N

N

Petri Nets to Arduino (PN2A) Embedding Time Petri
Nets into a Microcontroller Architecture

David Delfieu, Maurice Comlan

» To cite this version:

David Delfieu, Maurice Comlan. Petri Nets to Arduino (PN2A) Embedding Time Petri Nets into a
Microcontroller Architecture. SCEE, 2019, 1 (2), pp.12-25. hal-02454089

HAL Id: hal-02454089
https://hal.science/hal-02454089
Submitted on 29 Jan 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02454089
https://hal.archives-ouvertes.fr

Petri Nets to Arduino (PN2A)
Embedding Time Petri Nets Into a Microcontroller
Architecture

David Delfieu and Maurice Comlan

Abstract This paper presents a tool which embeds Time Petri Nets into Arduino
micro-controller boards. Time elapsing is mimicked by a timer that is aging a
set of clock variables. Embedding a network makes it not autonomous. Model
simulations are now truly dependent and time-dependent of external stimuli on
micro-controller pins. Indeed, firings of transitions are now also conditioned to
predefined events observed on the pins. This paper defines the semantics, the
algorithm of the token player, describes the code generation and the use of the
tool.

Keywords Embedded systems - Time Petri Nets - Firing semantics - Code
generation - Microcontroller

1 Introduction

Embedded systems are increasingly complex; they run on mono or multiproces-
sors, parallel or distributed architectures and can be submitted to synchronisation,
concurrency, or communication constraints. By their complexity, such systems are
difficult to tackle and it is necessary to have reliable modeling tools, for one hand,
to design and specify them and for another hand, to check that a set of properties
is established. For example, prevention of deadlock, to lay down that the capacity
of a buffer is never exceeded, The objective is to ensure the safety and relia-
bility of the system and the modeling will attest the conformity of the behavior to
the requirements. Formal approaches produce modeling of the behavior of systems
from which, proves can be lead. As a modeling is an abstract and approximated

David Delfieu

Laboratoire des Sciences du Numérique de Nantes 1, rue de la Noé, BP 92101 44321 Nantes
Cedex 3

E-mail: david.delfieu@univ-nantes.fr

Maurice Comlan
Ecole Polytechnique d’Abomey-Calavi 01 BP 2009 Cotonou
E-mail: comlan@hotmail.fr

2 David Delfieu and Maurice Comlan

Code Generation

R —
Time Petri Nets
Model PN2A
R —

Pins assignment

Actuators Sensors

Fig. 1 Model and its environment

representation of a real system, each modeling technics will have its own merits
and weaknesses.

Petri nets (PN) [?] constitute one of the well-known formalisms to model in a
compact and explicit way the concurrency and the synchronisation between the dy-
namic components of discrete-event systems. Petri nets are a modeling language
covering a wide domain: control systems, communication protocols, distributed
systems. The properties of reachability, deadlock or boundedness are critical prop-
erties and Petri Nets are particularly an appropriate modeling tool because those
properties, although expensive, are generally decidable. Several extensions even
enlarge its application to Artificial Intelligence, Object Programming with Col-
ored PN, or real-time with temporal extensions. This paper focuses on Time Petri
Nets (T'PN), particularly adapted to model real-time concurrent systems. In these
models gigantic state space models are computed. To keep a certain compactness
a graph of zones is computed. To each zone corresponds a set of variables and
time inequalities. The passage of time is event driven. It is the user who acts on
the transitions that makes time evolve. We are more dealing with a logical time
rather than a real time.

Generally the modeling of a system with Petri nets carries only on the control
part. It is often, already, a challenge because it implies to have a good knowledge of
the system. From this model generally, the state space is computed and properties
like boundedness, reachability, liveness, temporal properties can be verified. When
it comes necessary to test performance constraints or implementation aspects,
the environment is modelled and coupled to the application in a global model.
Therefore it is necessary to know very precisely the environment and the target
architecture.

