñ R is C 1 if there exists a continuous and bounded map δU δm : P 2 ˆRd Ñ R such that U pm 1 q ´U pmq " ˆ1 0 ˆRd δU δm pp1 ´sqm `sm 1 , yqpm 1 ´mqpdyqds @m, m 1 P P 2 .

Note that the restriction on δU δm to be continuous on the entire space R d and globally bounded is restrictive: it will however simplify our forthcoming construction. The map δU δm is defined only up to an additive constant that we fix with the convention ˆRd δU δm pm, yqmpdyq " 0 @m P P 2 .

We say that the map U is continuously L´differentiable (in short: L´C 1 ) if U is C 1 and if y Ñ δU δm pm, yq is everywhere differentiable with a continuous and globally bounded derivative on P 2 ˆRd . We denote by D m U pm, yq :" D y δU δm pm, yq this L´derivative. In view of the discussion in [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF], D m U coincides with the Lions derivative as introduced in [27] and discussed in [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I & II[END_REF]. In particular, it estimates the Lipschitz regularity of U in P 2 (Remark 5.27 in [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I & II[END_REF]):

|U pmq ´U pm 1 q| ď d 2 pm, m 1 q sup µPP2 ˆˆR d |D m U pµ, yq| 2 µpdyq ˙1{2 @m, m 1 P P 2 . ( 10 
)
Of course one can also estimate the Lipschitz regularity of U through the d 1 norm, as We say that U is C 2 if δU δm is C 1 in m with a continuous and bounded derivative: namely δ 2 U δm 2 " δ δm p δU δm q : P 2 ˆRd ˆRd Ñ R is continuous in all variables and bounded. We say that U is twice L´differentiable if the map D m U is L´differentiable with respect to m with a second order derivative D 2 mm U " D 2 mm U pm, y, y 1 q which is continuous and bounded on P 2 ˆRd ˆRd with values in R dˆd . When a map U : R d ˆP2 Ñ R is of class C n b with respect to the space variable, uniformly with respect to the measure variable, we often set

|U pmq ´U pm 1 q| ď d 1 pm, m 1 q sup µPP2 }D m U pµ, ¨q} 8 ď d 2 pm, m 1 q sup µPP2 }D m U pµ, ¨q} 8 . (11) 
}U } n :" sup mPP2 }U p¨, mq} n . ( 12 
)
We use similar notation for a map U depending on several space variables and on a measure. When a map U : R d ˆP2 Ñ R is Lipschitz continuous with respect to m, uniformly with respect to the space variable in some C n norm, we define Lip n pU q as the smallest constant C such that }U p¨, m 1 q ´U p¨, m 2 q} n ď Cd 2 pm 1 , m 2 q @m, m 1 P P 2 .

Namely:

Lip n pU q :" sup m1‰m2 }U p¨, m 1 q ´U p¨, m 2 q} n d 2 pm 1 , m 2 q .
More generally, if U : pR d q k ˆP2 Ñ R (for k P N, k ě 1) is Lipschitz continuous in the measure variable in some C n1,...,n k b norm (where n i P N for i " 1, . . . , k), then we set Lip n1,...,n k pU q :" sup m1‰m2 }U p¨x 1 , . . . , ¨xk , m 1 q ´U p¨x 1 , . . . , ¨xk , m 2 q} n1,...,n k d 2 pm 1 , m 2 q .

We will typically use this notation for the derivatives of a map U : R d ˆP2 Ñ R: indeed we will often have to estimate quantities of the form Lip n1,n2 pD m U q :" sup

m1‰m2 }D m U p¨x, m 1 , ¨yq ´Dm U p¨x, m 2 , ¨yq} n1,n2 d 2 pm 1 , m 2 q and Lip n1,n2,n3 pD 2 mm U q :" sup m1‰m2 }D 2 mm U p¨x, m 1 , ¨y, ¨y1q ´D2 mm U p¨x, m 2 , ¨y, ¨y1q} n1,n2,n3 d 2 pm 1 , m 2 q .
Concerning the Lipschitz continuity with respect to one of the entries x i , we will use the following notation:

Lip xi n1,...,ni´1,ni`1,...,n k pU q :" sup m,x 1 i ‰x 2 i }U p¨x 1 , . . . , ¨xi´1 , x 1 i , ¨xi`1 , . . . , ¨xk , mq ´U p¨x 1 , . . . , ¨xi´1 , x 2 i , ¨xi`1 , . . . , ¨xk , mq} n1,...,ni´1,ni`1,...,n k |x 1 i ´x2 i | .
Further norms: In order to estimate the y´dependence of a derivative with respect to the measure of a map U " U px, mq, we systematically proceed by duality method, testing this derivative against distributions. This yields to the following norms, for n, k P N (note the the subtle difference in notation between } ¨}n,k and } ¨}n;k ):

› › › › δU δm › › › › n;k :" sup mPP2 n ÿ r"0 sup xPR d ,ρPC 0 c }ρ} ´k "1 ¨ÿ |α|"r ˇˇˇB α x δU δm px, mqpρq ˇˇˇ2 '1{2 " sup mPP2 n ÿ r"0 sup xPR d ,ρPC 0 c , }ρ} ´k "1 ˇˇˇD r x δU δm px, mqpρq ˇˇˇ, › › › › δ 2 U δm 2 › › › › n;k,k 1 :" sup mPP2 n ÿ r"1 sup xPR d ,ρ,ρ 1 PC 0 c , }ρ} ´k "}ρ 1 } ´k1 "1 ˇˇˇD r x δ 2 U δm 2 px, mqpρ, ρ 1 q ˇˇˇ.
For maps U " U px 1 , x 2 , mq depending on two (or more) space variables, we use the transparent notation } ¨}n1,n2;k (and, if n 1 " 0 (say), we simply set } ¨}n2,k " } ¨}0,n2;k ). Finally, we use similar notation for the Lipschitz norms, setting, for instance for a map U " U px, mq,

Lip n;k,k 1 ´δ2 U δm 2 ¯:" sup m1‰m2 d 2 pm 1 , m 2 q ´1 n ÿ r"0 sup xPR d ,ρ,ρ 1 PC 0 c }ρ} ´k "}ρ 1 } ´k1 "1 ˇˇˇD r x δ 2 U δm 2 px, m 2 qpρ, ρ 1 q ´Dr x δ 2 U δm 2 px, m 1 qpρ, ρ 1 q ˇˇˇ.
Some comment about the norms we just introduced are now in order. We discuss the norm } ¨}n;k to fix the ideas. With these notations, we have, if This proves the claim for k " 1. Let now assume that (13) holds for k " 2. Then u can be extended to an element T in pC ´2q 1 with norm }T } ď θ, such that T pρq " ´udρ for any Radon measure ρ. As, for

any v P R d , lim hÑ0,v 1 Ñv h ´1pδ x`hv 1 ´δx q " ´Bv δ x in C ´2,
we infer that lim hÑ0,v 1 Ñv h ´1pupx `hv 1 q ´upxqq " ´T pB v δ x q.

The map px, vq Ñ B v δ x being continuous in C ´2 with }B v δ x } ´2 ď |v|, u is in C 1 with }Du} ď θ. Then, arguing as for k " 1, one can easily check that Du is θ´Lipschitz continuous. So the result also holds for k " 2. The proof can be completed in the same way for any k by induction.

Assumptions on the data

We state here the assumptions needed on a, H and G for the existence of a classical solution to the second order master equation [START_REF] Achdou | Models for the Economy of Oil[END_REF] and to the master equation ( 5) for the MFG problem with a major player. These assumptions are in force throughout the paper. Note that they are common to both problems (1) and ( 5) since both require the same kind of estimates on the first order master equation (see Section 6).

We assume that the map a : r0, T sˆR d Ñ R dˆd can be written as a " σσ T where σ : r0, T sˆR d Ñ R d (M P N, M ě 1) is bounded in C n b with respect to the space variable, uniformly with respect to the time variable, for some n ě 4. We also assume that the following uniform ellipticity condition holds:

apt, xq ě C ´1 0 I d , }Da} 8 ď C 0 , (14) 
for some C 0 ą 0. We assume that the map H : R d0 ˆRd ˆRd ˆP2 Ñ R satisfies the growth condition sup

x0PR d 0 , xPR d , mPP2 |D x Hpx 0 , x, p, mq| ď C 0 p1 `|p| γ q, @p P R d , (15) 
for some γ ą 1. We also suppose that, for any R ą 0, the quantities

}Hp¨x 0 , ¨x, ¨p, mq} 3,n,n`1 , › › › › δH δm p¨x 0 , ¨x, ¨p, m, ¨yq › › › › 2,n´1,n,k , › › › › δ 2 H δm 2 p¨x 0 , ¨x, ¨p, m, ¨y, ¨y1q › › › › 1,n´2,n´1,k´1,k´1
, and Lip 1,n´3,n´2,k´1,k´1 p δ 2 H δm 2 q are bounded for |p| ď R, m P P 2 and x 0 P R d0 , for any k P t2, . . . , n ´1u. Note that we could also allow for a time dependence for H without changing at all the arguments: we will not do so to simplify a little the notation. For the second order master equation, the Hamiltonian H actually does not depend on x 0 , but this dependence is important to handle the MFG problem with a major player.

As for the initial condition G : R d0 ˆRd ˆP2 Ñ R, we assume that G is of class C 2 with respect to all variables and that the quantities

}Gp¨x 0 , ¨x, mq} 3,n , › › › › δG δm p¨x 0 , ¨x, m, ¨yq › › › › 2,n´1,k , › › › › δ 2 G δm 2 p¨x 0 , ¨x, m, ¨y, ¨y1q › › › › 1,n´2,k´1,k´1
, Lip 1,n´3,k´2,k´2 p δ 2 G δm 2 qp¨x 0 , ¨x, m, ¨y, ¨y1q, are bounded uniformly with respect to m P P 2 . Here again, for the second order master equation, the terminal condition G does not depend on x 0 , but this dependence is needed in the MFG problem with a major player.

Additional assumptions for the MFG problem with a major player. This problem involves in addition a Hamiltonian H 0 : R d0 ˆRd0 ˆP2 Ñ R and a terminal condition G 0 : R d0 ˆP2 Ñ R. We assume that the map H 0 satisfies the growth property sup

x0PR d 0 , mPP2 |D x0,p H 0 px 0 , p, mq| `|D 2 x0,p H 0 px 0 , p, mq| ď C 0 p|p| γ `1q, (16) 
for some γ ą 1. We also suppose that, for any R ą 0, the quantities

}H 0 p¨x 0 , ¨p, mq} 3,4 , › › › › δH 0 δm p¨x 0 , ¨p, m, ¨yq › › › › 2,3,k , › › › › δ 2 H 0 δm 2 p¨x 0 , ¨p, m, ¨y, ¨y1q › › › › 1,2,k´1,k´1
, and Lip 0,1,k´2,k´2 p δ 2 H δm 2 q are bounded for |p| ď R, m P P 2 and x 0 P R d0 , for any k P t2, . . . , n ´1u. The initial condition G 0 : R d0 ˆP2 Ñ R is assumed to be of class C 2 with respect to the measure variable and the quantities

}G 0 p¨, mq} 3 , › › › › δG 0 δm p¨, m, ¨q› › › › 2,k , › › › › δ 2 G 0 δm 2 p¨x 0 , m, ¨y, ¨y1q › › › › 1,k´1,k´1
, Lip 0,k´2,k´2 p δ 2 G 0 δm 2 qp¨x 0 , m, ¨y, ¨y1q, are supposed to be bounded uniformly with respect to m P P 2 .

Throughout the proofs, we assume that the time horizon T is small, say T ď 1. We denote by C and C M a constant which might change from line to line and which depends only on the data of the problem, i.e., on a, H and H 0 -the dependence in G and G 0 being always explicitly written-and, for C M , on the additional real number M . In some proofs, when there is no ambiguity, we drop the M dependence of C M to simplify the expressions.

The second order master equation

The aim of the section is to show the short-time existence of the second order master equation: 

$ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' % ´Bt U pt, x,
‰ mpdyq ´ˆR 2d Trra 0 D 2 mm U pt, x, m, y, y 1 qsmpdyqmpdy 1 q " 0 in p0, T q ˆRd ˆP2 , U pT, x, mq " Gpx, mq in R d ˆP2 , (17) 
where a 0 is a symmetric positive definite d ˆd matrix (independent of time and space).

Definition 3.1. We say that U : r0, T s ˆRd ˆP2 Ñ R is a classical solution of (17) if U and its derivatives involved in (17) exist, are continuous in all variables and are bounded, and if (17) holds.

Our main result is the following short time existence Theorem:

Theorem 3.2. Under the assumptions of Subsection 2.3, there exists a time T ą 0 such that the second order master equation [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF] has a classical solution U on r0, T s .

We shall not prove here the uniqueness of the solution to [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF], which holds under our assumptions: this point has been often discussed in the literature (see [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF][START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I & II[END_REF] for instance). The reader may notice that we cannot handle a second order master equation with a space dependent matrix a 0 " a 0 pt, xq. The reason is that we do not know how to extend the estimate in Proposition 3.3 to the space dependent case.

The proof of Theorem 3.2 is given at the end of the section, after a few preliminary steps. The key idea is to use a Trotter-Kato scheme alternating the first order master equation as in [START_REF] Bensoussan | Mean field games with a dominating player[END_REF] and a linear second order master equation. The analysis of the first order master equation, being quite technical, is postponed to Section 6 below. We now discuss the linear second order master equation.

The linear second order master equation

In this section we consider the (forward) second order linear master equation

$ ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' % B t U pt, x, mq ´Tr " a 0 D 2 xx U pt, x, mq ‰ ´ˆR d Tr " a 0 D 2 ym U pt, x, m, yq ‰ mpdyq ´2 ˆRd Tr " a 0 D 2 xm U pt, x, m, yq ‰ mpdyq ´ˆR 2d Trra 0 D 2 mm U pt, x, m, y, y 1 qsmpdyqmpdy 1 q " 0 in p0, T q ˆRd ˆP2 , U p0, x, mq " Gpx, mq in R d ˆP2 . ( 18 
)
Let Γ be the fundamental solution of the equation associated with a 0 : 

" B t Γpt,
› › › › δU δm ptq › › › › n´1;k ď p1 `CT q › › › › δG δm › › › › n´1;k , sup tPr0,T s › › › › δ 2 U δm 2 ptq › › › › n´2;k´1,k´1 ď p1 `CT q › › › › δ 2 G δm 2 › › › › n´2;k´1,k´1
}G} n `› › › › δG δm › › › › n´1;k `› › › › δ 2 G δm 2 › › › › n´2;k´1,k´1 `Lip n´3;k´2,k´2 p δ 2 G δm 2 q ď M,
then the above estimates can be rewritten in the form:

sup tPr0,T s p}U ptq} n `› › › › δU δm ptq › › › › n´1;k `› › › › δ 2 U δm 2 ptq › › › › n´2;k´1,k´1 `Lip n´3;k´2,k´2 p δ 2 U δm 2 ptqqq ď }G} n `› › › › δG δm › › › › n´1;k `› › › › δ 2 G δm 2 › › › › n´2;k´1,k´1 `Lip n´3;k´2,k´2 p δ 2 G δm 2 q `CM T,
for some constant C M depending on n, k, a 0 and M .

In order to prove this Proposition, we need two Lemmas, the proof of which are easy and left to the reader. Lemma 3.5. Let U : P 2 Ñ R be L ´C1 and let φ : R d Ñ R d be of class C 1 with bounded derivative. Let us set V pmq " U pφ7mq. Then V is L ´C1 with

D m V pm, yq " pDφpyqq T D m U pφ7m, φpyqq. Lemma 3.6. Let U : P 2 Ñ R be L ´C1 and let V px, mq " U ppid `xq7mq. Then V is of class C 1 with D x V px, mq " ˆRd D m U ppid `xq7m, x `yqdmpyq.
Proof of Proposition 3. So, taking the derivative with respect to h ą 0 in the above expression:

B t U pt `h, x, mq " ˆRd U pt, x ´z, pid ´zq7mqB t Γph, zqdz.
Integrating by parts and using Lemma 3.5 and Lemma 3.6: Letting h Ñ 0 we obtain

B t U pt `h, x,
B t U pt, x, mq " Tr " a 0 D 2 xx U pt, x, mq ‰ `2 ˆRd Tr " a 0 D 2 xm U pt, x, m, yq ‰ mpdyq `ˆR d Tr " a 0 D 2 ym U pt, x, m, yq ‰ mpdyq `ˆR d ˆRd Tr " a 0 D 2 mm U pt, x, m, y, y 1 q ‰ mpdyqmpdy 1 q.
So U is a solution to (18).

Existence of a solution

Definition of the semi-discrete scheme

Let us fix some horizon T ą 0 (small) and a step-size τ :" T {p2N q (where N P N, N ě 1). We set t k " kT {p2N q, k P t0, 2N u. We define by backward induction a continuous map U N " U N pt, x, mq, with U N : r0, T s ˆRd ˆP2 Ñ R, as follows: we require that (i) U N satisfies the terminal condition U N pT, x, mq " Gpx, mq @px, mq P R d ˆP2 ,

(ii) U N solves the backward linear second order master equation

´Bt U N ´2Tr " a 0 D 2 xx U N ‰ ´2 ˆRd Tr " a 0 D 2 ym U N ‰ mpdyq ´4 ˆRd Tr " a 0 D 2 xm U N ‰ mpdyq ´2 ˆR2d Trra 0 D 2 mm U N smpdyqmpdy 1 q " 0 (19) 
on time intervals of the form pt 2j`1 , t 2j`2 q, for j " 0, . . . , N ´1, (iii) U N solves the first order master equation

´Bt U N ´2TrpaD 2 xx U N q `2Hpx, D x U N , mq ´2 ˆRd TrpaD 2 ym U N q dmpyq `2 ˆRd D m U N ¨Hp py, D x U N , mq dmpyq " 0 (20) 
on time intervals of the form pt 2j , t 2j`1 q, for j " 0, . . . , N ´1.

Our aim is to show that, if the time horizon is short enough, U N converges to a solution of the second order master equation as N Ñ `8.

Estimates of U N

For n ě 4 and k P t3, . . . , n ´1u, let

M :" }G} n `› › › › δG δm › › › › n´1;k `› › › › δ 2 G δm 2 › › › › n´2;k´1,k´1 `Lip n´3;k´2,k´2 p δ 2 G δm 2 q `1. (21) 
Lemma 3.7. There exists T M ą 0 such that, for any T P p0, T M s and N ě 1, we have

sup tPr0,T s p}U N ptq} n `} δU N δm ptq} n´1;k `› › › › δ 2 U N δm 2 ptq › › › › n´2;k´1,k´1
`Lip n´3;k´2,k´2 ˆδ2 U N δm 2 ptq ˙q ď M.

Moreover:

• The maps U N , D x U N , D 2 xx U N are globally Lipschitz continuous in pt, x, mq, uniformly with respect to N . 

• The maps D m U , D m D x U N , D y D m U N are
(where M 2 pmq " p ´Rd |y| 2 mpdyqq 1{2 ).

• The map D 2 m U N is Holder continuous in pt, x, m, y, y 1 q, uniformly with respect to N , in any set of the form tpt, x, m, y, y 1 q P r0, T s ˆRd ˆP2 ˆRd ˆRd , M 2 pmq ď R, |y|, |y 1 | ď Ru .

Proof. In order to prove the estimate, we use Proposition 3.3 as well as Propositions 6.1, 6.6, 6.8 (in Section 6 below). Let T M be the smallest positive constant associated with these Propositions. Let also C M be the largest constant in Propositions 3.3, 6.1, 6.6 and 6.8. We assume without loss of generality that T M ă 1{p2C M q and we fix T P p0, T M s. We define the sequence pθ k q k"0,...,2N by θ 2j " M ´1 `CM T N pN ´jq , j " 0, . . . , N.

As T M ď 1{p2C M q, we have θ 2j ď M for any T P p0, T M s and N ě 1. 

# }U N ptq} n `} δU N δm ptq} n´1;k `› › › › δ 2 U N δm 2 ptq › › › › n´2;k´1,k´1 `Lip n´3;k´2,k´2 ˆδ2 U N δm 2 ptq ˙* ď θ 2j ď M @j " 0, . . . , N ´1. (24) 
Indeed, assume that this is true for j `1; Proposition 3.3 (see also Remark 3.4), applied in the interval rt 2j`1 , t 2j`2 s and with the terminal condition U N pt 2j`2 , ¨, ¨q which satisfies [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF] by assumption, implies that sup tPrt2j`1,t2j`2s

# }U N ptq} n `} δU N δm ptq} n´1;k `› › › › δ 2 U N δm 2 ptq › › › › n´2;k´1,k´1 `Lip n´3;k´2,k´2 ˆδ2 U N δm 2 ptq ˙* ď θ 2j`2 `CM T 2N .
Then using Propositions 6.1, 6.6, 6.8 for the interval rt 2j , t 2j`1 s and the terminal condition U N pt 2j`1 , ¨, ¨q for which [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF] now holds, one gets:

sup tPrt2j ,t2j`1s # }U N ptq} n `} δU N δm ptq} n´1;k `› › › › δ 2 U N δm 2 ptq › › › › n´2;k´1,k´1 `Lip n´3;k´2,k´2 ˆδ2 U N δm 2 ptq ˙* ď θ 2j`2 `CM T N " θ 2j , so (24) 
holds for j. Since the first step (j " N ´1) can be proved similarly using the very definition of M in [START_REF] Lacker | Translation invariant mean field games with common noise[END_REF], we can conclude that (24) holds for every j " 0, . . . , N ´1.

We now prove the second part of the Lemma. As U N solves (19) on the time intervals pt 2j`1 , t 2j`2 q and (20) on time intervals pt 2j , t 2j`1 q, we obtain directly, by the space estimates proved above:

sup t,m }B t U pt, ¨, mq} n´2 ď C M , (25) 
where C M does not depend on N . Let now l P N d with |l| ď 2. By [START_REF] Lasry | Mean field games[END_REF] and the fact that }U N } n is bounded for n ą |l|, D l U N is uniformly Lipschitz continuous in t and x. Moreover, since }δU N {δm} n´1;k is bounded (for k ě 1), D l U N is uniformly Lipschitz continuous in m as well by Remark 2.2 since |l| ď n ´1.

Next we prove the uniform continuity of D l x D r y D m U N for |l|, |r| ď 1. First we recall that }δU N {δm} n´1;k is bounded, so that }D m U N } n´1;k´1 is bounded, with n ´1 ě 2 and k ´1 ě 2. Therefore D l x D r y D m U N is uniformly Lipschitz continuous in px, yq (for y, this is Remark 2.2). Second, recall that }δ 2 U N {δm 2 } n´2;k´1,k´1 is bounded, so that } δ δm D m U N } n´2;k´2,k´1 is bounded as well, with n ě 3 and k ě 3: therefore D l

x D r y D m U N is uniformly Lipschitz continuous in m. As we have already proved that U N is uniformly Lipschitz continuous in t, we can deduce from Lemma B.4 below applied to U N that D m U N is also Holder continuous in time in any set of the form [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF].

Finally we consider D 2 mm U N " D 2 mm U N pt, x, m, y, y 1 q. Since }δ 2 U N {δm} n´2;k´1,k´1 and Lip n´3;k´2,k´2 ´δ2 U N δm 2 ¯are bounded, with n ě 4 and k ě 3, D 2 mm U N is uniformly Lipschitz continuous in px, m, y, y 1 q. Applying Lemma B.4 to the map D m U N , which is Holder continuous in time in sets of the form (22) (as we have seen above) and such that D 2 mm U is uniformly Lipschitz in pm, y, y 1 q, we deduce that D 2 mm U N is also Holder continuous in time, uniformly in N , in sets of the form [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF]. So we conclude that D 2 mm U N is uniformly Holder continuous in all variables.

Proof of Theorem 3.2

Proof of Theorem 3.2. In view of Lemma 3.7, the maps

U N , D x U N , D 2 xx U N , D m U N , D m D x U N , D y D m U N and D 2
m U N are locally Holder continuous in all variables, uniformly with respect to N . So, by a version of Arzela-Ascoli Theorem (see Lemma B.5 below), there is a subsequence denoted in the same way such

that U N , D x U N , D 2 xx U N , D m U N , D m D x U N , D y D m U N and D 2 m U N converge
pointwisely in m and locally uniformly in time-space to some maps U , D x U , D 2 xx U , V , D x V , D y V and W . Moreover, using the integral formula [START_REF] Caines | Mean field estimation for partially observed LQG systems with major and minor agents[END_REF], is easy to check that V " D m U and W " D 2 m U . By the equation satisfied by U N , we have, for any 0 ď s ă t ď T , U N pt, x, mq ´U N ps, x, mq

" ´N´1 ÿ k"0 ˆt2k`2 t 2k`1 2 ! Tr " a 0 D 2 xx U N ‰ `ˆR d Tr " a 0 D 2 ym U N ‰ mpdyq `2 ˆRd Tr " a 0 D 2 xm U N ‰ mpdyq `ˆR 2d Tr " a 0 D 2 mm U N ‰ mpdyqmpdy 1 q ) 1 rs,ts pτ qdτ ´N´1 ÿ k"0 ˆt2k`1 t 2k 2 ! TrpaD 2 xx U N q ´Hpx, D x U N , mq `ˆR d TrpaD 2 ym U N q mpdyq ´ˆR d D m U N ¨Hp py, D x U N , mq mpdyq ) 1 rs,ts pτ qdτ.
Since, as N tends to infinity, the maps

t Ñ N ´1 ÿ k"0 1 rt 2k`1 ,t 2k`2 s ptq and t Ñ N ´1 ÿ k"0 1 rt 2k ,t 2k`1 s ptq
weakly converge to the constant 1{2 and since the space integrals in the above equation converge pointwisely to the corresponding quantities for the limit U , we obtain by the dominated convergence Theorem:

U pt, x, mq ´U ps, x, mq " ´ˆt s ´Tr " a 0 D 2 xx U ‰ `ˆR d Tr " a 0 D 2 ym U ‰ dm `2 ˆRd Tr " a 0 D 2 xm U ‰ dm `ˆR 2d Tr " a 0 D 2 mm U ‰ dm b dm `TrpaD 2 xx U q ´Hpx, D x U, mq `ˆR d TrpaD 2 ym U q dm ´ˆR d D m U ¨Hp py, D x U, mq dm ¯dτ,
so that U is a classical solution to (17).

