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Soil organic carbon (SOC) sequestration depends on several factors, including land use, pedo-23 

climatic conditions, topographic position and the initial SOC stock (Post and Kwon, 2000; 24 

Minasny et al., 2017). At the plot scale, a positive SOC balance is created by increasing the 25 

input of organic matter to the soil to exceed the carbon (C) losses by mineralization, leaching 26 

and erosion or by decreasing the rate of SOC decomposition. In Africa, agricultural soils are 27 

generally known to have potential as a C sink due to previous SOC depletion (Vågen et al., 28 

2005; Swanepoel et al., 2016). Two widely promoted crop management practices to store C in 29 

agricultural soils are conservation agriculture (CA) and agroforestry. Both practices can 30 

increase SOC through increased C inputs from higher biomass productivity and reduced C 31 

losses (through soil cover), leading to a net transfer of C from the atmosphere to the soil, thus 32 

contributing to the mitigation of climate change (Smith et al., 2005, Powlson et al., 2011; 33 

Griscom et al., 2017). 34 

In their recent study published in Soil and Tillage Research: “Meta-analysis on carbon 35 

sequestration through conservation agriculture in Africa”, Gonzalez-Sanchez et al. (2019) 36 

conclude that the practice of CA in Africa can effectively contribute to mitigating global 37 

warming through SOC sequestration. Gonzalez-Sanchez et al. (2019) claim that the SOC 38 

sequestration potential through CA for the African continent is 143 Tg C yr-1 on 160 Mha 39 

cropland (including perennial woody crops) which corresponds to about 0.90 Mg C ha-1 yr-1. 40 

Good estimates of the SOC sequestration potential with CA are certainly of great interest to 41 

policymakers at various levels of government in Africa regarding the nations’ commitments to 42 

reduce greenhouse gas emissions by 2020. As a result, greater investments in research and 43 

innovations for the development and scaling of CA practices may be decided. However, we 44 

argue that the mitigation calculations and interpretations by Gonzalez-Sanchez et al. (2019) are 45 

flawed and biased.  46 
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Gonzalez-Sanchez et al. (2019) evaluated datasets from a number of studies in Africa for their 47 

estimations of annual per-area SOC sequestration rates with CA practiced in annual or woody 48 

perennial cropping systems for four climatic zones (i.e. Mediterranean, Sahelian, Tropical and 49 

Equatorial, see Figure 1 and Table 1 in their study). In their analysis, the total SOC 50 

sequestration potential for Africa was then calculated from the climate-specific rates and from 51 

estimated total land areas cultivated with annual and woody perennial crops in the different 52 

countries (from FAOSTAT, http://fao.org/faostat/en/#data ), considering the major climate(s) 53 

in each country. Finally, they compared their estimate of sequestration potential with an 54 

estimated current annual SOC sequestration based on present areas of cropland under CA. They 55 

conclude that the total annual SOC sequestration potential through CA in Africa is about 93 56 

times the current estimated figure.  57 

 58 

Here, we challenge the excessively optimistic results of their study.  59 

 60 

First, in contrast with their claims, the reported annual per-area SOC sequestration rates under 61 

CA in their study (see Table 1 in their paper) are high, ranging from 0.44 Mg C ha-1 yr-1 62 

(Mediterranean climatic zone) to 1.56 Mg C ha-1 yr-1 (Equatorial climatic zone) for annual 63 

crops, and from 0.12 Mg C ha-1 yr-1 (Sahelian climatic zone) to 1.29 Mg C ha-1 yr-1 64 

(Mediterranean climatic zone) for woody perennial crops. The resulting average rates for the 65 

whole of Africa are 0.92 and 0.70 Mg C ha-1 yr-1 for CA with annual and woody perennial 66 

crops, respectively (recalculated from Table 3 and 4 in their study). Even though Gonzalez-67 

Sanchez et al. (2019) refer to their analysis as a meta-analysis, their reported figures do not 68 

reveal any use of statistical tests, lacking any indicator of data variability and uncertainty of 69 

their estimates. In fact, from their paper it is not clear which, and how many studies were used 70 

http://fao.org/faostat/en/#data
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for their estimates of annual per-area SOC sequestration rates. They simply list the publications 71 

they referred to but do not cite any “supplementary information” that presents the data used to 72 

derive their mean values. 73 

 74 

We estimated average SOC sequestration rates for CA on croplands per climatic zone from 75 

published studies used in a recent literature review (Corbeels et al., 2019). Our results for the 76 

Tropical and Equatorial climate zones show rates that are 20-60% of those reported by 77 

Gonzalez-Sanchez et al. (2019) and show high variability (Table 1). Since the review by 78 

Corbeels et al. (2019) only referred to sub-Saharan Africa (excluding South Africa), the 79 

