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CONTROL OF REACTION-DIFFUSION MODELS FROM BIOLOGY AND SOCIAL

SCIENCES

DOMÈNEC RUIZ-BALET AND ENRIQUE ZUAZUA

Abstract. These lecture notes address the controllability under state constraints of reaction-diffusion

equations arising in socio-biological contexts. We restrict our study to scalar equations with monostable
and bistable nonlinearities.

The uncontrolled models, describing, for instance, population dynamics, concentrations of chemicals,

temperatures, etc., intrinsically preserve pointwise bounds of the states that represent a proportion,
volume-fraction, or density. This is guaranteed, in the absence of control, by the maximum or comparison

principle.

Nevertheless, the presence of constraints introduces significant added complexity and produces barrier
phenomena that the controls might not be able to overcome.

We focus on the classical controllability problem, in which one aims to drive the system to a final
target, for instance, a steady-state, so that the state preserves the pointwise bounds of the uncontrolled

dynamics. These constraints may force the needed control-time to be large enough or even make some

natural targets to be unreachable.
We develop and present a general strategy to analyze these problems. We show how the combination

of the various intrinsic qualitative properties of the systems’ dynamics and, in particular, the use traveling

waves and steady-states’ paths can be employed to build controls driving the system to the desired target.
We also show how, depending on the Allee parameter and onthe size of the domain in which the

process evolves, some natural targets might become unreachable. This is consistent with empirical

observations in the context of minorized endangered languages and species in extinction.
Further recent extensions are presented, and open problems are settled. All the discussions are

complemented with numerical simulations to illustrate the main methods and results.

Keywords Reaction-diffusion, control, steady-states, constraints, phase plane, traveling waves, com-

parison principle, Mathematical Biology.
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1. Introduction

1.1. Motivation. These lecture notes concern the control of reaction-diffusion equations with state con-
straints. Many quantities whose evolution is modeled by reaction-diffusion equations (such as those
arising chemical reactions or biological populations) are positive, simply because they describe some den-
sity, concentration, distribution functions or volume fractions, etc. Then the maximum or comparison
principle for parabolic equations plays an important role since it guarantees that the modeled dynamics
fulfill these unilateral bounds.

In the context of control theory, the general goal is to find ways to interact with a given system to
achieve a specific purpose. One of the prototypical problems is the controllability one: by the choice of
an appropriate control, one aims to drive the dynamics from an initial condition to a target configuration
in a given time horizon. Other objectives can also be pursued, such as feedback stabilization (see [18, Part
3]). The problem of controllability becomes challenging in the presence of constraints, something that
might be unavoidable when dealing with the applications above where the state is intrinsically and
naturally constrained to fulfill some given bounds.

In this work, we present the main challenges arising when dealing with controllability for reaction-diffusion
equations with state constraints, some of the main results, and the techniques needed to handle them.

There is by now a fertile literature on the controllability of parabolic equations: [27, 30, 31, 35, 36, 41, 64]
(and references therein). Roughly, using Fourier series techniques and Carlemnan inequalities, parabolic
equations and systems can be controlled in an arbitrarily small time. However, most of the existing
results do not guarantee that state constraints requirements such as the positivity of solutions are met.
The study of controllability with state constraints for parabolic partial differential equations is a much
recent research topic [69–71,82,91,96,104].

The presence of constraints requires the development of new methods for controllability. The staircase
method or quasi-static control [20] which consists of controlling the system keeping the trajectory in a
neighborhood of a path of steady-states connecting the initial and the final datum, is, by now, the most
useful tool to achieve controllability under constraints. But this method requires the time-horizon to be
long enough, something that, as we shall see, is in fact necessary to meet the constraints. In fact, in the
presence of state constraints, the controllability requires a minimal controllability or waiting time, a fact
that is not observed in the unconstrained setting.

Another relevant difficulty arising in the context of constraint controllability is the appearance barrier
functions limiting the constrained dynamics, independently of the controls chosen. A barrier is a nontrivial
steady-state that prevents any controlled trajectory from reaching specific targets due to the comparison
principle.

The staircase method cannot overcome these barriers. We will explain how to build paths of steady-
states, preserving the constraints, and therefore limited by the barrier functions, allowing to reach the
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full ensemble of reachable steady-states. Our study relies on the phase-plane analysis of the dynamical
system associated with the elliptic equation that steady-states satisfy, initiated in [96].

In these lecture notes, we mainly focus on the one-dimensional case. However, the methods can also be
applied to spatial dimensions and different nonlinearities. We will also briefly present the main multi-
dimensional results in [104], those in [82] involving spatially heterogeneous drifts, and properties of the
Allee interaction of [112] combined with a boundary control.

1.2. Organization of the lecture notes. The lecture notes are organized as follows.

(1) First of all, we complement this introduction by discussing different applications in which the
control problems addressed in the present manuscript arise and by making a short description of
various types of control problems.

(2) In Section 2, we present a model in which the control problem requires the fulfillment of state
constraints.

(3) In Section 3, we review some of the most important properties of parabolic and elliptic equations
that will be employed along with the paper.

(4) In Section 4, firstly, we discuss the well-posedness of the control problem and the controllability
of parabolic equations. We also present the staircase method following [91].

(5) Section 5 is devoted to analyzing the existence of nontrivial solutions of the elliptic problem
(1.2). Furthermore, depending on the measure of the domain, we discuss the possible existence
of barrier functions.

(6) Section 6 gathers graphical illustrations of the energy functional associated with the elliptic
problem (1.2).

(7) Section 7 is devoted to the construction of admissible paths of steady-states fulfilling the con-
straints. We shall mainly focus on the problem of driving the system towards the intermediate
constant steady-state θ for the bistable nonlinearity. First, we introduce the strategy used in [96],
and later, we extend the reasoning to build paths of symmetric (even with respect to the center
point of the space-interval) steady-states. We discuss the length of the maximal path depending
on the size of the domain.

(8) In Section 8 we summarize the results of the previous sections.
(9) In Section 9 some numerical simulations of the control process under consideration are presented.

(10) Most of the results presented in the paper can be extended to several space dimensions, [104],
and to models involving spatially heterogeneous drift terms, [82]. These extensions are presented
in Section 10, where we also describe how the boundary control and the Allee-Control introduced
in [112] can be combined.

(11) In the last Section 11, we present some open problems and perspectives for future research.

1.3. A model problem. Let us first introduce the problem of the boundary control of some of
the most common 1−d reaction-diffusion equations. This problem entails the core phenomenology
arising in the context of constrained controllability.

Let L > 0 and consider the following problem:


∂tv − ∂xxv = f(v) (x, t) ∈ (0, L)× (0, T ),

v(0, t) = a1(t) v(L, t) = a2(t) t ∈ (0, T ),

0 ≤ v(x, 0) ≤ 1, x ∈ (0, L),

(1.1)

where f ∈ C2 satisfying f(0) = f(1) = 0. We will mainly consider two types of nonlinearities f ,
(see Figure 1.3), namely:
• Monostable: if f ′(0) > 0 and f ′(1) < 0 with f(s) > 0 for s ∈ (0, 1) (see Figure 1.1 right).

A prototypical example of monostable nonlinearity is f(v) = v(1− v).
• Bistable: if there exists θ ∈ (0, 1) such that f(θ) = 0, f ′(θ) > 0 and f ′(0) < 0 f ′(1) < 0

with f(s) < 0 in (0, θ) and f(s) > 0 in (θ, 0) (see Figure 1.1 left). A typical example of
bistable nonlinearity is f(v) = v(1− v)(v − θ).
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Figure 1.1. A bistable nonlinearity (left) and a monostable one (right).

