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Abstract

This note describes some quasi-analytical solutions for wave propagation in free surface Euler equations and
linearized Euler equations. The obtained solutions vary from a sinusoidal form to a form with singularities. They
allow a numerical validation of the free-surface Euler codes.

Résumé

Solutions quasi-analytiques d’ondes propagatives dans les équations d’Euler à surface libre Cette
note décrit des solutions quasi analytiques correspondant à la propagation d’ondes dans les équations d’Euler et
d’Euler linéarisées à surface libre. Les solutions obtenues varient d’une forme sinusöıdale à une forme présentant
des singularités. Elles permettent de valider numériquement les codes de simulation des équations d’Euler à surface
libre.

1. Introduction

The water wave problem described by the Euler equations with a free surface has been widely studied
in the literature, see e.g. [4,6,7,8,9]. This paper proposes some quasi-analytical solution of these equations
that allow, for example, to validate the efficiency of the numerical tools. These analytical solutions exhibit
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singularities of the free surface when the wave amplitude increases. As far as the authors know, it is the
first analytical solutions having such a behavior corresponding to an existence result given by W. Strauss,
see [2,10] and references therein.

Solutions presented in Section 2 are solutions of the Euler linearized system up to a negligible term. The
proposed solutions are irrotationnal and are compared in Section 3 to the solutions of Airy and third order
Stokes waves. In Section 4 this result is extended to the nonlinear Euler system through an additional
pressure term on the free surface. Same type of quasi-analytical solutions are proposed in Section 5 for
the stationnary waves.

We consider the Euler system and the linearized Euler system over a flat bottom for x ∈ R and 0 ≤
z ≤ h(t, x) given respectively by (1)-(3) and (4)-(6), where u(t, x, z), w(t, x, z) are the two components of
the velocity in the (x, z) domain, h(t, x) is the water depth, p(t, x, z) is the pressure and ρ0 is the density
assumed to be constant:
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Linearized Euler system

This system is completed by initial conditions (u(0, x, z) = u0(x, z), w(0, x, z) = w0(x, z), p(0, x, z) =
p0(x, z), a dynamic boundary condition at the free surface

ps = p(t, x, h(t, x)) = pa(t, x), (7)

a kinematic boundary condition at the free surface and a non-penetration condition at the bottom

∂h

∂t
+ us

∂h

∂x
− ws = 0, wb = 0. (8)

where the subscript s (resp. b) denotes the considered quantity at the free surface (resp. at the bottom).
The linearized Euler system (4)-(6) is obtained by assuming that the velocity components u and w

are such that u = u0 + O(ε), w = O(ε) with ε � 1 and u0 = cst. Therefore the system (4)-(6) is an
approximation in O(ε2) of the Euler system (1)-(3). It is important to notice that in most cases the
linearized Euler system does not admit any energy balance. However, simple computations show that
when the quantity
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where U = (u,w) and |f |2 = |(f1, f2)|2 = f21 +f22 , can be written under the conservative form es,b =
∂αs,b

∂x ,
with αs,b = α(h, u0,Us,Ub), the linearized Euler system (4)-(6) completed with (7) and (8) admits an
energy balance under the form

∂
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zb

(E + pa) dz +
∂
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zb
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u0E + u(p+ gz)

)
dz + αs,b
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= h

∂pa
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, (9)

with E defined by E = u2+w2

2 + gz.
It is worth noticing that whereas the linearized Euler system (4)-(6) completed with (7) and (8) contains

only terms up to ε, the energy balance contains terms in O(ε3), so that the stability relation (9) holds.
The water depth h(t, x) does not appear directly in systems (1)-(3) and (4)-(6), it can be obtained by

integrating equation (1) from z = 0 to z = h(t, x)
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2. Propagating waves for the linearized Euler system

We consider the linearized Euler system (4)-(6) completed by the boundary conditions (7) and (8). A
large part of the results are based on the properties of the LambertW functions (LW). The LambertW
functions is the main branch of a set of functions corresponding to the inverse relation of the function
f(z) = zez where z is any complex number [3]. This function satisfies

LW(x)eLW(x) = x. (11)

LW(x) is a real solution for x ≥ −1/e and for x 6= 0 and x 6= −1/e we have LW′(x) =
LW(x)

x(1 + LW(x))
.