Mediterranean region was not considered. No studies were found in Corbeels et al. (2019) for 80 

the Sahelian climatic zone. The sequestration rate of 0.5 Mg C ha-1 yr-1 for annual crops in the 81 

Sahelian region given by Gonzales-Sanchez et al (2029) seems extraordinarily high given the 82 

strong water limitations to crop growth in this region. Average cereal yields in this region are 83 

1000 kg ha-1 or less (http://fao.org/faostat/en/#data). Assuming a harvest index of 0.35 and a 84 

root:shoot ratio of 0.3 (corresponding to the 0–30 cm soil layer), this represents a potential 85 

annual input of about 2700 kg dry matter ha-1, corresponding to about 1200 kg C ha-1. A 86 

sequestration rate of 0.5 Mg C ha-1 yr-1 would mean that 42% of the C input is converted into 87 

SOC, which is clearly not plausible. A recent study on SOC sequestration in tropical croplands 88 

found that the conversion rate of C inputs to SOC was 8.2 ± 0.8% (Fujisaki et al., 2018). Smith 89 

et al. (2008) estimated that the annual per-area sequestration rate for no-tillage and residue 90 

management practices in warm-dry regions was about 0.10 Mg C ha-1 yr-1 with high uncertainty 91 

(range between -0.21 and 0.40 Mg C ha-1 yr-1). Similar results were found for sub-Saharan 92 

Africa in the meta-analysis of Powlson et al. (2016). 93 

 94 

http://fao.org/faostat/en/#data
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Table 1. Soil carbon sequestration rates (Mg C ha-1 yr-1, average and standard deviation) in 95 

annual cropping systems under CA per climate zone (data from Corbeels et al., 2019, values 96 

larger than 4 Mg C ha-1 yr-1 or smaller than -4 Mg C ha-1 yr-1 were considered as outliers and 97 

excluded). 98 

Climatic Zone Soil carbon sequestration rate (Mg C ha-1 yr-

1) 

Sahel No data 

Tropical 0.58 ± 1.06 (n = 17) 

Equatorial 0.32 ± 1.53 (n = 8) 

n denotes the number of studies 99 
Soil depth considered varies between 5 and 60 cm 100 

 101 

 102 

Second, Gonzalez-Sanchez et al. (2019) estimated the cropland area in 2016 based on 103 

FAOSTAT. This area include land that has recently been converted from native forest or 104 

savannah. Given the relatively high original SOC stocks under forest or savannah land, 105 

converting this land into agriculture will induce SOC losses irrespective of the type of 106 

agricultural management practices employed (Sommer et al., 2018). For example, negative 107 

SOC sequestration rates (-0.17 to -0.55 Mg C ha-1 yr-1) were reported in experiments in Nigeria 108 

where CA was installed following recent clearing of native vegetation (Lal, 1998; Agbede, 109 

2008). Thus, new croplands should have been excluded from the calculations of the SOC 110 

sequestration potential. Based on data provided by FAOSTAT, the increase of cropland area 111 

over the last ten years in Africa is estimated at about 15 to 20%. 112 

Besides, Gonzalez-Sanchez et al. (2019) included in their calculations the land area on which 113 

(most type of) woody perennial crops were cultivated in 2016. This land was considered as 114 

land where CA could be practiced, labelled in their study as “CA in woody crops due to ground 115 

cover”. However, it seems that the annual per-area SOC sequestration rates (Table 1 in their 116 

study) were estimated from studies on agroforestry systems. In these studies, the control plot 117 
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is a treeless agricultural plot having the same tillage practice as the agroforestry plot. Therefore, 118 

the SOC sequestration rates are due to the presence of trees and are not linked to CA practices. 119 

In agroforestry systems, the soil can be tilled and is not necessarily covered by a mulch of crop 120 

residues, and tree crops can be grown in crop monoculture, as this was the case in many of the 121 

cited papers. Therefore, these rates cannot be used for woody perennial cropping systems 122 

practiced under CA. To have an estimation of the effect of CA in woody perennial cropping 123 

systems, we would need treatments in agroforestry with CA and with conventional tillage, 124 

which was not the case in the publications cited by the authors. Moreover, we found that the 125 

SOC sequestration rates were highly dependent on the type of agroforestry system (Cardinael 126 

et al., 2018, Corbeels et al., 2019). It is therefore not correct to group them in a single category 127 

as proposed by Gonzalez-Sanchez et al. (2019). 128 

 129 

Third, Gonzalez-Sanchez et al. (2019) did not address the adoption rate of CA by farmers, 130 

supposing that all estimated cropland area (including woody perennial crops) in 2016 is easily 131 

and immediately converted to CA. This is misleading. As stated in their study, adoption of CA 132 

in 2016 covered an estimated 1.5 Mha of land, or 1.1 % of the total land area of annual crops. 133 

