
HAL Id: hal-02453951
https://hal.science/hal-02453951

Submitted on 24 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AMACE: agent based multi-criterions adaptation in
cloud environment

Sofiane Kemchi, Abdelhafid Zitouni, Mahieddine Djoudi

To cite this version:
Sofiane Kemchi, Abdelhafid Zitouni, Mahieddine Djoudi. AMACE: agent based multi-criterions adap-
tation in cloud environment. Human-centric Computing and Information Sciences, 2018, 8 (1),
�10.1186/s13673-018-0149-2�. �hal-02453951�

https://hal.science/hal-02453951
https://hal.archives-ouvertes.fr


AMACE: agent based multi‑criterions 
adaptation in cloud environment
Sofiane Kemchi1, Abdelhafid Zitouni1* and Mahieddine Djoudi2

Introduction
Cloud computing is a rising technology. It represents a business model in which enter-
prises can make an enormous economy by reducing infrastructure investments. In 
cloud, users usually pay for the usage (i.e., CPU, storage, and network bandwidth, plat-
forms, and application services) counted by the number of instance-hours incurred in a 
pay-as-you-go model.

Cloud federation comprises services from different aggregated providers offering cli-
ents, in addition to sharing a wide range of resources, the opportunity to choose the best 
cloud service providers. We identify many basic features of cloud federation such as the 
best cost, service flexibility and availability to meet a particular business or technological 
need within their organization.

An efficient multi-agent resource allocation technique is necessary for building an 
efficient system. Brokering agent resource allocation strategy must maximize the ben-
efit in resource allocation, take advantage of the large services offered by the federa-
tion, which can be said to realize the best quality of service provision and improve 

Abstract 

Efficient resource management in dynamic cloud computing is receiving more and 
more attentions. Many works are still ongoing, since federated cloud computing is an 
open environment. We present in this paper a flexible model, new cloud operators 
can join the federation or leave it. The model integrates interactions between broker 
agents organization, permitting a multi-criterion migration of a submitted customer 
request. To implement the presented flexible model, we propose AMACE (agent based 
multi-criterions adaptation in cloud environment) a run-time self-adaptive approach, 
oriented agent in dynamic cloud federation environment. The proposed approach is 
multi-criterion, where a various and no limited number of parameters can be con-
sidered during the self-adaptation strategy (i.e. computing the load balance of the 
mediator agent and geographical distance “network delay” between the customer 
and provider…). In addition, AMACE cares about maintaining run-time coherence in 
optimization evolution in order to guarantee a coherent system at all moment during 
system execution.

Keywords: Cloud computing, Open federated clouds, Dynamic clouds federation, 
Multi agent system, Multi agent resource allocation, Self-adaptive agent, Multi-
criterions self-adaptation, Coherent self-organization

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26  
https://doi.org/10.1186/s13673‑018‑0149‑2

*Correspondence:   
abdelhafid.
zitouni@univ-constantine2.dz 
1 LIRE Laboratory, Computer 
Science Department, 
University of Constantine2-
Abdelhamid Mehri, 
25000 Constantine, Algeria
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-018-0149-2&domain=pdf


Page 2 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

the rate of client satisfaction. Open federated cloud is a dynamic environment that 
is subject to several changes due to its open nature. To face such an environment, 
AMACE uses a self-organization property in a multi-agent system to allocate provid-
ers resources. Users, providers and brokers are considered as agents: the user (CA: a 
consumer agent), the broker (BA: a brokering agent) and the provider (PA: a provider 
agent). BA will assume the complicated task of resource allocation between the users 
and providers of the clouds federation. Nowadays, the world of business is a highly 
dynamic environment. Haresh et al. [1] considered a static model system however; we 
present in this paper a flexible model, with a possible evolution of the federation. New 
providers can be acquired to satisfy new client’s requests; other providers can leave 
the federation too. The model integrates interactions between broker agents organi-
zation, permitting a multi-criterion migration of a submitted customer request.

After checking all clouds provider contact’s list, if the BA was incapable of satisfying 
the client resource demand and could not find the client request resource, this would 
be called a failure situation i.e., an unavailable resource and an unsuitable price. Inter-
actions between BA organizations permit request’s migration between BA neighbors 
to delegate unsatisfied costumer requests.

Users in clouds federation request more than one type of resources and from differ-
ent providers which can leave or join the federation. In addition, the resource’s prices 
are responding to a demand–supply model so they are highly variable. Consequently, 
users need continuously to be refreshed by updated information about all current 
available providers’ services and status of each already present provider in the fed-
eration or probably newly joining this one. In open federated clouds, choosing the 
best provider is very difficult because they do not know the dynamic price of each 
resource in different clouds. Besides, due to dynamic environment of open federated 
clouds, users may miss a specific service from one leaving or new incoming, specific 
provider and so failing to satisfy a specific customer demand. While in cloud com-
puting, it is aimed to increase the rate of client satisfaction and improve the quality 
of the service provisions. We propose AMACE (agent based multi-criterions adapta-
tion in cloud environment) a run-time self-adaptive approach, oriented agent in open 
cloud federation environment, new cloud operators can join the federation or leave 
it. The proposed approach is multi-criterion, where a various and no limited num-
ber of parameters can be considered during the self-adaptation strategy (i.e. comput-
ing the load balance of the mediator agent and geographical distance “network delay” 
between the customer and provider…). In addition, AMACE cares about maintaining 
run-time coherence in optimization evolution in order to guarantee a coherent sys-
tem at all moment during system execution.

The rest of the paper is organized as follows: “Related works” section introduces the 
related works; “AMACE: agent based multi-criterions adaptation in cloud environment” 
section presents the flexible system model, describes AMACE approach and explains in 
details the auto-adaptive mechanism in an open cloud federation. “Comparison” section 
makes summary of works in literature with our approach according to some choosing 
parameters; “Evaluation” section shows the emergent behavior of the broker agent soci-
ety. Finally, “Conclusion and future works” section summarizes some remarks and plans 
for future works.



Page 3 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

Related works
Unlike traditional cloud computing, Wu et al. [2] treated a novel computing paradigm, 
self-organizing cloud. To automate the mechanism accomplishing resource alloca-
tion problem in cloud environment with dynamic price, authors proposed two novel 
economic strategies based on mechanism design: the Modified Vickrey Auction and 
the continuous double auction. The proposed strategies conduct to a transparent self-
organizing cloud. Jieun et  al. [3] presented an adaptive resource provisioning method 
based on two main concepts. First, it provides resource provisioning for applications via 
profiling of scientific applications in a heterogeneous computing infrastructure. Second, 
it offers an adaptive resource updated according to the availability of resource changes. 
In [4] Singh et  al. suggested an adaptive resource management model which assist in 
making decisions according to execution time of the workflow. The model and depend-
ing on usage history, reschedule resources to improve performance. Ravandi et al. intro-
duced in [5] a novel framework based on separation between the data layer and control. 
Authors used the black box and self-learning approach to design a self-organized and 
self-adaptive resource provisioning. In [6] Ghobaei-Arani et al. developed dynamic and 
adaptive resource provisioning approach, authors use a hybridization of the autonomic 
computing and the reinforcement learning. The proposed approach deals with the unex-
pected states like work overload, over provisioning and under-provisioning.