This paper describes a tool PN2A, which allows the modeling of a system
using Time Petri net embedded in a microprocessor whose external environment
interacts with the model. This embedding may allow to test external equipments,
or may reveal unexpected problems or artefacts (response time, electromagnetic
interference, ...). The general idea can be summarized by the following Figure (1).
This figures describes the association connecting the modeling with the physical
peripherals: Actuators, sensors, motors, leds, human interactions. The modeling
then can be simulated in a real context. A TPN is first edited with Romeo [?]
or Tina [?]. PN2A can open a Romeo or Tina project and parses the TPN into
a structure. Then PN2A may define an assignation between pins and transitions

Title Suppressed Due to Excessive Length 3

or places. Then a code generation step produces enabling and firing functions. A
timer handler is added to the code to deal with temporal aspects. An Arduino
project is generated, ready to be uploaded to the target (see Figure 1).

Section 2 presents different code generation approaches from Petri nets and how
the approach, presented in this paper, can be situated. Section 3 recalls basics
definitions and propose a way to define the embedding of a TPN on a micro-
controller board. The next section presents the firing semantics, and the last section
describes the tool and illustrates the approach by an example with metrics about
execution times and memory occupation.

2 Discussion and related works

Many studies discuss about code generation from Petri Nets. [?] proposes a clas-
sification of theses approaches between totally centralized, centralized and hybrid
approach. In totally decentralized approach [?], each place and transition are im-
plemented as a processes. This approach preserves parallelism but the overhead
of time and memory due to the task scheduler ruins performance. Richta and R.
Ko [?] propose distributed approach to embed Workflow Petri nets specification
on a microprocessor architecture. Concurrency is obtained by processes and sub-
processes. The initial model is transformed through several steps into a byte code
interpreted by a Petri nets Virtual Machine which is part of a Petri nets dedicated
operating system. This approach is much more sophisticated (use of virtual ma-
chine), than the approach presented in this paper, however the memory amount
is very important for even small modeling. The authors admit that the SRAM
memory of the ATmega328 chip (2kB) is a strong limitation and they propose in
future works to use a Raspberry.

Centralized approaches are implementing “token players”. At each step there
is an evaluation of the firability of every transition. Lee G., H. Zandong and J. Lee
[?] present a centralized approach to generate Ladder diagrams from Petri nets.
They limit their work to safe and deterministic Petri nets (Control Petri Net). In
[?], Ferrarini proposes to synthesize logic controller from Petri nets, but a lot of
restrictions are imposed on the Petri nets : The whole Petri nets must be covered
by a place invariant and a transition invariant and the net must be alive. They
consider Petri nets without parallelism.

In hybrid approaches [?], the idea is to partition, if possible, a net into a set of
components that can be executed concurrently. Those components are “sequential
state machines” that can be implemented as processes. Those components can be
identified by the computing of place invariants.

This work is part of the centralized approaches. A token player is implemented
which stands for a scheduler. Moreover, this approach deals with general Time
Petri nets with parallelism. Unsafe TPN with non free choice conflicts are con-
sidered. In this approach Time Petri nets are translated into an incidence matrix
and a set of clock variables. In this approach, there is no need to implement sub-
processes. The parallelism is implicit within the matrix structure and the firing
equations (defined in the following Section 3.1). The generated code is directly
uploadable to the target and executable without any operating system.

4 David Delfieu and Maurice Comlan

3 Basic definitions
3.1 Petri Net

A Petri Net (PN) [?] is a structure (P, T, F') where P is a finite set of places, T,
a finite set of transitions, (where PNT =), and FF C (P x T) U (T x P) is a set
of arcs. pre: (P xT) — N, the Pre-condition function defining incoming arcs
and their valuations, between a place and a transition and post : (T'x P) — N,
the Post-condition relation defining outgoing arcs (and their valuations) between
a transition and a place. Places and transitions are called nodes. The pre-set of a
node z is denoted *z = {y € PUT : (y,z) € F} and the post-set of a node z is
denoted z* ={y € PUT : (x,y) € F}.