A realistically achievable mitigation potential must also consider the socio-economic realities 134 

of farmers (Smith et al., 2005). This consideration is crucial; it has been extensively discussed 135 

elsewhere (e.g. Giller et al., 2011) but was totally ignored by Gonzalez-Sanchez et al. (2019). 136 

Smallholder farmers in Africa often face significant technical, infrastructural or socio-137 

economic barriers to the adoption of CA (Andersson and D’Souza, 2014; Corbeels et al., 2014). 138 

Therefore, it is not realistic to rely on immediate adoption of CA over millions of hectares as a 139 

major strategy to mitigate climate change (Powlson et al., 2016).  140 
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Fourth, we argue that the extrapolation of the per-area SOC sequestration rates over the whole 141 

of Africa using climatic zones is simplistic, ignoring important factors of SOC sequestration. 142 

Although a similarly simple approach is employed in the Tier 1 method of the 143 

Intergovernmental Panel on Climate Change (IPCC, 2006), it has clearly been shown in the 144 

broader literature that SOC sequestration depends to a large extent on soil properties (Feller 145 

and Beare, 1997; Torn et al., 1997). Countries in West Africa such as Mali, Burkina Faso or 146 

Niger are mainly characterized by sandy Arenosols and Lixisols, compared to e.g. Kenya, 147 

Tanzania or Ethiopia where largely Nitisols and Vertisols are present, that have a much more 148 

clayey texture. It is generally known that the SOC sequestration potential is considerably lower 149 

in sandy soils than in clayey soils (Chivenge et al., 2007). Yet in their analysis, the basic SOC 150 

sequestration rates used for e.g. Burkina Faso are the same (or higher) than of those for Ethiopia 151 

(Table 3 and 4). Digital soil maps for Africa are now available (http://soilgrids.org ), which 152 

enables to include soil factors, such as soil texture, in SOC sequestration estimates, and could 153 

have been used by Gonzalez-Sanchez et al. (2019). 154 

 155 

Finally, Gonzalez-Sanchez et al. (2019) compared their estimated SOC sequestration potential 156 

(i.e. 143 Tg C yr-1) with an estimated (current) SOC sequestration based on the present cropland 157 

area under CA (i.e. 1.5 Tg C yr-1). This is not correct. A baseline including other best crop 158 

management practices that increase C input to the soil, such as fertilization, irrigation, 159 

improved crop rotations, and agroforestry, should be used. It has been estimated that 7 to 15 160 

Tg C yr-1 can be sequestered on croplands in Africa, assuming 20% of the croplands are 161 

subjected to improved management (Batjes, 2004).  162 

For the reasons given in our analysis, we believe that Gonzalez-Sanchez et al. (2019) grossly 163 

overestimated the total SOC sequestration potential through the practice of CA in Africa. 164 

http://soilgrids.org/
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Roughly, as a first approximation we estimate the potential at 10.8 Tg C yr-1 assuming an 165 

average per-area rate of 0.45 Mg C ha-1 yr-1 and that 20% of the current soil C-depleted (annual) 166 

croplands (estimated at 120 Mha) are cultivated with CA. It is, however, important to note that 167 

SOC stocks do not increase forever, and that annual sequestration rates decline as the soil 168 

approaches a new equilibrium, which can take from 20 to +50 years depending on climate and 169 

soil type. Hence, rates cannot be extrapolated indefinitely (Paustian et al., 1997; Powlson et al., 170 

2011, 2014). Lastly, it should also be mentioned that nitrous oxide (N2O) emissions could be 171 

enhanced in CA and, more generally, in practices with addition of organic amendments 172 

(Charles et al., 2017; Lugato et al., 2018; Mei et al., 2018), partially offsetting the climate 173 

benefits due to increased SOC storage. 174 

It remains critical that we determine rates of SOC sequestration through improved agricultural 175 

practices, and the role they can play in helping to meet short- to medium-term reduction targets 176 

of greenhouse gas emission. It would, however, be appropriate for Gonzalez-Sanchez et al. 177 

(2019) to reflect on a more conservative assessment of the mitigation potential through CA in 178 

Africa. The presentation of implausible potentials leads to unrealistic expectations of climate 179 

change mitigation with improved agricultural management. There is a danger that presenting 180 

unrealistically high numbers of climate change mitigation potential through agricultural 181 

practices could have a negative impact on the necessary actions to reduce CO2 emissions from 182 

fossil fuel combustion. 183 

On the other hand, even if CA has limited value for climate change mitigation, the practice of 184 

CA – through crop residue mulching and crop diversification- is expected to enhance the 185 

resilience of cropping systems to climate change (Rusinamhodzi et al., 2011; Steward et al., 186 

2018). This may bring livelihood benefits to farmers, especially in regions with increased risk 187 

of drought stress. Thus, it is more reasonable for policymakers and investors to plan promotion 188 

of CA for reasons of climate resilience benefits than for climate change mitigation. 189 
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