There have been many approaches and algorithms proposed for multi agent resource 
allocations and self-organization multi agent systems in cloud computing environment. 
Many of these approaches and algorithms are only based on a non-flexible environment 
model: Haresh et  al. [1] suggested a broker based multi-agent system. Choosing the 
best provider in federated clouds is a very difficult task because users do not know the 
price of each resource in different clouds, which is determined dynamically, based on a 
demand–supply model. In [1] method, the user does not care about both the identity 
of the cloud provider belonging to a federated clouds and the location of the resources 
needed. To know which cloud service the provider will perform is not important, as the 
consumer has to get the resources with the minimum price. Some approaches bring 
new concepts as ‘borrowing’ and ‘leasing’ resources from and to other clouds. Xu et al. 
[7] Proposed an approach of self-organizing based on multi-agent systems. To achieve 
the required macroscopic properties of locally interacting agents in cloud market, they 
suggest a three-layered self-organizing multi-agents mechanism to support cloud com-
merce parallel negotiation activities. Their consumer model running mechanism uses an 
algorithm as a protocol of negotiation. Chaabouni et al. [8] Aimed to build a fully auto-
matic system in which the client has simply to fulfill his requirements then loads his 
work using a centralized architecture of agents based on simple exchange of messages 
between the supervisor agent and data center agents. The agent who will be charged of 
the resources management must obey a list of rules. In paper [9] Kecskemeti et al. ana-
lyzed different approaches to integrate a reactive knowledge management system and 
suitable federation mechanisms for an on-demand generation and autonomous manage-
ment of hybrid clouds. In this paper, the authors extended federated cloud management 
architectures with autonomous behavior. This work focused on adaptation actions and 
their possible effects on cloud federations. In order to prevent service level agreements 
(SLA) violations and resource usage optimization, the knowledge management (KM) 



Page 4 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

system proposes reactive actions to minimize energy consumption. In the purpose of 
maintaining a balance between SLA violations and resource consumption, management 
of cloud infrastructures is done with an autonomous manner. In paper [10] Patel et al. 
presented methods for VM allocation in cloud providers federation, trying to maximize 
the cloud provider’s profit. The proposed model here is an extension of the clouds simu-
lator for federated scenarios. Two algorithms are developed. The first one allocates the 
resources to VM while the second allocates VM in order to balance the load in feder-
ated cloud environment. Comi et al. [11] proposed an evolutionary approach in address-
ing the problem of resource management in federated cloud providers by means of an 
agent cloning mechanism. Intelligent and adaptive software agents’ features are made 
possible by the integration of learning techniques to multi agent systems. Learning soft-
ware agents operate in order to enhance their performance. The learned knowledge and 
experience are used to help providers in taking decisions to manage their resources and 
some other agents with a better performance can reproduce the unsatisfactory agents. 
In paper [12] Manvi et al. suggested an agent-based resource allocation model (ARAM) 
for grid computing. Three types of agents are used: job agents (JAs), they are mobile 
and in charge of executing the jobs at suitable grid nodes. Brokering agents (BAs), they 
are static, incorporating an economic model and in charge of scheduling resources. 
Resource monitoring agents (RMAs), they are static, in charge of informing the local 
cluster servers about resource’s status. Comparing to traditional resource management 
techniques, ARAM aimed at flexible, intelligent, and adaptable services by using mobile 
agents.

In [13] Lee et  al. a distributed resource allocation approach is proposed to solve 
resource competition in the federated cloud environment. This approach uses the pricing 
strategy to try to find the equilibrium implicitly. This approach decides which resource 
could be rented when the outsourcing occurs. The local provider will send an outsourc-
ing request to another provider, which has, suitable resources with the minimal renting 
cost in case when the local cloud provider does not have available resources. If the out-
sourcing request is rejected, the local provider will try other providers with higher rent-
ing costs until the outsourcing request is accepted. In order to minimize communication 
overhead, the proposed approach groups tasks according to communication behavior, 
and tries to allocate grouped tasks to achieve equilibrium when resource competition 
occurs. Authors show that the cloud provider could obtain more profits by outsourcing 
resources in the federated cloud with enough resources. Federated-cloud-model in this 
paper [14] Ishikawa et al., means that two or more independent cloud service provid-
ers can be combined together to create one huge cloud environment. In the proposed 
approach, if a cloud service providers participating to the federated cloud does not have 
enough computing resources, it can satisfy its user’s demand by borrowing resources 
from other participated providers having enough capacity within the agreed price. In 
order to deal with dynamic changes of utility spaces during negotiation, authors pre-
sented an approach and a prototype system based on simultaneous negotiations among 
cloud providers and their users to form a federated cloud. The priority of negotiating 
opponents is decided by a simple method based on a difference of expected utility values 
obtained by each offer. Zulkar Nine et al. [15] propose as a multi-criteria decision mak-
ing approach to select the best possible option to route the requests, it is a decentralized 



Page 5 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

broker based approach that automatically decides about the incoming client requests 
and route to the most viable cloud member in the federation. The authors present a 
model that chooses the best destination for outsourcing demand without violating the 
service layer agreement. In [16] Petri et  al. avoid migration to a single cloud environ-
ment thanks to the CometCloud system; authors facilitate the federation of several 
sites following the CometSpace concept thus creating a distributed cloud environment. 
Authors in this work provide hi level abstraction for supporting cloud federation and 
“cloud bridging”. Carlini et al. [17] present a contribution, optimizing inter-exchange of 
services among clouds. They proposed a self-adaptive approach based on the Markov-
chain model that allows a distributed exchange of services. Adaptation relies on global 
optimization through point-to-point exchanges between different pairs of clouds. In [18] 
Son et al. presented an autonomous multi-objectives SLA negotiation mechanism that 
includes an adaptive trade-off strategy by analyzing workload trends. This determines 
negotiation in accordance with cloud system’s status. Authors in [19] use abstractions 
and cloud-like capabilities to manage geographically distributed resources. Montes et al. 
presented a model to support the dynamic federation of resources and coordinate exe-
cution of application workflows on such federated environments.

As seen in [1–19] most of the works in clouds concern the study of fixed system mod-
els or architecture. There is no possibility to the federated clouds to acquire new provid-
ers with challenged price. In addition, services offered are fixed from the start and the 
federated clouds cannot provide a new kind of services while the open clouds federation 
is more faithful to business reality.