Existence of the solution to the stochastic MFG system

An easy consequence of the existence of a solution to the master equation is the well-posedness of the stochastic MFG system:

$ ' ' ' ' ' ' & ' ' ' ' ' ' % dupt, xq " " ´Trppa `a0 qpt, xqD 2 upt, xqq `Hpx, Dupt, xq, mptqq ´?2Trpσ 0 Dvpt, xqq ‰ dt `vpt, xq ¨dW t in p0, T q ˆRd , dmpt, xq " " ÿ i,j D ij pppa ij q `a0 ij qpt, xqmpt, xqq `div `mp, xqH p px, Dupt, xq, mptqq ˘‰dt ´divpmpt, xq ? 2σ 0 dW t ˘, in p0, T q ˆRd , upT, xq " Gpx, mpT qq, mp0q " m 0 , in R d (26) 
We say that pu, m, vq is a classical solution to [START_REF] Lasry | Mean-field games with a major player[END_REF] if u, m and v are random with values in C 0 pr0, T s, C 2 b q, C 0 pr0, T s, P 2 q and C 0 pr0, T s, C 

pσ 0 q T D m U pt, x, mptq, yqmpt, dyq, ( 27 
)
where U is the solution to the second order master equation [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF].

Proof. Let m be the solution to the stochastic McKean-Vlasov equation:

$ ' ' & ' ' % dmpt, xq " " ÿ i,j D ij ppa i,j `a0 i,j qpt, xqmpt, xqq `div `mpt, xqH p px, DU pt, x, mptqq, mptqq ˘‰dt ´divpmpt, xq ? 2σ 0 dW t ˘, in p0, T q ˆRd , mp0, dxq " m 0 , in R d (28) 
Existence of a solution for this system can be obtained, for instance, as the mean field limit of the SDE

# dX N,i s " ´Hp pX N,i s , D x U pt, X N,i s , m N X N s q, m N X N s qds `?2σps, X N,i s qdB i s `?2σ 0 ps, X N,i s qdW s X N,i 0 " XN,i 0
where XN,i 0 is a family of i.i.d. r.v. of law m 0 and where m N

X N s " 1 N N ÿ i"1 δ X N,i s
. Indeed, one can show that the family of laws of pm N X N s q is tight in C 0 pr0, T s, P 2 q and that its limit is a solution to [START_REF] Mayorga | Short time solution to the master equation of a first order mean field game[END_REF]. Uniqueness for [START_REF] Mayorga | Short time solution to the master equation of a first order mean field game[END_REF] comes from the regularity of U and Gronwall's Lemma.

Then one can use the Itô's formula in [9, Theorem A.1] (see also [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I & II[END_REF]Theorem 11.13]) to derive that upt, xq :" U pt, x, mptqq solves the backward stochastic HJ equation

$ & % dupt, xq " " ´Trppa `a0 qpt, xqD 2 upt, xqq `Hpx, Dupt, xq, mptqq ´?2Trpσ 0 Dvpt, xqq ‰ dt `vpt, xq ¨dW t in p0, T q ˆRd , upT, xq " Gpx, mpT qq in R d
where v is given by (27). Note that, by the regularity of U , u and v have the required regularity.

The master equation for MFGs with a major player

In this section we investigate the well-posedness of the master equation associated with the MFG problem with a major player. The unknown pU 0 , U q solves the system of master equations:

$ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' %
piq ´Bt U 0 pt, x 0 , mq ´∆x0 U 0 pt, x 0 , mq `H0 px 0 , D x0 U 0 pt, x 0 , mq, mq

´ˆR d div y D m U 0 pt, x 0 , m, yqdmpyq `ˆR d D m U 0 pt, x 0 , m, yq ¨Hp px 0 , y, D x U pt, x 0 , y, mq, mqdmpyq " 0 in p0, T q ˆRd0 ˆP2 , piiq ´Bt U pt, x 0 , x, mq ´∆x U pt, x 0 , x, mq ´∆x0 U pt, x 0 , x, mq `Hpx 0 , x, D x U pt, x 0 , x, mq, mq ´ˆR d div y D m U pt, x 0 , x, m, yqdmpyq `Dx0 U ¨H0 p px 0 , D x0 U 0 pt, x 0 , mq, mq `ˆR d D m U pt, x 0 , x, m, yq ¨Hp px 0 , y, D x U pt, x 0 , y, mq, mqdmpyq " 0 in p0, T q ˆRd0 ˆRd ˆP2 , piiiq U 0 pT, x 0 , mq " G 0 px 0 , mq, in R d0 ˆP2 , pivq U pT, x 0 , x, mq " Gpx 0 , x, mq in R d0 ˆRd ˆP2 . ( 29 
)
Definition 4.1. Let U 0 : r0, T s ˆRd0 ˆP2 Ñ R and U : r0, T s ˆRd0 ˆRd ˆP2 Ñ R. We say that pU 0 , U q is a classical solution of (29) if U 0 and U and their derivatives involved in (29) exist, are continuous in all variables and are bounded, and if (29) holds.

Throughout this part, assumptions in Subsection 2.3 are in force. Our main result is the following:

Theorem 4.2. Under the assumptions of Subsection 2.3, there exists a time T ą 0 and a classical solution pU 0 , U q to (29) on the time interval r0, T s, which is, in addition, such that D x0 U 0 and D x0,x U are uniformly Lipschitz continuous in the space and measure variables.

The result can be easily extended to non constant diffusions. We work here with a constant diffusion to simplify the notation.

The idea of the proof follows a similar splitting method as we did in Section 3, by dividing the time interval r0, T s into rt 2k , t 2k`1 q and rt 2k`1 , t 2k`2 q, where t k " kT {p2N q, k P t0, 2N u. This time we alternate the two following problems: in rt 2k`1 , t 2k`2 q we solve, for a fixed x 0 P R d0 , the first order system of master equations in R d ˆP2 :

$ ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' % piq ´Bt U 0 ´2 ˆRd div y D m U 0 pt, x 0 , m, yqdmpyq `2 ˆRd D m U 0 pt, x 0 , m, yq ¨Hp px 0 , y, D x U pt, x 0 , y, mq, mqdmpyq " 0 , piiq ´Bt U ´2∆ x U `2Hpx 0 , x, D x U, mq ´2 ˆRd div y D m U pt, x 0 , x, m, yqdmpyq `2 ˆRd D m U pt, x 0 , x, m, yq ¨Hp px 0 , y, D x U pt, x 0 , y, mq, mqdmpyq " 0 , (30) 
while on rt 2k , t 2k`1 q we solve for a fixed px, mq P R d ˆP2 the system of HJ equations in R d0 :

" piq ´Bt U 0 ´2∆ x0 U 0 `2H 0 px 0 , D x0 U 0 , mq " 0 , piiq ´Bt U ´2∆ x0 U `2D x0 U ¨H0 p px 0 , D x0 U 0 pt, x 0 , mq, mq " 0 . (31) 
The (technical) analysis of System ( 30) is postponed to Section 6. We now concentrate on System [START_REF] Villani | Optimal transport, old and new[END_REF]. In order to write the estimate, we need to treat the pair of maps pU 0 , U q simultaneously: this requires specific notation that we discuss first.

Analysis of the simple system of HJ equations

In this section we consider the system

$ ' ' & ' ' % piq ´Bt U 0 pt, x 0 ; mq ´∆x0 U 0 pt, x 0 ; mq `H0 px 0 , D x0 U 0 pt, x 0 ; mq, mq " 0 in p0, T q ˆRd0 piiq ´Bt U pt, x 0 ; x, mq ´∆x0 U pt, x 0 ; x, mq `Dx0 U pt, x 0 ; x, mq ¨H0 p px 0 , D x0 U 0 pt, x 0 , mq, mq " 0 in p0, T q ˆRd0 piiiq U 0 pT, x 0 ; mq " G 0 px 0 , mq in R d0 , U pT, x 0 ; x, mq " Gpx 0 , x, mq in R d0 , (32) 
where px, mq P R d ˆP2 are fixed. The main part of this subsection consists in proving estimates on the solution pU 0 , U q to (32).

Notation for the norms

In this section, we are dealing with pairs of maps pV 0 , V q " pV 0 px 0 , mq, V px 0 , x, mqq which might also depend on time t, not indicated here. The way we compute the norms is crucial in order to match all the estimates. We use the following norms:

› › pV 0 , V q › › n :" sup mPP2 n ÿ r"0 sup x0PR d 0 ,xPR d `|V 0 px 0 , mq| 2 `|D r x V px 0 , x, mq| 2 ˘1{2 , › › › › δpV 0 , V q δm › › › › n;k :" sup mPP2 n ÿ r"0 sup x0PR d 0 ,xPR d , ρPC 0 b ,}ρ} ´k "1 ˜ˇˇˇδ V 0 δm px 0 , mqpρq ˇˇˇ2 `ˇˇˇD r x δV δm px 0 , x, mqpρq ˇˇˇ2 ¸1{2 , › › › › δ 2 pV 0 , V q δm 2 › › › › n;k,k :" sup mPP2 n ÿ r"0 sup x0PR d 0 ,xPR d , ρ,ρ 1 PC 0 b ,}ρ} ´k "}ρ 1 } ´k "1 ˜ˇˇˇδ 2 V 0 δm 2 px 0 , mqpρ, ρ 1 q ˇˇˇ2 `ˇˇˇD r x δ 2 V δm 2 px 0 , x, mqpρ, ρ 1 q ˇˇˇ2 ¸1{2 and Lip n;k,k ´δ2 pV 0 , V q δm 2 ¯:" sup m1‰m2 d 2 pm 1 , m 2 q ´1 › › › › δ 2 δm 2 `V 0 pm 2 q ´V 0 pm 1 q, V pm 2 q ´V pm 1 q ˘› › › › n;k,k " sup m1‰m2 d 2 pm 1 , m 2 q ´1 n ÿ r"0 sup x0 P R d 0 , x P R d , ρ, ρ 1 P C 0 b , }ρ} ´k " }ρ 1 } ´k " 1 ˜ˇˇˇδ 2 V 0 δm 2 px 0 , m 2 qpρ, ρ 1 q ´δ2 V 0 δm 2 px 0 , m 1 qpρ, ρ 1 q ˇˇˇ2 `ˇˇˇD r x δ 2 V δm 2 px 0 , x, m 2 qpρ, ρ 1 q ´Dr x δ 2 V δm 2 px 0 , x, m 1 qpρ, ρ 1 q ˇˇˇ2 ¸1{2 .
We define in a similar way the quantities Lip

x0 n pD 2 x0 V 0 , D 2 x0 V q, Lip n;k p δV 0 x 0 δm , δVx 0 δm q and Lip n pD 2 x0 V 0 , D 2 x0 U q. Note that arguing as in Remark 2.2, a control on › › › δpV 0 ,V q δm › › › n;k yields a control on › › › δV 0 δm › › › n,k´1 and 
› › δV δm › › n,k´1
, and similarly for

› › › δ 2 pV 0 ,V q δm 2 › › › n;k,k , Lip n;k,k ´δ2 pV 0 ,V q δm 2 ¯, ...

Basic regularity of pU 0 , U q

We recall that H 0 satisfies the assumptions of Section 2.3, in particular condition ( 16) is in force.

Proposition 4.3. Fix M ą 0 and n ě 3. There are constants K M , T M ą 0, depending on M , C 0 and γ, and a constant C M ą 0 depending on

sup |p|ďK M sup mPP2 3 ÿ k"0 }D k px0,pq H 0 p¨, p, mq} 8 `3 ÿ k"0 }D k px0,pq H 0 p p¨, p, mq} 8 , such that, if ř 2 k"0 `}D k G 0 } 8 `}D k x0 G} 0,n´k ˘`´L ip x0 n´3 pD 2 x0 G 0 , D 2 x0
Gq ¯ď M , then, for any T P p0, T M q, we have

sup t ´› › ›pU 0 , U qptq › › › n `› › ›Dx 0 pU 0 , U qptq › › › n´1 `› › ›D 2 x0 pU 0 , U qptq › › › n´2 `pLip x0 n´3 pD 2 x0 pU 0 , U qptqqq ď › › ›pG 0 , Gq › › › n `› › ›Dx 0 pG 0 , Gq › › › n´1 `› › ›D 2 x0 pG 0 , Gqq › › › n´2 `pLip x0 n´3 pD 2 x0 pG 0 , Gqqq `CM T.
Proof. To estimate }pU 0 , U q} n it suffices to apply successively Proposition A.8 with r " 0 and l ď n, and to sum over l. The argument to estimate first and higher order derivatives with respect to x 0 is identical: apply successively Proposition A.8 with r " 1 and l ď n ´1 (for }pD x0 U 0 , D x0 U q} n´1 ), with r " 2 and l ď n ´2 (for }pD 2 x0 U 0 , D 2 x0 U q} n´2 ) and finally with r " 3 and l ď n ´3 (for the Lipschitz bound in x 0 of D 2 x0 pU 0 , U q).

First order differentiability in m

Proposition 4.4. Under the assumptions of Proposition 4.3, the pair pU 0 , U q is of class C 1 with respect to m, as well as its derivatives with respect to x appearing below, and, for any fixed px, m, ρq P R d ˆP2 ˆC´k the derivative pv 0 , vq "

´δU 0 δm pt, x 0 ; mqpρq, δU δm pt, x 0 ; x, mqpρq solves, $ ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' % piq ´Bt v 0 ´∆x0 v 0 `δH 0 δm px 0 , D x0 U 0 , mqpρq `H0 p px 0 , D x0 U 0 , mq ¨Dx0 v 0 " 0 in p0, T q ˆRd0 , piiq ´Bt v ´∆x0 v `Dx0 v ¨H0 p px 0 , D x0 U 0 , mq `Dx0 U ¨˜δH 0 p δm px 0 , D x0 U 0 , mqpρq `H0 pp px 0 , D x0 U 0 , mqD x0 v 0 ¸" 0 in p0, T q ˆRd0 , piiiq v 0 pT, x 0 ; mq " δG 0 δm px 0 , mqpρq, vpT, x 0 , x; mq " δG δm px 0 , x, mqpρq in R d0 . (33) 
Suppose in addition that, for k ě 2,

sup x0,m ´} δG 0 δm } k `} δG δm } n´1;k `} δG 0 x0 δm } k´1 `} δG x0 δm } n´2;k´1 ``Lip x0 n´3;k´2 p δG 0 x0 δm , δG x0 δm q ˘¯ď M.
Then there exists T M , C M ą 0 such that, for any T P p0, T M q, we have

sup t ´› › › δpU 0 , U q δm ptq › › › n´1;k `› › › δpU 0 x0 , U x0 q δm ptq › › › n´2;k´1 `pLip x0 n´3;k´2 p δU 0 x0 δm , δU x0 δm qptqq ď ´› › › δpG 0 , Gq δm › › › n´1;k `› › › δpG 0 x0 , G x0 q δm › › › n´2;k´1 `Lip x0 n´3;k´2 p δG 0 x0 δm , δG x0 δm q ¯`C M T,
where C M depends on M , r, n, k and on the regularity of H 0 .

Proof. In order to show that U 0 is C 1 with respect to m, let us define Û 0 pt, x 0 ; s, m, yq :" U 0 pt, x 0 , p1 ´sqm `sδ y q.

Then, as Ĥ0 :" H 0 px 0 , p, p1 ´sqm `sδ y q and ĝ0 :" G 0 px 0 , p1 ´sqm `sδ y q are of class C 1 with respect to the parameter s P r0, 1s, the map Û 0 is C 1 in s and its derivative v0 pt, x 0 ; m, yq :" pd Û 0 {dsqpt, x 0 ; 0, m, yq solves the linearized equation

$ ' & ' % ´Bt v0 ´∆x0 v0 `δH 0 δm px 0 , D x0 U 0 , m, yq `H0 p px 0 , D x0 U 0 , mq ¨Dx0 v0 " 0 in p0, T q ˆRd0 , v0 pT, x 0 q " δG 0 δm px 0 , m, yq in R d0 .
By uniqueness and parabolic regularity, the solution to this equation depends continuously of the parameters pm, yq. Hence Lemma B.1 states that U 0 is C 1 in m with δU 0 {δmpt, x 0 , m, yq " v0 pt, x 0 ; m, yq.

Next we consider the linear equation satisfied by U . By our previous discussion on U 0 , the vector field pt, x 0 q Ñ H 0 p px 0 , D x0 U 0 pt, x 0 , mq, mq is C 1 with respect to m. For ps, m, yq P r0, 1s ˆP2 ˆRd0 , the map Û pt, x 0 ; s, x, m, yq :" U pt, x 0 , x, p1 śqm `sδ y q solves a linear equation in which the vector field V pt, x 0 ; s, m, yq :" H 0 p px 0 , D x0 U 0 pt, x 0 ; p1 ´sqm `sδ y q, p1 ´sqm `sδ y q and the terminal condition ĝpx 0 ; x, s, m, yq :" Gpx 0 , x, p1 ´sqm `sδ y q are C 1 in s. Then Û is C 1 in s and its derivative vpt, x 0 ; x, m, yq :" pd{dsq Û pt, x 0 ; 0, x, m, yq solves the linear equation

$ ' ' ' & ' ' ' % ´Bt v ´∆x0 v `Dx0 v ¨H0 p px 0 , D x0 U 0 , mq `Dx0 U ¨ˆδH p δm px 0 , D x0 U 0 , m, yq `Hpp px 0 , D x0 U 0 , mqD x0 v0 ˙" 0 in p0, T q ˆRd0 , vpT, x 0 ; x, m, yq " δG δm px 0 , x, m, yq in R d0 .
As the solution to this equation depends continuously of the parameters pm, yq, Lemma B.1 states that U is C 1 in m with δU {δmpt, x 0 , x, m, yq " vpt, x 0 ; x, m, yq. This proves that the derivative pv 0 , vq " pδU 0 {δm, δU {δmqpt, x 0 , x, m, yq solves (33) with ρ " δ y . Hence, for any ρ P C 0 b , the pair pv 0 , vq " p δU 0 δm pt, x 0 ; mqpρq, δU δm pt, x 0 ; x, mqpρqq solves a linear system of the form (113) in which the drifts 

V 0 pt, x 0 ; mq :" H 0 p px 0 , D x0 U 0 pt, x 0 ,
f 0 pt, x 0 ; mq :" δH 0 δm px 0 , D x0 U 0 , mqpρq and 
f pt, x 0 ; x, mq :" D x0 U pt, x 0 ; xq ¨δH 0 p δm px 0 , D x0 U 0 , mqpρq are in C 1 b and C 0,n´1 b X C 1,n´2
b respectively, thanks to Proposition 4.3. We then use Proposition A.9 successively to obtain the estimates: first with r " 0 and l ď n ´1, we get

´| δU 0 δm pt, x 0 ; mqpρq| 2 `|D l x δU δm pt, x 0 ; x, mqpρq| 2 ¯1{2 ď p1 `CT q sup x0,x ´| δG 0 δm px 0 ; mqpρq| 2 `|D l x δG δm px 0 ; x, mqpρq| 2 ¯1{2 `CT.
Then by taking the supremum over }ρ} ´k " 1, x 0 , x and summing over l ď n ´1 we find the estimate for } δpU 0 ,U q δm } n´1;k . An analogous application of Proposition A.9 with r " 1 and l ď n ´2 provides the bound for } δpU 0 x 0 ,Ux 0 q δm } n´2;k´1 , while the Lipschitz estimate in x 0 for p δU 0 x 0 δm , δUx 0 δm q is obtained similarly with r " 2, and l ď n ´3. ' %

piq ´Bt w 0 ´∆x0 w 0 `H0 p px 0 , D x0 U 0 , mq ¨Dx0 w 0 `δ2 H 0 δm 2 px 0 , D x0 U 0 , mqpρ, ρ 1 q `H0 pp px 0 , D x0 U 0 , mqD x0 v 0 ¨Dx0 pv 1 q 0 `δH 0 p δm px 0 , D x0 U 0 , mqpρq ¨Dx0 pv 1 q 0 `δH 0 p δm px 0 , D x0 U 0 , mqpρ 1 q ¨Dx0 v 0 " 0 in p0, T q ˆRd0 piiq ´Bt w ´∆x0 w `H0 p px 0 , D x0 U 0 , mq ¨Dx0 w `Dx0 v ¨˜δH 0 p δm px 0 , D x0 U 0 , mqpρ 1 q `H0 pp px 0 , D x0 U 0 , mqD x0 pv 1 q 0 Ḑx0 v 1 ¨˜δH 0 p δm px 0 , D x0 U 0 , mqpρq `H0 pp px 0 , D x0 U 0 , mqD x0 v 0 Ḑx0 U ¨´δH 0 pp δm px 0 , D x0 U 0 , mqpρqD x0 pv 1 q 0 `δ2 H 0 p δm 2 px 0 , D x0 U 0 , mqpρ, ρ 1 q `H0 ppp px 0 , D x0 U 0 , mqD x0 v 0 D x0 pv 1 q 0 `δH 0 pp δm px 0 , D x0 U 0 , mqpρ 1 qD x0 v 0 `H0 pp px 0 , D x0 U 0 , mqD x0 w 0 ¯" 0 in p0, T q ˆRd0 piiiq w 0 pT, x 0 ; mq " δ 2 G 0 δm 2 px 0 , mqpρ, ρ 1 q, wpT, x 0 ; x, mq " δ 2 G δm 2 px 0 , x, mqpρ, ρ 1 q in R d0 , (34) 
where pv 0 , vq, ppv 1 q 0 , v 1 q are the solutions to (33) associated with ρ and ρ 1 respectively. Moreover, if

› › › › δ 2 pG 0 , Gq δm 2 › › › › n´2;k´1,k´1 `Lip x0 n´3;k´2,k´2 p δ 2 G 0 δm 2 , δ 2 G δm 2 q ď M,
then there exists T M , C M ą 0 such that, for any T P p0, T M q,

sup t ´› › › › δ 2 pU 0 , U q δm 2 ptq › › › › n´2;k´1,k´1 `pLip x0 n´3;k´2,k´2 p δ 2 U 0 δm 2 , δ 2 U δm 2 qptqq ď ´› › › › δ 2 pG 0 , Gq δm 2 › › › › n´2;k´1,k´1 `Lip x0 n´3;k´2,k´2 p δ 2 G 0 δm 2 , δ 2 G δm 2 q ¯`C M T.
Proof. The differentiability of δU 0 {δm and of δU {δm and the representation formula (34) can be established as for U 0 and U in Proposition 4.4. To prove the estimate, we use Proposition A.9 with

V 0 pt, x 0 ; mq :" H 0 p px 0 , D x0 U 0 pt, x 0 , mq, mq and V pt, x 0 x; mq :" H 0 pp px 0 , D x0 U 0 pt, x 0 , mq, mqD x0 U pt, x 0 , xq, which are bounded in class C 1 b and C 0,n´1 b X C 1,n´2
b respectively, while the source terms

f 0 pt, x 0 ; mq :" δ 2 H 0 δm 2 px 0 , D x0 U 0 , mqpρ, ρ 1 q `H0 pp px 0 , D x0 U 0 , mqD x0 v 0 ¨Dx0 pv 1 q 0 `δH 0 p δm px 0 , D x0 U 0 , mqpρq ¨Dx0 pv 1 q 0 `δH 0 p δm px 0 , D x0 U 0 , mqpρ 1 q ¨Dx0 v 0 and f pt, x 0 , x; mq :" D x0 v ¨˜δH 0 p δm px 0 , D x0 U 0 , mqpρ 1 q `H0 pp px 0 , D x0 U 0 , mqD x0 pv 1 q 0 Ḑx0 v 1 ¨˜δH 0 p δm px 0 , D x0 U 0 , mqpρq `H0 pp px 0 , D x0 U 0 , mqD x0 v 0 Ḑx0 U ¨´δH 0 pp δm px 0 , D x0 U 0 , mqpρqD x0 pv 1 q 0 `δ2 H 0 p δm 2 px 0 , D x0 U 0 , mqpρ, ρ 1 q `H0 ppp px 0 , D x0 U 0 , mqD x0 v 0 D x0 pv 1 q 0 `δH 0 pp δm px 0 , D x0 U 0 , mqpρ 1 qD x0 v 0 āre in C 0 b and C 0,n´2
b respectively, thanks to Propositions 4.3 and 4.4. By Proposition A.9, with r " 0 and n ´2 we obtain the estimates for } δ 2 pU 0 ,U q δm 2 } n´2;k´1,k´1 . The Lipschitz bound in x 0 of p δ 2 U 0 δm 2 , δ 2 U δm 2 q follows analogously.

Lipschitz regularity of the second order derivatives

We finally address the Lipschitz regularity of second order derivatives of U 0 and U with respect to m and x 0 . Proposition 4.6. Under the assumptions of Proposition 4.5 and if, in addition,

Lip n´3;k´2,k´2 p δ 2 G 0 δm 2 , δ 2 G δm 2 q ď M, then we have, sup t pLip n´3;k´2,k´2 p δ 2 U 0 δm 2 , δ 2 U δm 2 qptqq ď Lip n´3;k´2,k´2 p δ 2 G 0 δm 2 , δ 2 G δm 2 q `CM T,
where the constant C M depend on the regularity of H and H 0 and on M .

