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Abstract 

Nonlinear water waves have been studied for decades. However, numeric models have always been validated with punctual 
measurements. In this study we measure the surface deformation of water waves with the Fourier Transform Profilometry (FTP) 
technique, obtaining a complete space-time resolved field. This permits to separate free and bound waves in the shallow water 
region, revealing the near resonant interaction between those components. When we change the absorbing beach by a reflecting 
wall at the end of the channel, we observe an interesting resonance for fixed frequencies. At the resonant frequencies, the system 
shows a chaotic behavior.     
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 2015 ICU Metz. 
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1. Introduction 

In this study, we present space time resolved measurements of nonlinear surface wave interactions with variable 
bathymetry. This is done using Fourier Transform Profilometry (FTP) technique, developed by Cobelli et al. (2009), 
which allows to extract the field of surface elevation in both time and 2D space. We are able to describe the 
propagation of nonlinear waves passing over a submerged step, especially identifying the near resonant interaction 
between the two components, free and bound waves, of the second harmonic (see punctual measurement in Beji and 
Batjes (1992)).  

 

 
* Corresponding author. Tel.: +33-140794722. 

E-mail address: eduardo.monsalve@espci.fr  

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Scientific Committee of ICU 2015

http://crossmark.crossref.org/dialog/?doi=10.1016/j.phpro.2015.08.177&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.phpro.2015.08.177&domain=pdf
https://www.researchgate.net/publication/227189976_Global_measurement_of_water_waves_by_Fourier_transform_profilometry?el=1_x_8&enrichId=rgreq-816192cd7ffd9b102f9a48e44f82b835-XXX&enrichSource=Y292ZXJQYWdlOzI4MzIwMzUwNjtBUzozMTk5ODUzOTI1MjEyMTlAMTQ1MzMwMTg3MTA2NA==


864   E. Monsalve et al.  /  Physics Procedia   70  ( 2015 )  863 – 866 

In order to obtain nonlinear waves in a controlled way, we put a submerged step that separates a deep and a 
shallow water regions. Waves are generated in the deep water region and travel through the shallow water region. 
Finally, a non-reflecting beach is used to ends the shallow water region in order to avoid reflection. For each 
frequency, a temporal decomposition permits to analyze the propagation of the different harmonics, showing the 
nonlinear dynamics present in the shallow water region. 

 
Results show clearly the presence of bound waves, with a wavenumber twice the one of the fundamental mode, 

and free waves, which propagates according to the linear dispersion relation. These bound and free waves have 
different wavenumbers, which produce a phase mismatch that can be observed in a beating of the second harmonic, 
as was described by Ohyama et al.(1994). Our results show that the beating length agrees with the linear dispersion 
relation, in the weakly nonlinear region. 

2. Experimental Setup 

The experiments were carried out in a laboratory tank designed to measure the deformation of the free surface 
with Fourier Transform Profilometry (FTP). Waves are generated by a wave maker with frequency f in the range [1, 
4] Hz. Waves travel through a deep water region (6.5 cm depth) of 40 cm length. A step separates the deep water 
region from a shallow water region with depth 2 cm. After 80 cm, a non-reflecting beach of 8% slope ends the tank 

3. Results 

We first consider the linear dispersion relation or water waves: 
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where =2 f. With forcing frequency f, the two first harmonics  and 2  are associated to the wavenumbers 
k1=k( ) and k2=k(2 ) respectively; this latter wavenumber will correspond to free waves. Also, at the second 
harmonics, the bound wave is associated to wavenumber 2k1. The wavenumber mismatch k=k2 2k1 corresponds to 
the inverse of the beat length of the second harmonics, as derived by Massel (1983): 
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A snapshot of the FTP measurement of the 2D field at a particular time is shown in Fig. 1(a). We have checked 
that the beach produces a very weak reflection: the amplitude of the reflected waves is smaller than 5% of the 
amplitude of the incident wave. On the other hand, lateral walls do not perturb the flatness of the wave front, (see 
Fig. 1), allowing us to model the phenomenon as 1D in space. The spatiotemporal representation of the surface 
elevation S(x, t) is showed in Fig. 1(b). 

In this representation, the horizontal axis has its origin at x=0 where is located the step. As expected the crests 
have smaller velocity in the shallow water region (x > 0). Besides, nonlinear effects can be clearly evaluated by the 
asymmetry between crests and troughs: whilst the proportion of negative and positive values is similar in the deep 
water region, the part of positive values becomes narrower in the shallow water region. This difference is due to the 
cnoidal shape of the waves in shallow water conditions. Importantly, we can notice the presence of two different 
types of waves, with different velocities, in the shallow water region. 
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Fig. 1. (a) Surface deformation in the shallow water region; (b) Space-Time graph for f=2 Hz. 

 
From the surface elevation S(x,t), the spatial evolution of the Fourier Coefficients Sn(x) of each mode are 

calculated as: 
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Next, a spatial Fourier transform is computed: 
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with L the total length of the shallow water region. 
The Fig. 3(a) shows a typical behavior of |S2(k)| for f = 2.4 Hz. The two maxima corresponding to the free and 

bound waves are visible, with k1 and k2 previously defined. In the whole range of explored frequencies, we have 
checked that the k1 and k2 values roughly agree with the expected values k(2 ) and 2k( ) as given by the linear 
dispersion relation in Fig. 3(b). 

 

  

Fig. 3. (a) Spatial spectrum for the second harmonic signal. (b) Dispersion relation of water waves and experimental points: (*) wavenumber of 
first harmonic, (+) wavenumber of second harmonic free wave, (x) wavenumber of second harmonic bound wave.  

b) a) 

b) a) 
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Fig. 4. (a) Phase plane of a non-resonant frequency. (b) Phase plane of a resonant frequency with the typical form of a chaotic behavior. (c) 
Frequency spectrum of the chaotic case (b).  Different peaks of the rich spectrum are identified: fp is the periodicity frequency, f0 is the forcing 
frequency.    

4. Border effect with a reflecting wall. 

Currently, new experiments are carried out in order to study strong reflection effects, by adding a vertical wall 
instead of the non-reflecting beach. Preliminary results show an interesting dynamics with rich frequency spectra, 
revealing the presence of many sub-harmonics, as we observe in Fig. 4(b,c). In Fig. 4(a) we observe a phase plane of 
a stable case, were there is no generation of sub-harmonics. For comparison, we present in Fig. 4(b) a phase plane 
generated when the forcing frequency is slightly tuned. Whilst the stable case shows a periodic trajectory, the non-
stable case fills the plane showing a typical chaotic behavior. This case can be compared with horizontally forced 
basins, which show similar responses in the literature. However, the presence of nonlinearities, as was explained in 
the previous section, turns the problem more complex. The resonance cannot be attributed to one eigen mode, 
because several wavenumbers are generated in the shallow water part, owing to the interaction between free and 
bound waves.  

5. Conclusions. 

We reported new measurements of nonlinear waves passing a submerged shelf. With the FTP technique we are 
able to separate directly bound and free waves, explaining the contribution of each one in the near resonant 
interaction of higher harmonics. The measured free waves agree with the linear dispersion relation, also the 
measured bound waves follow the predicted curve. At the second harmonic, the near resonant interaction between 
bound and free waves produces a beating that is well predicted by Massel (1983).   

When a reflecting wall is imposed at the end of the waveguide, an interesting resonance appears for fixed 
frequencies. The presence of nonlinearities and the generation of harmonics, propose interesting questions that will 
be the subject of further works. 
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