Few works like: Andronico et al. [20], Hou et al. [21] and De Meo et al. [22] take into 
account openness features in clouds federation. In [20] work authors include in the fed-
eration different cloud middleware, providing a concrete model that looks at heterogene-
ous cloud systems. In this work, the described model is able to consider all implications 
in accomplishing and managing dynamic cloud federations. The model targets small 
cloud operators allowing them to easily join and leave the federation. In [21] they pre-
sent a self-management approach for the cloud services with an autonomous and con-
text-aware management of the resources by employing a number of service agents in 
the cloud environment. Based on this approach, they present a cloud-oriented services 
self-management framework with suitable mechanisms for service aggregations and ser-
vice provisions. Two supporting algorithms are designed to implement the proposed ser-
vices self-organization process and the service provision process. Several types of agents 
are involved in the cloud services self-management such as a service manager agent, a 
manager center agent, and a service broker agent. Connection of computational nodes 
enlarges classical grid architecture. De Meo et al. [22] proposed a model supporting open 
grid federations based on a multi agent architecture, a distributed approach to improve 
the quality of service in dynamic grid federations where each grid composing the fed-
eration is able to accept or refuse node’s request for leaving or joining a virtual organi-
zation at any moment. Intelligent software agents reorganize the virtual organization 
according to two integrated parameters: (i) the nodes (past) behaviors, in terms of costs of 
the resources requested/offered and (ii) the trustworthiness of nodes, which is based on 
data automatically collected by software agents assisting grid nodes. In order to enhance 
the rate of requests satisfaction and reduce unallocated resources situations, the grid 



Page 6 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

formation algorithm ensures a balance function between offer and demand of resources. 
Although approaches [21, 22] provided good results, they stay limited to a fixed number 
of criteria: in [21] the service manager considers an optimization and a balance method 
and in [22], reorganization depends on the result of the combination between trust and 
historical behaviors into a unified convenience measure. It stays insufficient for a large 
coverage of all the system’s sides such as: the quality of service “time response”, computing 
the load balance “workload parameter”, the geographical location or distance “network 
delay” between the costumer and provider…etc. However, the adaptive mechanism in 
AMACE takes into consideration optimization of no fixed number of various ranges and 
conflicting criteria and the list is not limited, it stays open and stretchable.

AMACE: agent based multi‑criterions adaptation in cloud environment
Cloud computing is a rising technology; it represents a business model in which enter-
prises can make enormous economies by reducing infrastructure investments. In cloud, 
users usually pay for the usage (i.e., CPU, storage, and network bandwidth, platforms, 
and application services) counted by the number of instance-hours incurred in a pay-
as-you-go model. Cloud federation comprises services from different aggregated provid-
ers offering clients, in addition to sharing a wide range of resources, the opportunity to 
choose the best cloud services providers. Many basic features of cloud federation are 
identified: the best cost, service flexibility and availability to meet a particular business 
or technological need within their organization.

The dynamicity feature of the considered open federated clouds environment calls for 
adaptation strategies to allow for flexibility in our system. AMACE supports a flexible 
model, considering entrance of new cloud providers to the market, offering new services 
and departure of other cloud providers. The presented flexible model integrates interac-
tions between BA’s organization. BA interactions permit migration requests among BA 
neighbors to delegate unsatisfied costumer requests. The implementation of the pro-
posed flexible model is made possible by hybridization of two approaches.

Three types of agents are considered in Fig. 1: the consumer agent (CAi with i ∈ [1, n]) , 
resource brokering agent (BAk with k ∈ [1,m]) and resource provider agent 
(

PAj with j ∈ [1, h]
)

 . BA will assume the complicated resource allocation task between 
providers and users in clouds federation.

In AMACE, each broker has his own contact list of providers. This list can be more 
or less rich in comparison to other contacts list of neighbors belonging to the broker’s 
organization. The broker agent contains all information about cloud providers in his 
own contact’s list including the location, prices, lowest cost of the resources and the pro-
vider, which provides a high quality of service in his own contact’s list. The broker agent 
assigns a grade to the providers based on the feedback of the consumers to which it has 
done the allocations. All the time the broker agent will be checking the status of each 
of the cloud providers in his own list. The broker agent negotiates with provider agents 
and if a single provider does not fulfill the requirement of a consumer agent, it initiates a 
negotiation with another provider agent belonging to his contact’s list.

In case of BA cannot find the client request resource. And in spite of checking all his 
clouds provider contact’s list, BA is always unable to satisfy the client resource demand 
(i.e., resource still unavailable, price not suitable, a specific provider leaves the federation, 



Page 7 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

entry of a new provider with a particular business or technological need which is not 
still well known by all brokers…). Such a situation in AMACE, leads BA organization 
to change the latter. The allocation resource method in AMACE minimizes user inter-
vention and adapts itself. The adaptation mechanism is done by a delegating submitted 
customer request from one BA to another via multi criterion migration of a submitted 
customer request. This adaptive mechanism takes into account various parameters such 
as computing the load balance of mediator agents and the geographical distance “net-
work delay” between the costumer and provider…). For this aim, we propose an algo-
rithm to implement our self-organization mechanism. Migration in AMACE preserves 
continuously the organization’s coherence. Some preventive coherence constraints are 
verified before request’s migration and other corrective coherence constraints are veri-
fied after request’s migration.

BA self‑organization

To achieve self-organization in BA organization, reorganization of the consumer’s 
requests allocation to BA is considered as an adaptive mechanism and to fulfill that, 
request’s migration between BA organizations is adopted as a technical means [16].

Since links between BA are known, a dominance relation based on multi criteria is used 
to resolve the conflict of choosing BA destination or direction between neighbors. The 
adaptive mechanism will be engaged in failure situation case, so the BA source delegates 
to the BA direction the task of satisfying his initial consumer. From this moment, the BA 

Fig. 1 Flexible system model



Page 8 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

direction will communicate directly with CA concerned and try to satisfy his demand. If 
even the new BA direction cannot satisfy the delegated request, the adaptive mechanism 
will be engaged again and so on until time limit of the request execution. The customer 
cannot know that his request migrates from the initial broker to another; the adaptive 
mechanism is done in a transparency manner. The major advantage is the possibility to 
take into account no fixed number of various conflicting criteria in choosing the BA des-
tination. Where a multi criteria functions evaluations f (k) =

{

f 1(k), f 2(k) . . . fn(k)
}

 
require optimization of no limited number of parameters (which can be incompatible) in 
solving the conflict of choosing the BA direction (i.e., f 1(k) : the BA workload parameter 
between the BA source and his neighbor k , f 2(k) : the BA rate transfer time between the 
BA source and his neighbor k…etc.).

Case of failure situation

Figure  1 shows a case of a failure situation where the adaptive mechanism must be 
engaged. To start executing his task, User 4 needs to acquire a specific resource provided 
by a specific provider (for example: a spare part provider of a specific motors company, 
a specific software provider…etc.). This provider exists in our cloud federation but User 
4 makes his request to Broker “C”. The problem is that Broker “C” cannot provide this 
specific resource to User 4 because he has no contact with the specific provider who can 
allocate the needed resource. In such case, the Broker organization must be capable of 
self-reorganizing and adapting its behavior to solve the failure situation. Therefore, the 
self-organization mechanism is automatically started by Broker “C” and starts the multi 
criterion process of choosing the neighbor destination. After that, the specific resource 
request migrates from Broker “C” to Broker “A” who is in a position to satisfy directly the 
specific resource request of User 4.