Note that v ≡ 1 is a constant steady-state with a1 = a2 = 1, v ≡ 0 with a1 = a2 = 0 and
v ≡ θ in the case of the bistable nonlinearities with a1 = a2 = θ.

The state v typically represents a proportion or a population density. For this reason, we
impose natural constraints on state of the system v = v(x, t), namely 0 ≤ v(x, t) ≤ 1. The
boundary controls aj(t), j = 1, 2, are therefore limited by the same constraints, and, as we shall
see, this limits significantly the possibility of controlling the system.

Most of these notes will be devoted to discussing whether the system can be driven, by the
action of suitable controls, to reach these targets in a way that the constraints 0 ≤ v ≤ 1 are
preserved.

The classical methodology for controlling semilinear equations (e.g., [36]), based on using the
linear controllability properties with careful estimates on the cost of control and fixed point argu-
ments, do not apply since, typically, the controls obtained in this way will violate the constraints.
Therefore, ad-hoc techniques, taking into account and exploiting the nonlinear dynamics of the
system, will be developed to analyze the controllability properties under these constraints. One
of the difficulties that we shall encounter is that barrier functions may arise as nontrivial solutions
to the steady-state equation:{

−∂xxv = f(v) x ∈ (0, L),

v(0) = 0, v(L) = 0
(1.2)

with null boundary conditions that correspond to zero boundary controls. Obviously, the trivial
constant solution mentioned above, v ≡ 0, is a steady-state solution of the system. The existence
of nontrivial solutions to (1.2), denoted by vb, fulfilling the constraints 0 ≤ vb ≤ 1 depends,
basically, on the length of L. Due to the comparison principle, when such a nontrivial barrier
vb exists, the final target v = 0 will not be reachable when the dynamics departs from an initial
configuration above vb, since, whatever the controls are, being nonnegative, the solution will
always remain above this barrier. This is is an important warning since it indicates that the
control results we might expect will vary depending on L.

This fact has a clear interpretation in applications. For instance, it is well-known that the
survival of species depends on having sufficient area requirements [102] (see also [8]). In other
words, if the area in which the population lives and evolves is too small, the population will very
likely tend to extinction, while in larger domains, survival will be possible. This is due to the fact
that, even if individuals reaching the boundary will die, the reproduction of the population inside
the domain will suffice to compensate for their lost individuals, assuring the overall survival.

This can be understood in mathematical terms by the stability and attraction properties of
the trivial steady-state v ≡ 0 that will attract, or not, the whole ensemble of initial data within
the bounds 0 ≤ v ≤ 1, depending on the length of L: when L is small enough, all initial data
will be attracted towards v ≡ 0, while for L large, because of the barrier effects mentioned above,
some initial data will evolve always remaining above vb.

Of course, the stability properties of the system for long times and the nature of the set of
steady-state solutions are intimately related. For instance, from Matano’s Theorem [76] (see also
[120]), we know that bounded solutions of one-dimensional reaction-diffusion equations converge
to steady-states. This classical result, combined with the instability of 0 for large domains, is
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a way to understand the existence of a nontrivial solution to (1.2), a fact that can be directly
explained in the elliptic context using the theory of critical points from Calculus of Variations.

We will mostly study target steady-states that are constant, 0, 1 for both models, and, in
addition, θ for the bistable model. However, the main properties of such targets, for the bistable
and monostable nonlinearities considered, will be
• targets steady-states that are in the border of the admissible set such as 0 or 1,
• targets steady-states in the interior which are unstable such as θ for the bistable case in

certain situations,
• stable targets steady-states that are inaccessible for certain initial conditions of (1.1). We

will see this situation, in particular, with the target 0 for the bistable model.

1.4. Bibliographical notes on applications. Reaction-diffusion systems frequently appear in
natural sciences and applications. In this subsection, we describe some of the contexts where one
can find them. Control problems can adopt different forms and formulations, depending on the
application context.
• Population dynamics and spatial ecology. Kolmogorov [60] proposed a model in ecol-

ogy in which a population diffuses in space and grows in a nonlinear manner, finding traveling
wave solutions. A traveling wave is a solution of the form s(x− ct) with a given profile s(x)
and a travel velocity c that may arise scalar reaction-diffusion equations as those considered
here in the whole space R. This pioneering work gave rise to a vast literature on reaction-
diffusion, and spatial ecology [38]. For more general diffusion models in ecology, we refer
to [5,6,17,40,83,86,90]. We also refer to [11] for a an empirical finding of traveling waves in
ecology.

• Chemical reactions [90, 107]. In most cases, models in this context are constituted by
systems and not scalar equations as those analyzed here, enjoying much richer dynamics.
Turing patterns [115] is one of the paradigmatic phenomena, which emerges when there is
a big contrast in the diffusivity constants of the various equations constituting the system.
Alan Turing’s model was originally proposed for morphogenesis, and it has been proven
experimentally to be successful [87].

• Magnetic systems in material science [23]: Consider a material composed of magnetic
dipole moments of atomic spins with two possible states. Assume that there is an infinite
number of them placed in a lattice. A natural model in the context is the Ising model. The
Ising model serves the study of a system in equilibrium. The physicist Roy J. Glauber [45]
proposed a dynamical model to explain the shifting of spins from up to down and vice-versa,
depending on the positioning of neighboring spins. Glauber’s dynamics models a reaction
between the spins and, considering a spin interchange between neighboring spins. In [23], it
is formally derived a reaction-diffusion system for the evolution of the magnetization of the
material from the stochastic processes of the spins.

• Evolutionary game theory: In this field, one seeks to understand how players change
their strategies depending on the strategy of the other players [22, 54, 56, 89, 116]. When
considering the possible spatial diffusion of the players, reaction-diffusion equations arise
naturally, [53, 55].

• Neuroscience: traveling wave phenomena also arise when modeling nerve impulses [28].
• Linguistics: parabolic models may also be employed to analyze language shift, [100].

1.5. Introduction to control problems. Control problems arising in these fields can be pre-
sented in a diversity of forms and allow for various mathematical formulations. Here we briefly
present some of them.
• Interior Control: This type of control action finds applications, for example, in parabolic

equations arising in heat processes. Consider a bar of length L and a subinterval ω ⊂ (0, L)
where a heater/cooler is placed, the evolution of the temperature of the bar follows:

∂tv − ∂xxv = χωa,

v(0, t) = v(L, t) = 0,

v(·, t = 0) = v0.

here v0 stands for the initial temperature distribution, while the temperature at the boundary
is fixed. The heating control is modeled by a = a(x, t) which acts locally ω but aiming with
a global effect.
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With the model above being fixed, several types of control problems can be considered. The
controllability towards a steady-state (in particular, when v ≡ 0, the so-called null-control
problem) has been extensively studied in the literature: [31, 32]. But the case where state
constraints are imposed has been much less studied and only more recently: [71, 74].

• Multiplicative and Bilinear Control : In this case the control does not enter on the system as
a linear right hand side term but rather as a potential a(x, t) multiplying the state itself:

∂tv − ∂xxv = av,

v(0, t) = v(L, t) = 0,

v(·, t = 0) = v0.