Proof. Let px, ρ, ρ 1 q P R d ˆC´pk´2q ˆC´pk´2q , m 1 , m 2 P P 2 , pU 0,1 , U 1 q be the solution to (32) associated with px, m 1 q and pU 0,2 , U 2 q be the solution associated with px, m 2 q. We denote by pv 0,1 , v 1 q, ppv 1 q 0,1 , pv 1 q 1 q (resp. pv 0,2 , v 2 q, ppv 1 q 0,2 , pv 1 q 2 q) the corresponding solutions to the first order linearized system (33) associated with ρ and ρ 1 , and by pw 0,1 , w 1 q (resp. pw 0,2 , w 2 q) the corresponding solution of the second order linearized system (34). We want to estimate the difference pz 0 , zq :" pw 0,2 ´w0,1 , w 2 ´w1 q. We have

$ ' ' ' ' ' & ' ' ' ' ' % ´Bt z 0 ´∆x0 z 0 `H0 p px 0 , D x0 U 0,1 pt, x 0 , m 1 q, m 1 q ¨Dx0 z 0 `f 0 " 0, ´Bt z ´∆x0 z `Dx0 z ¨H0 p px 0 , D x0 U 0,1 , m 1 q ´H0 pp px 0 , D x0 U 0,1 , mqD x0 U 1 ¨Dx0 z 0 `f " 0 z 0 pT q " δ 2 G 0 δm 2 px 0 , m 2 qpρ, ρ 1 q ´δ2 G 0 δm 2 px 0 , m 1 qpρ, ρ 1 q, zpT q " δ 2 G δm 2 px 0 , x, m 2 qpρ, ρ 1 q ´δ2 G δm 2 px 0 , x, m 1 qpρ, ρ 1 q , where f 0 :"pH 0 p px 0 , D x0 U 0,2 , m 2 q ´H0 p px 0 , D x0 U 0,1 , m 1 qq ¨Dx0 w 0,2 `δ2 H 0 δm 2 px 0 , D x0 U 0,2 , m 2 qpρ, ρ 1 q ´δ2 H 0 δm 2 px 0 , D x0 U 0,1 , m 1 qpρ, ρ 1 q `H0 pp px 0 , D x0 U 0,2 , m 2 qD x0 v 0,2 ¨Dx0 pv 1 q 0,2 ´H0 pp px 0 , D x0 U 0,1 , m 1 qD x0 v 0,1 ¨Dx0 pv 1 q 0,1 `δH 0 p δm px 0 , D x0 U 0,2 , m 2 qpρq ¨Dx0 pv 1 q 0,2 ´δH 0 p δm px 0 , D x0 U 0,1 , m 1 qpρq ¨Dx0 pv 1 q 0,1 `δH 0 p δm px 0 , D x0 U 0,2 , m 2 qpρ 1 q ¨Dx0 v 0,2 ´δH 0 p δm px 0 , D x0 U 0,1 , m 1 qpρ 1 q ¨Dx0 v 0,1 and f :"D x0 w 2 ¨`H 0 p px 0 , D x0 U 0,2 , m 2 q ´H0 p px 0 , D x0 U 0,1 , m 1 q Dx0 v 2 ¨˜δH 0 p δm px 0 , D x0 U 0,2 , m 2 qpρ 1 q `H0 pp px 0 , D x0 U 0,2 , m 2 qD x0 pv 1 q 0,2 Ḑx0 v 1 ¨˜δH 0 p δm px 0 , D x0 U 0,1 , m 1 qpρ 1 q `H0 pp px 0 , D x0 U 0,1 , m 1 qD x0 pv 1 q 0,1 Ḑx0 pv 1 q 2 ¨˜δH 0 p δm px 0 , D x0 U 0,2 , m 2 qpρq `H0 pp px 0 , D x0 U 0,2 , m 2 qD x0 v 0,2 Ḑx0 pv 1 q 1 ¨˜δH 0 p δm px 0 , D x0 U 0,1 , m 1 qpρq `H0 pp px 0 , D x0 U 0,1 , m 1 qD x0 v 0,1 Ḑx0 U 2 ¨´δH 0 pp δm px 0 , D x0 U 0,2 , m 2 qpρqD x0 pv 1 q 0,2 `δ2 H 0 p δm 2 px 0 , D x0 U 0,2 , m 2 qpρ, ρ 1 q `H0 ppp px 0 , D x0 U 0,2 , m 2 qD x0 v 0,2 D x0 pv 1 q 0,2 `δH 0 pp δm px 0 , D x0 U 0,2 , m 2 qpρ 1 qD x0 v 0,2 H0 pp px 0 , D x0 U 0,2 , mqD x0 U 2 ´H0 pp px 0 , D x0 U 0,1 , mqD x0 U 1 ¯¨D x0 w 0,2 ´Dx0 U 1 ¨´δH 0 pp δm px 0 , D x0 U 0,1 , m 1 qpρqD x0 pv 1 q 0,1 `δ2 H 0 p δm 2 px 0 , D x0 U 0,1 , m 1 qpρ, ρ 1 q `H0 ppp px 0 , D x0 U 0,1 , m 1 qD x0 v 0,1 D x0 pv 1 q 0,1 `δH 0 pp δm px 0 , D x0 U 0,1 , m 1 qpρ 1 qD x0 v 0,1 ¯.
Proposition 4.4 (for the representation of the pv 0,i , v i q) and Proposition 4.5 (for their Lipschitz regularity in m and in x 0 ) imply in particular that sup t `}D x0 pv 0,2 ´v0,1 q} 8 `}D x0 pv 2 ´v1 q} 0,n´3 ˘ď Cd 2 pm 1 , m 2 q and hence we have, using also Proposition 4.5,

sup t `}f 0 } 8 `}f } 0,n´3 ˘ď Cd 2 pm 1 , m 2 q.
Using Proposition A.9 (with r " 0), we obtain, for any l ď n ´3,

sup t,x0,x p|z 0 pt, x 0 q| 2 `|D l x zpt, x 0 , xq| 2 q 1{2 ď p1 `CT q sup x0,x ´ˇˇˇδ 2 G 0 δm 2 px 0 , m 2 qpρ, ρ 1 q ´δ2 G 0 δm 2 px 0 , m 1 qpρ, ρ 1 q ˇˇˇ2 `ˇˇˇD l x δ 2 G δm 2 px 0 , x, m 2 qpρ, ρ 1 q ´Dl x δ 2 G δm 2 px 0 , x, m 1 qpρ, ρ 1 q ˇˇˇ2 ¯1{2 `CT d 2 pm 1 , m 2 q,
which gives the claim.

We complete this section by stating similar estimates on the Lipschitz regularity of the other second order derivatives: Proposition 4.7. Under the assumptions of Proposition 4.5 and if, in addition, Lip n´3;k´2 p 

δG 0 x 0 δm , δGx 0 δm qL ip n´3 pD 2 x0 G 0 , D
pLip n´3 pD 2 x0 U 0 , D 2 x0 U qptqq ď Lip n´3 pD 2 x0 G 0 , D 2 x0 Gq `CM T,
where the constant C M depend on the regularity of H and H 0 and on M .

As the proof is completely similar to the proof of Proposition 4.6, we omit it.

Existence of a solution

Definition of the semi-discrete scheme

Let us fix some horizon T ą 0 (small) and a step-size τ :" T {p2N q (where N P N, N ě 1). We set t k " kT {p2N q, k P t0, 2N u. We define by backward induction the continuous maps U 0,N " U 0,N pt, x 0 , mq and U N " U N pt, x 0 , x, mq as follows: we require that (i) pU 0,N , U N q satisfies the terminal condition:

U 0,N pT, x 0 , mq " G 0 px 0 , mq, U N pT, x 0 , x, mq " Gpx 0 , x, mq @px 0 , x, mq P R d ˆRd0 ˆP2 , (ii) for x 0 P R d0 fixed, pU 0,N , U N q solves the backward system of first order master equations:

$ ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' % piq ´Bt U 0 ´2 ˆRd div y D m U 0 pt, x 0 , m, yqdmpyq `2 ˆRd D m U 0 pt, x 0 , m, yq ¨Hp px 0 , y, D x U pt, x 0 , y, mq, mqdmpyq " 0 piiq ´Bt U ´2∆ x U `2Hpx 0 , x, D x U, mq ´2 ˆRd div y D m U pt, x 0 , x, m, yqdmpyq `2
ˆRd D m U pt, x 0 , x, m, yq ¨Hp px 0 , y, D x U pt, x 0 , y, mq, mqdmpyq " 0 (35) on time intervals of the form pt 2j`1 , t 2j`2 q, for j " 0, . . . , N ´1, (iii) for px, mq P R d ˆP2 fixed, pU 0,N , U N q solves the backward system of HJ equations:

" piq ´Bt U 0 ´2∆ x0 U 0 `2H 0 px 0 , D x0 U 0 , mq " 0 piiq ´Bt U ´2∆ x0 U `2D x0 U ¨H0 p px 0 , D x0 U 0 pt, x 0 , mq, mq " 0 (36)
on time intervals of the form pt 2j , t 2j`1 q, for j " 0, . . . , N ´1.

Our aim is to show that, if the time horizon is short enough, pU 0,N , U N q converges to a solution of the master equation for MFGs with a major player as N Ñ `8.

Proof of the existence of a solution

For n ě 4 and k P t3, . . . , n ´1u, let

M :" 1 `› › ›pG 0 , Gq › › › n `› › ›Dx 0 pG 0 , Gq › › › n´1 `› › ›D 2 x0 pG 0 , Gq › › › n´2 `pLip x0 n´3 pD 2 x0 G 0 , D 2 x0 Gqq `› › › δpG 0 , Gq δm › › › n´1;k `› › › δpG 0 x0 , G x0 q δm › › › n´2;k´1 `pLip x0 n´3;k´2 p δG 0 x0 δm , δG x0 δm qq `› › › › δ 2 pG 0 , Gq δm 2 › › › › n´2;k´1,k´1 `pLip x0 n´3;k´2,k´2 p δ 2 G 0 δm 2 , δ 2 G δm 2 qq `pLip n´3;k´2,k´2 p δ 2 G 0 δm 2 , δ 2 G δm 2 qq `pLip n´3;k´2 p δG 0 x0 δm , δG x0 δm qq `pLip n´3 pD 2 x0 G 0 , D 2 x0 Gqq.
Lemma 4.8. There exists T M ą 0, depending on the regularity of H 0 , H and on M , such that, for any T P p0, T M s and N ě 1, we have, for any t P r0, T s,

› › ›pU 0 , U qptq › › › n `› › ›Dx 0 pU 0 , U qptq › › › n´1 `› › ›D 2 x0 pU 0 , U qptq › › › n´2 `pLip x0 n´3 pD 2 x0 U 0 , D 2 x0 U qptqq `› › › δpU 0 , U q δm ptq › › › n´1;k `› › › δpU 0 x0 , U x0 q δm ptq › › › n´2;k´1 `pLip x0 n´3;k´2 p δU 0 x0 δm , δU x0 δm qptqq (37) `› › › › δ 2 pU 0 , U q δm 2 ptq › › › › n´2;k´1,k´1 `pLip x0 n´3;k´2,k´2 p δ 2 U 0 δm 2 , δ 2 U δm 2 qptqq `pLip n´3;k´2,k´2 p δ 2 U 0 δm 2 , δ 2 U δm 2 qptqq `pLip n´3;k´2 p δU 0 x0 δm , δU x0 δm qptqq `pLip n´3 pD 2 x0 U 0 , D 2 x0 U qptqq ď M.
Moreover:

• The maps U 0,N and U N are globally Lipschitz continuous in all variables and their first and second space derivatives are globally Holder continuous in all variables, uniformly with respect to N .

• The maps D m U 0,N and D m U N are Holder continuous in pt, x 0 , m, yq and pt, x 0 , x, m, yq respectively, uniformly with respect to N , in any set of the form

tpt, x 0 , m, yq P r0, T s ˆRd0 ˆP2 ˆRd , M 2 pmq ď R, |y| ď Ru and tpt, x 0 , x, m, yq P r0, T s ˆRd0 ˆRd ˆP2 ˆRd , M 2 pmq ď R, |y| ď Ru (38)
respectively (where M 2 pmq " p ´Rd |y| 2 mpdyqq 1{2 ).

Proof. We only sketch the proof, since it is exactly the same as for the second order master equation (see Lemma 3.7). The proof of (37) can be established by collecting the estimates in Propositions 6.5, 6.7 and 6.9 in Section 6 below, which provide the bounds on intervals of the form pt 2j`1 , t 2j`2 q, and, for the intervals of the form pt 2j , t 2j`1 q, by Proposition 4.3, 4.4, 4.5 and 4.6. The Lipschitz regularity in space of U 0,N and U N and of their first and second order space derivatives follows immediately from (37). As D m U 0,N and D m U N are bounded according to (37), U 0,N and U N and their first and second order space derivatives are also Lipschitz continuous in m. Finally, since U 0,N and U N satisfy the equations ( 35) and (36), the bounds in (37) show that B t U 0,N and B t U N are bounded and therefore that U 0,N and U N are also Lipschitz continuous in time. The global Holder regularity of the first and second space derivatives of U 0,N and U N then follows by interpolation (Lemma B.2).

The Lipschitz regularity in space and in measure of D m U 0,N and D m U N is a consequence of (37) while the Holder regularity in time in sets of the form (38) comes from interpolation (Lemma B.4).

Proof of Theorem 4.2. It relies exactly on the same argument as in the proof of Theorem 3.2 and we omit it.

Uniqueness of the solution

We finally address the uniqueness of the solution of the master equation for MFGs with a major player: Theorem 4.9. Let pU 0,1 , U 1 q and pU 0,2 , U 2 q be two classical solutions to (29) defined on the time interval r0, T s and such that D x0 U 0,1 and D x0,x U 1 are uniformly Lipschitz continuous in the space and measure variables. Then pU 0,1 , U 1 q " pU 0,2 , U 2 q.

Proof. Let pt 0 , x0 , m0 q P r0, T q ˆRd0 ˆP2 be an initial condition, Z be a random variable with law m0 and let pX 0 t , m t , X t q be the solution to

$ ' ' & ' ' % dX 0 t " ´H0 p pX 0 t , D x0 U 0,1 pt, X 0 t , m t q, m t qdt `?2dW 0 t in p0, T q dm t " `∆m t `divpm t H p pX 0 t , x, D x U 1 pt, X 0 t ,
x, m t q, m t qq ˘dt in p0, T q ˆRd dX t " ´Hp pX 0 t , X t , D x U 1 pt, X 0 t , X t , m t qdt `?2dW t in p0, T q X 0 t0 " x0 , m t0 " m0 , X t0 " Z where pW 0 t q and pW t q are Brownian motions, pW 0 t q, pW t q and Z being independent. As D x U 0,1 and D x U 1 are globally Lipschitz continuous, the above system has a unique solution. Note that m t is the conditional law of X t given pW 0 s q sďt . We compute the variation of U 0,1 along pt, X 0 t , m t q:

dU 0,1 pt, X 0 t , m t q " ´Bt U 0,1 `∆x0 U 0,1 ´H0 p pX 0 t , D x0 U 0,1 , m t q ¨Dx0 U 0,1 ´ˆR d D m U 0,1 ¨Hp pX 0 t , y, D x U 1 pt, X 0 t , y, m t q, m t qm t pdyq `ˆR d div y D m U 0,1 m t pdyq ¯dt `?2D x0 U 0,1 ¨dW 0 t ,
where, unless specified otherwise, U 0,1 and its space derivatives are computed at pt, X 0 t , m t q while D m U 0,1 and its space derivatives are computed at pt, X 0 t , m t , yq. In view of the equation satisfied by U 0,1 , we find

dU 0,1 pt, X 0 t , m t q " ´H0 pX 0 t , D x0 U 0,1 , m t q ´H0 p pX 0 t , D x0 U 0,1 , m t q ¨Dx0 U 0,1 ¯dt `?2D x0 U 0,1 ¨dW 0 t .
We proceed in the same way for U 0,2 and obtain, in view of the equation satisfied by U 0,2 :

dU 0,2 pt, X 0 t , m t q " ´H0 pX 0 t , D x0 U 0,2 , m t q ´H0 p pX 0 t , D x0 U 0,1 , m t q ¨Dx0 U 0,2 `ˆR d D m U 0,2 ¨pH p pX 0 t , y, D x U 2 pt, X 0 t , y, m t q, m t q ´Hp pX 0 t , y, D x U 1 pt, X 0 t , y, m t qq, m t qm t pdyq ¯dt `?2D x0 U 0,2 ¨dW 0 t ,
where, unless specified otherwise, U 0,2 and its space derivatives are computed at pt, X 0 t , m t q while D m U 0,2 and its space derivatives are computed at pt, X 0 t , m t , yq. Therefore dpU 0,2 ´U 0,1 q 2 " 2pU 0,2 ´U 0,1 q ´H0 pX 0 t , D x0 U 0,2 , m t q ´H0 pX 0 t , D x0 U 0,1 , m t q ´H0 p pX 0 t , D x0 U 0,1 , m t q ¨pD x0 U 0,2 ´Dx0 U 0,1 q `ˆR d D m U 0,2 ¨pH p pX 0 t , y, D x U 2 pt, X 0 t , y, m t q, m t q ´Hp pX 0 t , y, D x U 1 pt, X 0 t , y, m t q, m t qqm t pdyq ¯dt `2pD x0 U 0,2 ´Dx0 U 0,1 q 2 dt `2? 2pU 0,2 ´U 0,1 qpD x0 U 0,2 ´Dx0 U 0,1 q ¨dW 0 t .

Let us set U 0,i t " U 0,i pt, X 0 t , m t q (for i " 1, 2). We integrate in time between s P rt 0 , T s and T , take expectation and use the fact that U 0,1

T " U 0,2 T " G 0 pX 0 T , m T q:

0 "E " pU 0,2 s ´U 0,1 s q 2 `ˆT s 2pU 0,2 t ´U 0,1 t q ´H0 pX 0 t , D x0 U 0,2 , m t q ´H0 pX 0 t , D x0 U 0,1 , m t q ´H0 p pX 0 t , D x0 U 0,1 , m t q ¨pD x0 U 0,2 ´Dx0 U 0,1 q `ˆR d D m U 0,2 ¨pH p pX 0 t , y, D x U 2 pt, X 0 t , y, m t q, m t q ´Hp pX 0 t , y, D x U 1 pt, X 0 t , y, m t q, m t qqm t pdyq ¯dt `2 ˆT s |D x0 U 0,2 ´Dx0 U 0,1 | 2 dt ı .
Thanks to the regularity of the solutions, we have by Cauchy-Schwarz inequality and for any ą 0:

0 ěE " pU 0,2 s ´U 0,1 s q 2 ´ˆT s ´C pU 0,2 t ´U 0,1 t q 2 ` |D x0 pU 0,2 ´U 0,1 q| 2 ` ˆRd |D x pU 2 ´U 1 qpt, X 0 t , y, m t q| 2 m t pdyq ¯dt `2 ˆT s |D x0 pU 0,2 ´U 0,1 q| 2 dt ı .
So, for small enough, we obtain 0 ěE

" pU 0,2 s ´U 0,1 s q 2 ´ˆT s ´C pU 0,2 t ´U 0,1 t q 2 ` ˆRd |D x pU 2 ´U 1 qpt, X 0 t , y, m t q| 2 m t pdyq ¯dt `ˆT s |D x0 pU 0,2 ´U 0,1 q| 2 dt ı .
We argue in the same way for U i t :" U i pt, X 0 t , X t , m t q (i " 1, 2) and find:

0 ěE " pU 2 s ´U 1 s q 2 ´ˆT s ´C pU 2 t ´U 1 t q 2 ` |D x0 pU 0,2 ´U 0,1 q| 2 ` ˆRd |D x pU 2 ´U 1 qpt, X 0 t , y, m t q| 2 m t pdyq ¯dt `ˆT s |D x0 pU 2 ´U 1 q| 2 `|D x pU 2 ´U 1 q| 2 dt ı .
We add the last two inequalities to obtain:

0 ěE " pU 0,2 s ´U 0,1 s q 2 `pU 2 s ´U 1 s q 2 ´ˆT s ´C ppU 0,2 t ´U 0,1 t q 2 `pU 2 t ´U 1 t q 2 q ` |D x0 pU 0,2 ´U 0,1 q| 2 `2 ˆRd |D x pU 2 ´U 1 qpt, X 0 t , y, m t q| 2 m t pdyq ¯dt (39) `ˆT s ´|D x0 pU 0,2 ´U 0,1 q| 2 `|D x0 pU 2 ´U 1 q| 2 `|D x pU 2 ´U 1 q| 2 ¯dt ı .
Note that, as m t is the conditional law of X t given pW 0 u q uďt , we have

E " |D x pU 2 ´U 1 qpt, X 0 t , X t , m t q| 2 ı " E " E " |D x pU 2 ´U 1 qpt, X 0 t , X t , m t q| 2 | pW 0 u q uďt ıı " E " ˆRd |D x pU 2 ´U 1 qpt, X 0 t , y, m t q| 2 m t pdyq
ı since X 0 t and X t are adapted to pW 0 u q uďt . Plugging this relation into (39) we find therefore, for ą 0 small enough, 0 ěE

" pU 0,2 s ´U 0,1 s q 2 `pU 2 s ´U 1 s q 2 ´ˆT s ´C ppU 0,2 t ´U 0,1 t q 2 `pU 2 t ´U 1 t q 2 qdt `p1{2q ˆT s |D x0 pU 0,2 ´U 0,1 q| 2 `|D x0 pU 2 ´U 1 q| 2 `|D x pU 2 ´U 1 q| 2 dt ı .
We conclude by Gronwall's inequality that, for any t P rt 0 , T s,

E " pU 0,2 pt, X 0 t , m t q ´U 0,1 pt, X 0 t , m t qq 2 `pU 2 pt, X 0 t , X t , m t q ´U 1 pt, X 0 t , X t m t qq 2 ı " 0.
For t " t 0 , we have therefore U 0,2 pt 0 , x0 , m0 q " U 0,1 pt 0 , x0 , m0 q and U 1 pt 0 , x0 , Z, m0 q " U 2 pt 0 , x0 , Z, m0 q a.s.

If m0 has a positive density, the fact that the law of Z is m0 easily implies the equality of U 1 and U 2 at any point pt 0 , x0 , x, m0 q for x P R d . We conclude by density of such laws and by continuity of the U i 's.

Estimates on the MFG system

We are now left to prove the estimates on the first order master equations considered in the two previous sections. As the solutions of these equations are built by a method of characteristics, where the characteristics are the solutions of the MFG system, we first need to discuss the well-posedness and the regularity properties of this system:

$ ' ' ' ' & ' ' ' ' %
piq ´Bt upt, xq ´Trpapt, xqD 2 upt, xqq `Hpx 0 , x, Dupt, xq, mptqq " 0 in pt 0 , T q ˆRd , piiq B t mpt, xq ´ÿ i,j D ij pa i,j pt, xqmpt, xqq ´divpmpt, xqH p px 0 , x, Dupt, xq, mptqqq " 0 in pt 0 , T q ˆRd , piiiq mpt 0 q " m 0 , upT, xq " Gpx 0 , x, mpT qq in R d .

(40)

Here x 0 P R d0 is treated as a fixed parameter. We also present similar results for the corresponding linearized systems. These estimates are motivated by the construction and the regularity of the first order master equation in the next section.

Let us first explain the notion of solution to (40). Fix pt 0 , m 0 q P r0, T s ˆP2 and x 0 P R d0 . We say that pu, mq is a solution to (40 The assumptions on a, H and G given in Subsection 2.3 are in force throughout the section.

) if u P C 0 prt 0 , T s, C 2 b q satisfies upt, xq " Gpx 0 , x,

Well-posedness and regularity of the MFG system

We discuss here the well-posedness of the MFG system (40) and provide several estimates. Let us start with the Hamilton-Jacobi (HJ) equation (general estimates on this equation are given in the Appendix A).

Proposition 5.1. For any M ą 0, there exist T M ą 0, L M ą 0, depending on C 0 and γ given in assumptions ( 14) and [START_REF] Carmona | A probabilistic approach to mean field games with major and minor players[END_REF], such that, if sup x0,m }Gpx 0 , ¨, mq} 1 ď M , then, for any T P p0, T M q and any m P C 0 pr0, T s, P 2 q, the solution u to the HJ equation " ´Bt upt, xq ´Trpapt, xqD 2 upt, xqq `Hpx 0 , x, Dupt, xq, mptqq " 0 in pt 0 , T q ˆRd upT, xq " Gpx 0 , x, mpT qq in R d (41)

satisfies sup tPrt0,T s }u} 1 ď sup x0,m }Gpx 0 , ¨, mq} 1 `LM T .
Henceforth, we set

K M :" sup x0,m }Gpx 0 , ¨, mq} 1 `LM T M .
If, in addition, sup x0,m }Gpx 0 , ¨, mq} n ď M , then there exists C M ą 0, depending on n, C 0 , γ and

sup tPr0,T M s }aptq} n `sup |p|ďK M ,x0PR d 0 ,mPP2 n ÿ k"0 }D k px,pq Hpx 0 , ¨, p, mq} 8 ,
such that u satisfies, for any T P p0, T M q, x 0 P R d0 and r ď n,

sup tPrt0,T s,xPR d |D r x upt, xq| ď sup xPR d |D r
x Gpx 0 , x, mpT qq| `CM T.

Therefore, for any

x 0 P R d0 , sup tPrt0,T s }uptq} n ď sup m }Gpx 0 , ¨, mq} n `CM T. (42) 
Proof. Use Propositions A.1 and A.6.

Next we discuss the dependence of the solution u of (41) with respect to pmptqq tPrt0,T s and x 0 P R d0 . We stress that, hereafter, we currently use the preliminary gradient estimate sup tPrt0,T M s }uptq} 1 ď K M which is obtained as a first step in Proposition 5.1. In particular, the Hamiltonian Hpx 0 , x, p, mq will be systematically estimated for |p| ď K M . Proposition 5.2. If the assumptions of Proposition 5.1 are satisfied so that (42) holds true, then there exists T M ą 0 such that, for T P p0, T M q and any t 0 P r0, T s, for any m 1 , m 2 P C 0 pr0, T s, P 2 q and any x 1 0 , x 2 0 P R d0 , if u 1 and u 2 are the corresponding solutions to the HJ equation (41), then we have, for ď p1 `CT q rLip 0,n´1 pGqsd 2 pm 1 pT q, m 2 pT qq `rLip x0 n´1 pGqs|x

n ě 2, sup tPrt0,T s }u 1 ptq ´u2 ptq} n´1 ď C M T `sup tPrt0,T s d 2 pm 1 ptq, m 2 ptqq `|x 1 0 ´x2 0 | p1 `CM T q rLip 0,n´1 pGqsd 2 pm 1 pT q, m 2 pT
1 0 ´x2 0 | ( `CT `sup tPrt0,T s d 2 pm 1 ptq, m 2 ptqq `|x 1 0 ´x2 0 | ˘,
where the constant C depends on H and on sup tPr0,T s }V ptq} n´1 , hence on sup tPr0,T s r}u 1 ptq} n , sup tPr0,T s }u 2 ptq} n s, which are estimated thanks to Proposition 5.1.

In our next step, we consider the solution to the Fokker-Planck equation

$ & % B t mpt, xq ´ÿ i,j D ij pa i,j pt, xq mpt, xqq ´divp mpt, xqH p px 0 , x, Dupt, xq, mptqq " 0 in pt 0 , T q ˆRd mpt 0 q " m 0 in R d (43) 
where pmptqq tPrt0,T s is given and u satisfies (41). Let us recall that, under the assumptions of Proposition 5.1, there exists a unique weak solution m P C 0 prt 0 , T s, P 2 q to (43).