Moreover, LW (x) ∼
x→0

x.

Then the following proposition holds.
Proposition 2.1 Let (b, u0, h0, k, a, c, ω) ∈ R2 × R5

+ such that |a| < 1/e and h0k/c > LW(−|a|) and
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(
a cos

(x
c

+ b
))
, (12)

where LW represents the LambertW function. Let pa(t) be any given function.

Up to terms in O(e−
h0k

c ) in equation (10) and in wb, the functions h, u, w and p defined by
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are analytical solutions of the linearized Euler system (4)-(6) completed by the boundary conditions (8)
and (7) iff the following relation holds

ω

k
=

√
gc

k
. (17)

Sketch of proof
To make the proof more readable, we set u0 = 0, b = 0 and we take Y = a cos ((kx− ωt)/c).
From (4) and using the definition of u given in (14) we obtain easily the expression of w. From(14)-(16),

by simple derivation of u and p, equation (5) gives(
−ω

2a

k
+ ga

)
e

k
c (z−h0) sin(Y ) = 0

This equation is verified for all Y only if the relation (17) holds. This relation is similar to the dispersion
relation in the Airy theory when kh0 � 1. Expression of p is obtained by integrating (6) from z to h.
It is easy to verify a posteriori that (6) is verified by taking the derivative of w and p appearing in this
equation. From (16), we observe that
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The main difficulty is to verify the surface evolution equation (10). From (13) we obtain
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Then, using the same expression of the derivative of the LW function, we have
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We deduce that equation (10) is verified up to a term ωa
k sin

(
kx−ωt
c + b

)
e−

k
c h0 . On the same way, vertical

velocity at the bottom is given by wb = −ωac e
− k

c h0 . The solutions proposed in prop. 2.1 for the linearized

Euler system are not exactly an analytical solutions in the sense that additional terms in O(e−
h0k

c )

appear. But when h0k � 1, considering e.g. h0 = 100 m, k = 0.2 m−1 and c = 1 gives e−
h0k

c ≈ 10−9 � 1.
These solutions satisfy the energy balance (9) with

αs,b = −gω
4k

c2LW
(
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c + b

))2
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3. Comparison with the Airy and Stokes wave theory

The form of the free surface of our analytical solution depends of the parameter a. When a is small,
surface elevation is close to a sinusoidal function since we have seen that LW (x) ∼

x→0
x. When |a| is

near to 1/e, the top of the wave is narrower than its bottom. This property is presented in Figure 1
with parameters (c = 1, k = 1, t = 0 and b = 0). For |a| = 1/e, the function f is not differentiable in
(2m+ 1)π, ∀m ∈ Z. The non-differentiable character of the solution was studied from a theoretical point
of view by Strauss [2]. Here we give an explicit expression of this solution.

In the literature, some analytical solutions of free surface simplified models have been proposed [4].
The most known are the Airy wave and the third-order Stokes wave, and we propose here some numerical
comparisons.

By setting θ = (k0x− ω0t+ b0), in the Airy wave theory, surface elevation is given by

h(t, x) = h0 + a0 cos(θ), (20)

and in the third-order Stokes wave on deep water, surface elevation is given by [5]

h(t, x) = h0 + a0

((
1− 1

16
(k0a0)2

)
cos(θ) +

1

2
k0a0 cos(2θ) +

3

8
(k0a0)2 cos(3θ)

)
. (21)
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Figure 1. Free surface given by the function

f : x 7→ −LW(a cos(x)) for three values of the param-
eter a : 0.10 (dot line), 0.30 (dash-dot line), 1/e (dash line),

and comparison with function −1/e cos(x) (solid line).

Figure 2. Free surface given by Airy theory (solid line), third

order Stokes theory (dash-dot line) and equation (13) (dot

line) for the given set of parameters : (a = 1/e, k = 1, c = 1,
t = 0, b = 0).