Of course, in this case, the impact of the control a(x, t) on the system is much weaker. In
particular, if the initial datum v0 ≡ 0 is the trivial one, then the solution will also be v ≡ 0
for all time. Therefore at the final time, t = T only the final target v(·, T ) ≡ 0 will be
reached regardless of the control. We refer to [15,25,58,59] and and to [24,50,73,77–81,84]
for the analysis of bilinear control on population dynamics systems.

• Allee Control : In [112], adopting a micro-macro modeling perspective (as in [23, 26]), the
role of the Allee threshold parameter θ of the bistable nonlinearity as an effective control
of the system is justified. In practical applications, for instance, on the regulation of the
propagation of invasive mosquito species, this Allee threshold can be regulated by releasing
sterile mosquitoes. This leads to a model of the form{

∂tv − ∂xxv = v(v − θ(t))(1− v) x ∈ R,

v(·, t = 0) = v0 ∈ L∞(Ω; [0, 1]),

where θ = θ(t) plays the role of control.
• Boundary Control : This action is another prototypical way of possible interaction in control

systems. Boundary control mechanisms are closely related to interior controls acting on
a neighborhood of the boundary. This can be rigorously justified through the classical
extension-restriction argument, [108]. The corresponding control system then takes the form

∂tv − ∂xxv = 0,

v(0, t) = a1(t), v(L, t) = a2(t),

v(·, t = 0) = v0.

where aj = aj(T ), j = 1, 2 play the role of the controls.
Most of these lecture notes will be devoted to considering boundary control problems..

In all these contexts, control problems can be formulated differently. one may distinguish, in
particular, the following goals and issues.
(a) Controllability problems, [18, 114, 124]: given an initial datum and a specific target, to find

a control function that drives the system to the target in a given time-horizon.
(b) Stabilization, [18, Part III]: Given an unstable equilibrium configuration, can we find a

control function in a feedback form (depending on the state) that stabilizes the systems
towards this equilibrium?

(c) Optimal control. This problem can be formulated as a minimization one, for instance as a
least-squares type of problem. One seeks to minimize a cost functional depending on the
state and the control, typically, to lead the system towards a neighborhood of a target or
a reference trajectory. Optimal control problems for parabolic problems have been widely
considered in particular in [14,65,105,113].

2. Parabolic models

In this section, we derive the model that will be considered and explain the relevance of constraints on
the associated control problems.

2.1. ODE versus PDE modelling. The first Ordinary Differential Equation (ODE) considered in
population dynamics exhibits an exponential growth of the population P = P (t):

P ′

P
= β,
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Verhulst [118] noticed that the competition for limited resources among individuals of the same population
provides a more accurate model and leads to an upper threshold of the population growth:

P ′ = βP

(
1− P

κ

)
,

where κ is the capacity of the environment.

ODE can be adapted to the Partial Differential Equation (PDE) setting to model the movement and
invasion of species. Assuming that the diffusion is homogeneous and that the resources in space are space
invariant, the equation can be formulated as follows:

∂tv − ∂xxv = βv(1− v) (x, t) ∈ (0, L)× (0, T ),

∂xv = 0 (x, t) ∈ {0, L} × (0, T ),

v(·, t = 0) = v0 ∈ L∞(Ω; R+),

for β > 0. Here, null Neumann type boundary conditions are adopted to represent the fact that no
population flow through the boundary is allowed.

The constraint on the state v ≤ 1 is relevant when the quantity under consideration is a proportion.
These leads to systems of the form

∂tv − ∂xxv = f(v) (x, t) ∈ (0, L)× (0, T ),

∂xv = 0 (x, t) ∈ {0, L} × (0, T ),

v(·, t = 0) = v0 ∈ L∞(Ω; [0, 1]),

where typically f(1) = 0.

2.2. The bistable model. Let Ω = (0, L) ⊂ R and assume that two populations represented by non-
negative functions V and W , interact in a nonlinear fashion while preserving the quantity V + W , and
diffusing in space. We will discuss later possible contexts in which such a situation might occur. The
corresponding model reads:

∂tV − ∂xxV = F (V,W ) (x, t) ∈ (0, L)× (0, T ),

∂tW − ∂xxW = −F (V,W ) (x, t) ∈ (0, L)× (0, T ),

∂xV = ∂xW = 0 (x, t) ∈ {0, L} × (0, T ),

V (·, t = 0) = V0 ∈ L∞((0, L); R+),

W (·, t = 0) = W0 ∈ L∞((0, L); R+),

(2.1)

where F is a Lipschitz continuous function satisfying F (V, 0) = F (0,W ) = 0 for every V,W ∈ R.

We first look for an approximation of (2.1) utilizing a single equation. Note that

P := V +W,

satisfies: 
∂tP − ∂xxP = 0 (x, t) ∈ (0, L)× (0, T ),

∂xP = 0 (x, t) ∈ {0, L} × (0, T ),

P (·, t = 0) = V0 +W0,

(2.2)

whose long time asymptotic is given by the constant

lim
t→∞

P (t, x) =
1

L

∫ L

0

[V (x, 0) +W (x, 0)]dx.

It is therefore natural to assume that P is actually constant.

Define v := V/P as the proportion of the V type population in the whole population P . Then (2.1)
reduces to: 

∂tv − ∂xxv = f(v) (x, t) ∈ (0, L)× (0, T ),

∂xv = 0 (x, t) ∈ {0, L} × (0, T ),

v(·, t = 0) = v0 ∈ L∞((0, L); [0, 1]).

for a suitable f that can be easily derived out of F .

In this setting, the bilateral constraints 0 ≤ v(x, t) ≤ 1 arise naturally for all (x, t). The zeros of the
original nonlinearity F guarantee that f(0) = f(1) = 0. Then, by the comparison principle, when the
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initial datum v0 satisfies these bilateral bounds, they are guaranteed to hold for all (x, t) (see next section,
Section 3).

It is said that f ∈ C1 is bistable if:

f(0) = f(θ) = f(1) = 0, f ′(0) < 0, f ′(1) < 0, f ′(θ) > 0,

f(s) < 0 for s ∈ (0, θ), f(s) > 0 for s ∈ (θ, 1).

As an example, observe that if

F (V,W ) =
VW

(V +W )2
((1− θ)V + θW )

for θ ∈ (0, 1), then it corresponds to:

f(v) = v(1− v)(v − θ)
which has such a bistable structure. This model has special interest, in particular, in game theory as we
indicate below:

• Game theoretical interpretation. This nonlinearity arises naturally in the context of evolutionary
game theory in coordinated games.

The choice of languages in a social context is a prototypical example. Indeed, assume two
bilingual individuals meet each other, and they establish a conversation in one of the two languages
they manage. However, they may have different preferences for languages, and a payoff matrix
models this.

The replicator dynamics is a nonlinear ODE that models the change of strategy in time of
players. Players continuously play the game, and they evaluate their success while comparing
it with the other players’ average success. The replicator dynamics for a two strategy game is
represented by:

d

dt
v = v

(
(1, 0)A

(
v

1− v

)
− (v, 1− v)A

(
v

1− v

))
where A ∈M2(R) is a payoff matrix.