A marking of a Petri net A is a mapping M : P — N. A marked Petri Net
is a tuple < A, Mo) > where N is a Petri net and My is the initial marking. A
transition ¢ € T is enabled in a marked Petri Net M iff: Vp € *t, M (p) > pre(,t)).

This is denoted: M 5. Firing of an enabled transition ¢ leads to the new marking
M (M5 M'):Vp e P, M'(p) = M(p) — pre(p, t) + post(t, p) Thus the following
set can de defined: Enabled(M) ={t €T, s.t. M —t>} The next section introduce
several temporal extensions of Petri Net.

3.2 Time and Petri nets

Extensions have been proposed to take into account temporal specifications: In
Timed Petri nets a duration is associated to a transition while for time Petri nets
a temporal interval is associated to transitions. Concerning Time Petri nets, time
can be associated to places, arcs or transitions: P-Timed Petri nets (P-TPN) [?],
Arc-Timed Petri Nets (A-T'PN) [?] and Time Petri nets (T-TPN) [?,?] are the
principal variants.

In term of expressivity, on a theoretical point of view, P-TPN et T-TPN are
not comparable, A-T'PN being more expressive [?]. But in term of conciseness T-
TPN are much more concise than P-TPN or A-TPN. In term of language they
are all equivalent. Concerning T-T'PN other extensions have been introduced to
enrich expressive power: Scheduling TPN, inhibitors/reset Arcs TPN, and some
other ones. In theses extensions, the state reachability is undecidable [?], but this
paper is restricted to simple T PN, where this property holds and which gives a
satisfying expressive power in most of usual control applications.

Definition 1 A marked Time Petri net is a tuple (N, Mo, Is) in which (N, Mo)
is @ marked Petri net and I, : T — QT x Q1 U oo is called the Static Interval
Function.

For every transition ¢ associated to a static interval [efd(t),lfd(t)]: efd(t)
defines the earliest firing date of ¢, while [fd(t) is the latest firing date of ¢.

The enabling date of a transition is the date of the last firing which has enabled
t. At this date, the local clock associated to the transition is reset and begin to
be aged. A transition ¢, for which time clock value belongs to its static interval is
firable. Time elapsing is generally considered in a continuous way, and those clocks

Title Suppressed Due to Excessive Length 5

are defined on R™. In this paper, time elapsing is generated by a timer, thus, clock
variables will be defined on N7.

With time Petri Nets, two semantics can be considered [?]: In a strong se-
mantics, after [fd(t), the firing of the transition ¢ will be unavoidable. In a weak
semantics, this transition can expire if its clock exceeds [fd(t) and the tokens of
incoming places will die. An in-depth discussion about semantics will be tackled
in section 4.1.

3.3 Microcontroller synchronized Time Petri net

The external environment of the microcontroller constitutes (see Figure 1), the real
environment of the model. Embedding a model therefore requires the definition of
an association between the nodes of the TPN and the set of actuators or sensors
that defines the real environment of the micro-controller . The evolution of control
in a Petri net is depicted by the set of tokens and their evolutions. Thus it is
proposed to associate marked places to predefined output pins whereas transitions
can be assigned to predefined input pins.

Let’s define this assignation: A transition can be assigned to the high or the
low level of an assigned pin. As well, a marked place will produce a high or a low
level on an assigned pin.It is important to note that the assignation of transitions
and places to the pins of the microcontroller can be partial. In the Figure 2, the
read nodes (EnterCode, Pass, , ...) are assigned to pins while the blues ones (771,
Py, ...) are not .

Let’s note T® (resp. P%), the set of transitions ¢t € T (resp. t € P) such as t
(resp. p) has been assigned to a pin of the micro-controller and Pins the set of
pins of a micro-controller .