Figure 2 illustrates the general case of the failure situation where many broker agents 
interact among them. It shows the migration of a resource request from a broker source 
to a non-dominate broker “F”.

After the choice of BA, the direction is done and before the authorization for migra-
tion of non-satisfied customer requests, some preventive constraints are checked to pre-
serve a coherent BA organization. After the migration, other corrective constraints for 
a coherent reestablishment must be checked which ensures to have, at any moment, a 
coherent system evolution. Examples of preventive constraints are the avoidance of the 
migration of a non-satisfied costumer request to an BA direction with an empty provider 
contact’s list and if it is known from the beginning that this BA has no cloud provider 
in his liable list to satisfy the migrated user’s request. As a corrective constraint, after 
the migration of a non-satisfied customer’s request, the workload parameter must be 
updated for both the BA source and direction. Algorithm 2: BA communication takes in 
charge self-adaptation in AMACE, which is an online adaptive mechanism.

Open federated cloud

It is noticed in the flexible system model (Fig.  1) interactions among BA organization 
members (inter organization communications). The request’s migration mechanism and 



Page 9 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

BA organization interactions features used together in AMACE permit to implement 
open federated clouds.

Entrance of a new cloud provider

We assume that the integration of a new provider freshly arrived at the federation, 
implies the creation of contacts with at least one BA from the BA organization. This link 
with only one BA will be enough for the new coming provider to be reached by all the 
BA organization. Thanks to BA interactions and request’s migration, all consumers will 
take benefits from this new provider services. For example, in Fig. 1 User 1 demands a 
request from Broker “A”, this request needs a compute resource (as seen in the cloud fed-
eration it is provided exclusively by a new coming compute cloud provider) but Broker 
“A” have no contact with the new coming compute cloud provider. Interactions between 
the BA organizations will permit Broker “A” to delegate User’s 1 compute resource 
request to neighbors of Broker “A” and so on until the delegated request will reach the 

Fig. 2 BA self-organization in AMACE



Page 10 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

suitable Broker in contact with the new coming compute cloud provider to allocate this 
compute resource to User 1. In this case, it is Broker “C” who is in position to satisfy 
User’s 1 compute resource request.

Departure of a cloud provider

In case when a provider will leave the federation before running the task, the PA will 
send back to BA the resources request that PA planned to provide to consumers. Two 
situations are possible:

a. If other providers belonging to the BA provider contact’s list could provide resources 
requests sent back, the BA would review again all his providers’ contacts list to fulfill 
resources requests sent back.

b. But if the cloud provider who leaves the federation was a specific and exclusive 
one in the BA providers’ contacts list, the adaptive mechanism would delegate this 
requested resources to BA neighbors to be fulfilled and so on (the case in Fig. 1 when 
the compute cloud leaves the federation).

Problem modeling

The consumer agent has the following attributes:

  • CA_id : Consumer agent identification.
  • Rreq : Set of resources requested by the consumer. For each r ∈ Rreq , q(r) is the 

quantity of resource r.
  • Td : Time duration of resource usage.
  • Tl : Time limit of the request execution, it indicated the  latest time  by which the 

request must be started. The request execution must finish before (Tl + Td) , or must 
be started before Tl.

The brokering agent has a Provider_list that contains the information about each 
resource, its cost and its quality of service. The brokering agent periodically updates the 
Provider_list. Cost of a resource r ∈ Rreq is Cost(r). The total cost of Rreq at PA is:

The utility of a consumer agent depends on the resource quality and its payment. It is 
calculated by dividing the quantity of resources by the cost of resources.

Negotiation protocol

In Fig. 1 three protocols are used for negotiation

  – Between CA: consumer agents, BA: brokering agents and PA: provider agents,
 – In addition, between brokering agents organization members.

(1)C(Rreq) = Td ×
∑

r∈Rreq
Cost(r)

(2)U(Rreq) =
q(Rreq)

c(Rreq)
, while q(Rreq) =

∑

r∈Rreq
q(r)



Page 11 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

Algorithms 1, 2 and 3 are proposed to deal with a dynamic open federated clouds 
environment. Algorithm 2 permits provider’s movement (departure and entrance), per-
mitting inter BA organization communications and integrating an adaptive behavior in 
case of failure situation, where the BA is incapable to satisfy a user’s request. Notice that 
there is another Algorithm 4 for resource allocations.

 – Algorithm 1 is the protocol used for negotiation of

• CA iє[1,…]: Consumer agents with: BA jє[1,…] brokering agents,
•  CA iє[1,…]: Consumer agents with: PA kє[1,…] provider agents.

Algorithm 1 description

Line 1–4: Consumer agent initializes the consumer request message including his identi-
fication then Sends its message to BA with CA_identification. CA waits to receive a cost 
proposition from BA.

Line 5–11: If the cost proposition is acceptable, CA sends Acceptance answer to 
BA then waits to receive proposition confirmation from BA. If the cost is higher than 
expected cost, CA sends reject answer due to cost limit then checks if it is not time limit 
(TL) of the request execution and if Rreq is not empty, so CA waits to receive new cost 
proposition from BA.

Line 12–24: If the cost proposition is acceptable, CA sends agreement acceptance 
to BA and waits to receive agreement confirmation from PA. If the agreement is not 
acceptable, CA sends agreement reject to BA and checks if it is not time limit (TL) of the 
request execution and if Rreq is not empty, so CA waits to receive new cost proposition 
from BA.

When CA finishes sending agreement confirmation to PA, CA checks if it is not time 
limit (TL) of the request execution and if Rreq is not empty, so CA waits to receive new 
cost proposition from BA.

Line 25–29: When reaching the final agreement, the consumer agent begins the execu-
tion. After completion of the task, CA calculates the utility of the resources and sends it 
as feedback information to BA.



Page 12 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

•  Algorithm 2 is the protocol used for the negotiation of

  – BA jє[1,…] brokering agents with: CA iє[1,…] consumer agents,
 – BA jє[1,…] brokering agents with: PA kє[1,…] provider agents,
 – BA jє[1,…] brokering agents with: other BA jє[1,…] brokering agents neighbors of BA 

organization.

Algorithm 2 description

Line 2–5: BA waits to receive a consumer request message. BA extracts the resources 
from the consumer request then updates his current provider list of contacts (to take in 
account a probably new entrance or departure of providers). BA initializes a temporary 
provider contact’s list with his current provider contact’s list.

Line 6–8: BA checks if it is not time limit (TL) of the request execution and if both the 
temporary contact’s list and Rreq are not empty.

Line 8–10: BA searches each resource in his own temporary provider contact’s list 
based on, maximum QoS and minimum unit cost to select the best provider.