In this model, v is the proportion of players playing the first strategy, and 1− v that of those
playing the remaining strategy. The first term on the right-hand side evaluates the success of the
first strategy, while the second is the players’ average success. If the first strategy has less success
than the average, the proportion of players playing the first strategy will diminish in favor of the
second strategy. The payoff matrix of a coordination two strategy game is

A =

(
(1− θ) 0

0 θ

)
,

that leads to the nonlinearity f(v) = v(1 − v)(v − θ). In this game, we see that if θ < 1/2,
players prefer to play the first strategy rather than the second. However, the preference does not
uniquely determine the behavior of the system. One can see for instance that both consensus
configuration v = 0 and v = 1 are stable. Indeed, f ′(0) < 0 and f ′(1) < 0, and this assures that
the less wanted strategy is stable if enough players are currently playing it.

For further details and other possible models we cite [22,53,54,54,55,89].
• Biological interpretation.

In a biological context, according to the so-called Allee effect (see [110]), when the population
in a given habitat is lower than a given threshold θ, they cannot survive.

A game-theoretical approach can also be adopted in this context. Assume the population
presents two distinct genes. More successful genes will be transferred to the next generations,
while the less successful ones will disappear. In this situation, the replicator dynamics apply.

In ecology, spatial heterogeneities are omnipresent. Note that if A depends on x like

A(x) =

(
(1− θ(x)) 0

0 θ(x)

)
,

θ(x) is determining which strategy is having an advantage depending on the spatial location. So
that if 0 < s < θ(x) then f < 0, but f > 0 if θ(x) < s < 1. This leads to a model in which the
nonlinearity depends on x. In ecological systems, one may also consider situations in which one
gene is favorable in dry environments, and the other is favorable in humid habitats, for instance.
This case will be briefly discussed later on.
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One may also consider different diffusivities for each of the genes. Where the reduction to a
scalar case might not be possible.
• Chemical reactions. A chemical reaction in which the number of reactants, constituted by particles

of different classes, can also be represented by similar systems, [90, Chapter 1].

2.3. Boundary control. In these lecture notes we will mainly consider the situation in which the control
acts on the boundary. The control can enter through the Neumann boundary condition, for instance,
regulating the flux: 

∂tv − ∂xxv = f(v) (x, t) ∈ (0, L)× (0, T ),

∂v

∂ν
= b(x, t) (x, t) ∈ {0, L} × (0, T ),

0 ≤ v(x, 0) ≤ 1 x ∈ (0, L).

But, obviously, a trajectory with Neumann control can also be understood as being submitted to a
Dirichlet one. Therefore, equivalently, we may consider the same problems with Dirichlet controls that
are somehow easier to handle.

Indeed, given the Neumann control b(x, t), and the corresponding solution v = v(x, t), its Dirichlet trace
a(x, t) can be understood as a Dirichlet control:

∂tv − ∂xxv = f(v) (x, t) ∈ (0, L)× (0, T ),

v = a(x, t) (x, t) ∈ {0, L} × (0, T ),

0 ≤ v(x, 0) ≤ 1 x ∈ (0, L).

(2.3)

Of course the constraints on v are automatically transferred to the Dirichlet controls

0 ≤ a(x, t) ≤ 1 for any (x, t) ∈ {0, L} × [0, T ].

On the other hand, as we shall see, by the comparison principle, the constraints on the controls suffice
for them to hold for the solution as well.

Thus, in the context of Dirichlet controls, imposing bilateral bounds is equivalent to imposing them on
the controls.

3. Review of some results on parabolic equations

In this section, we gather some classical results on semilinear parabolic equations that are useful for
control purposes. We will mainly expose results concerning

(1) convergence to steady-states,
(2) comparison results,
(3) traveling waves.

Nowadays, the primary tool to control reaction-diffusion equations with constraints to unstable targets
is the staircase method, which uses paths of steady-states. For this reason, understanding whether or
not there is a natural convergence to steady-states will be of practical use. We also mentioned that the
existence of nontrivial steady-states would be a fundamental obstruction due to the comparison principle.
These principles are also gathered in this section, and we will also use them to guarantee convergence
to certain steady-states. In particular, we will employ the comparison principle between the solution of
our reaction-diffusion equation with a section of a traveling wave. As mentioned earlier, traveling waves
are special solutions to the Cauchy problem in the whole real line. The existence of traveling waves and
their stability has been a classic topic in reaction-diffusion. Due to the impact of traveling waves on our
systems, we will expose the main theorems below.

3.1. Convergence to steady-states. Consider the following one-dimensional semilinear heat equation.
∂tv = ∂x (a(x)∂xv) + f(x, v) (x, t) ∈ (0, L)× (0, T )

v(x, 0) = v0(x) x ∈ (0, L),

v(0, t) = β0, v(L, t) = βL t ∈ (0, T ),

(3.1)

β0 and βL being constants independent of t.

Let te(v0) be the maximum time of existence of the solution of (3.1). For general nonlinearities, solutions
of (3.1) may blow-up in finite time.
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Let v0 ∈ C ([0, L]; R) and suppose that the solution is global, so that the maximum time of definition
of the solution is +∞: te(v0) = ∞. The ω-limit set of the solutions can be defined as the set of
accumulation points of the trajectory v(·, t) in C1 ([0, L]) as t → ∞. It is by now well-known that any
bounded trajectory converges to a steady-state. The result actually holds for more general boundary
conditions [75] (see also [120] for an earlier reference).

Theorem 3.1 (Matano, Theorems A and B from [76]). The ω-limit set of any function v0 ∈ C([0, L]; R)
contains at most one element.

For any initial data v0 ∈ C([0, L]; R), one and only one of the following three properties holds:

(1) The solution blows up in finite time te(v0) <∞ and limt→te(v0) ‖v(t)‖L∞([0,L];R) =∞.
(2) The solution grows up as t→∞, te(v0) =∞ and limt→te(v0) ‖v(t)‖L∞([0,L];R) =∞.
(3) The solution converges to a solution of the elliptic problem.{

0 = ∂x (a(x)∂xv) + f(x, v) x ∈ (0, L),

v(0) = β0, v(L) = βL,

in the C1 ([0, L]; R) ∪ C2 ((0, L); R) topology.

In higher dimensions, the theorem above is no longer true. In [93, 94] counterexamples of the theorem
above in several dimensions were constructed. However, if the nonlinearity is analytic, one can ensure the
convergence to steady-states thanks to the  Lojasiewicz gradient inequality [57,109]. For further reading,
see also [48,68].

3.2. Comparison results. The comparison principle enables us to gain further understanding on the
dynamics of the trajectories of the PDE under consideration [13, 39, 101] [38, Chapter 5]. We present
simultaneously parabolic and elliptic comparison principles. We state them in one dimension; although
they also hold in several dimensions.

Definition 3.2 (Parabolic sub- and supersolutions). Consider the elliptic operator:

L := ∂xx + k(x)∂x

where k : (0, L)→ R is a smooth function. Let f : R→ R be smooth functions and h : {0, L}×(0, T )→ R.
Consider the parabolic problem:

∂tv − Lv = f(v) (x, t) ∈ (0, L)× (0, T )

v(t, x) = h(x, t) (x, t) ∈ {0, L} × (0, T )

v(0, x) = v0(x) x ∈ (0, L)

(3.2)

A subsolution v of (3.2) satisfies:
∂tv − Lv ≤ f(v) (x, t) ∈ (0, L)× (0, T )

v(t, x) ≤ h(t, x) (x, t) ∈ {0, L} × (0, T )

v(0, x) ≤ v0(x) x ∈ (0, L)

A supersolution v of (3.2) satisfies:
∂tv − Lv ≥ f(v) (x, t) ∈ (0, L)× (0, T )

v(t, x) ≥ h(t, x) (x, t) ∈ {0, L} × (0, T )

v(0, x) ≥ v0(x) x ∈ (0, L)

Theorem 3.3 (Parabolic comparison principle [13]). If v is a subsolution (respectively v a supersolution)
to (3.2) and v is a solution such that v ≥ v (respectively v ≤ v) on (x, t) ∈ {0, L} × [0, T )

⋃
(0, L)× {0}

then v ≥ v (v ≤ v) in (x, t) ∈ (0, L)× (0, T ).