Proposition 5.3. Assume that

}D x G} 8 ď M , }D 2 xx G} 8 ď M , Lip 0,1 pGq `Lip x0 1 pGq ď M . ( 44 
)
Then there exists a constant C M ą 0, only depending on M , }a} 2 and the regularity of H, such that, for any m 1 , m 2 P C 0 pr0, T s, P 2 q, x 1 0 , x 2 0 P R d0 and m 1 0 , m 2 0 P P 2 , if u 1 and u 2 are the corresponding solutions to the HJ equation (41) with x 0 " x i 0 and if m1 , m2 are the corresponding solutions to (43) starting from m 1 0 and m 2 0 respectively, then

sup tPrt0,T s d 2 2 p m1 ptq, m2 ptqq ď p1 `CM T qd 2 2 pm 1 0 , m 2 0 q `CM T ˜sup tPrt0,T s d 2 2 pm 1 ptq, m 2 ptqq `|x 1 0 ´x2 0 | 2 ¸.
Proof. We can represent mi ptq as the law of X i t where Er|X 1 0 ´X2 0 | 2 s " d 2 2 pm 1 0 , m 2 0 q and X i solves

X i t " X i 0 ´ˆt 0 H p px i 0 , X i s , Du i ps, X i s q, m i psqqds `?2 ˆt 0 σps, X i s qdB s , so that E " |X 1 t ´X2 t | 2 ‰ ď E " |X 1 0 ´X2 0 | 2 ‰ `2E "ˆt 0 pX 1 s ´X2 s q ¨`H p px 1 0 , X 1 s , Du 1 , m 1 ptqq ´Hp px 2 0 , X 2 s , Du 2 , m 2 ptqq ˘ds  `E "ˆt 0 Tr `pσps, X 1 s q ´σps, X 2 s qqpσps, X 1 s q ´σps, X 2 s qq ˚˘ds|  ď E " |X 1 0 ´X2 0 | 2 ‰ `CM E "ˆt 0 p|X 1 s ´X2 s | 2 `|Dpu 1 ´u2 qps, X 1 s q| 2 `d2 2 pm 1 psq, m 2 psqq `|x 1 0 ´x2 0 | 2 qds 
where C M depends on the Lipschitz regularity of H p in R d0 ˆRd ˆBpK M q ˆP2 (where K M is defined in Proposition 5.1), on sup t }u 1 ptq} 2 , and on the Lipschitz regularity of σ. We infer from Gronwall's Lemma that

E " |X 1 t ´X2 t | 2 ‰ ď p1 `CM T qE " |X 1 0 ´X2 0 | 2 ‰ `CM T ˜sup t }Dpu 1 ´u2 qptq} 2 8 `sup tPrt0,T s d 2 2 pm 1 ptq, m 2 ptqq `|x 1 0 ´x2 0 | 2 ¸.
As

Er|X 1 0 ´X2 0 | 2 s " d 2 2 pm 1 0 , m 2 0 q and d 2 2 p m1 ptq, m2 ptqq ď E " |X 1 t ´X2 t | 2 ‰ , we obtain: sup tPrt0,T s d 2 2 p m1 ptq, m2 ptqq ď p1 `CM T qd 2 2 pm 1 0 , m 2 0 q `CM T ˜sup t }Dpu 1 ´u2 qptq} 2 8 `sup tPrt0,T s d 2 2 pm 1 ptq, m 2 ptqq `|x 1 0 ´x2 0 | 2 ¸.
We estimate the term sup t }Dpu 1 ´u2 qptq} 2 8 by Proposition 5.2 (with n " 2): since Lip 0,1 pGq and Lip x0 1 pGq are estimated by (44), we deduce, for some (possibly different) constant

C M : sup tPrt0,T s d 2 2 p m1 ptq, m2 ptqq ď p1 `CM T qd 2 2 pm 1 0 , m 2 0 q `CM T ˜sup tPrt0,T s d 2 2 pm 1 ptq, m 2 ptqq `|x 1 0 ´x2 0 | 2 ¸.
Collecting the estimates in Propositions 5.1, 5.2 and 5.3 yields the well-posedness of the MFG system and estimates on the solution: Proposition 5.4. Fix M ą 0 and assume that (44) holds true and that }G} n ď M holds. Then there exists T M , C M ą 0, depending on M , n, C 0 , γ and

sup tPr0,T M s }aptq} n `sup |p|ďK M ,x0PR d 0 ,mPP2 n ÿ k"0 }D k px,pq Hpx 0 , ¨, p, mq} 8 ,
(where K M is given in Proposition 5.1) such that, for any T P p0, T M q, for any pt 0 , m 0 q P r0, T s ˆP2 , there exists a unique solution to the MFG system (40). This solution satisfies sup tPrt0,T s }uptq} n ď }Gpx 0 , ¨, mpT qq} n `CM T.

Moreover, if pt 0 , m 1 0 q and pt 0 , m 2 0 q are two initial conditions in r0, T s ˆP2 and x 1 0 , x 2 0 P R d0 , and if pu 1 , m 1 q and pu 2 , m 2 q are the corresponding solutions to the MFG system (40) with x 0 " x 1 0 and x 0 " x 2 0 respectively, then

sup tPrt0,T s d 2 pm 1 ptq, m 2 ptqq ď p1 `CM T qd 2 pm 1 0 , m 2 0 q `CM T |x 1 0 ´x2 0 | , and sup tPrt0,T s }u 1 ptq ´u2 ptq} n´1 ď C M T `d2 pm 1 0 , m 2 0 q `|x 1 0 ´x2 0 | p1 `CM T q rLip 0,n´1 pGqspd 2 pm 1 0 , m 2 0 q `|x 1 0 ´x2 0 |q `rLip x0 n´1 pGqs|x 1 0 ´x2 0 | ( .
Proof. The existence and uniqueness result come from a standard fixed point argument on C 0 prt 0 , T s, P 2 q for T small enough (say T ď T M where C M T M ď 1{2, C M being given by the previous Propositions).

For the stability with respect to the initial condition, one first uses the estimate in Proposition 5.3 with mi " m i :

sup tPrt0,T s d 2 2 pm 1 ptq, m 2 ptqq ď p1 `CM T qd 2 2 pm 1 0 , m 2 0 q `CM T ˜sup tPrt0,T s d 2 2 pm 1 ptq, m 2 ptqq `|x 1 0 ´x2 0 | 2 ¸.
Thus, as

C M T ď 1{2, one obtains sup tPrt0,T s d 2 pm 1 ptq, m 2 ptqq ď p1 `CM T qd 2 pm 1 0 , m 2 0 q `CM T |x 1 0 ´x2 0 |, modifying C M if necessary.
Plugging this estimate into the estimate for the u i in Proposition 5.2 gives the result.

The first order linearized system

Next we consider the linearized system

$ ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' %
piq ´Bt v ´Trpapt, xqD 2 vq `Hp px 0 , x, Du, mptqq ¨Dv `δH δm px 0 , x, Du, mptqqpρptqq " R 1 pt, xq in pt 0 , T q ˆRd piiq B t ρ ´ÿ i,j D ij pa i,j ρq ´divpρH p px 0 , x, Du, mptqqq ´divpmH pp Dvq ´divpm δH p δm pρqq " divpR 2 pt, xqq in pt 0 , T q ˆRd piiiq ρpt 0 q " ρ 0 , vpT, xq " δG δm px 0 , x, mpT qqpρpT qq `R3 pxq in R d (45) where pu, mq solves (40) and H and its derivatives are evaluated at px 0 , x, Dupt, xq, mptqq. In this section, we work under the conditions given in Proposition 5.4 so that (40) admits a unique solution, in particular we always assume that T ď T M , where T M is given by Proposition 5.4. Our goal now is to establish estimates for pv, ρq in dependence of G and u; we implicitly assume that Gpx 0 , ¨, mq is sufficiently regular (say, C n b ) so that u inherits the same order of regularity (from (42)). The data of equation ( 45) are

x 0 P R d0 , ρ 0 P C ´k, R 1 P C 0 pr0, T s, C n´1 b q, R 2 P C 0 pr0, T s, C ´pk´1q q and R 3 P C n´1 b .
Here n ě 2 and k ě 1. By a solution to (45), we mean a pair pv, ρq such that v P C 0 pr0, T s, C n´1 b q satisfies (45)-(i) (integrated in time) with terminal condition vpT, ¨q " δG δm px 0 , ¨, mpT qqpρpT qqR 3 p¨q and ρ P C 0 pr0, T s, C ´pk´1q b q is a solution in the sense of distributions to (45)-(ii) with initial condition ρpt 0 q " ρ 0 . Proposition 5.5. Let us fix M ą 0, n ě 2 and k ě 1. Under the assumptions of Proposition 5.4, and if

} δG δm } 1;k ď M, (46) 
then there exist constants T M , C M ą 0, depending on M , n, k, sup tPr0,T s }uptq} n , sup tPr0,T s }uptq} k`1 , such that for T ď T M there exists a unique solution pv, ρq to (45), and this solution satisfies

sup tPrt0,T s }vptq} n´1 ď p1 `CM T q} δG δm px 0 , ¨x, mpT q, ¨yq} n´1;k ˆ}ρ 0 } ´k `T sup t }R 2 ptq} ´pk´1q `T sup t }R 1 ptq} 1 ṗ1 `CM T q}R 3 } n´1 `CM T ˆ1 `sup t }R 1 ptq} n´1 `}R 2 } ´pk´1q ˙, (47) 
as well as

sup tPrt0,T s }ρptq} ´k ď p1 `CM T q }ρ 0 } ´k `CM T psup t }R 1 ptq} 1 `sup t }R 2 ptq} ´pk´1q `}R 3 } n´1 q. (48)
Moreover, we have, for any r ď n ´1,

sup tPr0,T s }D r x vptq} 8 ď p1 `CM T q ˆ› › ›D r x δG δm px 0 , ¨, mpT qqpρpT qq › › › 8 `}D r x R 3 } 8 ĊM T `}ρ 0 } ´k `sup t }Rptq} n´1 `sup t }R 2 ptq} ´pk´1q `}R 3 } n´1 ˘. (49) 
Proof. After proving the a priori estimates, the existence of a solution can be obtained using a continuation argument (see [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF] for details). The uniqueness is an obvious consequence of the estimates. So it remains to prove the estimates. To simplify the expression, we omit the dependence of the constant C with respect to M . Fix t 1 P rt 0 , T s, 

z

˙,

where }R 2 } ´pk´1q :" sup t }R 2 ptq} ´pk´1q . Thus, taking the supremum over }z 1 } k ď 1, we obtain:

}ρpt 1 q} ´k ď p1 `CT q}ρ 0 } ´k `CT `}Dv} 8 `}R 2 } ´pk´1q ˘`C ˆt1 t0 }ρptq} ´k.
Since this holds for all t 1 P pt 0 , T s, by Gronwall's inequality we obtain sup tPrt0,T s

}ρptq} ´k ď p1 `CT q}ρ 0 } ´k `CT `}Dv} 8 `}R 2 } ´pk´1q ˘. (51) 
Next we apply Proposition A.7 (with k " 1) to the HJ equation satisfied by v: we have, for any r ď n ´1,

sup t }vptq} r ď p1 `CT q}vpT q} r `CT C 1 , (52) 
where C depends on sup t }aptq} n´1 , on the regularity of H, on sup t }uptq} n , and where C 1 is estimated by

C 1 " sup t } δH δm px 0 , ¨, Dupt, ¨q, mptqqpρptqq} n´1 `}R 1 } n´1 ď C sup t }ρptq} ´k `}R 1 } n´1 , (53) 
where we used the inequality piiiq µpt 0 q " 0, wpT, xq "

} δH δm px 0 , ¨,
δ 2 G δm 2 px 0 , x, mpT qqpρpT q, ρ 1 pT qq `δG δm px 0 , x, mpT qqpµpT qq `R 3 pxq in R d (56) 
where H and its derivatives are evaluated at px 0 , x, Dupt, xq, mptqq. Here again we work under the conditions assumed in the previous Sections which guarantee the existence, uniqueness and enough regularity for pu, mq as well as for the solutions of the linearized system. In particular, we always assume that T ď T M , where T M is now given by Proposition 5.5. The goal now is to establish estimates for pw, µq in terms of G as well as of pu, mq and pv, ρq, pv 1 , ρ 1 q.

The data of the problem are R1 P C 0 pr0, T s, C n´2 b q, R2 P C 0 pr0, T s, C ´pk´1q q and R3 P C n´2 b

. By a solution to (56), we mean a pair pw, µq such that w P C 0 pr0, T s, C n´2 b q satisfies (56)-(i) (integrated in time) with the terminal condition in (56)-(iii) and µ P C 0 pr0, T s, C ´kq solves (56)-(ii) in the sense of distributions with vanishing initial condition. Here we assume n ě 3 and k ě 2; the reason for this condition is just because we wish to keep the regularity threshold of pw, µq consistent with what stated previously for pu, mq and for pv, ρq. In general, the estimates below apply to any degree of k, n but this is obviously a cascade regularity: an estimate of w in C n´2 b requires an estimate of v in C n´1 b and of u in C n b , while an estimate of µ in C ´k requires an estimate of ρ in C ´pk´1q .

Proposition 5.6. Let us fix M ą 0, n ě 3 and k ě 1. Under the assumptions of Proposition 5.4, and if (46) holds, there exist T M ą 0, depending on M and the regularity of H, such that for any T P p0, T M s, system (56) has a unique solution which satisfies sup t }wptq} n´2 ď p1 `CM T q ´} δ 2 G δm 2 px 0 , ¨, mpT q, ¨, ¨q} n´2;k´1,k´1 }ρpT q} ´pk´1q }ρ

1 pT q} ´pk´1q `} R3 } n´2 CM T p1 `} δG δm } n´2,k q ˆsup t } R1 ptq} n´2 `sup t } R2 ptq} ´pk´1q `Rk´1,k R 1 k´1,k `Rk´1,n´1 R 1 k´1,n´1 ¯(57)
for some C M depending on M , on the regularity of H as well as on n, k, sup tPr0,T s }u} n´1 , sup tPr0,T s }u} k`1 , and

sup t }µptq} ´k ď CM T ´´1 `} δ 2 G δm 2 px 0 , ¨, mpT q, ¨, ¨q} 1;k´1,k´1 ¯}ρpT q} ´pk´1q }ρ 1 pT q} ´pk´1q `sup tPr0,T s } R1 ptq} 1 `sup tPr0,T s } R2 ptq} ´pk´1q `} R3 } 1 `Rk´1,k R 1 k´1,k `Rk´1,2 R 1 k´1,2 ¯, (58) 
where CM depends on M , the regularity of H, n, k, sup tPr0,T s }u} k`1 , and where we have set, for k, j ě 1: R k´1,j :" sup t p}ρptq} ´pk´1q `}vptq} j q , R 1 k´1,j :" sup t p}ρ 1 ptq} ´pk´1q `}v 1 ptq} j q .

In addition, if

} δG δm } n´2;k ď M,
then we have, for any r ď n ´2, pt, x 0 q P r0, T s ˆRd0 , }D r wpt, ¨q} 8 ď ´› › ›D r x δ 2 G δm 2 px 0 , ¨, mpT qqpρpT q, ρ 1 pT qq

› › › 8 `}D r x R3 p¨q} 8 CM T ´} δ 2 G
δm 2 px 0 , ¨, mpT q, ¨, ¨q} n´2;k´1,k´1 }ρpT q} ´pk´1q }ρ 1 pT q} ´pk´1q (59)

`sup t } R1 ptq} n´2 `sup t } R2 ptq} ´pk´1q `} R3 } n´2 `Rk´1,k R 1 k´1,k `Rk´1,n´1 R 1 k´1,n´1
¯.

Remark 5.7. We recall that the quantities }ρpT q} ´pk´1q and R k´1,j are estimated from (47) and (48).

In particular, we have

R k´1,k ď p1 `CM T qC ˆ}ρ 0 } ´pk´1q `sup t }R 2 ptq} ´pk´2q `sup t }R 1 ptq} k `}R 3 } k ˙,
for some constant C depending on } δG δm } k;k´1 and sup t }uptq} k`1 , and similarly R k´1,n´1 ď p1 `CM T qC `}ρ 0 } ´pk´1q `sup t }R 2 ptq} ´pk´2q `}R 3 } n´1 `sup t }R 1 ptq} n´1 for a constant C depending on } δG δm } n;k´1 and sup t }uptq} n . Of course the same holds for ρ 1 , v 1 accordingly. Proof. We omit the proof of the well-posedness of the system, which is a consequence of the estimates (as for Proposition 5.5). To simplify the expression, we also omit the dependence of the constant C with respect to M . We first estimate µ by duality. Fix t 1 P rt 0 , T s, z 1 P C k b for k P t1, . . . , n ´1u. Let z be the solution to (50). Recall that Proposition A.7 (with k " 1) implies that there is a constant C ą 0, depending on sup t }uptq} k`1 , such that sup tPrt0,t1s }zptq} k ď p1 `CT q}z 1 } k . `C sup t p}ρptq} ´pk´1q `}vptq} n´1 qp}ρ 1 ptq} ´pk´1q `}v 1 ptq} n´1 q for a constant C depending on the regularity of H and on sup t }uptq} n´1 . So we conclude, using also (60),

Then

sup t }f ptq} n´2 ď C T ´}Dw} 8 `Rk´1,k R 1 k´1,k `} R2 } ´pk´1q sup t } R1 } n´2 `C R k´1,n´1 R 1 k´1,n´1
. Similarly, again from (60) we get

} δG δm pµpT qq} n´2 ď CT } δG δm px 0 , ¨, mpT q, ¨q} n´2;k ´}Dw} 8 `Rk´1,k R 1 k´1,k `} R2 } ´pk´1q and } δ 2 G δm 2 pρpT q, ρ 1 pT qq} n´2 ď } δ 2 G
δm 2 px 0 , ¨, mpT q, ¨, ¨q} n´2;k´1,k´1 }ρpT q} ´pk´1q }ρ 1 pT q} ´pk´1q .

Then, we find sup t }wptq} n´2 ď p1 `CT q ˆ} δ 2 G δm 2 px 0 , ¨, mpT q, ¨, ¨q} n´2;k´1,k´1 }ρpT q} ´pk´1q }ρ

1 pT q} ´pk´1q `} R3 } n´2 ĊT p1 `} δG δm } n´2;k q ´}Dw} 8 `} R2 } ´pk´1q `Rk´1,k R 1 k´1,k CT ´} R1 } n´2 `Rk´1,n´1 R 1 k´1,n´1
where now the constant C depends on both sup t }uptq} k`1 and sup t }uptq} n´1 . For n " 3, if we choose T small enough (depending on } δG δm } 1,k and sup t }uptq} 2 ) we estimate }Dw} 8 . Then, plugging this estimate into (60) gives (58) (with a constant only depending on sup t }uptq} k`1 ). Finally, we deduce (57) for n ą 3.

For any r ď n ´2, x 0 P R d0 and t P r0, T s, the estimate (59) on D r x w follows again from Proposition A.7 (with k " 1), that gives, arguing as before,

}D r x wpt, ¨q} 8 ď p1 `CT q ´}D r x δ 2 G δm 2 pρpT q, ρ 1 pT qq} 8 `}D r x δG δm pµpT qq} 8 `}D r x R3 } 8 CT sup t }f ptq} n´2 ď ´}D r x δ 2 G δm 2 pρpT q, ρ 1 pT qq} 8 `}D r x R3 } 8 ¯`p1 `CT q} δG δm px 0 , ¨, mptq, ¨q} n´2;k sup t }µptq} ´k `CT ´} R1 } n´2 `} R2 } ´pk´1q `} R3 } n´2 `} δ 2 G δm 2 px 0 , ¨, mpT q, ¨, ¨q} n´2;k´1,k´1 }ρpT q} ´pk´1q }ρ 1 pT q} ´pk´1q `Rk´1,k R 1 k´1,k `Rk´1,n´1 R 1 k´1,n´1
¯, that yields the desired claim using (58).

By gathering together Proposition 5.5 and Proposition 5.6, we deduce the following three corollaries, which will be useful in the derivation of second order estimates for the solution of the master equation.

Corollary 5.8. Let M ą 0, n ě 3 and k P t2, . . . , n ´1u, and assume that

}G} n `} δG δm } n´1;k `} δ 2 G δm 2 } n´2;k´1,k´1 ď M .
Let pu, mq be the unique solution to (40) in some interval r0, T M s given by Proposition 5.4, and let pv, ρq and pv 1 , ρ 1 q be two solutions to (45) with R 1 " R 2 " R 3 " 0 and initial conditions ρ 0 , ρ 1 0 respectively. Then there exists a constant C M such that the solution pw, µq to (56) corresponding to pu, mq, pv, ρq and pv 1 , ρ 1 q and with R1 " R2 " R3 " 0 satisfies, for any T P p0, T M q, r ď n ´2:

sup t,x |D r x wpt, xq| ď sup x ˇˇD r x δ 2 G δm 2 px 0 , x, mpT qqpρpT q, ρ 1 pT qq ˇˇ`CM T }ρ 0 } ´pk´1q }ρ 1 0 } ´pk´1q
where C M depends on M , as well as on }a} n and the regularity of H.

Proof. We first notice that Lip 0,1 pGq ď sup From Proposition 5.6, we have

}D r x wpt, ¨q} 8 ď › › ›D r x δ 2 G δm 2 px 0 , ¨, mpT qqpρpT q, ρ 1 pT qq › › › 8 `CM T ´}ρpT q} ´pk´1q }ρ 1 pT q} ´pk´1q `Rk´1,k R 1 k´1,k `Rk´1,n´1 R 1 k´1,n´1
¯.

On the other hand, we know from Proposition 5.5 that sup t }vptq} n´1 ď p1 `CM T q} δG δm } n´1;k´1 }ρ 0 } ´pk´1q sup t }ρptq} ´pk´1q ď p1 `CM T q }ρ 0 } ´pk´1q , which allows us to estimate R k´1,k and R k´1,n´1 . Here the constant depends on sup t }uptq} n . A similar estimate holds for pv 1 , ρ 1 q. Therefore, we conclude the desired estimate.

Corollary 5.9. Under the assumptions of Corollary 5.8, suppose in addition that

}D x0 δG δm } n´2;k´1 ď M.
Let pu, mq be the unique solution to (40) in r0, T M s, let pv, ρq be a solution to (45) with R 1 " R 2 " R 3 " 0 and initial condition ρ 0 , and, for any |l| " 1, l P R d0 , pv l , ρ l q be a solution to (45) with zero initial condition and with

R 1 pt, xq " ´Bl x0 Hpy 0 , x, Dupt, xq, mptqq R 2 pt, xq " mpt, xqB l x0 H p py 0 , x, Dupt, xq, mptqq R 3 pt, xq " B l x0 Gpy 0 , x, mpT qq. ( 62 
)
Then there exists a constant C M such that the solution pw l , µ l q to (56) corresponding to pu, mq, pv, ρq and pv l , ρ l q and with 

R1
satisfies, for any T P p0, T M q, r ď n ´2,

sup t,x ´ÿ |l|"1 |D r x w l pt, xq| 2 ¯1{2 ď sup x ˇˇD r x D x0 δG δm px 0 , x, mpT qqpρpT qq ˇˇ`CM T }ρ 0 } ´pk´1q ,
where C M depends on M , as well as on }a} n and the regularity of H.

Proof. We first notice that

sup t } R1 ptq} n´2 `sup t } R2 ptq} ´pk´1q ď C sup t
`}vptq} n´1 `}ρptq} ´pk´1q for a constant depending on the regularity of H, on sup t }uptq} n´1 and on sup t }uptq} k . However, the latter term is bounded by sup t }uptq} n´1 since k ď n ´1. Next we estimate the terms pv, ρq, pv l , ρ l q and µ l : we have, from Proposition 5.5 and Proposition 5.6, sup t }vptq} n´1 ď p1 `CM T q} δG δm } n´1;k´1 }ρ 0 } ´pk´1q ď C M }ρ 0 } ´pk´1q sup t }ρptq} ´pk´1q ď p1 `CM T q }ρ 0 } ´pk´1q , and

sup t }v l ptq} n´1 ď " p1 `CM T q} δG δm } n´1;k´1 `CM T * ď C M , sup t }ρ l ptq} ´pk´1q ď C M T, }µ l } ´k ď C M T }ρ 0 } ´pk´1q .
We note that the w l solve linear equations with the same diffusion and the same drift. So, combining Proposition A.7 with the inequalities above and arguing as in the proof of Proposition 5.6 gives, for any r ď n ´2,

sup x ´ÿ |l|"1 |D r x w l pt, xq| 2 ¯1{2 ď p1 `CT q sup x ´ÿ |l|"1 ´|D r x δ 2 G δm 2 pρpT q, ρ l pT qq| `|D r x δG δm pµ l pT qq| `|D r x B l x0 δG δm pρ l pT qq| ¯2¯1 {2 `CM T }ρ 0 } ´pk´1q ď sup x ´ÿ |l|"1 ´|D r x B l x0 δG δm pρ l pT qq| `CM T }ρ 0 } ´pk´1q ¯2¯1 {2 `CM T }ρ 0 } ´pk´1q ,
where we have omitted the dependence of G with respect to px 0 , x, mpT qq. This gives the result.

Corollary 5.10. Under the assumptions of Corollary 5.9, suppose in addition that }D 2 x0 Gpx 0 , ¨, mq} n´2 ď M. Fix l, l 1 P N d0 with |l| " |l 1 | " 1. Let pu, mq be the unique solution to (40) in r0, T M s and let pv l , ρ l q, pv l 1 , ρ l 1 q be the solution to (45) with zero initial condition and with

R 1 , R 2 , R 3 and R 1 1 , R 1 2 , R 1 3
given by (62) for l and l 1 respectively.

Let pw l,l 1 , µ l,l 1 q be the solution to (56) corresponding to pu, mq, pv l , ρ l q and pv l 1 , ρ l 1 q and with Rl,l 

where H and its derivatives are computed at px 0 , x, Dupt, xq, mptqq. Then there exists a constant C M such that, for any T P p0, T M q, r ď n ´2:

sup t,x ´ÿ l,l 1 |D r x w l,l 1 pt, xq| 2 ¯1{2 ď sup x |D r x D 2 x0 Gpx 0 , ¨, mpT qq| `CM T,
where C M depends on M , as well as on }a} n and the regularity of H.

Proof. We can estimate pv l , ρ l q and pv l 1 , ρ l 1 q and µ l,l 1 -and therefore Rl,l 1 1 and Rl,l 1 2 -exactly as in the previous Corollary. Moreover, as the w l,l 1 solve a HJ with the same diffusion and the same drift term, we can use Proposition A.7 to bound the sum p

ř l,l 1 |D r x w l,l 1 pt, xq| 2 q 1{2 : sup t,x ´ÿ l,l 1 |D r x w l,l 1 pt, xq| 2 ¯1{2 ď sup x ´ÿ l,l 1 p|D r x B l`l 1 x0 Gpx 0 , ¨, mpT qq| `CM T q 2 ¯1{2 `CM T,
which gives the required estimate after rearranging.

Estimates on the first order master equation

In this section, we complete our program by proving regularity results for the solutions of the various first order master equations encountered in the previous sections. We mainly consider the first order master 6.1 First order differentiability of U and U 0 Proposition 6.1. For any M ą 0, there exists T M ą 0 and K M ą 0, depending on C 0 and γ and }Da} 8 , and there exists C M ą 0, depending also on n, k P t2, . . . , n ´1u, sup t }aptq} n and the regularity of H such that, if 

}G} n `› › › › δG δm › › › › n´1;k ď M, (69 
sup tPr0,T s › › › › δU δm ptq › › › › n´1;k ď › › › › δG δm › › › › n´1;k `CM T.
Remark 6.2. We show in the proof the following representation: ˆRd δU δm pt 0 , x 0 , x, m 0 , yqρ 0 pdyq " vpt 0 , xq

where pu, mq is the solution of the MFG system (40) and pv, ρq is the solution of the linearized system (45) with right-hand side R 1 " R 2 " R 3 " 0 and with initial condition pt 0 , ρ 0 q. Note that the normalization condition (9) is satisfied because, if one chooses ρ 0 " m 0 , then pv, ρq " p0, mq. 