After BA gets the resource list, it calculates the total cost of resource set Rreq then 
sends to consumer agent cost proposition and waits to receive an answer from CA.

Line 11–12: If BA receives the acceptance answer from CA, BA initializes a consumer 
request message and sends it to provider agent.



Page 13 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

Line 13–16: If BA receives a reject answer from CA, BA removes the best-selected 
provider from his temporary provider contact’s list and go back to line 6–8.

Line 17–37: In case where it is not time limit (TL) of the request execution and if Rreq 
is not empty but BA temporary provider contact’s list is empty the adaptation mech-
anism is engaged automatically by executing BA self organization segment part and a 
feedback about the failure situation is generated to update BA provider contact’s list.

Line 38: BA waits to receive response from PA.
Line 39–40: If BA receives acceptance answer from PA then sends proposition confir-

mation to CA then waits to receive agreement answer from CA.
Line 41–46: If BA receives reject answer from PA, BA sends proposition not confirmed 

to CA, updates both temporary and current provider contact’s list with this demand 
price, remove best provider from temporary provider contact’s list and go back to line 
6–8.

In case where is not time limit (TL) of the request execution and if Rreq is not empty 
but BA temporary provider contact’s list is empty the adaptation mechanism is engaged 
automatically by executing BA self organization segment part and a feedback about the 
failure situation is generated to update BA provider contact’s list.

Line 47–50: BA waits to receive agreement answer from CA. If it is agreement accept-
ance, BA sends the agreement confirmation to PA, update Rreq (set of resources 
requested).

BA check if it is not time limit (TL) of the request execution and if both the temporary 
contact’s list and Rreq are not empty BA try to select another best provider from the 
temporary contact’s list. In case where it is not time limit (TL) of the request execution 
and Rreq is not empty but BA temporary provider contact’s list is empty go back to line 
17–37.

Line 51–55: If agreement reject, BA sends agreement reject to PA, remove the best 
selected provider from his temporary provider contact’s list, checks both if is not time 
limit (TL) of the request execution and if the temporary contact’s list is not empty, so BA 
repeats the protocol from the start to select another best provider from the temporary 
contact’s list. In case where it is not time limit (TL) of the request execution but BA tem-
porary provider contact’s list is empty go back to line 17–37.

Line 56–58: BA updates his own provider contact’s list based on the received CA 
feedback information.



Page 14 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

•  Algorithm 3 is the protocol used for the negotiation of

  – PA kє[1,…] provider agents with: BA jє[1,…] brokering agents,
 – PA kє[1,…] provider agents with: CA iє[1,…] consumer agents.



Page 15 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

Algorithm 3 description

Line 2: PA waits to receive consumer request message from BA.
Line 3–5: If all resources are available for assignment, PA sends acceptance answer to 

BA.
Line 6–8: If one of resources is not available, PA sends reject answer BA. PA goes 

back to line 2 and repeats the protocol from the start waiting to receive new consumer 
request from BA.

Line 9: PA waits to receive agreement answer from BA.
Line 10–14: When PA get the agreement acceptance from BA, it sends the agreement 

confirmation to CA, waits to receive agreement confirmation from CA then PA goes 
back to line 2 and repeats the protocol from the start waiting receive a consumer request 
message from BA.

Figure 3 illustrates algorithm’s interaction and communication protocol between algo-
rithms: CA, BA and PA, the flowchart is helpfull for a clearer reading and best analysis.

Data flow diagram

Figure 4 illustrates the communication protocol between algorithms: CA, BA and PA. 
Before beginning every search, we first make an updating action to the provider’s con-
tacts list. CA request migration action to a new BA direction is done in case of a failure 
situation (provider_list is empty). This situation leads to execute BA self-organization 
mechanism and a feedback report about failure reasons is sent to providers. The migra-
tion process will be repeated again until satisfaction. The self-organization mechanism in 
AMACE is executed discreetly. Customers do not feel that their requests are migrating 
from one broker to another and there is no need to know who performed their request.

Comparison
To compare works in literature with our approach, it is interesting to compare them 
according to some chosen parameters as shown in Table 1.

The most critical difficulties faced during development process of adaptive multi 
agent system, is definition of the triggering event or the moment when the adaptive 



Page 16 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

mechanism must be engaged. There are two kind of adaptive system: reactive system, 
guided by the events on the system or its environment such as new arrival agent or out-
going one. Proactive system, aware about the state of the system, and if it is necessary 
make decision to adapt it.

The adaptation process responds to a logic following which it decides, if a system 
requires adaptation. This logic can be predefined when designing the adaptation mech-
anism or an adaptable logic that can change. This logic may be maximizing a utility 
function, maximize the utility function while minimizing the cost of the reorganization 
process.

Two types of adaptation implementation are defined; the implementation is called cen-
tralized if an agent is able to decide on its own whether an adaptation is necessary, on 
the other hand, it is said distributed if it is the whole of the agents who must decide if an 
adaptation is yes or not necessary. Emergent behavior is behavior of a system that does 
not depend on its individual parts, but on their relationships to one another.

There are features that are not related to the adaptation mechanism, but rather link to the 
system that can be an open system: where an agent can leave the system or a new agent can 
also join the system. Open clouds federation is more faithful to reality; some limits results 
from the non-flexibility of the clouds federation. In closed federated cloud, there is no pos-
sibility to offer new services in the future, if the service is unavailable from the start so it will 
stay unavailable. There is no evolution of the federation; no new providers can be acquired 
to satisfy new client’s requests. In addition of the risk to be in a vendor lock-in situation, in 
case where unfortunately in our cloud federation there is a unique provider offering a spe-
cific service. Not only there is no possibility of price challenge but also the worst thing is in 

Fig. 3 Approach programming flowchart



Page 17 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

case if this provider decides to stop definitely providing services or decide to leave federa-
tion, the whole federation will be enabling to satisfy this specific service.

To maintain the consistency or coherence of a system, preventative constraints must be 
verified before the adaptation mechanism. In addition, other corrective re-establishment 
constraints should be checked after adaptation.

Evaluation
The choice of Netlogo [23] environment Fig.  5 to implement AMACE is judicious 
because Netlogo is a programmable modeling environment, excellent to observe natural 
and social phenomena that emerge from BA organization’s interaction. Netlogo permits 
to give instructions to hundreds or thousands of “agents” all operating independently. 

Fig. 4 Sequence diagram



Page 18 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

This makes it possible to explore the connection between the micro-level behavior of 
individuals and the macro-level patterns.

System setting environment

Starting first by world initialization:

  • First, each broker agent of the initial population plays only a single role.
  • In order to choose the candidate’s role for migration from an agent source to an 

agent destination, a relation of dominance is applied according to multi-criteria spec-
ified before. The same relation is used to determine between neighbors of the source, 
which one will be the agent direction.