Definition 2 A microcontroller synchronized Time Petri net (mstpn) is defined
by the tuple < N'*, A(),T*, P* > in which N'* is a Time Petri net, T® (vesp. P®)
a subset of T' (resp. P) which are assigned to a pin of the microcontroller by the
the assignment application A() : P* UT® —< Pin number, Level >.

If n € P*UT?, let’s note A(n) — pin the assigned pin and A(n) — L the
associated tension level of the assigned pin to the node n. The next definitions
arise from the previous:

— In amsT PN, a transition ¢ can become urgent, if this transition is not assigned
to a pin (¢t € T*) and when its local clock reaches its latest firing date.

— A transition ¢ belonging to T is sensitized if the level observed onto A(t) — pin
matches to A(t) — L.

4 Semantics

The example (Figure 2) models the identification system of a cash dispenser. In this
Figure red transitions Pass, Retry InsertedCard, EjectedCard are assigned to
input pins, while red places EnterCode, and InCard are places assigned to output
pins. The blues nodes are not assigned. A user has 3 tries for being identified
(to reach the place P»). If he fails (place P3), the tokens in place Tries give

6 David Delfieu and Maurice Comlan

InsertedCard EnterCode Tries

InCard “/ ‘ Passl1,3] Retry(2,4]

[]

EjectedCard Fé ﬁ’g

Fig. 2 Cash Dispenser

him additional chances to retry. Reds nodes are assigned to pins while blue ones
are not. The temporal intervals allow to implement a watchdog. 77 monitors the
transition Pass. if the transition Pass occurs into [1, 3] the control goes in P» else,
if the elapsing of time exceeds 5, Retry is fired and the control enters again the
place EnterCode. It is interesting to note that from now on the firing of Pass is
determined by three conditions: The occurrence a positive edge on its input pin, its
local clock and the marking of the place enterCode. Whereas, the firing condition
of T1 is only bounded to its local clock and the marking of enterCode.

If it sounds pertinent to consider a strong semantics in the firing of 77, what
is the associated semantics to the firing of PASS 7 Consider the case, where the
clock variable associated to Pass, reaches its [fd(), should we consider that the
token in Ps; should die, should be urgently fired, or remains available for 77 ?
The following section discusses on the semantics to apply to these two types of
transitions.

4.1 Discussion about Firing semantics

In this discussion, we analyze the firing semantics for assigned and non assigned
transitions.

Non assigned transitions

When the designer of the model has chosen not to assign 71 (Figure 2), he there-
fore, has decided that the firing condition of 77 is only conditioned to its clock
variable. In that case, it is interesting to consider a Strong Semantics and to force
the firing at efd(7T1). In the opposite case, the set of tokens belonging to *Ti
should stay in the net, becoming unavailable, cluttering the net.

Assigned transitions

For assigned transitions, we examine a weak semantics. In the simplified example
of the Figure 3, the only assigned node (PINs) is Th. T» acts as a watchdog on
1.

Title Suppressed Due to Excessive Length 7

TO [0, 00|
P1

T1 [0,2] + PINe T2 [3,5]

Fig. 3 Discussion about firing semantic

Let’s consider two scenarii: First, Ty is fired at date 0 and 3, T> and a positive
edge on PINg occurs at the date 5. In this scenario, a first token appears in place
P at date 0, a second token is produced at date 3. At this date, the clock variable
of the first token is 3 and the second token has its clock variable at zero. At date
5, Ty is fired with the older token in P; while T3 is fired with the other token.
In the second scenario, we consider the same temporal sequence except that the
positive level on PINg does not occur: At the date 5, there is two tokens in the
place P;. But in this case, only T3 is fired and the older token will stay in the net.

In a weak semantics, the expiration of a delay, before the occurrence of the
associated event, signifies that internal conditions (time elapsing) prevails over
external conditions. Thus, weak semantics brings an interesting expressive power.
For example, tokens can be assimilated to fresh products, submitted to cold chain
integrity, and an upper firing date determines the validity of the cold condition
on a process. If the date has passed, the products (tokens) becomes unusable for
some transitions or for all.