In the elliptic context the comparison principle reads as follows. Let L := a(x)∂xx + b(x)∂x + c(x) be
an elliptic operator with coefficients in C0,α([0, L]). Furthermore, let f : [0, L] × R −→ R be a locally
Lipschitz function. Consider the problem equation:{

−Lv(x) = f(x, v(x)) x ∈ (0, L),

v(x) = 0 x ∈ {0, L}. (3.3)
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Definition 3.4 (Elliptic sub- and supersolutions). We say that v (respectively v) is a subsolution (re-
spectively a supersolution) if v (respectively v) belongs to C0([0, L]) ∪ C2((0, L)) and verifies that:{

−Lv(x) ≤ f(x, v(x)) x ∈ (0, L),

v ≤ 0 x ∈ {0, L}.
Respectively, {

−Lv(x) ≥ f(x, v(x)) x ∈ (0, L),

v ≥ 0 x ∈ {0, L}.

Theorem 3.5 (Elliptic comparison principle, Theorem 5.17 in [63]). Assume that there exist a subsolution
v and a supersolution v of (3.3) such that v ≤ v.

Then (3.3) admits a minimal solution v∗ and a maximal v∗ (possibly equal) such that, v ≤ v∗ ≤ v∗ ≤ v and
there exist no solution u between v and v such that at a certain point x ∈ Ω satisfies either v(x) ≤ v∗(x)
or v(x) ≥ v∗(x)

As mentioned above, solutions of reaction-diffusion systems can blow up in finite time for certain initial
data and specific nonlinearities, [29, Chapter 9, pp 547-550]. The following corollary guarantees the
stability of the system if the initial data lies in 0 ≤ v0 ≤ 1.

Corollary 3.6 (Stability). Assume that 0 ≤ v0 ≤ 1 and f : R −→ R is locally Lipschitz continuous with
f(0) = f(1) = 0. Then, the solution of the problem

∂tv = ∂xxv + f(v) (x, t) ∈ (0, L)× (0, T ),

v(x, t) = a(x) ∈ [0, 1] (x, t) ∈ {0, L} × (0, T ),

v(x, 0) = v0(x) x ∈ (0, L),

is defined for all positive time and
0 ≤ v(x, t) ≤ 1.

Proof. The existence and uniqueness of solution follows from classical methods, existence and uniqueness
for the linear problem and then a fixed point method for the nonlinear equation [29, Chapter 9].

Note that that the functions v, v : (0, L)×R+ → R defined as v(x, t) = 1 and v(x, t) = 0 are a supersolution
and a subsolution respectively.

�

3.3. Traveling waves. We are considering Dirichlet boundary controls in both extremes of the domain
of the definition of solutions: x = 0, L. This is, in fact, equivalent to not imposing boundary conditions
at all, and simply reading-off the boundary traces of the solutions, provided they fulfill the bilateral
bounds. Note that this argument is actually the one that allowed us to show the equivalence between the
Neumann and the Dirichlet control problems. Observe, however, that this equivalence is no longer true
when the control acts only on one extreme of the boundary, for instance.

Considering the Dirichlet boundary control problem from this perspective, i.e. ignoring the boundary
conditions under the sole condition that the solution satisfies 0 ≤ v(x, t) ≤ 1, allows for instance consid-
ering the Cauchy problem in the whole real line, and the restrictions of its solutions to the domain (0, L)
under consideration.

A particular relevant example of trajectories defined in the whole real line are the so-called traveling
waves, [38, 60].

Consider the following Cauchy problem:{
∂tv − ∂xxv = f(v) (x, t) ∈ R× R+,

v(·, t = 0) = v0 ∈ L∞(R).
(3.4)

Definition 3.7 (Traveling waves). A traveling wave solution to (3.4) is a solution of the form v(t, x) =
U(x− ct) with c ∈ R being the wave speed and U = U(s) its profile.

The existence of such functions was discovered by Kolmogorov [60] and since then they have been ex-
haustively studied.

Note that the C2 profile U such that U(+∞) = 0 and U(−∞) = 1 defines a traveling wave solution iff

−cU ′(s) + U ′′(s) = f(U(s)) s ∈ R (3.5)
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0

1/2

1

Figure 3.1. Profile for the traveling wave for the cubic nonlinearity f(t) = t(1−t)(t−θ)
in the interval [−10, 10]. This profile is independent of the value of θ.

where s = x− ct. From (3.5) by multiplying by U ′(s) and integrating over R one observes,

−c
∫

R
(U ′(s))2ds+

∫
R
U ′′(s)U ′(s)ds =

∫
R
f(U(s))U ′(s)ds.

This gives an implicit definition of the velocity of propagation of the profile. Indeed, using the fact that
U ′(±∞) = 0, one can see that the above expression is reduced to:

c =
F (1)∫

R(U ′(s))2ds
, (3.6)

where F is the primitive of f .

Equation (3.6) gives, in particular, the direction of the traveling wave. Indeed, if F (1) > 0, the traveling
wave is moving to the right, so that eventually, as t increases, the value 1 invades the whole real line,
while, if F (1) = 0, the profile defines a steady-state solution. The existence of traveling waves for
bistable nonlinearities can be proved, for instance, using phase-plane techniques, understanding (3.5)
as a dynamical system and looking for a trajectory that connects (U(−∞) = 1, U ′(−∞) = 0) with
(U(−∞) = 0, U ′(−∞) = 0).

The next theorem guarantees the existence of traveling waves for bistable nonlinearities:

Theorem 3.8 (Traveling waves for the bistable nonlinearity, Theorem 4.9 in [90], Theorem 4.15 [38]).
Assume that:

f(0) = 0, f ′(0) < 0, f(θ) = 0, f(1) = 0, f ′(1) < 0

f(v) < 0 for 0 < v < θ, f(v) > 0 for θ < v < 1

Then, there exists a unique traveling wave (c∗, v) of (3.4) with v decreasing and satisfying:

c∗ > 0 for F (1) > 0, c∗ < 0 for F (1) < 0, c∗ = 0 for F (1) = 0

where F (s) =
∫ s

0
f(v)dv.

For the cubic nonlinearity f(t) = t(1− t)(t− θ) the profile U(x) has an explicit expression

U(x) =
exp{−x/

√
2}

1 + exp{−x/
√

2}
shown in Figure 3.1 and its traveling speed is

c∗ =
√

2

(
1

2
− θ
)
.

Traveling wave solutions connect the steady-state 0 with the steady-state 1. Traveling waves can act
as attractors for the dynamical system. Indeed, there is a wide class of initial data that exponentially
converges to a traveling wave.