Table 1 Comparative table

[19] [14] [15] [13] [17] [18] [16] AMACE

Year 2014 2015 2015 2016 2016 2016 2017 2018

Adapta-
tion

Strategy Pro-active Pro-active Pro-active Pro-active Pro-active Pro-active Pro-active/
multi-
criterion

Pro-active/
multi-
criterion

Logic Pre-
defined

Pre-
defined

Pre-
defined

Pre-
defined

Pre-
defined

Pre-
defined

Pre-
defined

Pre-defined

Imple-
men-
tation

Distributed Centralized Centralized Centralized Distributed Centralized Distributed Centralized

System Open × × × × × × × ✓
Emer-

gent
× × × × × × × ✓

Coherence × × × × × × × ✓

Fig. 5 Tourist services application environment



Page 19 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

As a preventive coherence verification

  • This restriction imposes the condition that an agent must provide a minimal number 
of tourist services (considered as a minimal threshold guarantee) in order to play a 
role ri . In this experimental threshold is fixed at 10 services. “touristinfo > 10”.

  • The minimum number of tourist services provided by agent  By which is different 
than the one provided by agent  Bx is higher than a threshold that is fixed before start-
ing the mechanism adaptation at least 2 services. “nbrdiff > 2”.

  • Each agent has a maximum number of roles fixed at 10 requests that he can play. 
This restriction aims to have equilibrium in role allocation. “NBR < 20”.

Tables 2 and 3 illustrate other experimental parameters setting and list of mathemati-
cal notations.

As shown in Fig. 6, a random number of BAs and roles compose the world initially. 
The “Setup” button permits the generation of simulation environment. Independent 
roles are on the green part and independent agents are on the white part. Figure 6 shows 
for example “5” independent roles and “9” independent BAs.

After that, the “lier” button will create links between roles as you can see with the red 
color on Fig. 7; these links permit synchronization and communication between roles. 
For example, role “3” needs, before execution, some information resulting from role “1” 
execution and so on.

Initially, the button “affect” engages a random role’s affectation to BAs with the initial 
condition of “each agent hosts at more one role”. New agents’ links will result from this 
affectation depending on roles links and BA host, they are shown in the green color in 
Fig. 8.

Buttons “load” and “supp roles” permit respectively to load new roles to the system or 
to remove roles from the system. The button “go” starts the adaptive mechanism execu-
tion. Buttons “create agent” and “suppagent” permit to add or remove agents to or from 
the system.

Table 2 Experimental setting

Migration counter zi <set zi 0>, when the role is generated

maxmigs <set maxmigs (random 40) + 1>

Broker Agent (BA) Initialization <create-agents 10>

Costumer Requests Initialization <create-rolles 5>

Table 3 List of mathematical notations

F1 Minimal number of tourist services considered as a minimal threshold

F2 Number of tourist services provided which differs with those provided by the agent source‘s’

F3 Available memory

F4 How many roles broker plays

Dominance rela-
tion

X dominates Y if the two following conditions meet:
(A) ∀k ∈ {1,2,…, m} fX

gk (ti) ≤ fy
gk (ti) ‘X is not worse than Y for all criteria’

(B) ∃k ∈ {1,2,…, m} fX
gk (ti) < fy

gk (ti) ‘X is strictly better than Y for at least one criterion’



Page 20 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

In order to evaluate AMACE, two aspects must be considered. The first one is an 
emergent behavioral side of broker mediator organizations. From the auto-adaptive 
mechanism execution, an emergent behavior of a broker agent is observed. The second 

Fig. 6 Initialization of simulation world composed by roles &BA

Fig. 7 Initialization of roles links



Page 21 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

one is an empirical performance side, which will demonstrate improvement of AMACE 
numerical results in comparison with other approaches. After combining the two result-
ing adapted algorithms, the auto-adaptive mechanism and negotiation protocol com-
munication, the complete system will be implemented to show AMACE effectiveness in 
terms of client request satisfaction. Evaluation in this paper focuses on the BA organiza-
tion by implementing the same auto-adaptive mechanism. It aims at observing the BA 
organization behavioral aspect to underline the emergent collective intelligent behavior 
observed on the broker mediator organization. The second aspect of evaluation will be 
done in future work.

Use case

Examples of community cloud in E-commerce are used based on an application of tour-
ist services, which will be shared among a number of users with similar interests and 
requirements. Three agent’s organizations are considered in this application, presented 
as follow: user agent’s organization, broker agent’s organization and provider agent’s 
organization. User agent’s organization: user agents, model clients looking for tourist 
services and information about booking of hotels, flights, trains and boats. User agent’s 
organization interacts with broker agents organization by sending services and infor-
mation requirement. Provider agent’s organization: provider agents, model clouds fed-
eration as hotels, airlines, trains and boats companies, etc. Provider agent’s organization 
interacts with broker agent’s organization by sending services and information require-
ment. Broker agents organization: broker agents, assume mediating role between user 
agents and provider agents, our focus will be on the organization of broker agents and its 
emergent behavioral aspect.

Fig. 8 Initial affectation of roles to BA



Page 22 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

E-commerce is a very dynamic environment that changes continuously. In general, it 
is the “offer and demand” low that controls the commerce market. Such a high variable 
parameter involves systems capable of adapting their functionalities to the change of the 
environment. In our example, the demand of users’ agents changes with each newcomer 
or client. This means new books, requests for broker agents, and other clients may 
change or cancel their initial booking requests too. In addition, providers change their 
services continuously, which mean: new services information to update for a broker 
agent at any time: hotels, flights, trains or boats that could become free or the opposite. 
Flights, trains or boats can be canceled, time departure can also be changed or a new 
one scheduled. New broker agents can join our initial multi agent system and other old 
broker agents can leave it too. All these changes must be taken into account to adapt our 
MAS and provide a robustness system, which does not breakdown even in a dynamic 
environment.

Organization transition

First, each broker agent of the initial population plays only a single role. With each role 
ri, a migration counter zi is associated that is initialized to zero when the role is gener-
ated, and incremented each time the role is migrated. A constant called maxmigs defines 
the maximum number of migrations permitted. A migration takes place only if xi = 1 
with:

where r is a random variable drawn from a uniform distribution over the interval [0, 1).
Each broker agent executes continuously the algorithm.
M ← {i ∈ T ..|xi = 1}i ∈ [1, . . . , n]} where n : the number of roles. M : migratable roles.
Adaptation in this approach is made by adopting a multi-criteria method. Explicit 

constraints are introduced, which can be varied, conflicting and of different scales. They 
are combined to constitute a result of all constraints with only a single criterion. In the 
example of broker agents, some criteria can be considered such as:

  •
(

f 1
)

 : determines for each neighbor of ‘s’ whether or not they provide a minimal num-
ber of tourist services considered as a minimal threshold.

  •
(

f 2
)

 : calculates for each neighbor of ‘s’ the number of tourist services provided which 
differs with those provided by the agent source‘s’.