}R h,1 ptq} n´1 ď C `}u h ptq ´uptq} 2 n `h2 `d2 2 pm h ptq, mptqq ˘,
In the same way, }R h,3 } n´1 ď Cpd 2 2 pm h pT q, mpT qq `h2 q ď Cp}u h pT q ´upT q} 2 n `d2 2 pm h pT q, mpT qq `h2 q.

Finally, for k ě 2, we have We then infer by Proposition 5.4 and the definition of v h that sup tPrt0,T s }u h ptq ´uptq ´hvptq} n´1 ď Cpd 2 2 pp1 ´hqm 0 `hm 1 , m 0 q `h2 q ď Ch 2 .

}R h,
The estimate of ρ h comes from Proposition 5.5 in the same way.

Proof of Proposition 6.1. Proposition 5.4 and the representation formula (66) imply the estimate on }U pt, ¨, mq} n . Let us now show that the map U given by ( 66) is differentiable with respect to m. Fix x 0 P R d0 , pt 0 , m 0 q, pt 0 , m 1 q P r0, T q ˆP2 , let pu, mq, pu h , m h q and pv, ρq be as in Lemma 6.3 with ξ " 0, so R 1 " R 2 " R 3 " 0. Then sup tPrt0,T s }u h ptq ´uptq ´hvptq} n´1 ď ophq.

Taking t " t 0 , this implies that }U pt 0 , x 0 , ¨, p1 ´hqm 0 `hm 1 q ´U pt 0 , x 0 , ¨, m 0 q ´hvpt 0 , ¨q} n´1 ď ophq.

So, if we choose m 1 " δ y for a fixed y P R d , we have just proved that the map Û ph; m 0 , yq " U pt 0 , x 0 , x, p1 ´hqm 0 `hδ y q has a derivative at h " 0 and that this derivative is given by vpt 0 , xq. Note that the map pm 0 , yq Þ Ñ vpt 0 , x; m 0 , yq is continuous and bounded thanks to the estimates in Proposition 5.5 and the uniqueness of the solution. So we can apply Lemma B.1 which says that U is C 1 in m with vpt 0 , xq " δU δm pt 0 , x 0 , x, m 0 , yq.

Then by linearity and continuity one easily checks that (70) and the normalization condition (9) hold. A similar argument applies to derivatives of δU δm with respect to x. Next we check that U solves (65). Let us start with mpt 0 q " m 0 with a smooth density. Then pu, mq is a classical solution and, as U pt, x 0 , x, mptqq " upt, xq @pt, xq P rt 0 , T s ˆRd , we have, for any h ą 0 and in view of the equation for m: upt 0 `h, xq ´upt 0 , xq " U pt 0 `h, x 0 , x, mpt 0 `hqq ´U pt 0 , x 0 , x, mpt 0 qq " ˆt0`h t0 ˆRd δU δm pt 0 `h, x 0 , x, mptq, yqB t mpt, yqdydt `U pt 0 `h, x 0 , x, mpt 0 qq ´U pt 0 , x 0 , x, mpt 0 qq " ´ˆt0`h t0 ˆRd D m U pt 0 `h, x 0 , x, mptq, yq ¨Hp px 0 , y, D x upt, yq, mptqqmpt, yqdydt

`ˆt0`h t0 ˆRd Trpapt, yqD 2 ym U pt, x 0 , x, m, yqq mpdyqdt
`U pt 0 `h, x 0 , x, mpt 0 qq ´U pt 0 , x 0 , x, mpt 0 qq. 

So

U pt 0 `h, x 0 , x, m 0 q ´U pt 0 , x 0 , x, m 0 q " ˆt0`h t0 ˆRd D m U pt 0 `h, x 0 , x, mptq, yq ¨Hp px 0 , y, D x U pt, x 0 , y, mptqq, mptqqmpt, yqdydt

´ˆt0`h t0 ˆRd Trpapt, yqD 2 ym U pt, x 0 , x, m, yqq mpdyqdt `ˆt0`h t0 ´´Trpapt, xqD 2 xx U pt, x 0 , x, mptqqq `Hpx 0 , x, D x U pt, x 0 , x, mptqq, mptqq ¯dt.
Therefore U has a time-derivative at pt 0 , x 0 , x, m 0 q and B t U pt 0 , x 0 , x, m 0 q " ˆRd D m U pt 0 , x 0 , x, m 0 , yq ¨Hp px 0 , y, D x U pt 0 , x 0 , y, m 0 q, m 0 qqm 0 pyqdy ´ˆR d Trpapt 0 , yqD 2 ym U pt 0 , x 0 , x, m, yqq mpdyq ´Trpapt 0 , xqD 2 xx U pt 0 , x 0 , x, m 0 qq `Hpx 0 , x, D x U pt, x 0 , x, m 0 q, m 0 q.

This shows that U satisfies (65) at any point pt 0 , x 0 , x, m 0 q where m 0 has a smooth density. The general case can be treated by a density argument, since the right-hand side of the above equation is continuous in pt 0 , x 0 , x, m 0 q.

Let us now explain the estimates on δU δm . In view of (69), (70) and Proposition 5.5, we have, for any r ď n ´1,

› › ›D r x δU δm pt 0 , x 0 , ¨, m 0 qpρ 0 q › › › 8 " }D r x vpt 0 , x 0 , ¨q} 8 ď p1 `CM T q}D r x δG δm px 0 , ¨, mpT q, ¨q} 0;k }ρ 0 } ´k `CM T }ρ 0 } ´k.
Taking the sup over ρ 0 with }ρ 0 } ´k ď 1, x 0 P R d0 , summing over r ď n ´1 and then taking the sup over t, m gives the estimate on δU δm . Notice that the estimate given by Proposition 5.5 depends on sup t }uptq} n (we use here that k ď n ´1); but this latter term is estimated in terms of M only, because of Proposition 5.4 and since }Gpx 0 , ¨, mq} n ď M . Proposition 6.5. Under the assumptions of Proposition 6.1, let M, T M , C M ą 0 be given accordingly. Assume, in addition, that T P p0, T M s and

sup x0,m ˇˇG 0 px 0 , mq ˇˇ`ˇˇD x0 G 0 px 0 , mq ˇˇ`› › › › δG 0 δm px 0 , m, ¨q› › › › n´1;k `}D x0 Gpx 0 , ¨, mq} n´1 ď M. (74) 
Then, the map U 0 defined by (68) is a classical solution to (67). In addition, U 0 and U are differentiable with respect to x 0 and satisfy

sup t › › ›pU 0 , U qptq › › › n ď › › ›pG 0 , Gq › › › n `CM T. ( 75 
) sup t › › ›Dx 0 pU 0 , U qptq › › › n´1 ď › › ›pDx 0 G 0 , D x0 Gq › › › n´1 `CM T. (76) 
and

sup t › › › δpU 0 , U q δm ptq › › › n´1;k ď › › › δpG 0 , Gq δm › › › n´1;k `CM T. (77) 
As we will see in the proof, it is possible to estimate U 0 and U separately. However we will need the specific form of the estimate in the analysis of the MFG problem with a major player.

Proof. Differentiability of U with respect to x 0 can be checked as for its differentiability with respect to m: let ξ be any unit vector of R d0 , pu, mq, pu h , m h q and pv, ρq be as in Lemma 6.3 with m 1 " m 0 . Then, by Proposition 5.5 and the fact that

sup t }R 1 ptq} n´1 `sup t }R 2 ptq} ´pk´1q ď C, }R 3 } n´1 ď sup x0,m }G x0 px 0 , ¨, mpT qq} n´1 (78) 
one has }U pt 0 , x 0 `hξ, ¨, m 0 q ´U pt 0 , x 0 , ¨, m 0 q ´hvpt 0 , ¨q} n´1 ď ophq, and so

U x0 pt 0 , x 0 , x, m 0 q ¨ξ " vpt 0 , xq. (79) 
To show the differentiability of U 0 with respect to m we proceed as in the proof of Proposition 6.1. Fix x 0 P R d , pt 0 , m 0 q, pt 0 , m 1 q P r0, T q ˆP2 , let pu, mq, pu h , m h q and pv, ρq be as in Lemma 6.3 with ξ " 0, so R 1 " R 2 " R 3 " 0. Then sup tPrt0,T s }ρ h ptq} ´k ď ophq, where ρ h pt, xq " m h pt, xq ´mpt, xq ´hρpt, xq. This inequality and Proposition 5.4 imply ˇˇG 0 px 0 , m h pT qq ´G0 px 0 , mpT qq ´h δG 0 δm px 0 , mpT qqpρpT qq ˇˇď ˇˇδ G 0 δm px 0 , mpT qqpρ h pT qq ˇ1 0 ˆRd ˆδG 0 δm px 0 , p1 ´τ qmpT q `τ m h pT q, yq ´δG 0 δm px 0 , mpT q, yq ˙pm h ptq ´mptqqpdyq dτ ˇď opd 2 pm h pT q, mpT qq `hq ď ophq. (80)

For y P R d choose now m 1 " δ y , then ˇˇU 0 pt 0 , x 0 , p1 ´hqm 0 `hδ y q ´U 0 pt 0 , x 0 , m 0 q ´h δG 0 δm px 0 , mpT qqpρpT qq ˇˇď ophq.

Note that ρ 0 Þ Ñ ρpT q is linear and continuous as a map from C ´k onto itself. Apply then Lemma B.1 to get that U 0 is C 1 in m with δU 0 δm pt 0 , x 0 , m 0 , yq " δG 0 δm px 0 , mpT qqpρpT qq.

Moreover, one can check as in the proof of Proposition 6.1 that U 0 solves (67) (here it is even simpler, and based on the fact that by definition of U 0 , U 0 pt 0 `h, x 0 , mpt 0 `hqq ´U 0 pt 0 , x 0 , mpt 0 qq " 0). Concerning the differentiability of U 0 with respect to x 0 , let ξ be any unit vector of R d , pu, mq, pu h , m h q and pv, ρq be as in Lemma 6.3 with m 1 " m 0 . Then, ˇˇG 0 py 0 `ξh, m h pT qq ´G0 py 0 , mpT qq ´hG 0 x0 py 0 , mpT qq ¨ξ ´h δG 0 δm py 0 , mpT qqpρpT qq ˇˇď ˇˇG 0 py 0 `ξh, m h pT qq ´G0 py 0 , m h pT qq ´hG 0 x0 py 0 , m h pT qq ¨ξˇˇh ˇˇG 0 x0 py 0 , m h pT qq ´G0 x0 py 0 , mpT qq ˇˇG 0 py 0 , m h pT qq ´G0 py 0 , mpT qq ´h δG 0 δm py 0 , mpT qqpρpT qq ˇˇˇ.

The third term of this inequality can be treated as in (80). Therefore, ˇˇU 0 pt 0 , y 0 `ξh, m 0 q ´U 0 pt 0 , y 0 , m 0 q ´hG 0 x0 py 0 , mpT qq ¨ξ ´h δG 0 δm py 0 , mpT qqpρpT qq ˇˇď ophq, hence it follows that D x0 U 0 pt 0 , x 0 , m 0 q ¨ξ " G 0 x0 px 0 , mpT qq ¨ξ `δG 0 δm px 0 , mpT qqpρpT qq .

We now prove the estimates. By Proposition 5.1 and the representation formulas (66) and (68), we have, for any x 0 P R d0 , m P P 2 and r ď n,

|U 0 pt, x 0 , mq| 2 `|D r x U pt, x 0 , x, mq| 2 " |G 0 px 0 , mpT qq| 2 `|D r x upt, xq| 2 ď |G 0 px 0 , mpT qq| 2 `psup x |D r x Gpx 0 , x, mpT qq| `CM T q 2 ď ´`|G 0 px 0 , mpT qq| 2 `sup x |D r x Gpx 0 , x, mpT q| 2 ˘1{2 `CM T ¯2,
(where we used that x 2 `py `zq 2 ď ppx 2 `y2 q 1{2 `zq 2 for nonnegative reals x, y, z) which gives (75).

Next we prove (76). For |l| " 1, l P N d0 , we represent B l x0 U 0 and B l x0 U by ( 82) and (79) respectively, where pv l , ρ l q is as in Lemma 6.3 with ξ " e l , m 1 " m 0 (so that ρ l 0 " 0). Then we have, for r ď n ´1,

ÿ |l|"1 |B l x0 U 0 pt, x 0 , mq| 2 `|D r x B l x0 U pt, x 0 , x, mq| 2 " ÿ |l|"1 ˇˇB l x0 G 0 px 0 , mpT qq `δG 0 δm px 0 , mpT qqpρ l pT qq ˇˇ2 `|D r x v l pt, xq| 2
Note that sup t }ρptq} ´k ď C M T by Proposition 5.6. As the v l solve HJ equations with the same diffusion and the same drift, Proposition A.7, (74) and (78) imply that

sup x ´ÿ |l|"1 |D r v l | 2 ¯1{2 ď p1 `CT q sup x ´ÿ |l|"1 |D r v l pT q| 2 ¯1{2 `CM T ď p1 `CT q sup x ´ÿ |l|"1 p}D r x δG δm px 0 , ¨, mpT q, ¨q} 0;k }ρpT q} ´k `|D r x B l x0 Gpx 0 , x, mpT qq|q 2 ¯1{2 `CM T ď sup x ´ÿ |l|"1 p|D r x B l x0 Gpx 0 , x, mpT qq| `CM T q 2 ¯1{2 `CM T ď sup x p ÿ |l|"1 |D r x B l x0 Gpx 0 , x, mpT qq| 2 q 1{2 `CM T, while ÿ |l|"1 |B l x0 U 0 pt, x 0 , mq| 2 ď ÿ |l|"1 ´|B l x0 G 0 px 0 , mpT qq| `| δG 0 δm px 0 , mpT qqpρ l pT qq| ¯2 ď ÿ |l|"1 p|B l x0 G 0 px 0 , mpT qq `CM T q 2 ď
´`ÿ

|l|"1 |B l x0 G 0 px 0 , mpT qq| 2 ˘1{2 `CM T ¯2.
Using that ppx `zq 2 `py `zq 2 q 1{2 ď px 2 `y2 q 1{2 `?2z, we obtain

sup x ¨ÿ |l|"1 |B l x0 U 0 pt, x 0 , mq| 2 `|D r x B l x0 U pt, x 0 , x, mq| 2 '1{2 ď sup x ´ÿ |l|"1 ˇˇB l x0 G 0 px 0 , mpT qq ˇˇ2 `|D r x B l x0 Gpx 0 , x, mpT qq| 2 ¯1{2 `CM T,
from which we derive (76), by taking the sup over x 0 , summing over r and finally taking the sup over m. For (77), let pv, ρq be as in Lemma 6.3 with m 1 ´m0 " ρ 0 P C ´k and ξ " 0, as in (81) and (70). We have, for any r ď n ´1, ˇˇδ U 0 δm pt, x 0 , mqpρ 0 q ˇˇ2 `ˇˇD r x δU δm pt, x 0 , x, mqpρ 0 q ˇˇ2 " ˇˇδ G 0 δm px 0 , mpT qqpρpT qq ˇˇ2 `|D r x vpt, xq| 2 .

So again by Proposition 5.5,

ˇˇδ U 0 δm pt, x 0 , mqpρ 0 q ˇˇ2 `ˇˇD r x δU δm pt, x 0 , x, mqpρ 0 q ˇˇ2 ď ˇˇδ G 0 δm px 0 , mpT qqpρpT qq ˇˇ2 `´sup x ˇˇD r x δG δm px 0 , ¨, mpT qqpρpT qq ˇˇ`CM T }ρpT q} ´k¯2 ď « sup x 1 }ρpT q} ´k ˆˇˇδ G 0 δm px 0 , mpT qqpρpT qq ˇˇ2 `ˇˇD r x δG δm px 0 , x, mpT qqpρpT qq ˇˇ2 ˙1{2 `CM T ff 2 }ρpT q} 2 ´k ď p1 `CM T q 2 « sup x,}ρ} ´k "1 ˆˇˇδ G 0 δm px 0 , mpT qqpρq ˇˇ2 `ˇˇD r x δG δm px 0 , x, mpT qqpρq ˇˇ2 ˙1{2 `CM T ff 2 }ρ 0 } 2 ´k,
This gives (77).

6.2 Second order differentiability of U and U 0 Proposition 6.6. Let U be the solution of (65) given by (66). Let n ě 3 and k P t2, . . . , n´1u. Suppose, in addition to the assumptions of Proposition 6.1, that G is of class C 2 and that } δ 2 G δm 2 px 0 , ¨, m, ¨, ¨q} n´2;k´1,k´1 ď M . Then there exists T M ą 0 (depending on M and on the data but not on G) such that, if T P p0, T M s, the map U is C 2 with respect to the measure variable and the parameter x 0 , and satisfies

sup tPr0,T s } δ 2 U δm 2 ptq} n´2;k´1,k´1 ď } δ 2 G δm 2 } n´2;k´1,k´1 `CM T.
Proof. Our first goal is to show that δU {δm is differentiable with respect to m. Let pt 0 , m 0 q P r0, T q ˆP2 , y, y 1 P R d and

• pu, mq (respectively pu h , m h q) be the solution of the MFG system (40) with initial condition pt 0 , m 0 q (respectively pt 0 , p1 ´hqm 0 `hδ y 1 q),

• pv, ρq (respectively pv 1 , ρ 1 q) be the solution of the first order linearized system (45) with zero righthand side, initial condition pt 0 , δ y q (respectively pt 0 , δ y 1 q) and where the Hamiltonian and its derivatives are evaluated at px 0 , x, Dupt, xq, mptqq,

• pṽ h , ρh q be the solution to the first order linearized system (45) with zero right-hand side, with initial condition pt 0 , δ y q and where the Hamiltonian and its derivatives are evaluated at px 0 , x, Du h pt, xq, m h ptqq,

• pw, µq be the solution to the second order linearized system (56) associated with pu, mq, pv, ρq, pv 1 , ρ 1 q and with right-hand side 0.

Recall (see (70)) that ṽh pt 0 , xq " δU δm pt 0 , x 0 , x, p1 ´hqm 0 `hδ y 1 , yq, vpt 0 , xq " δU δm pt 0 , x 0 , x, m 0 , yq, and v 1 pt 0 , xq " δU δm pt 0 , x 0 , x, m 0 , y 1 q (83) so we expect wpt 0 , ¨q to represent the derivative in m of δU {δm, namely δ 2 U δm 2 pt 0 , x 0 , x, m 0 , y, y 1 q. We consider pv h , ρh q :" pṽ h , ρh q ´pv, ρq ´hpw, µq. Let us first note that, by Proposition 5.4, we have sup tPrt0,T s ´}ũ h pt, xq ´upt, xq} n´1 `d2 pm h ptq, mptqq ¯ď Cd 2 pp1 ´hqm 0 `hδ y 1 , m 0 q ď Ch.

(

Next we claim that sup tPrt0,T s }ṽ h pt, xq ´vpt, xq} n´2 `}ρ h ptq ´ρptq} ´pk´1q ď Ch.

Indeed, the pair pṽ h , ρh q´pv, ρq solves the first order linearized system (45), associated with pu, mq, initial condition pt 0 , 0q and with a right-hand side given by R h,1 pt, xq " ´´`H p px 0 , x, Du h , m h ptqq ´Hp px 0 , x, Du, mptqq ˘¨Dṽ h ``δH δm px 0 , x, Du h , m h ptqq ´δH δm px 0 , x, Du, mptqq ˘pρ h ptqq Rh,2 pt, xq "ρ h pH p px 0 , x, Du h , m h ptqq ´Hp px 0 , x, Du, mptqqq

`pm h H pp px 0 , x, Du h , m h q ´mH pp px 0 , x, Du, mqq ¨Dṽ h `´m h δH p δm px 0 , x, Du h , m h q ´m δH p δm px 0 , x, Du, mq ¯pρ h q R h,3 pt, xq " ˆδG δm px 0 , x, m h pT qq ´δG δm px 0 , x, mpT qq ˙pρ h pT qq.
Applying Proposition 5.5 and using (84) we infer that (85) holds.

In view of the equations satisfied by pṽ h , ρh q, pv, ρq and pw, µq, the pair pv h , ρh q solves the first order linearized system (45), associated with pu, mq, initial condition pt 0 , 0q and with R h,1 pt, xq "

´"`H p px 0 , x, Du h , m h ptqq ´Hp px 0 , x, Du, mptqq ˘¨Dṽ h ´hH pp px 0 , x, Du, mptqqDv ¨Dv 1 ´h δH p δm px 0 , x, Du, mptqqpρ Then Proposition 5.5 and the representation formula (83) implies that } δU δm pt 0 , x 0 , ¨, p1 ´hqm 0 `hδ y 1 , yq ´δU δm pt 0 , x 0 , ¨, m 0 , yq ´hwpt 0 , ¨q} n´2

" }ṽ h pt 0 , ¨q ´vpt 0 , ¨q ´hwpt 0 , ¨q} n´2 ď sup

t }v h ptq} n´2 ď Ch 2 .
Note that we also have sup

tPrt0,T s }ρ h ptq ´ρptq ´hµptq} ´k ď Ch 2 . (87) 
Hence, we can apply Lemma B.1 as in the proof of Proposition 6.1 and infer that δU {δm has a derivative in m given by w: δ 2 U δm 2 pt 0 , x 0 , x, m 0 , y, y 1 q " wpt 0 , xq. If, in general, w is the solution to the second order linearized system (56) associated with pv, ρq, pv 1 , ρ 1 q (having initial data pt 0 , ρ 0 q and pt 0 , ρ 1 0 q respectively) and with R i " 0, Ri " 0, i " 1, . . . 3, then by a linearity argument one may also conclude that ˆRd δ 2 U δm 2 pt 0 , x 0 , x, m 0 , y, y 1 qρ 0 pdyqρ 1 0 pdy 1 q " wpt 0 , xq.

Thus, the estimate on δ 2 U δm 2 follows from Corollary 5.8, which gives

} δ 2 U δm 2 pt 0 , x 0 , ¨, m 0 , ¨, ¨q} n´2;k´1,k´1 ď } δ 2 G δm 2 px 0 , ¨, mpT q, ¨, ¨q} n´2;k´1,k´1 `CM T , (89) 
using the fact that sup t }ρptq} ´pk´1q ď p1 `CM T q }ρ 0 } ´pk´1q and that the same holds for ρ 1 .

Next we discuss the second order regularity of U and U 0 with respect to m and x 0 .

Proposition 6.7. Let U 0 and U be the solutions of (67) and (65) respectively. Suppose, in addition to the assumptions of Propositions 6.5 and 6.6, that we have

› › ›D 2 x0 pG 0 , Gq › › › n´2 `› › ›Dx 0 δpG 0 , Gq δm › › › n´2;k´1 `› › › › δ 2 pG 0 , Gq δm 2 › › › › n´2;k´1,k´1 ď M.
Then there exists T M ą 0 (depending on M and on the data but not on G) such that, if T P p0, T M s, the maps U 0 and U are C 2 with respect to the measure variable and x 0 , and

sup t › › ›D 2 x0 pU 0 , U qptq › › › n´2 ď › › ›pD 2 x0 G 0 , D 2 x0 Gq › › › n´2 `CM T, sup t › › ›Dx 0 δpU 0 , U q δm ptq › › › n´2;k´1 ď › › ›Dx 0 δpG 0 , Gq δm › › › n´2;k´1 `CM T.
Moreover,

sup t › › › › δ 2 pU 0 , U q δm 2 ptq › › › › n´2;k´1,k´1 ď › › › › δ 2 pG 0 , Gq δm 2 › › › › n´2;k´1,k´1
`CM T.

Proof.

Step 1. The differentiability of δU {δm with respect to x 0 can be achieved exactly as for its differentiability with respect to m in Proposition 6.6. For any direction ξ P R d0 , let

• pu, mq (respectively pu h , m h q) be the solution of the MFG system (40) with initial condition pt 0 , m 0 q and parameters x 0 and x 0 `hξ respectively,

• pv, ρq (respectively pv 1 , ρ 1 q) be the solution of the first order linearized system (45) with zero righthand side (respectively right-hand side as in (71)), initial condition pt 0 , δ y q (respectively pt 0 , 0q) and where the Hamiltonian and its derivatives are evaluated at px 0 , x, Dupt, xq, mptqq,

• pṽ h , ρh q be the solution to the first order linearized system (45) with zero right-hand side, with initial condition pt 0 , δ y q and where the Hamiltonian and its derivatives are evaluated at px 0 hξ, x, Du h pt, xq, m h ptqq,

• pw, µq be the solution to the second order linearized system (56) associated with pv, ρq, pv 1 , ρ Then we find δUx 0 δm pt 0 , x 0 , x, m 0 , yq ¨ξ " wpt 0 , xq, and if one replaces δ y by an arbitrary ρ 0 P C ´pk´1q as the initial datum for ρ, the following representation holds: δU x0 δm pt 0 , x 0 , x, m 0 qpρ 0 q ¨ξ " wpt 0 , xq.

Step 2. The second order differentiability of U with respect to x 0 can be checked in a similar way: let pu, mq and pu h , m h q be as before,

• pv, ρq, pṽ h , ρh q be the solutions of the first order linearized system (45) with right-hand side as in (71), initial condition pt 0 , 0q, and Hamiltonian and its derivatives evaluated at px 0 , x, Dupt, xq, mptqq and px 0 `hξ, x, Du h pt, xq, m h ptqq respectively,

• pw, µq be the solution to the second order linearized system (56) associated with pv, ρq, pv 1 , ρ 1 q " pv, ρq (and pu, mq), and with right-hand side R1 , R2 , R3 given by (64).

Then we find D 2 x0 U pt 0 , x 0 , x, m 0 qξ ¨ξ " wpt 0 , xq.