On the contrary, this expressive power brings a great complexity: clocks must
be attached to each token. Moreover, the enabling conditions must take into ac-
count the multiple and different clocks of several tokens. Some tokens will be usable
while other not. Moreover, dead tokens can accumulate, occupying memory and
slowing down the tests. Tests on examples with dead or unusable tokens have
shown that the induced complexity impacts significantly the response time of the
system. We propose to use in this paper a strong semantics for the two type of
transitions. Moreover, this semantics allows to attach clock variables to transitions
rather than tokens.

4.2 Definition of the firing semantics

In amsT PN, the firing of a connected transition depends on three conditions: i) its
enabling condition, ii) the value of its local clock and iiii) an edge signal (positive
or negative) observed on its assigned pin. For a non connected transition, the first
two conditions are necessary.

The semantics of a microcontroller synchronized Time Petri net can be stated
as a synchronized timed transition system which is defined in the following defini-
tion (Definition 4). In this semantics clock variables are attached to transition

8 David Delfieu and Maurice Comlan

Definition 3 (Clock variables) For every transition ¢ in 7', v associates a
positive integer representing a time elapsing. v : T — N, vector defining all
the clock variables. vg : null vector, allows to initialize every clock variables.

< M,v >%< M,v' > expresses the firing of ¢ from the marking M, with M’
and v’ respectively the new marking and the new clock vector.

A transition is said newly enabled when it has just became enabled. The vector
newlyEnabled : T — B is a boolean vector defining if all the transitions that are
newly enabled. Initially, all the values of this vector are false. When a transition is
newly enabled there is a reset of its clock variable. If this transition is enabled again
by additional tokens, the clock variable is not modified and the transition can be
fired with any subset of tokens of its preset. Tokens are therefore undifferentiated.
This choice allows to prevent the use of clock variables on tokens.

Definition 4 (Semantics of a msTPN) The semantics of a msTPN N is de-
fined by the transition system: < Q, {qo}, >, —>>

— Q =NIPI x NITI
— go =< Mop,vo >€ Q
-X=T

—- 5CQx(TUN)xQ

— Computing of Urgent :

Vi, €T, M >° ty

i (0(th) + 0 > Lfd(ty)) A (v(ty) < Lfd(ty))
Urgent + = ty

o' (tg) = v(ty) +0

— Urgent transitions:

. {M>. t;
if =
< Mo >B< M/ W > iff ti € Urgent

then M’ := M —*t; +t?

— Non urgent transitions, assigned or not:
M >*t;

. if q efd(t:) <wv(t) <Ufd(ts)
< M,v>3< M'v > iff (tk € T*) || (sensitized(t;) == True)

then M’ := M —*t; + ¢}

— Computing newlyEnabled and reset of clocks:
Vi € T, newlyEnabled(ty) = (M’ > *(tr)) A - (newlyEnabled(ty))

, _ J 0 if (newlyEnabled(ty))
vite) = {else v(tr)

In this definition, the first item defines the Urgent set. The second defines the
firing of an urgent transition. This item defines the new marking and modifies
the newlyEnabled vector. Moreover it reset the clock variable of a transition if it
newlyEnabled.

Title Suppressed Due to Excessive Length 9

The third item differs in its firing condition (upper parenthesis). In that case,
it adds the condition (t; & T®) || (sensitized(t;) == True). This condition is true
when either (¢; € T°), either if (¢; € T%) then the condition (sensitized(t;) ==
True) must be true.

5 The tool

PN2A!, is a software where binary executables are available for Windows, Mac
OS and Linux environments. Input files describing the TPN can be edited by two
PN editors: Tina”? and Romeo °.