  •
(

f 3
)

 : determinates for each neighbor of ‘s’ if they still have a free memory or not.
  •
(

f 4
)

 : calculates for all neighbors of ‘s’ how many roles each one plays to compare 
between them after.

In order to choose the candidate’s role for migration from an agent source to an agent 
destination, a relation of dominance is applied according to multi-criteria specified 
before. The same relation is used to determine between neighbors of the source, which 
one will be the agent direction.

xi =

{

1, if r ≥ zi
maxmigs

0, otherwise



Page 23 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

An evolution preserving the organization’s coherence requires coherence verification 
for some constraints (before role moving), and the coherence re-establishing for others 
(after role moving).

As a preventive coherence verification

  • The role ri/i = {1, 2, 3} is delegated from an initial agent source ‘s’ = Bx to another 
agent  By neighbor of  Bx if that agent  By provides a minimal number of tourist ser-
vices. This restriction imposes the condition that an agent must provide a minimal 
number of tourist services (considered as a minimal threshold guarantee) in order to 
play a role ri.

  • The role ri/i = {1, 2, 3} is delegated from an initial agent source’s’ = Bx to another 
agent  By neighbor of  Bx if the number of tourist services provided by agent  By which 
is different than the one provided by agent  Bx is higher than a threshold that is fixed 
before starting the mechanism adaptation.

  • Each agent has a maximum number of roles that he can play. He cannot receive more 
roles than this maximum. This restriction aims to have equilibrium in role allocation.

As corrective constraints:

•  After the migration of each role, relations between agents must be updated to main-
tain the MAS correct at any moment. As an example:

Plays (B5, r1) : B5 plays role r1 , Plays (B3, r2) : B3 plays role r2 and (r2, r1) : r2 played 
by B3 is in relation with r1 played by B5.If r1 migrate from B5 to B6, this implicates: first 
to delete relation (r2, r1) from B3 to B5 , then add new relation (r2, r1) from B3 to B6.



Page 24 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

Discussion

After role’s affectation to agents, the number of links between agent ‘liensag’ and the 
number of links between roles ‘liens’ is similar. The number of links between agents is 
always upper or equal to the number of links between roles and this is all along the sys-
tem’s evolution. In consequence of adding new roles to our environment, the number of 
links between ‘liensag’ agents increases always with a rate inferior or equal to the num-
ber of links between roles increases ‘liens’. The number of ‘liensag’ will reach its maxi-
mum (as shown in Fig. 9) after adding continuously roles to the system, reaching this 
level ‘liensag’ will stay stable even if ‘liens’ do not stop rising. If the number of roles is 
stable, the number of ‘liens’ will stay fixed while ‘liensag’ can increase, decrease or stay 
steady but always inferior or equal to ‘liens’.

Emergent behavior

Figure 10 shows the roles rate migration curve. After several iterations and tests, it is 
noticed that the role’s migration mechanism has the tendency to prefer migrating roles 
to broker agents who have more links with the other agents of the broker society. While 
the quantity of information stored by broker agents about services offered by providers, 
available storage space and a number of different providers’ services stored by the agent 
do not really influence the emergence of role’s reorganization. It is also observed that the 
system stays steady (no emergent behavior) in case where broker agents have more or 
less the same number of links with the other agent of the broker organization.

Repeated tests (as in an example seen in Fig. 11) demonstrate that the dominant agent 
is generally the one who has more links with the other organization’s agent. The domi-
nant relation and multi criterion adaptive mechanism conducts the broker agent sys-
tem to a behavior, which favors the agent having the most contacts in comparison with 
his colleagues of the same organization; Table 4 shows simulation statistics results. This 
behavior can be qualified by emergence because agents do not have any conscious or 
information about the neighbor’s contact number with the other agent’s organization. 
This parameter is not included as explicit criteria in making the choice of who will 
receive the role candidate to migration. This behavior is a response of the broker organi-
zation to changes in the environment; it is a kind of collective intelligence of the bro-
ker organization. Rightly, this emergent behavior permits a better performance for our 
application since the agent who has more contacts has more chances to satisfy the users’ 
request than the other broker agents do.

The instruction: “observer> ask agents [show count lienag-neighbors]” gives order 
to every broker agent to show how many links he has with other broker neighbors.

The instruction: “observer> ask agents [show count rolles-here]” gives order to 
every broker agent to show how many roles assigned to him to be accomplished.

At the end of the test iterations in Fig.  10, it is clearly shown that all unsatisfied 
requests migrated to the non-dominate BA who is identified as (agent 6) with “17” 
request’s migrations. (Agent 6) is one of the brokers with the highest number of links 
with the other organization’s agent equal to “6” links. This behavior maximizes the prob-
ability of users request satisfaction, so a more profitable application.

Nowadays, many demands have emerged. Cloud requirements lead to build a system 
able to support efficiently a complete collaboration between different cloud providers 



Page 25 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

Fig. 9 Agent’s links and role’s links comparison curve

Fig. 10 Roles rate migration curve



Page 26 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

focusing on various aspects of the federation like ensuring flexibility, a multi criterion 
adaptive mechanism and coherent evolution features of clouds federation. AMACE, 
opposite to works seen before, cares more about maintaining run-time coherence in 
optimization evolution: preventive and corrective constraints are verified before and 
after the adaptation mechanism execution to guarantee at all moments a coherent sys-
tem during system execution. Comparatively to the existing works, the main characteris-
tics of our strategy are:

  • Adopting a flexible system model supporting entrance or departure of new provid-
ers, to or from the clouds federation.

Fig. 11 Test example results

Table 4 Extensive simulation statistics results

1000 Repeated tests Emergent behavior Non emergent behavior Static organization

Migration mechanism (%) 85 8 7

Observation Intelligent behavior Other behavior No behavior



Page 27 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

  • Large coverage of all the system’s sides, optimization of no fixed number of various 
ranges and conflicting criteria during the adaptive mechanism.

  • Caring about maintaining run-time coherence in optimization evolution to guaran-
tee at all moments a coherent system during system execution.

Conclusion and future works
Actually, business is a very dynamic environment. It is considered in this paper an open 
clouds federation environment that is in constant evolution. AMACE supports a flexible 
model integrating interactions between BA organization, new cloud providers can enter 
the market and offer their new services while other cloud providers can leave it. BA’s 
interaction permits request’s migration between BA neighbors to delegate unsatisfied 
costumer requests. An adaptive approach is proposed to support the presented flexible 
model.

AMACE makes adaptation and hybridization of two approaches to deal with dynamic 
federated cloud computing. The adaptive mechanism is inspired from an organiza-
tion’s optimization approach for self-organization in broker agent organization [16] and 
negotiation protocol communication from Multi agent resource allocation approach on 
federated clouds [1]. AMACE is auto adaptive and multi criterion, which can take in 
account various parameters (i.e. computing the load balance of mediator agents and the 
geographical distance “network delay” between the costumer and provider…).