Step 3. We now prove the regularity of U 0 . To show that δU 0 {δm is differentiable with respect to m, let pt 0 , m 0 q P r0, T q ˆP2 , y, y 1 P R d and • pu, mq (respectively pu h , m h q) be the solution of the MFG system (40) with initial condition pt 0 , m 0 q (respectively pt 0 , p1 ´hqm 0 `hδ y 1 q),

• pv, ρq (respectively pv 1 , ρ 1 q) be the solution of the first order linearized system (45) with zero righthand side, initial condition pt 0 , δ y q (respectively pt 0 , δ y 1 q) and where the Hamiltonian and its derivatives are evaluated at px 0 , x, Dupt, xq, mptqq,

• pṽ h , ρh q be the solution to the first order linearized system (45) with zero right-hand side, with initial condition pt 0 , δ y q and where the Hamiltonian and its derivatives are evaluated at px 0 , x, Du h pt, xq, m h ptqq,

• pw, µq be the solution to the second order linearized system (56) associated with pv, ρq, pv 1 , ρ 1 q (and pu, mq), and with right-hand side 0, as in the proof of differentiability of δU {δm with respect to m in Proposition 6.6. Note that δU 0 δm pt 0 , x 0 , p1 ´hqm 0 `hδ y 1 , yq " δG 0 δm px 0 , m h pT qqpρ h pT qq, δU 0 δm pt 0 , x 0 , m 0 , yq " δG 0 δm px 0 , mpT qqpρpT qq.

Therefore, using (86) and ( 87) ˇˇδ G 0 δm px 0 , m h pT qqpρ h pT qq ´δG 0 δm px 0 , mpT qqpρpT qq ´h´δ2 G 0 δm 2 px 0 , mpT qqpρpT q, ρ 1 pT qq `δG 0 δm px 0 , mpT qqpµpT qq ¯ˇˇď Ch 2 .

Lemma B.1 then implies that δU 0 δm pt 0 , x 0 , ¨, yq has a derivative, and by linearity, if µ is the solution to the second order linearized system (56) associated with pv, ρq, pv 1 , ρ 1 q (that in turn have initial data pt 0 , ρ 0 q and pt 0 , ρ 1 0 q respectively and with zero right-hand side), then ˆRd δ 2 U 0 δm 2 pt 0 , x 0 , m 0 , y, y 1 qρ 0 pdyqρ 1 0 pdy 1 q " δ 2 G 0 δm 2 px 0 , mpT qqpρpT q, ρ 1 pT qq `δG 0 δm px 0 , mpT qqpµpT qq. (92)

Hence, by the representation formula (88) for δ 2 U {δ 2 m, Proposition 5.5, 5.6 and Corollary 5.8, we have, for r ď n ´2,

ˇˇδ 2 U 0 δm 2 pt, x 0 , m 0 qpρ 0 , ρ 1 0 q ˇˇ2 `ˇˇD r x δ 2 U δm 2 pt, x 0 , x, m 0 qpρ 0 , ρ 1 0 q ˇˇ2 " ´ˇˇδ 2 G 0 δm 2 px 0 , mpT qqpρpT q, ρ 1 pT qq ˇˇ`ˇˇδ G 0 δm px 0 , mpT qqpµpT qq ˇˇ¯2 `|D r x wpt, xq| 2 ď ´ˇˇδ 2 G 0 δm 2 px 0 , mpT qqpρpT q, ρ 1 pT qq ˇˇ`CM T }ρ 0 } ´pk´1q }ρ 1 0 } ´pk´1q ¯2 `´sup x ˇˇDx δ 2 G δm 2 px 0 , x, mpT qqpρpT q, ρ 1 pT qq ˇˇ`CM T }ρ 0 } ´pk´1q }ρ 1 0 } ´pk´1q ¯2 ď ! sup x 1 }ρpT q} ´pk´1q }ρ 1 pT q} ´pk´1q ´ˇˇδ 2 G 0 δm 2 px 0 , mpT qqpρpT q, ρ 1 pT qq ˇˇ2 `ˇˇD r x δ 2 G δm 2 px 0 , x, mpT qqpρpT q, ρ 1 pT qq ˇˇ2 ¯1{2 ˆp1 `CM T q `CM T ) 2 }ρ 0 } 2 ´pk´1q }ρ 1 0 } 2 ´pk´1q ,
(where we use that px `zq 2 `py `zq 2 ď ppx 2 `y2 q 1{2 `2zq 2 , for x, y, z ě 0). Taking the square root, then sup over x 0 , ρ 0 and ρ 1 0 and summing over r ď n ´2 gives the estimate on

› › › δ 2 pU 0 ,U q δm 2 › › › n´2;k´1,k´1
.

Differentiability of δU 0 {δm with respect to x 0 follows analogous lines: pv, ρq, pv 1 , ρ 1 q, pṽ h , ρh q and pw, µq have to be changed according to Step 1. By (90), we have, using the notations of Corollary 5.9 and for any r ď n ´2:

ÿ |l|"1 ˇˇB l x0 δU 0 δm pt 0 , x 0 , m 0 , yqpρ 0 q ˇˇ2 `ˇˇD r x B l x0 δU δm pt, x 0 , x, m 0 qpρ 0 q ˇˇ2 " ÿ |l|"1 ˇˇB l x0 δG 0 δm pρpT qq `δ2 G 0 δm 2 pρpT q, ρ l pT qq `δG 0 δm pµ l pT qq ˇˇ2 `|D r x w l pt, xq| 2 ,
where G 0 and its derivatives are all evaluated at px 0 , mpT qq. We obtain the bounds on p δU 0

x 0 δm , δUx 0 δm q by using Propositions 5.5, 5.6 and Corollary 5.9.

Finally, second order differentiability of U 0 with respect to x 0 , and the corresponding bound, can be obtained similarly: let l, l 1 P R d0 with |l| " |l 1 | " 1, pv l , ρ l q, pv l 1 , ρ l 1 q and pw l,l 1 , µ l,l 1 q be as in Corollary 5.10. Note that

B l`l 1 x0 U 0 pt 0 , x 0 , m 0 q " B l`l 1 x0 G 0 `Bl x0 δG 0 x0 δm pρ l 1 pT qq `Bl 1 x0
δG 0 x0 δm pρ l pT qq `δ2 G 0 δm 2 pρ l pT q, ρ l 1 pT qq `δG 0 δm pµ l,l 1 pT qq, while B l`l 1 x0 U 0 pt 0 , x 0 , m 0 q is given by polarizing the representation formula (91). We can then conclude by Propositions 5.5, 5.6 and Corollary 5.10.

Uniform continuity estimates on second order derivatives

Proposition 6.8. Let U be the solution of (65) given by (66) and n ě 4, k P t3, . . . , n ´1u. Suppose, in addition to the assumptions of Proposition 6.6, that

Lip n´3;k´2,k´2 ˆδ2 G δm 2 ˙ď M. ( 93 
)
Then there exists T M ą 0 (depending on M and on the data but not on G), such that

sup t Lip n´3;k´2,k´2 ˆδ2 U δm 2 ptq ˙ď sup x0 Lip n´3;k´2,k´2 ˆδ2 G δm 2 ˙`C M T.
Proof. We establish for later use a slightly stronger estimate involving the dependence with respect to x 0 . This is used in Proposition 6.9 below. Let pt 0 , m 1 , m 2 q P r0, T s ˆP2 2 and x 1 0 , x 2 0 P R d0 be fixed. We use the representation formula (88) for δ 2 U {δm 2 pt 0 , x 1 0 , m 1 q and δ 2 U {δm 2 pt 0 , x 2 0 , m 2 q. In particular we let, for i " 1, 2,

• pu i , m i q be the solution to the MFG system (40) starting from m i at time t 0 with H (and G) evaluated at px i 0 , x, Du i pt, xq, m i ptqq (and px i 0 , x, m i pT qq) ,

• pv i , ρ i q (respectively pv 1 i , ρ 1 i q) be the solution of the first order linearized system (45) with zero right-hand side, initial condition pt 0 , ρ 0 q (respectively pt 0 , ρ 1 0 q) and where the Hamiltonian and its derivatives are evaluated at px i 0 , x, Du i pt, xq, m i ptqq,

• pw i , µ i q be the solution to the second order linearized system (56) associated with pv i , ρ i q, pv 1 i , ρ 1 i q (and x i 0 , u i , m i ), and with zero right-hand side.

We aim at estimating p w, μq :" pw 1 ´w2 , µ 1 ´µ2 q, since wpt 0 , xq " δ 2 U δm 2 pt 0 , x 1 0 , x, m 1 qpρ 0 , ρ 1 0 q ´δ2 U δm 2 pt 0 , x 2 0 , x, m 2 qpρ 0 , ρ 1 0 q. (94)

We first set pv, ρq :" pv 1 ´v2 , ρ 1 ´ρ2 q and pv 1 , ρ1 q :" pv 1

1 ´v1 2 , ρ 1 1 ´ρ1 2 q.
The pair pv, ρq solves the first order linearized system (45) with zero initial datum, H and its derivatives evaluated at px 1 0 , x, Du 

ď C T `d2 pm 1 , m 2 q `|x 1 0 ´x2 0 | ˘}ρ 0 } ´pk´2q , (96) sup 
t }ρptq} ´pk´1q ď CT `d2 pm 1 , m 2 q `|x 1 0 ´x2 0 | ˘}ρ 0 } ´pk´2q . (97) 
Completely analogous estimates hold for v 1 i , ρ 1 i and their differences v1 , ρ1 . We now proceed by estimating p w, μq, which solves the first order linearized system with zero initial datum, H and its derivatives evaluated at px 1 0 , x, Du Similarly, using also the Lipschitz regularity of δG{δm,

´H2 pp Dv 2 ¨Dv 1 2 `δH 1 p δm pρ 1 q ¨Dv 1 1 ´δH 2 p δm pρ 2 q ¨Dv 1 2 `δH 1 p δm pρ 1 1 q ¨Dv 1 ´δH 2 p δm pρ 1 2 q ¨Dv 2 ¯, R 2 pt, xq :" µ 2 pH 1 p ´H2 p q `pm 1 H 1 pp ´m2 H 2 pp qDw 2 `pm 1 δH 1 p δm ´m2 δH 2 p δm qpµ 2 q `ρ1 H 1 pp Dv 1 1 ´ρ2 H 2 pp Dv 1 2 `ρ1 1 H 1 pp Dv 1 ´ρ1 2 H 2 pp Dv 2 `m1 H 1 ppp Dv 1 Dv 1 1 ´m2 H 2 ppp Dv 2 Dv 1 2 `m1 δ 2 H 1 p δm 2 pρ 1 , ρ 1 1 q ´m2 δ 2 H 2 p δm 2 pρ 2 , ρ 1 2 q `ρ1 δH 1 p δm pρ 1 1 q ´ρ2 δH 2 p δm pρ 1 2 q `ρ1
}R 3 } n´3 ďp1 `CT q › › › δ 2 G δm 2 px 2 0 , m 2 pT qq ´δ2 G δm 2 px 1 0 , m 1 pT qq › › › n´3;k´2,k´2 }ρ 0 } ´pk´2q }ρ 1 0 } ´pk´2q
`CT pd 2 pm 1 , m 2 q `|x 1 0 ´x2 0 |q}ρ 0 } ´pk´2q }ρ 1 0 } ´pk´2q , Then, recalling that w " w 1 ´w2 satisfies (94), we obtain in view of (49) in Proposition 5.5 and for any r ď n ´3,

› › ›D r x δ 2 U δm 2 pt 0 , x 2 0 , m 2 q ´Dr x δ 2 U δm 2 pt 0 , x 1 0 , m 1 q › › › 0;k´2,k´2 (99) 
ď p1 `CM T q › › ›D r x δ 2 G δm 2 px 2 0 , m 2 pT qq ´Dr x δ 2 G δm 2 px 1 0 , m 1 pT qqq › › › 0;k´2,k´2 `CM T pd 2 pm 1 , m 2 q `|x 1 0 ´x2 0 |q.
Choosing x 1 0 " x 2 0 , summing over r ď n ´3 and recalling Proposition 5.4 and (93) then gives the claim. Note that we have also the following inequality for μ " µ 1 ´µ2 , that will be useful in the next proposition:

sup tPrt0,T s }µ 1 ptq ´µ2 ptq} ´k ď CT pd 2 pm 1 , m 2 q `|x 1 0 ´x2 0 |q}ρ 0 } ´pk´2q }ρ 1 0 } ´pk´2q . ( 100 
)
Finally we establish the Lipschitz regularity of the second order derivatives of G 0 and G with respect to x 0 and m. Proposition 6.9. Let U be the solution of (65) given by (66) and U 0 be the solution to (67) given by (68). Suppose that the assumptions of Proposition 6.8 hold and that in addition:

Lip n´3;k´2,k´2 p δ 2 G 0 δm 2 , δ 2 G δm 2 q `Lip n´3;k´2 p δG 0 x0 δm , δG x0 δm q `Lip n´3 pD 2 x0 G 0 , D 2 x0 Gq ď M and Lip x0 n´3;k´2,k´2 p δ 2 G 0 δm 2 , δ 2 G δm 2 q `Lip x0 n´3;k´2 p δG 0 x0 δm , δG x0 δm q `Lip x0 n´3 pD 2 x0 G 0 , D 2 x0 Gq ď M ,
for some n ě 4 and k P t3, . . . , n ´1u. Then 

sup t Lip n´3;k´2,k´2 p δ 2 U 0 ptq δm 2 , δ 2 U ptq δm 2 q ď Lip n´3;k´2,k´2 p δ 2 G 0 δm 2 , δ 2 G δm 2 q `CM T, sup t Lip x0 n´3;k´2,k´2 p δ 2 U 0 ptq δm 2 , δ 2 U ptq δm 2 q ď Lip x0 n´3;k´2,k´2 p δ 2 G 0 δm 2 , δ 2 G δm 2 q `CM
Lip n´3 pD 2 x0 U 0 ptq, D 2 x0 U ptqq ď Lip n´3 pD 2 x0 G 0 , D 2 x0 Gq `CM T, Lip x0 n´3 pD 2 x0 U 0 ptq, D 2 x0 U ptqq ď Lip x0 n´3 pD 2 x0 G 0 , D 2 x0 Gq `CM T.
Proof. We will detail only the proof of Lipschitz estimates of pδ 2 U 0 {δm 2 , δ 2 U {δm 2 q. Lipschitz regularity of δU 0 x0 {δm and D 2 x0 U 0 , δU x0 {δm and D 2 x0 U can be proven by following identical lines using the representation formulas that appear in the proof of Proposition 6.7.

Let us start with δ 2 U 0 {δm 2 . Let pt 0 , m 1 , m 2 q P r0, T s ˆP2 2 and x 1 0 , x 2 0 P R d be fixed. Let also, as in the proof of the previous Proposition 6.7, for i " 1, 2

• pu i , m i q be the solution to the MFG system (40) starting from m i at time t 0 with H (and G) evaluated at px i 0 , x, Du i pt, xq, m i ptqq (and px i 0 , x, m i pT qq ), • pv i , ρ i q (respectively pv 1 i , ρ 1 i q) be the solution of the first order linearized system (45) with zero right-hand side, initial condition pt 0 , ρ 0 q (respectively pt 0 , ρ 1 0 q) and where the Hamiltonian and its derivatives are evaluated at px i 0 , x, Du i pt, xq, m i ptqq, • pw i , µ i q be the solution to the second order linearized system (56) associated with pv i , ρ i q, pv 1 i , ρ 1 i q (and pu i , m i q), and with zero right-hand side.

Recall that (92) provides a representation formula for δ 2 U 0 {δm 2 , that is

δ 2 U 0 δm 2 pt 0 , x i 0 , m i qpρ 0 , ρ 1 0 q " δ 2 G 0 δm 2 px i 0 , m i pT qqpρ i pT q, ρ 1 i pT qq `δG 0 δm px i 0 , m i pT qqpµ i pT qq,
and δ 2 U δm 2 pt 0 , x i 0 , x, m i qpρ 0 , ρ 1 0 q " w i pt 0 , xq. Let us recall the following inequalities sup tPrt0,T s

d 2 pm 1 ptq, m 2 ptqq ď p1 `CT qd 2 pm 1 0 , m 2 0 q `CT |x 1 0 ´x2 0 |, sup tPrt0,T s }ρ i ptq} ´pk´2q ď p1 `CT q }ρ 0 } ´pk´2q , sup tPrt0,T s }ρ 1 i ptq} ´pk´2q ď p1 `CT q }ρ 1 0 } ´pk´2q , sup tPrt0,T s }ρ 1 ptq ´ρ2 ptq} ´pk´1q ď CT `d2 pm 1 , m 2 q `|x 1 0 ´x2 0 | ˘}ρ 0 } ´pk´2q , sup tPrt0,T s }ρ 1 1 ptq ´ρ1 2 ptq} ´pk´1q ď CT `d2 pm 1 , m 2 q `|x 1 0 ´x2 0 | ˘}ρ 1 0 } ´pk´2q , sup tPrt0,T s }µ i ptq} ´pk´1q ď CT }ρ 0 } ´pk´2q }ρ 1 0 } ´pk´2q , sup tPrt0,T s }µ 1 ptq ´µ2 ptq} ´k ď CT pd 2 pm 1 , m 2 q `|x 1 0 ´x2 0 |q}ρ 0 } ´pk´2q }ρ 1 0 } ´pk´2q ,
that are consequences of Proposition 5.4, (95), (97), ( 98) and (100) respectively. Setting θ T :" CT pd 2 pm 1 , m 2 q `|x 1 0 ´x2 0 |q}ρ 0 } ´pk´2q }ρ 1 0 } ´pk´2q , we obtain, using (99) also, for any r ď n ´3,

ˇˇ´δ 2 U 0 δm 2 pt, x 1 0 , m 1 q ´δ2 U 0 δm 2 pt, x 2 0 , m 2 q ¯pρ 0 , ρ 1 0 q ˇˇ2 `sup x ˇˇD r x ´δ2 U δm 2 pt, x 1 0 , x, m 1 q ´δ2 U δm 2 pt, x 2 0 , x, m 2 q ¯pρ 0 , ρ 1 0 q ˇˇ2 ď p1 `CT q !ˇˇˇδ2 G 0 δm 2 px 1 0 , m 1 pT qqpρ 1 pT q, ρ 1 1 pT qq ´δ2 G 0 δm 2 px 2 0 , m 2 pT qqpρ 1 pT q, ρ 1 1 pT qq ˇˇ`θT ) 2 `p1 `CT q ! sup x ˇˇD r x δ 2 G δm 2 px 1 0 , x, m 1 pT qqpρ 1 pT q, ρ 1 1 pT qq ´Dr x δ 2 G δm 2 px 2 0 , x, m 2 pT qqpρ 1 pT q, ρ 1 1 pT qq ˇˇ`θT ) 2 .
Choosing m 1 " m 2 " m and rearranging gives the Lipschitz estimates in x 0 :

ˇˇ´δ 2 U 0 δm 2 pt, x 1 0 , mq ´δ2 U 0 δm 2 pt, x 2 0 , mq ¯pρ 0 , ρ 1 0 q ˇˇ2 `sup x ˇˇD r x ´δ2 U δm 2 pt, x 1 0 , x, mq ´δ2 U δm 2 pt, x 2 0 , x, mq ¯pρ 0 , ρ 1 0 q ˇˇ2 ď p1 `CT q !´ˇˇˇδ2 G 0 δm 2 px 1 0 , m 1 pT qqpρ 1 pT q, ρ 1 1 pT qq ´δ2 G 0 δm 2 px 2 0 , m 1 pT qqpρ 1 pT q, ρ 1 1 pT qq ˇˇ2s up x ˇˇD r x δ 2 G δm 2 px 1 0 , x, m 1 pT qqpρ 1 pT q, ρ 1 1 pT qq ´Dr x δ 2 G δm 2 px 2 0 , x, m 1 pT qqpρ 1 pT q, ρ 1 1 pT qq ˇˇ2 ¯1{2 CT |x 1 0 ´x0 |}ρ 0 } ´pk´2q }ρ 1 0 } ´pk´2q ) 2 ,
for some constant c d only depending on the dimension d. In particular, by maximum principle we estimate }v} L 8 pQ T q ď }Dg} 2

L 8 pQ T q `T " 2C 0 }Du} L 8 pQ T q p1 `}Du} γ L 8 pQ T q q `cd }Da} 2 8 C 0 }Du} 2 L 8 pQ T q ı (103) which implies }v} L 8 pQ T q ď }Dg} 2 L 8 pQ T q `4T 2 C 2 0 `1 4 }Du} 2 L 8 pQ T q `Ĉ T }Du} 2 L 8 pQ T q " }Du} γ´1 L 8 pQ T q `1ı (104) 
for some Ĉ only depending on d and C 0 . Recall that }v} L 8 pQ T q " }Du} 2 L 8 pQ T q , and define T M as

T M " min # 1 2C 0 M, 1 4 Ĉp1 `p2M q γ´1 q + .
Then it is easy to see that }Du}

L 8 pQ T q ď 2M @T ď T M . (105) 
Indeed, for T ă T M and }Du} L 8 pQ T q ď 2M , (104) implies

}Du} 2 L 8 pQ T q ď }Dg} 2 L 8 pQ T q `4T 2 M C 2 0 `1 4 }Du} 2 L 8 pQ T q `Ĉ T M }Du} 2 L 8 pQ T q " p2M q γ´1 `1‰ ă }Dg} 2 L 8 pQ T q `M 2 `1 2 }Du} 2 L 8 pQ T q hence }Du} L 8 pQ T q ă 2M
whenever T ă T M and }Du} L 8 pQ T q ď 2M . A continuity argument implies that sup tT : }Du} L 8 pQ T q ď 2M u " T M so (105) holds true. Using this information, we deduce from (103) that

}Du} 2 L 8 pQ T q ď }Dg} 2 L 8 pQ T q `CM T }Du} L 8 pQ T q
where C M " 2C 0 p1 `p2M q γ q `cd }Da} 2 8 C 0 2M . Hence

ˆ}Du} L 8 pQ T q ´1 2 C M T ˙2 ď }Dg} 2 L 8 pQ T q `1 4 C 2 M T 2 which implies }Du} L 8 pQ T q ď C M T `}Dg} L 8 pQ T q .
Proposition A. u ijk pt, xq ´pa lm q ijk u lm `pa lm q ij u klm `pa lm q ik u jlm `pa lm q jk u ilm `pa lm q i u jklm `pa lm q j u iklm `pa lm q k u ijlm u ijk pt, xq ´pa lm q ijk u lm `pa lm q ij u klm `pa lm q ik u jlm `pa lm q jk u ilm `pa lm q i u jklm `pa lm q j u iklm `pa lm q k u ijlm ¯.

(108)

As before, the coercivity of a implies

´2 ÿ i,j,k,l,m a lm pt, xqu ijkl pt, xqu ijkm pt, xq ď ´2C ´1 0 |D 4 u| 2 ,
whereas last term in (108) is estimated as 2 ř i,j,k,l,m u ijk pt, xq ´pa lm q ijk u lm `pa lm q ij u klm `pa lm q ik u jlm `pa lm q jk u ilm `pa lm q i u jklm `pa lm q j u iklm `pa lm q k u ijlm ď 

C ´1 0 |D 4 u| 2 `|D 3 u| `2}D
Proof. The proof is a straightforward combination of Propositions A.1, A.3 and Lemma A.5.

We finally address the same issue for (uncoupled) systems of linear parabolic equations: let pu l q l"1,...,k solve the system " ´Bt u l ´Trpapt, xqD 2 u l q `V pt, xq ¨Du l `f l pt, xq " 0 in p0, T q ˆRd u l pT, xq " g l pxq in R d where a, V and the f l are bounded in C n b independently of t P r0, 1s, for some n P N ˚. Note that the diffusion and the drift terms are independent of l.

Proposition A.7 (Higher order estimate, systems of affine equations). There is a constant C, depending on k, d, sup t }aptq} n and on sup t }V ptq} n , such that, for any T P p0, 1s and for any r ď n,

sup t,x ˜k ÿ l"1 |D r x u l pt, xq| 2 ¸1{2 ď p1 `CT q sup x ˜k ÿ l"1 |D r x g l pxq| 2 ¸1{2 `CT sup l p}g l } r `sup t }f l ptq} r q.
In particular, if k " 1, for any r ď n

sup tPr0,T s }D r x uptq} 8 ď p1 `CT q}D r x g} 8 `CT sup t }D r x f ptq} 8 .
The only small point here is that the supremum over x is outside the sum (and not inside as it would be given by simply applying to each u l the previous Propositions).

Proof. The proof runs exactly along the same lines as before and so we just explain briefly the idea for r " 0. Let us consider vpt, xq "

ř k l"1 pu l pt, xqq 2 . Then v solves ´Bt v ´TrpaD 2 vq `V ¨Dv " ´2 k ÿ l"1 u l f l ´ÿ i,j,l a ij u l i u l j
We infer the result by using the positivity of a and the maximum principle.

A.2 Systems with parameters

In this section we revisit the above estimates for specific systems of Hamilton-Jacobi equations involving a parameter y. The motivation for the specific form of the system is the analysis of the MFG problems with a major player. Note that here the variables-parameter couple px; yq plays the role of px 0 ; xq in the HJ system (32) analyzed throughout Section 4.1. As usual, we discuss linear and nonlinear systems separately.

A.2.1 Nonlinear systems

Here we consider the system consisting in a coupling of a non-linear HJ equation with a linear one:

$ & % ´Bt u 0 pt, xq ´∆u 0 pt, xq `h0 pt, x, Du 0 pt, xqq " 0 in p0, T q ˆRd , ´Bt upt, x; yq ´∆upt, x; yq `h0 p pt, x, Du 0 pt, xqq ¨Dupt, x; yq `f pt, x; yq " 0 in p0, T q ˆRd , u 0 pT, xq " g 0 pxq, upT, xq " gpx; yq in R d ,

where h 0 : r0, T s ˆRd ˆRd Ñ R and f : r0, T s ˆRd ˆRd1 Ñ R (d 1 being the space parameter of the variable y) are smooth maps satisfying in addition the bounds:

|D x,p h 0 pt, x, pq| `|D 2 x,p h 0 pt, x, pq| ď C 0 p|p| γ `1q,

for some γ ą 0 and C 0 ą 0. such that, if }g 0 } r `}g} r,n ď M and T P p0, T M q, and if pu 0 , uq is the solution to (111), then we have, for l ď n, sup t,x,y ´|D r u 0 pt, xq| 2 `|D r x D l y upt, x; yq| 2 ¯1{2 ď sup

x,y ´|D r g 0 pxq| 2 `|D r x D l y gpx; yq| 2 ¯1{2 `CM T.

Let us recall that D r x D l y u " pB β x B α y uq |β|"r,|α|"l , hence |D r x D l y u| 2 " ř |β|"r,|α|"l pB β x B α y uq 2 . Let us also point out that the main difference compared to Proposition A.6 is that we need to estimate u 0 and u at the same time.

Proof. The proof uses the same technique as for a single Hamilton-Jacobi equation without parameter. We explain only the main changes. We first prove the result for l " 0.