We illustrate the use of the tool on the previous example (Figure 2). Pass,
Retry have been assigned to switches, while EnterCode and Tries are assigned to
leds (see Figure 7). Other transitions or places were not assigned. 71 implements
a watchdog. The edition of the example is made on Romeo (Figure 4) and saved
on an xml file (cdRevue.xml):

nsérer | O&H | | & & j}& Simuler Vérifier Panneau de contréle
&
[i=]
i InsertedCard EnterCode Tries
9]
inCard
.

EjectedCard

1K [#T

Romeo v3.8a Copyright (c) All rights reserved

Fig. 4 Edition

PN2A proposes an IDE constituted by a main window where the user chooses
a micro-controller card, and defines the assignment (Figure 5) between places,
transitions and pins. The user can adjust the delay of the cycle and the time
unit. Pressing the button ”Generate Arduino sketch” generates the code down-
loadable directly through Arduino IDE. The edited file is open on PN2A and an
the assignation process is made:

1 Freely available at pn2A.rts-software.org/
2 Freely available at www.laas.fr/tina/
3 Freely available at romeo.rts-software.org/

10 David Delfieu and Maurice Comlan

ece Sans titre — Modif|
PN2Arduino [T Edit Generate Help
[] | New project | cdRevue - PN2Arduino

Sattings §
Opsnjpisci(ipna | (ms) TimeUnit (ms)

purr SRy Open Romeo files (.xmi) N

]

Semantic | Weak Semantic USB Port| USB3
= Open Tina files (.ndr) emantic B or B

1000
Save project

Place(s) i Transitonis)

Save project as

New transition

Quit .
Name Name Pin Type
inCard B+ B Actionidon B oelete insertedCard | 6 [J seNsoRoN BJ pelete
enercoce [2 [[AcTONJedon [|J | Delete ciectedcard [|7 [sensoroN [pelete
P2 B2 B AcTonikdon [pelete Pass Ble B senoroN B pelete

Pa B« B actoniedon B oelete il Blo B sensoron B | pelere

Tries B(s B actoniedon B oelete Retry B o B snsoron B peete

Generate Arduino Sketch

Fig. 5 Opening a romeo file in PN2A

Romeo produces xml files, while Tina produces text files. The parsing of those
files produces the matrices: pre, post, Mo, F, and efd() and [fd() that defines the
structure of the TPN. The code generation of the example produce an Arduino
sketch (see cdRevue.ino in Figure 6):

cdRewue

#define TRUE 1

#define FALSE 8

#define INT32MAR Bx7FFFFFFF

#define Timelnit 1888
int delai = 2688;

unsigned int count =

int NB_TRANSITIONS = 5;
11 int NB_PLACES = 5

12 int MB_ACTIONS_PLACES = 5;
15 int NB_CAPTEURS = 5;

15 int Mals] - (8.8.8,8,3};
16 int M1ls) = {8,8.8,8,3};

17 it H2(5] = (8,8,8,8,3);

18

19 int Prs[51[5] = {{@,1,8,8,8},{@,8,1,1,8},{a,8,8,8,6},{a,8,8,08,1},{0.8,8,8,1}};
20 int Post[S][5] = {{1,@,8,0,0},{8,@,8,8,1},{8,@,1,8,0},{0,0,8,1,0},{0,08,8,8,0}};
21 int cISI05);

2z

23 int nbActionsPlaoces[5] = {1,1,1,1,1}%

24 int actionsPlaces[51={1,1,1,1,1};

25 int pinsActionsPlaces(5] = {1,2,3,4,5}h;

z6 int capteursinputlal = {};

27 int typeCopteurs[5] = {2,2,2,2,2};

28 int pinsTransitions[5] = {6,7.6,9,18};

z

30

w
V

wolatile unsigned long Horloge[S] - (8,8,8,8,8};

Fig. 6 Opening the generated code in Arduino

Title Suppressed Due to Excessive Length 11

Testing the model with switches and leds in Figure 7:

Fig. 7 Test of the model on an Arduino card

5.1 Testing

The testing of the model has enabled to asset the time intervals and the time cycle.
With two tokens in place enterCode, when activating the transition Pass with a
switch, a bounding phenomena has lead to empty this place with only one action
on the switch. This problem has been solved by stating the efd of Pass to 1.