Theorem 3.9 (Theorem 4.16 in [38]). Assume that f bistable is in the theorem above. Then if the initial
data of (3.4), v0 satisfies:

lim sup
x→−∞

v0(x) < θ lim inf
x→+∞

v0(x) > θ,
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there exist constants C > 0, µ > 0 and x0 ∈ R such that:

|u(x, t)− U(x− ct− x0)| < Ce−µt.

Assuming that f is monostable:

f(0) = f(1) = 0, f(s) > 0 s ∈ (0, 1); f ′(0) > 0, f ′(1) < 0,

there is no uniqueness of the traveling waves

Theorem 3.10 (Theorem 4.15 in [38]). Let f be monostable, there exist c∗ > 0 such that:

• there exist a traveling wave solution with U(−∞) = 1, U(+∞) = 0 if c ≥ c∗,
• if c < c∗ there does not exist any traveling wave.

Note that, there exist infinitely many traveling waves. This issue has been extensively analysed in some
specific models like Fisher-KPP equation below, [60]:{

∂tv − ∂xxv = rv(1− v) (x, t) ∈ R× R+

0 ≤ v(x, 0) ≤ 1 x ∈ R
(3.7)

Concerning the stability of traveling wave solutions in the monostable case there is a specific traveling
wave that enjoys stability properties:

Theorem 3.11 ( [60]). Let f : R → R be monostable fulfilling f ′(0) ≥ f ′(s) for all 0 ≤ s ≤ 1 and let
v = v(x, t) be the solution of {

∂tv − ∂xxv = f(v) (x, t) ∈ R× R+

v(·, t = 0) = v0

where

v0(x) =

{
0 for x > 0

1 for x < 0.

Then there exist a function ψ ∈ C1 such that

|u(x, t)− U(x− c∗t− ψ(t))| → 0 as t→∞ (3.8)

uniformly in x and:
lim
t→∞

ψ′(t) = 0

We refer to [106], [103], [37], among others, for further results on the asymptotic stability of solutions.

Traveling waves play a very interesting role in the context of control since its restriction to the bounded
domain [0, L] yields a trajectory linking an arc near the steady-state 0 with another one near 1. Traveling
waves can also naturally be used to construct sub-solutions for controlled trajectories.

4. Well-posedness of the control problem and controllability

4.1. Comments on the well-posedness. Let us first discuss the well-posedness of the main control
problem considered in these lecture notes, namely the boundary control of the scalar reaction-diffusion
equation: 

∂tv − ∂xxv = f(v) (x, t) ∈ (0, L)× (0, T ),

v(0, t) = a1(t), v(L, t) = a2(t) t ∈ (0, T ),

v(x, 0) = v0(x), v0 ∈ L∞((0, L); [0, 1]).

(4.1)

where ai ∈ L∞((0, T ); R) for i = 1, 2 are control functions. Splitting the solution into two subproblems,
v = w + y, as in [91], where

∂tw − ∂xxw = 0 (x, t) ∈ (0, L)× (0, T ),

w(0, t) = a1(t), w(L, t) = a2(t) t ∈ (0, T ),

w(x, 0) = 0,

(4.2)

and 
∂ty − ∂xxy = f(y + w) (x, t) ∈ (0, L)× (0, T ),

y(0, t) = 0, y(L, t) = 0 t ∈ (0, T ),

y(x, 0) = v0(x), v0 ∈ L∞((0, L); [0, 1]),

(4.3)

the existence and uniqueness of a weak solution can be determined. In the presence of boundary control
weak solutions are defined as follows:
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Definition 4.1 (Weak solution). Consider the space:

T := {ϕ ∈ C∞([0, T ]× [0, L]) : ϕ(·, T ) = 0, ϕ(x, t) = 0 (x, t) ∈ {0, L} × [0, T ]} .
For v0 ∈ L∞([0, L]; [0, 1]) and for ai ∈ L∞((0, T )) for i = 1, 2,

v ∈ C0((0, T ), H−1((0, L))) ∩ L∞((0, L)× (0, T ))

is a weak solution of system (4.1) if for every ϕ ∈ T one has that:∫ T

0

∫ L

0

v
(
− ∂tϕ− ∂xxϕ

)
− f(v)ϕdxdt =

∫ L

0

v0ϕ(x, 0)dx+

∫ T

0

a1(t)∂xϕ(0, t)− a2(t)∂xϕ(L, t)dt.

Note that, in the construction above, solving the non-homogeneous boundary-value problem (4.2), due
to the low regularity of the boundary controls, requires to first introduce the notion of transposition
solution [66, Ch.13].

Let us introduce the following notation:

Ω = (0, L), Q = Ω× (0, T ), Σ = ∂Ω× (0, T )

and the adjoint problem 
−∂tp− ∂xxp = φ (x, t) ∈ (0, L)× (0, T ),

p(0, t) = 0, p(L, t) = 0 t ∈ (0, T ),

p(x, T ) = 0

(4.4)

for φ ∈ L2((0, T );L2((0, L))).

The well-posedness of the adjoint equation (4.4) can be addressed by classical methods, [29, Chapter 7
pp.378]. In fact, under the inversion of the time variable (t→ −t) this system becomes an homogeneous
Dirichlet problem for the forward heat equations. The solution then belongs to:

p ∈ L2((0, T );H1
0 ((0, L))),

d

dt
p ∈ L2((0, T );H−1((0, L))).

On the other hand, multiplying (4.2) by φ and integrate over Q:∫ T

0

∫ L

0

wφdxdt =

∫ T

0

∫ L

0

w(−∂tp− ∂xxp)dxdt =

∫ T

0

w
∂p

∂ν

∣∣x=L

x=0
dt

=

∫ T

0

a2(t)∂xp(L, t)− a1(t)∂xp(0, t)dt

= 〈a,Λφ〉L2(Σ),

where a = (a1, a2). The map Λ : L2(Q) → L2((0, T );L2(∂Ω)), Λ(φ) = (−∂xp(0, t), ∂xp(L, t)), such that
p solves (4.4), is linear and continuous. A transposition solution w of (4.2) is a distribution w satisfying
the following relationship for every φ ∈ L2(Q)∫ T

0

∫ L

0

wφ = 〈a,Λφ〉L2(Σ). (4.5)

By duality the existence and uniqueness of the transposition solution holds. For details see [66, Chapter
4, Sections 8, 12.3, 13 and Section 15 Example 1] and [65, page 202].

The well-posedness of problem (4.3) can then be achieved as an application of Banach Fixed-point [91]
to 

∂ty − ∂xxy = f(ξ + w) (x, t) ∈ (0, L)× (0, T )

y(0, t) = y(L, t) = 0 t ∈ (0, T )

y(x, 0) = v0(x), v0 ∈ L∞((0, L); [0, 1])

(4.6)

The solution ψ(ξ) of (4.6), defines a map ψ : BR −→ BR where BR ⊂ L∞(Q) is a ball of radius R.

Using the variations of constants formula with the semigroup generated by the heat equation, a contraction
map is defined for T small enough, leading to local existence and uniqueness. When the nonlinearity is
assumed to be globally Lipschitz, the solution is globally defined in time. Blow up may occur when the
nonlinearity is superlinear at infinity.
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4.2. Null Controllability of linear problems. We present some of the main features of the null
controllability of scalar parabolic equations presenting the main arguments and references.

The first method to deal with the controllability of the heat equation in one dimension is based on the
use of biorthogonal functions, [31].