Looking in the future to implement the whole system with the negotiation protocol 
communication to get empirical results and demonstrate AMACE effectiveness in addi-
tion to trying to provide new features in open federated clouds accomplishment.

Abbreviations
AMACE: agent based multi-criterions adaptation in cloud environment; MAS: multi agent system; MARA : multi-agent 
resource allocation; CA: consumer agent; BA: brokering agent; PA: provider agent; SLA: service level agreements; KM: 
knowledge management; ARAM: agent-based resource allocation model.

Authors’ contributions
Authors contributed in various important aspects. All authors read and approved the final manuscript.

Author details
1 LIRE Laboratory, Computer Science Department, University of Constantine2-Abdelhamid Mehri, 25000 Constantine, 
Algeria. 2 TECHNE Labs, University of Poitiers, 1 Rue Raymond Cantel, 86073 Poitiers Cedex 9, France. 

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 April 2018   Accepted: 27 August 2018

References
 1. Haresh MV, Kalady S, Govindan VK (2011) Agent based dynamic resource allocation on federated clouds. Recent 

advances in intelligent computational systems (RAICS). Trivandrum, IEEE, pp 111–114



Page 28 of 28Kemchi et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:26 

 2. Xiaotong W, Meng L, WanChun D, Longxiang G, Shui Y (2016) A scalable and automatic mechanism for resource 
allocation in self-organizing cloud. Peer-to-Peer Netw Appl 9(1):28–41

 3. Jieun C, Yoonhee K (2017) Adaptive resource provisioning method using application-aware machine learning based 
on job history in heterogeneous infrastructures. Cluster Comput 20(4):3537–3549

 4. Singh H, Randhawa R (2018) ARMM: Adaptive Resource Management Model for Workflow Execution in Clouds. In: 
Negi A, Bhatnagar R, Parida L (eds) Distributed Computing and Internet Technology ICDCIT 2018. Lecture Notes in 
Computer Science, vol 10722. Springer, Cham, pp 315–329

 5. Ravandi B, Papapanagiotou I (2018) A self-organized resource provisioning for cloud block storage. Future Gen 
Comput Syst 89:765–776

 6. Ghobaei-Arani M, Jabbehdari S, Ali Pourmina M (2018) An autonomic resource provisioning approach for service-
based cloud applications: a hybrid approach. Future Gen Comput Syst 78(1):191–210

 7. Xu J, Cao J (2014) A broker-based self-organizing mechanism for cloud-market. International Federation for Informa-
tion Processing (IFIP). Springer, Berlin, pp 281–293

 8. Chaabouni T, Khemakhem M (2013) Resource management based on Agent technology. In: Proceeding of IEEE on 
cloud computing, NOORIC, pp 372–375

 9. Kecskemeti G, Maurer M, Brandic I, Kertesz A, Nemeth ZS, Dustdar S (2012) Facilitating self-adaptable inter-cloud 
management. In: The 20th Euromicro international IEEE conference on parallel distributed and network-based 
processing, (PDP), pp 575–582

 10. Patel K S, Sarje A K (2012) VM provisioning policies to improve the profit of cloud infrastructure service providers. 
In: Proceeding of the 3th international conference on computing communication and networking technologies 
(ICCCNT’12), Coimbatore, India, IEEE, pp 1–5

 11. Comi A, Fotia L, Messina F, Pappalardo G, Rosaci D, Sarné GML (2015) An evolutionary approach for Cloud learning 
agents in multi-cloud distributed contexts. In: The 24th international conference on enabling technologies: infra-
structure for collaborative enterprises (WETICE’15), IEEE, Cyprus, pp 99–104

 12. Manvi SS, Birje MN, Prasad B (2005) An Agent-based Resource Allocation Model for computational grids. Multi-
Agent Grid Syst Int J 1(1):17–27

 13. Lee YH, Huang KC, Shieh MR, Lai KC (2017) Distributed resource allocation in federated clouds. J Supercomput 
73(7):3196–3211

 14. Ishikawa T, Fukuta N (2015) Federated cloud-based resource allocation by automated negotiations using strategy 
changes. In: Fujita K, Ito T, Zhang M, Robu V (eds) Next frontier in agent-based complex automated negotiation. 
Studies in computational intelligence, vol 596. Springer, Tokyo, pp 111–125

 15. Zulkar Nine Md SQ, Abul Kalam Azad Md, Abdullah S, Ahmed N (2015) Dynamic load sharing to maximize resource 
utilization within cloud federation. In: CloudCom-Asia, Springer International Publishing Switzerland, pp. 125–137

 16. Petri I, Rana OF, Beach T, Rezgui Y (2017) Performance analysis of multi-institutional data sharing in the Clouds4Coor-
dination system. Comput Elec Eng 58:227–240

 17. Carlini E, Coppola M, Dazzi P, Mordacchini M, Passarella A (2016) Self-optimising decentralised service placement in 
heterogeneous cloud federation. In: 10th IEEE international conference on self-adaptive and self-organizing systems 
(SASO), pp 110–119

 18. Son S, Kang DJ, Huh SP, Kim WY, Choi W (2016) Adaptive trade-off strategy for bargaining-based multi-objective SLA 
establishment under varying cloud workload. J Supercomput 72(4):1597–1622

 19. Montes JD, Rodero I, Zou M, Parashar M (2014) Federating advanced cyber infrastructures with autonomic capabili-
ties. In: Cloud computing for data-intensive applications. Springer, New York, pp 221–227

 20. Andronico G, Fargetta M, Monforte S, Paone M, Villari M (2014) A model for accomplishing and managing dynamic 
cloud federations. In: 7th international conference on utility and cloud computing, IEEE/ACM, pp 744–749

 21. Hou F, Mao X, W. Wu W, Liu L, Panneerselvam J (2014) A cloud-oriented services self-management approach based 
on multi-agent system technique. In: Proceedings of the 7th international conference on utility and cloud comput-
ing, IEEE/ACM, pp 261–268

 22. De Meo P, Messina F, Sarné Rosaci D (2015) An agent-oriented, trust-aware approach to improve the QoS in 
dynamic grid federations. Concurr Comput Practice Exp 27(17):5411–5435

 23. Wilensky U, Netlogo (1999) Center for connected learning and computer-based modeling. Northwestern University, 
Evanston, IL, NetLogo, http://ccl.north weste rn.edu/netlo go

http://ccl.northwestern.edu/netlogo

	AMACE: agent based multi-criterions adaptation in cloud environment
	Abstract 
	Introduction
	Related works
	AMACE: agent based multi-criterions adaptation in cloud environment
	BA self-organization
	Case of failure situation

	Open federated cloud
	Entrance of a new cloud provider
	Departure of a cloud provider

	Problem modeling
	Negotiation protocol
	Algorithm 1 description
	Algorithm 2 description
	Algorithm 3 description

	Data flow diagram

	Comparison
	Evaluation
	System setting environment
	Use case
	Organization transition
	Discussion
	Emergent behavior

	Conclusion and future works
	Authors’ contributions
	References