It has been also interesting to compare with the simulation mode of Romeo.
In this mode, Romeo updates clocks variables when transitions are selected by
the user, there is no a real-time clock that ages transitions. In the initial state of
Figure 2, if we let the time elapses, after date 5, 71 does not become urgent! In a
simulation mode, if T is activated by the user, then clocks of enabled transitions
are updated (45), whenever the date of this activation took place. In the execution
of a msT PN, T is fired exactly at the real date 5.

Embedding the TPN really confronts the model to its environment. Finally
this implementation has allowed to fit the initial intuition of the modeling.

5.2 Complexity and metrics

The greater complexity of the algorithm is the computing of Enabled(t). The
algorithm contains intricate loops in |P| * |T| % |T%| and a loop in |T*| (urgent
transitions). Then the complexity is polynomial in order of a.n® 4+ b.n + ¢ with
n = max(|P|, |T]).

12 David Delfieu and Maurice Comlan

For an Atmega2560 with a 16 MHz crystal oscillator, table 1 presents the
execution times and memory amount of the embedded TPN corresponding to the
example. The third column give execution times of the algorithm (see the algorithm
1) from line 1 to 5. This last result has been obtained by visual observation of
pulses on an oscilloscope (precision of 1 us). Memory amounts have been given by
the compilation step. Column 3 represents the size of the code, whereas column 4
represents the dynamic allocation of memory. The size of the code and the amount
of dynamic memory increase linearly, without surprise, proportionally to the size
of matrices. Whereas, the execution time grows more significantly: As expected,
the execution time increases in a polynomial order.

For the last test, 25 places and 25 transitions, the execution time rises to 4 ms,
it corresponds near to the maximum number of input/output of the Atmega2560.
It is important to note that every transition may not be assigned to a pin of the
micro-controller .

Table 1 Execution times and memory space

Complexity Time | Prog. Space Dyn. Memory

[Pl=51|T| =5 150 ps 4.9 kb 592 bytes (5%)
|[P| =10 |T) =10 | 180 us 5.3 kb 1.2 kb (7%)
|[P|=15|T) =15 | 840 us 5.9 kb 2.1 kb (15%)
|P| =20 |T| =20 | 2.5 ms 6.7 kb 3.3 kb (40%)
|P| =25 |T) =25 4 ms 7.7 kb 4.8 kb (59%)

The tests of complexity have been realized from the initial example: The in-
creasing sizes have been produced by putting in concurrency n duplications of the
basic model.

6 Conclusion

This paper proposes a tool which allows to embed a Time Petri net into an Ar-
duino card. This work needed the definition of a new semantics based on a strong
semantics. The implementation of a model can valid (or not) performance con-
straints of the model relatively to a target architecture. Checking constraints on
a prototype allows also to uncover constraints that might not have been foreseen
in this initial specification. Time constraints can be asset more precisely.

In perspective, it could be possible to assign fragment of non blocking code to
place or transition. Moreover, other types of firing semantics can be tested and im-
plemented. It also is possible to develop monitoring, via the serial communication.
For the problem of complexity, off-line computing of place invariant or unfolding
techniques, could bring additional high level informations allowing to reduce the
number of transitions to inspect, in the computing of enabled transition, improving
the speed of the algorithm.

Furthermore, other boards based on new micro-controllers can be added. The
development of Arduino boards is dynamic, recently, various boards have been
proposed: Arduino Due, M0, 101, or Yun. These new boards are based on powerful
micro-controller (ARM core, x86, Atheros, ...) with higher frequencies (up to 400
MHz). These improvements promise better performances and use of bigger TPN.

	1 Introduction
	2 Discussion and related works
	3 Basic definitions
	4 Semantics
	5 The tool
	6 Conclusion