We present the extension-restriction principle that allows to translate the boundary control problem into
an interior control one. The argument consists of extending the system to a larger domain in which the
control acts in the interior. Once the solution in the extended domain is controlled, the restriction to the
original domain leads to a controlled trajectory with Dirichlet boundary controls.

Here we shall only consider scalar equations. For extensions to parabolic systems we refer to [1, 33, 46,
51,61].

The domain Ω = (0, L) is extended to ΩE = (−1, L + 1). Let ω ⊂ (−1, 0) (see Figure 4.1) and consider
the following linear parabolic control problem:

∂tv − ∂xxv − b(x, t)v = χωh (x, t) ∈ ΩE × (0, T ),

v(−1, t) = 0, v(L+ 1, t) = 0 t ∈ (0, T ),

v(x, 0) = v0(x), v0 ∈ L∞(ΩE ; [0, 1]) x ∈ ΩE ,

(4.7)

where the initial datum is a smooth extension by zero of compact support of v0 and b ∈ L2((0, T ), L2(ΩE)).

−1 L L+ 10

ω

Figure 4.1. Original domain Ω = [0, L], extended domain ΩE = (−1, L + 1) and the
control region ω.

We now consider the extended adjoint equation:
∂tp+ ∂xxp+ b(x, t)p = 0 (x, t) ∈ ΩE × (0, T ),

p(−1, t) = 0, p(L+ 1, t) = 0 t ∈ (0, T ),

p(x, T ) = pT (x) x ∈ ΩE .

(4.8)

Integrating by parts we get

0 =

∫
ΩE

v(T )p(T )dx−
∫

ΩE

v(0)p(0)dx−
∫ T

0

∫
ΩE

v (∂tp+ ∂xxp+ bp)) dxdt−
∫ T

0

∫
ω

hpdxdt.

Hence,

0 =

∫
ΩE

v(T )p(T )dx−
∫

ΩE

v(0)p(0)dx−
∫ T

0

∫
ω

hpdxdt.

A control h driving the solution v to the null state, i.e. v(T ) ≡ 0, is characterized by the duality identity:

−
∫

ΩE

v(0)p(0)dx−
∫ T

0

∫
ω

hpdxdt = 0

for all pT such that the solution of (4.8) satisfies p ∈ L2(ω × (0, T )). Observe that the condition
p ∈ L2(ω × (0, T )) does not imply that pT ∈ L2(ΩE). In fact, pT belongs to a much larger space, [36].

The control h fulfilling the above identity can be obtained minimizing the functional

J : H −→ R,

pT −→ J(pT ) =

∫ T

0

∫
ω

p2dxdt+

∫
ΩE

p(0)v(0)dx.

where,

H :=
{
pT such that p solves (4.8) and

∫ T

0

∫
ω

p2dxdt < +∞
}
,

The Euler-Lagrange equation satisfied by the minimizer p∗,T of J is given by

DJ(p∗,T )[ξT ] =

∫ T

0

∫
ω

ξp∗dxdt+

∫
ΩE

ξ(0)v(0)dx = 0,



16 DOMÈNEC RUIZ-BALET AND ENRIQUE ZUAZUA

This leads to the desired control h = p∗, which is of minimal L2- norm among all possible controls.

In order to show that J has a minimizer we observe that J is continuous and convex. Its coercivity is
equivalent to the so-called observability inequality for the adjoint system:

‖p(0)‖2L2(ΩE) ≤ C
∫ T

0

∫
ω

p2dxdt, ∀pT ∈ H. (4.9)

This kind of inequalities for parabolic equations in one and several space dimensions was proved using
Carleman inequalities in [41] (see also [34]).

This leads to the control of the system (4.7) such that v(x, T ;h) = 0. Taking its restriction to the original
domain (0, L) we find the boundary controls

a(0, t) = v(0, t;h) a(L, t) = v(L, t;h)

leading to the null control of the original system
∂tv − ∂xxv − b(x, t)v = 0 (x, t) ∈ Ω× (0, T )

v(0, t) = a(0, t), v(L, t) = a(L, t) t ∈ (0, T )

v(x, 0) = v0, x ∈ Ω

so that

v(x, T ) = 0, ∀x ∈ (0, L).

Note however that this arguments do not guarantee that the controls and/or the controlled states fulfill
the bilateral constraints.

4.3. Null controllability for the semilinear problem and further comments. Once the linear
control problem has been solved the semilinear one can be addressed using either Schauder’s or Kakutani’s
fixed point [27]. This fixed point argument was originally employed for the semilinear wave equation, see
for instance [121,122] and references therein (see also [62]).

The fixed point argument can be implemented as follows. Given ξ ∈ L2(Q), we introduce the bounded
potential bξ

bξ(x, t) =


f(ξ(x, t))

ξ(x, t)
if ξ(x, t) 6= 0,

f ′(0) otherwise.

.

Then, one considers the linear controlled problem
∂tv − ∂xxv − bξ(x, t)v = χωhξ (x, t) ∈ ΩE × (0, T ),

v(−1, t) = v(L+ 1, t) = 0 t ∈ (0, T ),

v(x, 0) = v0, v(x, T ) = 0 x ∈ ΩE .

(4.10)

Applying the linear methods above, this system can be controlled, and in this way we can define the
linear map ψ : L2(Q) → L2(Q) defined as ξ → ψ(ξ) = v solution of (4.10). This map turns out to be
continuous and compact. Under suitable growth conditions on the nonlinearity, in particular, when f is
globally Lipschitz, it can be shown that this map is invariant in a sufficiently larger ball. This allows
to apply Schauder fixed point. The fixed point corresponds to a controlled trajectory for the nonlinear
system.

There is by now an extensive literature in linear and semilinear parabolic control problems. We refer
to [64] for an alternative approach to Carleman inequalities, based on spectral decompositions, and
to [35,36] for the control of weakly blowing up semilinear heat equations.

As mentioned above, these arguments do not yield estimates in the controls and controlled states allowing
to assure that the bilateral constraints are fulfilled. A careful analysis of the Carleman inequalities allows
to obtain estimates on the cost of control of the form

‖a‖L2((0,T ),R2) ≤ exp

{
C

(
1

T
+ ‖b‖L∞T + ‖b‖2/3L∞

)}
As expected, the size of controls increases exponentially when the time horizon T tends to zero leading
to oscillations on controls and states that are incompatible with the bilateral constraints considered in
these lecture notes (see Figure 4.2).
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Figure 4.2. (Left) Control function a(0, t) steering the cubic bistable equation to the
steady-state w ≡ θ in time T = 5. (Right) Snapshot at time t = 2.288 of the controlled
trajectory ua(·, t) violating the constraints 0 ≤ u ≤ 1.

Important further developments are needed in order to understand the controllability of these systems
under bilateral constraints of the form 0 ≤ u ≤ 1.

4.4. Constrained controllability results. In this subsection, we present the main Theorem given
in [91], which ensures that under certain assumptions, and, in particular, for long time-horizons, the
problem of high amplitude oscillations observed in Figure 4.2 can be overpassed and bilateral constraints
can be assured. However, this will require a much more detailed analysis of the dynamics of the system,
in particular, to build paths of steady-states linking one steady-state to another.

Consider 
∂tv − ∂xxv = f(v) (x, t) ∈ (0, L)× (0, T ),

v = a(x, t) (x, t) ∈ {0, L} × (0, T ),

v(0, x) = v0(x) ∈ [0, 1] x ∈ (0, L),

(4.11)

we say that v1 and v0 are path connected steady-states if there exists a continuous function from [0, 1] to
the set of admissible steady-states S endowed with the L∞ topology, γ : [0, 1]→ S, such that γ(0) = v0

and γ(1) = v1. Denote by vs := γ(s).