By the maximum principle we can first bound |u 0 | 2 `|u| 2 by }pg 0 q 2 `g2 } 8 `CT . Next we address the Lipschitz estimate. We claim that, for any M ą 0 and any n P N, if }Dg 0 } 8 `}D x g} 8 ď M , then there exists T M and C M (depending on M , C 0 , n and γ in (112) only) such that sup t,x,y ´|Du 0 pt, xq| 2 `|D x upt, x; yq| 2 ¯1{2 ď sup

x,y ´|Dg 0 pxq| 2 `|D x gpx; yq| 2 ¯1{2 `CM T p1 `sup t }D x f ptq} 8 q.

To this aim, let us set: vpt, xq "

d ÿ i"1
ppu 0 i q 2 `pu i q 2 q. Then following the computation in the proof of Proposition A.1, we find:

´Bt v ´∆vpt, xq " ´2 ÿ i `u0
i D xi pB t u 0 `∆u 0 q `ui D xi pB t u `∆uq ˘´2p|D 2 u 0 | 2 `|D 2 u| 2 q " ´2 ÿ i `u0 i ph 0 xi `h0 p ¨Du 0 i q `ui ph 0 p,xi ¨Du `h0 pp Du 0 i ¨Du `h0 p ¨Du i `fi q ˘´2p|D 2 u 0 | 2 `|D 2 u| 2 q, Let us start with the L 8 bounds: We consider ṽ :" pu 0 q 2 `u2 . Then v satisfies ´Bt ṽ ´∆ṽ " ´2u 0 `Bt u 0 `∆u 0 ˘´2u pB t u `∆uq ´2p|Du 0 | 2 `|Du| 2 q " ´2u 0 ´V 0 pt, xq ¨Du 0 pt, xq `f 0 pt, xq ¯´2u ´V 0 pt, xq ¨Dupt, xq `V pt, x; yq ¨Du 0 pt, xq `f pt, x; yq ¯´2p|Du 0 | 2 `|Du| 2 q ď C ṽ `ṽ 1{2 p}f 0 } 8 `}f } 8 q,

where C depends on }V 0 } 8 and }V } 8 only. This implies the result for r " n " 0. We now check the C 1 estimate. Let us set as usual vpt, xq " ř d i"1 ppu 0 i q 2 `pu i q 2 q. Then ´Bt v ´∆vpt, xq " ´2 ÿ i `u0 i D xi pB t u 0 `∆u 0 q `ui D xi pB t u `∆uq ˘´2p|D 2 u 0 | 2 `|D 2 u| 2 q " ´2 ÿ i ´u0 i pV 0 xi ¨Du 0 `V 0 ¨Du 0 i `f 0 i q `ui pV 0 xi ¨Du `V 0 ¨Du i `Vxi ¨Du 0 `V ¨Du 0 i `fi q 2p|D 2 u 0 | 2 `|D 2 u| 2 q ď Cv `v1{2 p}Df 0 } 8 `}D x f } 8 q,

where C depends on the C 1 bound on V 0 and on V and on d only. This implies the estimate for r " 1 and n " 0. As for the C 2 estimate, let us set as usual wpt, xq " ř d i,j"1 ppu 0 ij q 2 `pu ij q 2 q. Then ´Bt w ´∆wpt, xq ď Cw `Cw 1{2 p1 `}D 2 f 0 } 8 `}D 2 x f } 8 `}Du 0 } 8 `}D x u} 8 q,

where C depends on the C 1 bound on V 0 and on V and on d only. We then get the estimate for r " 2 and n " 0 by the maximum principle and using the previous bounds for Du 0 , Du. The estimate on higher order derivatives can be checked in a way similar and we omit the proof.

B Functions on P 2

B.1 A criterium of differentiability

Here we introduce a simple criterium for a map U , depending of the measure, to be of class C 1 .

Lemma B.1. Let U : P 2 Ñ R be continuous. For ps, m, yq P r0, 1s ˆP2 ˆRd we set Û ps; m, yq :" U pp1 ´sqm `sδ y q.

If the map s Ñ Û ps; m, yq has a derivative at s " 0 and if its derivative at 0, d ds |s"0 Û : P 2 ˆRd Ñ R is continuous and bounded, then U is of class C 1 with δU δm pm, yq " d ds Û p0; m, yq.

Proof. We have to show that, for any m 0 , m 1 P P 2 , we have U pm 1 q ´U pm 0 q " ˆ1 0 ˆRd d ds Û p0; p1 ´sqm 0 `sm 1 , yqpm 1 ´m0 qpdyq.

Before starting the proof, let us note that the continuity assumption of d ds Û at s " 0 implies its continuity at any s P r0, 1s, replacing m by p1 ´sqm `sδ y .

Let us start by considering the case where m 0 is fixed and m 1 is an empirical measure: m 1 " m N y :"

1 N
ř N k"1 δ y k for some N P N, N ě 1, y k P R d . The general case will be treated next by approximation.

B.2 Interpolation and Ascoli Theorem in P 2

In the proof of Lemma 3.7, we have used two interpolation Lemmas. The first one is standard (see, for instance, [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF]Lemma II.3.1]): we recall it because we need a specific setting. The second one is an adaptation to P 2 of the same techniques.

Lemma B.2. Let W : r0, 1s ˆRd1 Ñ R d2 be Holder continuous in time locally uniformly in space: for any R ą 0, there exists C 0,R ą 0 and α R ą 0 such that |W pt, yq ´W ps, yq| ď C 0,R |t ´s| α @ps, t, yq P r0, 1s ˆr0, 1s ˆRd1 with |y| ď R and |t ´s| ď α R , and such that D y W is Holder continuous in space uniformly in time: there exists C 1 ą 0 such that |D y W pt, y 0 q ´Dy W pt, y 1 q| ď C 1 |y 0 ´y1 | δ @pt, y 1 , y 2 q P r0, 1s ˆRd1 ˆRd1 .

Then D y W is Holder continuous in time locally uniformly in space:

|D y W pt, yq ´Dy W ps, yq| ď C R |t ´s| αδ p1`δq @ps, t, yq P r0, 1s ˆr0, 1s ˆRd1 with |y| ď R and |t ´s| ď α 1 R , for some constants C R ą 0 and α 1 R only depending on C 0,R`1 , α R`1 , C 1 , α and δ. Remark B.3. The proof below also shows that, if in addition W is Holder continuous in time uniformly in space (i.e., C 0,R and α R do not depend on R) and if D y W is bounded, then D y W is also Holder continuous in time uniformly in space.

Proof. Fix y 0 , y 1 P R d with |y 0 | ď R and |y 1 | ď R `1. Let y τ " p1 ´τ qy 0 `τ y 1 for τ P r0, 1s. We have ˇˇˇˆ1 0 pD y W pt, y τ q ´Dy W ps, y τ qq ¨py 1 ´y0 qdτ ˇˇ" |W pt, y 1 q ´W pt, y 0 q ´W ps, y 1 q `W ps, y 0 q| ď 2C 0,R`1 |t ´s| α . So |pD y W pt, y 0 q ´Dy W ps, y 0 qq ¨py 1 ´y0 q| ď ˇˇˇˆ1 0 pD y W pt, y 0 q ´Dy W pt, y τ qq ¨py 1 ´y0 qdτ ˇˇ1 0 pD y W pt, y τ q ´Dy W ps, y τ qq ¨py 1 ´y0 qdτ ˇˇˇ`ˇˇˇˆ1 0 pD y W ps, y τ q ´Dy W ps, y 0 qq ¨py 1 ´y0 qdτ ˇˇď 2C 0,R`1 |t ´s| α `2C 1 |y 1 ´y0 | 1`δ , using also the Hölder continuity of D y W . Choosing y 1 " y 0 `hv, with |v| " 1, we get Optimizing with respect to h P p0, α R`1 s and |v| " 1, we find the result for |t ´s| ď α 1 R for a suitable constant α 1 R depending on C 0,R`1 , α, C 1 and δ.

Lemma B.4. Let W : r0, 1s ˆP2 Ñ R d2 be Holder continuous, locally in time and uniformly in measure: there exists α P p0, 1s and, for any R ą 0 there exists C 0,R ą 0 such that |W pt, mq ´W ps, mq| ď C 0,R |t ´s| α @m P P 2 with M 2 pmq ď R, @s, t P r0, 1s, (where M 2 pmq " p ´Rd |y| 2 mpdyqq 1{2 ) and such that δW δm and D m W are bounded and D m W is Holder continuous with respect to the measure uniformly in time: there exists γ, δ P p0, 1s and C 1 ą 0 such that |D m W pt, m 0 , y 0 q ´Dm W pt, m 1 , y 1 q| ď C 1 `dγ 2 pm 0 , m 1 q `|y 0 ´y1 | δ 66 for any t P r0, 1s and any pm i , y i q P P 2 ˆRd . Then D m W is Holder continuous in time locally uniformly in pm, yq P P 2 ˆRd : for any R ą 0 , there exists a constant C R ą 0, depending on R, }D m W } 8 , C 0,R`1 , C 1 , α, γ and δ, such that |D m W pt, m, yq ´Dm W ps, m, yq| ď C R |t ´s| αγ{pp2`γqp1`δqq , for any s, t P r0, 1s and any pm, yq P P 2 ˆRd with |y| ď R and M 2 pmq ď R.

Proof. Let R ě 1. Fix m 0 , m 1 P P 2 with M 2 pm i q ď R and set m τ " p1 ´τ qm 0 `τ m 1 . Then |W pt, m 1 q ´W pt, m 0 q ´W ps, m 1 q `W ps, m 0 q| ď 2C 0,R |t ´s| α .

As ˇˇˇˆR }D m W ps, m τ , ¨q ´Dm W ps, m 0 , ¨q} 8 d 1 pm 0 , m 1 q ď 2C 0 |t ´s| α `2C 1 d γ 2 pm 0 , m 1 qd 1 pm 0 , m 1 q.

For any y 0 P R d with |y 0 | ď R, let m 1 " p1 ´θqm 0 `θδ y0 for some θ P p0, 1s to be chosen below. Note that d 1 pm 1 , m 0 q ď θ ˆRd |y 0 ´x|m 0 pdxq ď θp|y 0 | `pM 2 pm 0 qq 1{2 q ď 2θR, (since R ě 1) while d 2 pm 1 , m 0 q ď pθ ˆRd |y 0 ´x| 2 m 0 pdxqq 1{2 ď p2θq 1{2 p|y 0 | 2 `M 2 2 pm 0 qq 1{2 ď 2θ 1{2 R.

We get, by the convention on the derivative and our previous estimates:

ˇˇˇδ W δm pt, m 0 , y 0 q ´δW δm ps, m 0 , y 0 q ˇˇˇ" 1 θ ˇˇˇˆR d ˆδW δm pt, m 0 , yq ´δW δm ps, m 0 , yq ˙pm 1 ´m0 qpdyq ˇˇď

1 θ " 2C 0,R |t ´s| α `cC 1 R 1`γ θ 1`γ{2 ı ,
where c is universal. If |t ´s| is small enough such that C 0,R |t ´s| α {pcC 1 R 1`γ q ď 1, then we choose θ 1`γ{2 :" C 0,R |t ´s| α {pcC 1 R 1`γ q and obtain ˇˇˇδ W δm pt, m 0 , y 0 q ´δW δm ps, m 0 , y 0 q ˇˇˇď cC γ{p2`γq 0,R C 1{p1`γ{2q 1 R 2p1`γq{p2`γq |t ´s| αγ{p2`γq , (120

)
where c is another universal constant. To show the regularity in time of D m W , we just need to apply Lemma B.2 to δW {δm since, by (120), δW {δm is locally Holder in time locally uniformly in space (the constant depending also on the measure) and D y δW {δm " D m W is globally bounded and Holder in y uniformly in time by assumption. We can remove the smallness restriction on |t ´s| by using the fact that D m W is globally bounded.

In the proof of Theorem 3.2 we also used the following version of Arzela-Ascoli Theorem.

Lemma B.5. Let pX, dq be a locally compact space and W N : X ˆP2 Ñ R be a family of uniformly bounded and locally uniformly continuous maps: there exists x 0 P X such that, for any R ą 0, there exists a continuous nondecreasing modulus ω R : r0, `8q Ñ r0, `8q with ω R p0q " 0 such that |W N px, mq ´W N px 1 , m 1 q| ď ω R pdpx, x 1 q `d2 pm, m 1 qq,

for any x, x 1 P X and m, m 1 P P 2 with dpx, x 0 q ď R, dpx 1 , x 0 q ď R, M 2 pmq ď R, M 2 pm 1 q ď R.

Then there exists a continuous map W : X ˆP2 Ñ R and a subsequence (denoted in the same way) such that pW N q converges to W pointwisely in m and locally uniformly in x: for any R ą 0 and any m P P 2 , lim

N Ñ`8 sup dpx,x0qďR
|W N px, mq ´W px, mq| " 0 .

The only (very small) issue in the result is that P 2 is not locally compact, so that the standard Arzela-Ascoli Theorem cannot be applied.

Proof. Let D be an enumerable dense family of X ˆP2 . By a diagonal argument we can find a subsequence (denoted in the same way) such that, for any px, mq P D, pW N px, mqq converges to some W px, mq. Let us note that, by our regularity assumption (121) and using the fact that X ˆP2 is complete, W can be extended to the whole space X ˆP2 into a continuous map which satisfies |W px, mq ´W px 1 , m 1 q| ď ω R pdpx, x 1 q `d2 pm, m 1 qq,

for any x, x 1 P X and m, m 1 P P 2 with dpx, x 0 q ď R, dpx 1 , x 0 q ď R, M 2 pmq ď R, M 2 pm 1 q ď R. We claim that, for any px, mq P X ˆP2 , pW N px, mqq converges to W px, mq. Indeed, fix ą 0, R " 2p1 `dpx, x 0 q `M2 pmqq. Then there is px 1 , m 1 q P D such that dpx 1 , x 0 q ď R, M 2 pm 1 q ď R and ω R ppdpx, x 1 q `d2 pm, m 1 qq ď {3. Let also N 0 be so large that |W N px 1 , m 1 q ´W px 1 , m 1 q| ď {3 for N ě N 0 . Then, for N ě N 0 , we have |W N px, mq ´W px, mq| ď |W N px, mq ´W N px 1 , m 1 q| `|W N px 1 , m 1 q ´W px 1 , m 1 q| `|W px 1 , m 1 q ´W px, mq| ď , where we used (121) and (123) in the last inequality.

It remains to show that (122) holds. Fix ą 0 and let η ą 0 be such that ωpηq ď {3. As X is locally compact, we can find x 1 , . . . x n such that any point x P B X px 0 , Rq is at a distance at most η from one of the px i q i"1,...,n . Let N 0 be so large that |W N px i , mq ´W px i , mq| ď {3 for any i " 1, . . . , n. Then, for any x P B X px 0 , Rq and any N ě N 0 , we have (for i such that dpx, x i q ď η, so that ω R pdpx, x i qq ď {3):

|W N px, mq ´W px, mq| ď |W N px, mq ´W N px i , mq| `|W N px i , mq ´W px i , mq| `|W px i , mq ´W px, mq| ď , where we used again (121) and (123) in the last inequality. This shows (122).

Lemma 2 . 1 . 13 )Remark 2 . 2 .

 211322 Let k P N with k ě 1 and u P C 0 be such that θ :" sup ρPC 0 c , }ρ} ´k "1 ˆRd upyqρpyqdy ă `8. (Then u P C k´1 b with }u} k´1 ď C k θ (where C k depends on d and k) and, for any β P N d with |β| " k ´1, B β u is θ´Lipschitz continuous. In particular, if δU δm P C n,is finite for some n, k P N with k ě 1, then δU δm P C n,k´1 b and }δU {δm} n,k´1 ď C n,k }δU {δm} n;k for some constant C n,k depending in addition on dimension only. Moreover, the derivatives of the form B α x B β y δU δm for |α| ď n and β ď k ´1 are Lipschitz continuous with respect to y and thus-by (11)-also with respect to m, with a Lipschitz constant bounded by › › δU δm › › n;k . Proof. For k " 1, we have, approximating Dirac masses by continuous maps with compact support: for any x, y P R d , |upxq| ď θ}δ x } ´1 " θ and |upxq ´upyq| ď θ}δ x ´δy } ´1 " θ|x ´y|.

  mq, mq and V pt, x 0 ; x, mq :" H 0 pp px 0 , D x0 U 0 pt, x 0 , mq, mqD x0 U pt, x 0 ; xq are bounded in class C 1 b and C 0,n´1 b X C 1,n´2 b respectively, while the source terms

  x0,m } δG δm px 0 , ¨, m, ¨q} 1,1 ď M hence we are in the position to apply Proposition 5.4, and there exists a time T M ą 0 such that the unique solution pu, mq to (40) satisfies u P C n b with an estimate depending on M and sup x0,m }Gpx 0 , ¨, mq} n .

)

  and if T P p0, T M s, then the map U defined by (66) is a classical solution to (65), and satisfies sup tPr0,T s }U ptq} n ď }G} n `CM T Moreover, for any |α| ď n ´1, B α x δU δm is of class C 1 in m, and for k P t2, . . . , n ´1u,

  On the other hand, by the equation for u, upt 0 `h, xq ´upt 0 , xq " ˆt0`h t0 ´´Trpapt, xqD 2 upt, xqq `Hpx 0 , x, Dupt, xq, mptqq ¯dt " ˆt0`h t0 ´´Trpapt, xqD 2xx U pt, x 0 , x, mptqqq `Hpx 0 , x, D x U pt, x 0 , x, mptqq, mptqq ¯dt.

Proposition A. 8 .

 8 Let r, n P N and assume (in addition to (112)) that h 0 , h 0 p are of class C r b and that f is bounded in C r,n b independently of t P r0, 1s for some n P N. For any M ą 0, there are constants K M , T M ą 0, depending on M , C 0 and γ in (112), and a constant C M ą 0 depending onsup h 0 p¨, ¨, pq} 8 `r ÿ k"0 }D k px,pq h 0 p p¨, ¨, pq} 8 , sup t }f ptq} r,n

  |rD y W pt, yq ´Dy W ps, yqs ¨v| ď 2C 0,R`1 |h| |t ´s| α `2C 1 |h| δ .

  τ , yq ´δW δm ps, m τ , yq ˙pm 1 ´m0 qpdyqdτ ˇˇ"

  d ˆδW δm pt, m 0 , yq ´δW δm ps, m 0 , yq ˙pm 1 ´m0 qpdyq ˇˇď ˇˇˇˆ1 0 ˆRd ˆδW δm pt, m τ , yq ´δW δm ps, m τ , yq ˙pm 1 ´m0 qpdyqdτ ˇˇ1 0 ˆRd ˆδW δm pt, m τ , yq ´δW δm pt, m 0 , yq ˙pm 1 ´m0 qpdyqdτ ˇˇ1 0 ˆRd ˆδW δm ps, m τ , yq ´δW δm ps, m 0 , yq ˙pm 1 ´m0 qpdyqdτ ˇˇˇ, we obtain, by our Holder continuity assumption on D m W : ˇˇˇˆR d ˆδW δm pt, m 0 , yq ´δW δm ps, m 0 , yq ˙pm 1 ´m0 qpdyq ˇˇď 2C 0 |t ´s| α `sup τ Pr0,1s }D m W pt, m τ , ¨q ´Dm W pt, m 0 , ¨q} 8 d 1 pm 0 , m 1 q `sup τ Pr0,1s

  Note that, with our boundedness convention, if U is continuously L´differentiable, then U is automatically globally Lipschitz continuous.When U is smooth enough, we often see the map δU δm as a linear map on C ´k by

	δU δm	pmqpρq " xρ,	δU δm	pm, ¨qy C ´k ,C k	@ρ P C ´k.

  U " U px, mq is smooth enough, for every fixed m P P 2 . Inequalities of this type are used throughout the text. Next we note that the norms sup mPP2 } ¨}n,k and } ¨}n;k are equivalent if we know a priori that δU {δm " δU {δmpx, m, yq is in C n,k b . In general we do not have this information, but only know that δU {δm is (at least) continuous. In this case, we use the following remark:

	}	δU δm	p¨, mqpρq} n ď }	δU δm	} n;k }ρ} ´k,

  mq ´Trppapt, xq `a0 qD 2 xx U pt, x, mqq `Hpx, D x U pt, x, mq, mq

	´ˆR d	Trppapt, yq `a0 qD 2 ym U pt, x, m, yqq dmpyq
	`ˆR d ˆRd D m U pt, x, m, yq ¨Hp py, D x U pt, y, mq, mq dmpyq
	´2	Tr	"	a 0 D 2 xm U pt, x, m, yq

  Gpx ´z, pid ´zq7m, y ´z, y 1 ´zqΓpt, zqdz.

				ˆRd	
	D m U pt, x, m, yq "	D m Gpx ´z, pid ´zq7m, y ´zqΓpt, zqdz,
	and			ˆRd	
	D 2 m U pt, x, m, y, y 1 q " m This easily implies the estimates on U and its derivatives. D 2
	On the other hand, since pid ´wq7rpid ´zq7ms " pid ´z ´wq7m, we have, for any t P p0, T q and
	h P p0, T ´tq,				
	ˆRd				
	U pt, x ´z, pid ´zq7mqΓph, zqdz
			ˆRd ˆRd	
		"		Gpx ´z ´w, pid ´z ´wq7mqΓph, zqΓpt, wqdwdz
		"	ˆRd ˆRd	Gpx ´u, pid ´uq7mq	ˆˆR d	Γph, u ´wqΓpt, wqdw ˙du
		"		Gpx ´u, pid ´uq7mqΓpt `h, uqdu " U pt `h, x, mq.
	3. Let us first note that
	ˆRd					ˆRd
	U pt, x, mq "	Gpξ, pid ´x `ξq7mqΓpt, x ´ξqdξ "	Gpx ´z, pid ´zq7mqΓpt, zqdz.
	In particular, U is C 1 in t, C 2 in x and has second order derivatives which are C 2 in the space variables
	with, in view of Lemma 3.5 and Lemma 3.6,
				ˆRd
		D x U pt, x, mq "	D x Gpx ´y, pid ´yq7mqΓpt, yqdy,
				ˆRd
		D 2 x U pt, x, mq "	D 2 x Gpx ´y, pid ´yq7mqΓpt, yqdy,

  Theorem 3.8. Under the assumptions of Theorem 3.2, there exists a time T ą 0 for which the stochastic MFG system (26) has a classical solution pu, m, vq in r0, T s. Moreover,

	ˆRd			
	0 "	φp0, xqm 0 pdxq		
	`ˆT		
		vpt, xq "	?	2	ˆRd

1 b pR d , R d qq respectively and adapted to the filtration generated by W and if the backward HJ equation is satisfied in a classical sense: upt, xq " Gpx, mpT qq ´ˆT t `´Trppa `a0 qps, xqD 2 ups, xqq `Hpx, Dups, xq, mpsqq ´?2Trpσ 0 Dvps, xqq ˘ds ´ˆT t vps, xq ¨dW s while the Fokker-Planck equation is satisfied in the sense of distributions: for any φ P C 8 c pr0, T q ˆRd q, 0 ˆRd ´Trppa `a0 qps, xqD 2 φps, xq ´Dφps, xq ¨Hp px, Dups, xq, mpsqq ¯mps, dxqds `?2 ˆT 0 ˆRd ppσ 0 q T Dφps, xqmps, dxq ¨dW s .

  xqD 2 ups, xqq ´Hpx 0 , x, Dups, xq, mpsqqqds @t P rt 0 , T s and if m P C 0 prt 0 , T s, P 2 q solves the Fokker-Planck equation in the sense of distributions: for any φ P

		mpT qq	`ˆT
	C 8 c pr0, T q ˆRd q, ˆRd
	0 "	φp0, xqm 0 pdxq
		`ˆT

t pTrpaps, 0 ˆRd pTrpaps, xqD 2 φps, xqq ´Dφps, xq ¨Hp px 0 , x, Dups, xq, mpsqqqmps, dxqds .

  M depends on the same quantities as in Proposition 5.1 as well as on Lip n´1,n pHpx 0 , ¨, ¨, mqq, Lip x0 n´1,n pHpx 0 , ¨, ¨, mqq (for x P R d and |p| ď K M ) and sup x0,m }Gpx 0 , ¨, mq} n . Proof. The map v :" u 1 ´u2 satisfies

	qq `rLip x0 n´1 pGqs|x 1 0	´x2 0 |	(
	where C		

"

´Bt v ´Trpapt, xqD 2 vq `V pt, xq ¨Dv `f pt, xq " 0 vpT, xq " Gpx 1 0 , x, m 1 pT qq ´Gpx 2 0 , x, m 2 pT qq where V pt, xq " ˆ1 0 H p px, x 2 0 , sDu 1 pt, xq `p1 ´sqDu 2 pt, xq, m 2 ptqqds and f pt, xq :" Hpx 1 0 , x, Du 1 pt, xq, m 1 ptqq ´Hpx 2 0 , x, Du 1 pt, xq, m 2 ptqq. By Proposition A.7 (applied with k " 1 and n ´1), we have sup tPr0,T s }u 1 ptq ´u2 ptq} n´1 ď p1 `CT q}Gpx 1 0 , ¨, m 1 pT qq ´Gpx 2 0 , ¨, m 2 pT qq} n´1 `CT sup tPrt0,T s }f ptq} n´1

  1 P C k b for k P t1, . . . , n ´1u. Let z be the solution to"´Bt z ´Trpapt, xqD 2 zq `Hp px 0 , x, Du, mptqq ¨Dz " 0 in pt 0 , t 1 q ˆRd , zpt 1 , ¨q " z 1 pxq in R d .

						(50)
	According to Proposition A.7 (with k " 1), we have			
	sup tPrt0,t1s }zptq} ˆRd zpt 0 qρ 0 ´ˆt1 t0 ˆRd pH pp Dv ¨Dz	`δH p δm	pρq ¨Dzqm	´ˆt1 t0 ˆRd	Dz ¨R2
	ď }zpt 0 q} k }ρ 0 } ´k `C}Dz} 8 ˆT }Dv} 8	`ˆt1 t0	}ρptq} ´k˙`T	sup t	}zptq} k }R 2 } ´pk´1q
	ď p1 `CT q}z 1 } k ˆ}ρ 0 } ´k	`C ˆT }Dv} 8	`ˆt1	}ρptq} ´k˙`T	}R 2 } ´pk´1q
						t0

k ď p1 `CT q}z 1 } k ,

where C depends on the regularity of a and H and on sup t }uptq} k`1 . Then, by duality, ˆRd z 1 ρpt 1 q "

  `CT }Dv} 8 }Dv 1 } 8 }Dz} 8 pρptq, ρ 1 ptqq `Hpp Dv ¨Dv 1 `δH p δm pρq ¨Dv 1 `δH p δm pρ 1 q ¨Dv ´R 1 pt, xq.