To make a comparison with water depth given by equation (13), we have to set a = a0k0 (using again
LW (x) ∼

x→0
x), k = ck0, b = b0 and ω = cω0. We have plotted in Figure 2 a comparison between the

free surface obtained by Airy theory, third order Stokes theory and equation (13) for the given set of
parameters (a = 1/e, k = 1, c = 1, t = 0, b = 0). With this value of a we obtain the maximum of
differences between the three waves. Of course, for small value of a, solution of (13) can be very close to
the two other waves.

4. Propagating waves for the Euler system

We consider the Euler system (1)-(3) completed by the boundary conditions (7) and (8). The previous
solution can be extended by considering a small pressure term at the free surface and the following
proposition holds.

Proposition 4.1 Under the same conditions of the proposition 2.1, up to terms in O(e−
h0k

c ) in equa-
tion (10) and in wb, the functions h, u, w and p defined by
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u(t, x, z) = u0 −
ωa

c
e

k
c (z−h0) cos

(kx− (ω + ku0)t

c
+ b
)
,

w(t, x, z) = − c
k

∂u

∂x
,

p(t, x, z) = g(h0 − z) +
ga2c

2k

(
1− e 2k

c (z−h0)
)
− gca

k
e
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,

are analytical solutions of the Euler system (1)-(2) completed by the boundary conditions (7) and (8) iff
the relation (17) holds. At the free surface, the pressure p is such that ps = pa(t, x) with

pa(t, x) =
ga2c

2k

(
1− e 2k

c (h(t,x)−h0)
)
. (22)

Pressure at the surface is equal to zero when h(t, x) = h0. If h(t, x)− h0 is small, this pressure is of the
order a3. The proof is similar to the one given in prop. 2.1 but is more tedious due to the nonlinearity.
Remark: The solutions proposed in props. 2.1 and 4.1 are irrotational. In [1], C. J. Amick proved that

for any irrotational wave, the angle of inclination of the free surface with respect to the horizontal must
be less than 31.15˚. In our analytical solutions, the angle of inclination is less or equal to 45˚, but we
have an additional source term (22) that can justify this inclination.
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5. Standing waves

Now we consider the situation of standing waves that occur when two progressive waves of same
amplitude travel in opposite direction. The results depicted in this paragraph are based on the following
remark: for small values of the parameter a, one has the Taylor expansion

LW
(
a cos

(kx− ωt
c

))
= a cos

(kx− ωt
c

)
− a2 cos2

(kx− ωt
c

)
+O(a3).

Proposition 5.1 Under the same conditions as in proposition 2.1 and up to terms in O
(
e−

h0k

n , a2
)
, the

functions h, u, w and p defined by

h(t, x) = h0 + f(kx− ωt) + f(kx+ ωt), (23)
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are analytical solutions of the linearized Euler system (4)-(6) completed by the boundary conditions (7)
and (8) iff the relation (17) holds.

Since a Taylor expansion of Eq. (23) gives h(t, x) = h0 − 2ac
k cos

(
kx
c

)
cos
(
ωt
c

)
+ O

(
a2

k

)
, the proposed

solution corresponds, up to terms in O
(
a2

k

)
, to a standing wave.

Corollary 5.1 Considering a slightly modified version of the solution proposed in prop. 5.1 where (23)-
(24) is replaced by

h(t, x) = h0 + f(kx− ωt) + f(kx+ ωt) + 2
a2c

k
cos2

(kx
c

)
,

u(t, x, z) =
ω

c
e

k
c (z−h(t,x))

(
f(kx− ωt) + f(kx+ ωt) + 2

a2c

k
cos2

(kx
c
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,

the functions h, u, w and p are analytical solutions up to terms in O
(
e−

h0k

c , a3
)

of the linearized Euler
system (4)-(6) completed by the boundary conditions (7) and (8) and the dispersion relation (17) holds.
The proofs rely on simple but tedious computations similar to those performed in the proof of props. 2.1.

Proposition 5.1 and corollary 5.1, valid for the linearized Euler system, can be easily extended to the
Euler system (1)-(3) completed by the boundary conditions (7) and (8).
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