			ˆRd	µpt 1 qz 1 " `ρ δH p ´!ˆt 1 t0 ˆRd δm pρ 1 q `ρ1 δH p Dz ¨´mH pp Dw pρq `mH ppp DvDv 1 `m δH p δm δm `m δH pp δm pρ 1 qDv `m δH pp δm pρqDv 1 `m δ 2 H p pµq `ρH pp Dv 1 `ρ1 H pp Dv δm 2 pρ, ρ 1 q `R 2 pt, xq ¯).
	Hence					
	ˆRd							ˆt1
		µpt 1 qz 1 ď CT }Dw} 8 }Dz} 8 `C}Dz} 8	}µpsq} ´kds
		`CT ´sup t `CT ´sup t `CT ´sup	}ρptq} ´pk´1q sup t }ρptq} ´pk´1q sup	t0 }v 1 ptq} k `sup t }ρ 1 ptq} ´pk´1q sup t	}vptq} k ¯sup t	}zptq} k
	By Gronwall's inequality, we obtain
					sup t	}µptq} ´k ď CT	! }Dw} 8 `sup t	} R2 ptq} ´pk´1q `Rk´1,k R 1 k´1,k	)	,	(60)
	t	}wptq} n´2 ď p1`CT q ´} δ 2 G δm	pρpT q, ρ 1 pT qq} n´2	`} δG δm	t pµpT qq} n´2 `} R3 } n´2 ¯`CT sup	}f ptq} n´2 , (61)
	where					
	f pt, xq " δm 2 We estimate δH δm pµptqq `δ2 H
		sup t	}f ptq} n´2 ď	´} δH δm	px

t }ρ 1 ptq} ´pk´1q ¯sup t }zptq} k t }ρptq} ´pk´1q }Dv 1 } 8 `sup t }ρ 1 ptq} ´pk´1q }Dv} 8 `sup t }ρptq} ´pk´1q sup t }ρ 1 ptq} ´pk´1q ¯}Dz} 8 `CT } R2 } ´pk´1q sup t }zptq} k , where the constant C depends on the regularity of the function H and on sup t }uptq} k . Taking the supremum over }z 1 } k ď 1, we infer that: }µpt 1 q} ´k ď C ˆt1 t0 }µpsq} ´kds `CT ! }Dw} 8 `} R2 } ´pk´1q `´sup t }ρptq} ´pk´1q `sup t }vptq} k ¯´sup t }ρ 1 ptq} ´pk´1q `sup t }v 1 ptq} k ¯). where C depends on the regularity of the function H and on sup t }uptq} k`1 . From Proposition A.7 (with k " 1), we have sup 0 , ¨x, Dupt, ¨xq, mptq, ¨yq} n´2;k sup t }µptq} ´k `} R1 } n´2

  Next we estimate R h,1 , R h,2 and R h,3 . As ! pH p px τ , x, p τ pt, xq, m τ ptqq ´Hp py 0 , x, Dupt, xq, mptqqq ¨Dpu h pt, xq ´upt, xqq `pH x0 px τ , x, p τ pt, xq, m τ ptqq ´Hx0 py 0 , x, Dupt, xq, mptqqq ¨hξ :" p1 ´τ qy 0 `τ py 0 `ξhq, p τ :" p1 ´τ qDupt, xq `τ Du h pt, xq and m τ pt, xq :" p1 ´τ qmpt, xq τ m h pt, xq, we have

	R h,1 "	´ˆ1						
		0						
		`ˆR d	p	δH δm	px τ , x, p τ pt, xq, m τ ptq, yq	´δH δm	py 0 , x, Dupt, xq, mptq, yqqpm h ptq ´mptqqpdyq	)	dτ
	where x							

τ

  h,2 pt, xq " ρh ´Hp px 0 , x, Du h , m h ptqq ´Hp ¯´hρ ´Hpp Dv 1 `δH p δm pρ 1 q ¯Dṽ h ¨´m h H pp px 0 , x, Du h , m h ptqq ´mH pp ¯´hDv ¨´ρ 1 H pp `m δH pp δm pρ 1 q `mH ppp Dv 1 , x, mpT qqpρ h pT qq ´h δ 2 G δm 2 px 0 , x, mpT qqpρpT q, ρ 1 pT qq (for brevity, H p and its derivatives in R h,2 are evaluated at px 0 , x, Du, mptqq, unless otherwise specified). pt, ¨q} n´2 `}R h,2 pt, ¨q} ´pk´1q `}R h,3 pt, ¨q} n´2 ˘ď Ch 2 .

										¯m
	h	δH p δm	px 0 , x, Du h , m h ptqq	´m δH p δm	¯pρ h q	´h´ρ 1 δH p δm	`mDv 1 ¨δH pp δm	¯pρq ´hm	δ 2 H p δm 2 pρ, ρ 1 q,
	R h,3 pxq " px 0 Using δG δm px 0 , x, m h pT qqpρ h pT qq ´δG δm				
	sup	}u h ptq ´uptq ´hv 1 ptq} n´2 ď Ch 2 ,	sup	}m h ptq ´mptq ´hρ 1 ptq} ´pk´1q ď Ch 2	(86)
	tPrt0,T s			tPrt0,T s			
	(see (72) and (73) in Lemma 6.3) as well as the above estimate (84), we have	
			sup						

1 ptqq ¨Dv `´δH δm px 0 , x, Du h , m h ptqq ´δH δm px 0 , x, Du, mptqq ¯pρ h ptqq ´h δ 2 H δm 2 px 0 , x, Du, mptqqpρptq, ρ 1 ptqq ´h δH p δm px 0 , x, Du, mptqqpρptqq ¨Dv 1 ı , R t `}R h,1

  , x 0 , x, m 0 , yq, and v 1 pt 0 , xq " U x0 pt 0 , x 0 , x, m 0 q ¨ξ.

				1 q (and
	pu, mq), and with right-hand side
	R1 pt, xq " ´Hx0p px 0 , x, Du, mptqqξ ¨Dv	´δH x0 δm	px 0 , x, Du, mptqqpρptqq ¨ξ,
	R2 pt, xq " ρH x0p px 0 , x, Du, mptqqξ `mH x0pp px 0 , x, Du, mptqqξ Dv	`m δH x0p δm	pρqξ,
	R3 pxq "	δG x0 δm	px 0 , x, mpT qqpρpT qq ¨ξ,
	so that		
	ṽh pt 0 , xq "	δU δm	pt 0 , x 0 `hξ, x, m 0 , yq,
	vpt 0 , xq "	δU δm	pt 0

  1 pt, xq, m 1 ptqq, where H i and its derivatives correspond to H and its derivatives evaluated at px i 0 , x, Du i pt, xq, m i ptqq. depends on the regularity of δG{δm, H x0 , H x0p , m i and sup t }u i } n . Note that, by the above estimates and Proposition 5.4,}R 2 ptq} ´pk´2q `}R 3 } n´2 ď C `d2 pm 1 , m 2 q `|x 1

	and right-hand side		
		R 1 pt, xq " ´pH 1 p	´H2 p q ¨Dv 2	´p δH 1 δm	´δH 2 δm	qpρ 2 ptqq,
		R 2 pt, xq " ρ 2 pH 1 p	´H2 p q `pm 1 H 1 pp	´m2 H 2 pp qDv 2 `pm 1 δH 1 p δm	´m2 δH 2 p δm	qpρ 2 q,
		R 3 pxq " p	δG 1 δm	´δG 2 δm	qpρ 2 pT qq,
	By Proposition 5.5 we have
		sup	}v i ptq} n´1 ď C}ρ 0 } ´pk´2q ,	sup	}ρ i ptq} ´pk´2q ď p1 `CT q }ρ 0 } ´pk´2q ,	(95)
	tPrt0,T s				tPrt0,T s
	where C sup t	}R 1 ptq} n´2 `sup	0	´x2 0 | ˘}ρ 0 } ´pk´2q ,
	and therefore by Proposition 5.5 (applied to n ´1 ě 2 and k ´2 ě 1) we obtain
			sup	}vptq} n´2
			t		

t

  1 pt, xq, m 1 ptqq, and right-hand side R 1 pt, xq :" ´´pH 1

	p	´H2 p q ¨Dw 2 `p δH 1 δm	´δH 2 δm	qpµ 2 ptqq
	`δ2 H 1 δm 2 pρ 1 ptq, ρ 1 1 ptqq	´δ2 H 2 δm 2 pρ 2 ptq, ρ 1 2 ptqq `H1

pp Dv 1 ¨Dv 1 1

  ptq} ´pk´1q ď CT }ρ 0 } ´pk´2q }ρ 1 0 } ´pk´2q . (98) }R 2 ptq} ´pk´1q ď CT pd 2 pm 1 , m 2 q `|x 1

	By the previous inequalities, (95), (96) and (97) we get
		sup t	}R 1 ptq} n´3 `sup		0	´x2 0 |q}ρ 0 } ´pk´2q }ρ 1 0 } ´pk´2q .
				1	δH 1 p δm	pρ 1 q ´ρ1 2	δH 2 p δm	pρ 2 q `m1 δH 1 pp δm	pρ 1 1 qDv 1
						´m2 δH 2 pp δm	pρ 1 2 qDv 2	`m1 δH 1 pp δm	pρ 1 qDv 1 1	´m2 δH 2 pp δm	pρ 2 qDv 1 2
	and					
			R 3 pxq :"	δ 2 G 1 δm 2 pρ 1 pT q, ρ 1 1 pT qq	´δ2 G 2 δm 2 pρ 2 pT q, ρ 1 2 pT qq	`p δG 1 δm	´δG 2 δm	qpµ 2 pT qq.
	Recall also that Proposition 5.6 and Remark 5.7 (applied to n ´1 and k ´1) yield
	sup t	}w i ptq} n´3 ď p1 `CT q}ρ 0 } ´pk´2q }ρ 1 0 } ´pk´2q , sup

t }µ i t

  2. (Lipschitz estimates, linear case.) We now assume that T ď 1 and that |D x hpt, x, pq| ď C 1 `C2 |p| @pt, x, pq P p0, T q ˆRd ˆRd , for some constants C 1 , C 2 ą 0. Then there exists a constant C, depending on C 0 , C 2 and }Da} 8 only, ´1 0 |D 2 u| 2 `2|Du|pC 1 `C2 |Du|q `}Da} 8 |Du| |D 2 u| ď 2|Du|pC 1 `C2 |Du|q `cd }Da} 2 8 C 0 |Du| 2 which implies ´Bt v ´Trpapt, xqD 2 vpt, xqq `hp pt, x, Dupt, xqq ¨Dvpt, xq ď λ v `2 C 1 v 1{2where λ " 2C 2 `cd }Da} 2 8 C 0 . By the maximum principle we get }v} L 8 pQ T q ď e λT ´2C 1 T }v} pQ T q ď 2 C 1 T e λT `eλT {2 }Dg} 8 .Since T ď 1 (and so e λT {2 ď 1 `cλ T ), the conclusion follows.Proposition A.3. (Second order estimate.) Assume that h and a are of class C 2 b . Then, for any M ą 0, there are constants T M , C M ą 0, depending on M and on ij pt, xq ppa kl q i pt, xqu jkl pt, xq `pa kl q j pt, xqu ikl pt, xq `pa kl q ij u kl q . ij ph ij `hi,p ¨Du j `hj,p ¨Du i `hpp Du i ¨Du j `hp Du ij q ij pt, xq ppa kl q i pt, xqu jkl pt, xq `pa kl q j pt, xqu ikl pt, xq `pa kl q ij u kl q |D 3 u| 2 `Ch |D 2 u| `1 `|D 2 u| `|D 2 u| 2 ˘`C|D 2 u| `}a} 1 |D 3 u| `}a} 2 |D 2 u| for some constant C h depending on sup |p|ď}Du}8 }D 2 x,p hp¨, ¨, pq} 8 . Young's inequality leads to If h is affine in p, then with the same estimates we deduce from (107): ´Bt w ´Trpapt, xqD 2 wpt, xqq `hp pt, x, Dupt, xqq ¨Dwpt, xq ď |D 2 u| `2}D xx h} 8 `C|D 2 u| ď Cw `2 }D xx h} 8 |D 2 u| , where C depends on }a} 2 , C 0 and sup |p|ď}Du}8 }D 2 x,p hp¨, ¨, pq} 8 . The conclusion follows as in Lemma A.2. Proposition A.4. (Third order estimate) Assume that h and a (and the solution u) are of class C 3 b . Then there is a constant C, depending on }D 2 u} 8 , on }Da} 8 `}D 2 a} 8 `}D 3 a} 8 and on }D 3 uptq} 8 ď p1 `CT q}D 3 g} 8 `CT,

	1{2 L 8 pQ T q `}Dg} 2 8	¯,	
	from which we derive that		
	such that Proof. We use the Bernstein method again. Let wpt, xq " sup }Duptq} 8 ď }Dg} 8 p1 `CT q `CC 1 T. 1{2 }v} L 8 sup tPr0,T s }aptq} 2 `sup |p|ď}Du}8 }D 2 xp hp¨, ¨, pq} 8 ř i,j u 2 ij . Then ´Bt w ´Trpapt, xqD 2 wpt, xqq " ´2 ÿ i,j,k,l a kl pt, xqu ijk pt, xqu ijl pt, xq ´2 ÿ i,j u ij pt, xqD i,j ˜Bt u `ÿ k,l ÿ i,j,k,l So ´Bt w ´Trpapt, xqD 2 wpt, xqq " ´2 ÿ i,j,k,l a kl u ijk u ijl ´2 ÿ i,j `2 ÿ i,j,k,l which yields, using the ellipticity of apt, xq, ´Bt w ´Trpapt, xqD 2 wpt, xqq `hp pt, x, Dupt, xqq ¨Dwpt, xq ď ´2C ´1 |p|ď}Du}8 ! ) }D 3 px,pq hp¨, ¨, pq} 8 `}h pp p¨, ¨, pq} 8 , such that, for any T P p0, 1s, sup tPr0,T s Proof. Let w " ř ijk u 2 ijk . Then ´Bt w ´Trpapt, xqD 2 wpt, xqq 0 sup " ´2 ÿ	a kl u kl	(106) 2 (107)
	tPr0,T s		

Proof. Our starting point is inequality (102) in the previous proof. Using our assumptions on a and h we get: ´Bt v ´Trpapt, xqD 2 vpt, xqq `hp pt, x, Dupt, xqq ¨Dvpt, xq ď ´2C such that, if }D 2 g} 8 ď M and T P p0, T M q, then sup tPr0,T s }D 2 uptq} 8 ď }D 2 g} 8 `CM T. If, in addition, h is affine in p, then there is a constant C, depending only on C 0 , sup tPr0,T s }aptq} 2 and on }D 2 xp h} 8 , such that, for any T P p0, 1s, sup tPr0,T s }D 2 uptq} 8 ď p1 `CT q}D 2 g} 8 `CT sup |p|ď}Du}8 }D 2 xx hp¨, ¨, pq} 8 . u u u ´Bt w ´Trpapt, xqD 2 wpt, xqq `hp pt, x, Dupt, xqq ¨Dwpt, xq ď C|D 2 u| `1 `|D 2 u| `|D 2 u| 2 where now C depends on }a} 2 as well. We conclude using maximum principle as in the proof of Proposition A.1. i,j,k,l,m a lm pt, xqu ijkl pt, xqu ijkm pt, xq ´2 ÿ i,j u ijk pt, xqD i,j,k ˜Bt u `ÿ l,m a lm u lm 2 ÿ i,j,k,l,m

  3 a} 8 |D 2 u| `C |D 3 u| C depends on sup t }uptq} n´1 and the quantity in (109). Last term can be estimated as before: the higher order quantity involves Du k , so we have through Young's inequality k `Dk pTrpaD 2 uqq ´TrpaD2 u k q ˘ď 2C ´1 |Du k | 2 `C |u k |p1 `|u k |q,for some C depending on sup t }aptq} n and sup t }uptq} n´1 . Finally, we conclude with maximum principle, as in Lemma A.2.Proposition A.6. (Higher order estimate, further informations) Let n P N with n ě 3 and assume that h and a (and the solution u) are of class C n b . For any M ą 0, there are constants K M , T M ą 0, depending on M , C 0 and γ, and a constant C M ą 0 depending on }D k px,pq hp¨, ¨, pq} 8 , such that, if }g} n ď M , then, for any T P p0, T M q and any r ď n, we have

	ÿ			ÿ
	2			0
	|k|"n			|k|"n
				n
				ÿ
	sup	}aptq} n `sup
	tPr0,T M s		|p|ďK M	k"0
	sup	}D r x uptq} 8 ď }D r x g} 8 `CM T
	tPr0,T s	
	and therefore		
		sup

˘,

for some C depending on C 0 and }D 2 a} 8 . Finally, a direct computation of D i,j,k thu and a straightforward estimate of all terms involved imply

´2 ř i,j u ijk pt, xqD i,j,k thu ď ´hp pt, x, Dupt, xqq ¨Dwpt, xq `C |D 3 u| " }D 2 h} 8 |D 3 u|p1 `|D 2 u|q `}D 3 h} 8 p1 `|D 2 u| 3 q ‰ .

where u tPr0,T s }uptq} n ď }g} n `CM T.

4.1.4 Second order differentiability with respect to m Proposition 4.5. Under the assumptions of Proposition 4.4, k ě 3, the pair pU 0 , U q (and its derivatives with respect to x) is of class C 2 with respect to m and, for any fixed px, m, ρ, ρ 1 q P R d ˆP2 ˆC´pk´1q Ĉ´pk´1q the derivative pw 0 , wq " pδ 2 U 0 {δm 2 pt, x 0 ; mqpρ, ρ 1 q, δ 2 U {δm 2 pt, x 0 ; x, mqpρ, ρ 1 q q solves $ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

Again we notice here that the right-hand side is estimated through the regularity of H and sup t }uptq} n . Similarly we estimate, for r ď n ´1, }vpT q} r ď } δG δm px 0 , ¨, mpT qq} r;k sup t }ρptq} ´k `}R 3 } r .

(54)

Collecting the estimates in (51), ( 52), ( 53), (54), we find, for r ď n ´1: sup t }vptq} r ďp1 `CT q} δG δm px 0 , ¨, mpT q, ¨q} r;k ! p1 `CT q}ρ 0 } ´k `CT p}Dv} 8 `}R 2 } ´pk´1q q

`}R 3 } r p1 `CT q `CT `}ρ 0 } ´k `T p}Dv} 8 `}R 2 } ´pk´1q q `}R 1 } n´1 ˘.

We first consider this inequality for r " 1. Recall that } δG δm } 1;k ď M . So, if we choose T M ą 0 such that

we obtain (47) for T ď T M and n " 2. Then from (51) we infer (48) (with a constant only depending on sup t }uptq} k`1 ). Having now estimated }Dv} 8 , we deduce from (55) that (47) holds.

To obtain (49), we apply again Proposition A.7 to the HJ equation satisfied by v, together with estimates (53) and (48).

The second order linearized system

Next we study the second order linearization of the MFG system. Given pu, mq a solution to (40) and pv, ρq and pv 1 , ρ 1 q two solutions to (45) with arbitrary R 1 , R 2 , R 3 and R 1 1 , R 

Trpapt, yqD 2 ym U pt, x 0 , x, m, yqq mpdyq `ˆR d D m U pt, x 0 , x, m, yq ¨Hp px 0 , y, D x U pt, x 0 , y, mq, mq mpdyq " 0 in p0, T q ˆRd ˆP2 U pT, x 0 , x, mq " Gpx 0 , x, mq in R d ˆP2 .

(65)

In the above equation, x 0 P R d0 is considered as a parameter. Our aim is to build a solution to this equation and study its regularity. The method for finding a solution to (65) is well-known: if we set

where pu, mq is the solution to (40), then U is a solution to (65).

In order to study the Major-Minor agents' problem, we also have to consider a linear master equation

where U is the solution to (65). In this case, we build the solution U 0 by the simple formula:

where pu, mq is also the solution to (40).

Our aim is to show that, if G and G 0 are regular enough, then (65) and (67) have classical solutions, given by the above representation formulas. Moreover, we show that the regularity of these solutions only deteriorate linearly in time. This last point is the key result in order to build later solutions to the second order master equation and to the master equation for the Major-Minor agents' problem.

Throughout the section, the assumptions of Subsection 2.3 on a, H, G and G 0 are in force.

The proof relies on the following lemma, in which we also provide estimates to obtain later one the differentiability of U with respect to x 0 . Lemma 6.3. Under the assumptions of Proposition 6.1, we fix pt 0 , m 0 q, pt 0 , m 1 q P r0, T q ˆP2 , y 0 , ξ P R d with |ξ| ď 1. Let pu, mq be the solution to (40) with x 0 " y 0 and with initial condition pt 0 , m 0 q, and, for h P p0, 1q, let pu h , m h q be the solution to (40) with x 0 " y 0 `ξh and with initial condition pt 0 , p1 ´hqm 0 `hm 1 q. Let also pv, ρq be the solution to (45) associated with pu, mq, x 0 " y 0 and with 

Remark 6.4. The goal of this Lemma is to identify the first order derivatives δU δm and D x0 U . The constant C above will depend on the regularity of H and G, as well as on sup tPrt0,T s }uptq} n ; however this is not detailed later since it will not be relevant; indeed, (72) and (73) are only used for letting h Ñ 0.

Proof. We set 

Then the pair pv

A Estimates for solutions to HJ equations A.1 Main estimates

In this section, we assume that the data a, h and g are smooth and we are looking for a priori estimates on the smooth and globally bounded solution u to the HJ equation

We always assume below that there exists C 0 ą 0 and γ ě 1 such that

for every pt, x, pq P p0, T q ˆRd ˆRd .

Proposition A. 

As n ě 3, a simple induction argument shows that D k thu is of the form

where the map f k " f k pt, x, Dupt, xq, . . . , D n´1 upt, xqq is a polynomial function of the derivatives of u up to order n ´1 with coefficients involving derivatives of h with respect to px, pq up to order n computed at pt, x, Dupt, xqq, while

where ξ is any multi-index of length n ´1, z is a multi-index of length 1 (z " e j for some j P t1, . . . , du) and ξ `z " k. Therefore

Using our assumption on h 0 we get

for some C ą 0 and θ ą 0 which depend on C 0 and γ only. We derive from this the Lipschitz estimate thanks to the maximum principle exactly as in the proof of Proposition A.1. The higher order estimates can be checked exactly as in Propositions A.3 and Lemma A.5, so we omit the proof. Note that higher order estimates on D r u 0 and D r u depend on D r´1 u 0 and D r´1 u, but this dependance affects the constant C M only.

Let us finally explain how to handle the derivative with respect to y: we note that B α y u satisfies the same linear equation as u with f replaced by B α y f , and the final datum g is replaced by B α y g. So, in order to estimate D x D l y pu 0 , uq for instance, we just set c l " p

pB α y u i q 2 q and w " ř |α|"l v α . As above,

and summing up one concludes the desired inequality, noting that w "

A.2.2 Linear systems

We also need to quantify the regularity of linear systems of the form

´Bt u 0 pt, xq ´∆u 0 pt, xq `V 0 pt, xq ¨Du 0 pt, xq `f 0 pt, xq " 0 in p0, T q ˆRd , ´Bt upt, x; yq ´∆upt, x; yq `V 0 pt, xq ¨Dupt, x; yq `V pt, x; yq ¨Du 0 pt, xq `f pt, x; yq " 0 in p0, T q ˆRd , u 0 pT, xq " g 0 pxq, upT, xq " gpx; yq in R d

Proposition A.9. Assume that, independently on t P p0, 1s, V 0 , f 0 are bounded in C r , and V, f are bounded C r,n b for some r, n ě 0. Then, if pu 0 , uq is a solution of (113) which is bounded in C r b ˆCr,n b and if }g 0 } r `}g} r,n ď M , we have, for any T P p0, 1s, l ď n,

where C M depends on M , the bounds on V 0 , f 0 and V, f in C r and C r,n b respectively. In addition, for r " 0 and l ď n, we have

where C depends just on the bound of V 0 and V .

Proof. We first note that the derivatives of u with respect to the parameter y solve a system which has the same structure as the one for u: so we just need to check the result for n " 0, and proceed as in the proof of Proposition A.8 for n ą 0.

All the measures we are going to manipulate in the next lines belong to the set

which is compact in P 2 . So, by continuity of d ds Û , if we fix ą 0, there exists δ P p0, 1{2q such that, if m 1 , m 2 P K with d 2 pm, m 1 q ă δ and s P r0, δs, then sup k ˇˇˇd ds Û ps; m, y k q ´d ds Û p0; m 1 , y k q ˇˇˇď . (114)

Our first step consists in showing that, for s ą 0 small enough (to be defined below) and for any m P K, we have ˇˇˇU pp1 ´sqm `sm N y q ´U pmq ´s

where C depends on the sup norm of d ds Û on r0, 1s ˆK ˆty k , k " 1, . . . , N u. In order to prove (115), we define α k " s N ´pN ´kqs for k " 0, . . . , N and note that

We now define by induction

and using (116) we get

So, by the definition of m k`1 in function of m k in (117), U pp1 ´sqm `sm N y q ´U pmq "

Let us assume that s P p0, δq. As s ă 1{2, we have α k ď 2s{N for any k, and thus d 2 pm k , mq ď Cs for a constant C which depends on m 0 and on the y k (but not on m P K nor on s P p0, δq). We now require that s is so small that Cs ă δ. Then, for any k and any τ P p0, α k q, we have by (114):

We infer from this that

As p {T `p1{T q 2 q ď Cp `T ´1q.

We let T Ñ `8 and then Ñ 0 to conclude by continuity of U and of d ds Û that U pe ´1m 0 `p1 ´e´1 qm N y q ´U pm 0 q " ˆ1 0 ˆRd d ds Û p0; e ´sm 0 `p1 ´e´s qm N y , yqm This is (118). By continuity of U and of d ds Û and by density of the empirical measures, one obtains from (118) that, for any measure m 0 , m 1 P P 2 :

U pe ´1m 0 `p1 ´e´1 qm 1 q ´U pm 0 q " ˆe´1 0 ˆRd d ds Û p0; p1 ´τ qm 0 `τ m 1 , yqm 1 pdyq dτ 1 ´τ .

Choosing m 1 " m 0 then implies the normalization convention ˆRd d ds Û p0; m 0 , yqm 0 pdyq " 0 for any m 0 P P 2 . In particular, this yields ˆRd d ds Û p0; p1 ´τ qm 0 `τ m 1 , yqm 1 pdyq " p1 ´τ q ˆRd d ds Û p0; p1 ´τ qm 0 `τ m 1 , yqpm 1 ´m0 qpdyq .

Inserting this relation in (119) gives the more standard form:

U pe ´1m 0 `p1 ´e´1 qm 1 q ´U pm 0 q " ˆe´1 0 ˆRd d ds Û p0; p1 ´τ qm 0 `τ m 1 , yqpm 1 ´m0 qpdyqdτ.

Using again the continuity of U and of d ds Û , one easily deduce from this the desired equality.