Theorem 4.2 (Theorem 1.2 in [91]). Let be v0 and v1 be path-connected admissible bounded steady-states.
Assume there exists ν > 0 such that:

ν ≤ vs(x) ≤ 1− ν for x ∈ {0, L}, (4.12)

for any s ∈ [0, 1]. Then, if T is large enough, there exist a control function a ∈ L∞
(
(0, T ); [0, 1]2

)
such

that the problem (4.11) with initial datum v0 and control function a admits unique solution verifying
v(·, T ) = v1.

Figure 4.3 shows the strategy qualitatively. If one has a connected path of steady-states, one can use local
controllability to control sequentially along elements in the path in short time intervals. The strategy is
based on using an L∞ bound on the control in terms of the L∞ norm of the difference between the initial
datum and the target. This allows the extraction of a finite number of steady-states along the path and
applying local controllability from one to another without breaking the constraints. This strategy, by
construction, requires a large time, while the controllability of the linear and semilinear heat equation
can be achieved in arbitrary small time.
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Figure 4.3. Qualitative representation of the Staircase strategy. The dashed blue line
represents the connected path of steady-states and the red line the state under the
control.

4.5. Minimal controllability time. .

Let us consider the problem (4.11) where f is Lipschitz. As mentioned before, when state constraints are
not present, the controllability problem to some steady-state can be achieved in arbitrary small time [36].

Hence if one seeks to control in T << 1, the cost is becoming exponentially large. However, the results
of [36] concern the dynamics without constraints in the state. When the system has positivity constraints,
there is a minimal controllability time for the linear heat equation (see [71] and also see [69] for systems)
and for the semilinear (see [91]). Here, we will provide a schematic proof of the existence of a minimal
control time when there are bilateral bounds.

Theorem 4.3 (Positivity of the minimal controllability time for the semilinear equation [91]). Let us
consider a steady-state target v: 

−vxx = f(v) x ∈ (0, L),

0 < v < 1 x ∈ (0, L),

v(0) = a1, v(L) = a2.

Furthermore, consider the boundary control problem (4.11) with target function v and v0 6= v. Then the
controllability cannot be achieved in arbitrary small time if the control function satisfies 0 ≤ a ≤ 1.

Proof. The result is an application of the comparison principle.

Let v be an admissible target steady-state. Assume that the admissible initial condition v0 is different
from the target. Then, one has that there exists an open interval I ⊂ (0, L) such that either{

(A) v < v0 x ∈ I,
(B) v > v0 x ∈ I.

(A) For any control strategy a, one has that by the comparison principle

v(t; v0, a) ≥ v(t; v0, a = 0)

where v(t; v0, a) is the solution of (4.11) with control a. Moreover, one has that there exists a
nonnegative test function φ ∈ H1

0 such that:∫
I

(v0 − v)φdx > 0

Since the solution of (4.11) is continuous with values in H−1((0, L)) one has that there exists
T ∗ > 0 for which ∫

I

(v(t; v0, a = 0)− v)φ > 0 t ∈ (0, T ∗)
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Hence, ∫
I

(v(t; v0, a)− v)φ >

∫
I

(v(t; v0, a = 0)− v) > 0 t ∈ (0, T ∗)

Therefore, for any admissible control a, controllability cannot hold before T ∗

(B) The same paradigm arises, but by employing the control a = 1 for the comparison.

�

Remark 4.4. If we have unilateral constraints, the result is still valid. However, it requires employing
duality techniques and using the continuity of the normal derivative of the adjoint equation (see [91]).

.

5. Barriers and multiplicity of steady-states

.

5.1. Barriers. .
The first notion that we should emphasize is that a fundamental lack of controllability can occur when
state-constraints are present. We will see that the existence of nontrivial elliptic solutions depends on
the length of the domain. These nontrivial solutions, by the comparison principle, will impede specific
trajectories to reach the prescribed target.

The comparison principle, presented in Subsection 3.2, ensures that a solution of the elliptic equation:
−∂xxw = f(w) x ∈ (0, L),

0 < w(x) < 1 x ∈ (0, L),

w(0) = w(L) = 0,

(5.1)

will always be below the solution of the following parabolic problem
∂tv − ∂xxv = f(v) (x, t) ∈ (0, L)× (0, T ),

v(x, t) = a(x, t) ≥ 0 (x, t) ∈ {0, L} × (0, T ),

v(x, 0) ≥ w(x).

Then we see that w(x) is an intrinsic obstruction to the controllability for the initial data above w to
targets that have at least an interval below w. We say that w(x) acts as a barrier since

w(x) ≤ v(x, t).

As a consequence, we cannot reach any state below w(x) with positive control functions a(x, t).

Recall that our control a physically means to modify the proportion in the boundary, and for that reason,
we have the constraint 0 ≤ a(x, t) ≤ 1.

Hence, the existence of solutions for the Dirichlet condition equals to zero (5.1) is problematic in terms
of the controllability to 0 (see Figure 5.1). We will see that the existence of multiple solutions depends
basically on the length of the domain L.

The dependence on the domain L can be understood intuitively in the application context. There is a
population that reproduces in the interior of a domain while being killed at the boundary. These terms
are competing. If the domain is big enough, the reproduction inside can compensate for individuals’ loss
through the boundary.



20 DOMÈNEC RUIZ-BALET AND ENRIQUE ZUAZUA

Figure 5.1. Simulation of the semilinear heat equation with cubic nonlinearity f(y) =
y(1− y)(y − 1/3) in the interval (0, 20) finding the barrier.

Note that nontrivial solutions with a boundary value 1 will have the same effect for reaching the state 1.

This section is devoted to studying the existence and nonexistence of nontrivial solutions. We will restrict
the study in the following section in the one-dimensional case, even though the results also hold in several
dimensions by the same techniques.

5.2. Rescaling. .

Consider an interval (0, L) and the evolution equation
∂tv − ∂xxv = f(v) (x, t) ∈ (0, L)× (0, T ),

v(x, t) = a(x, t) (x, t) ∈ {0, L} × (0, T ),

v(·, t = 0) = v0 ∈ L∞((0, L), [0, 1]).

(5.2)

First, let us reparameterize equation (5.2) for considering it into the interval (0, 1). We apply the spatial
transformation s(x) = x/L and the time transformation τ(t) = t/L2. By setting v(L2τ, Ls) = u(τ, s) the
problem reads: 

uτ − ∂ssu = L2f(u) (x, t) ∈ (0, 1)× (0, T ),

u(x, t) = a(x, t) (x, t) ∈ {0, 1} × (0, T ),

u(·, t = 0) = u0 ∈ L∞((0, 1), [0, 1]).

(5.3)

We will make an abuse of notation, and we will use t instead of τ and x instead of s and we denote
λ := L2. In [67] the existence of positive solutions for the semilinear elliptic problem and its multiplicity
is studied, we collect here the results of the work [67] that can be applied in our steady-state problem
(5.4).

Consider the interval (0, 1) and the boundary value problem:
−∂xxu = λf(u) x ∈ (0, 1),

0 < u < 1 x ∈ (0, 1),

u(0) = u(1) = 0.

(5.4)

5.3. Variational formulation. .

The weak formulation of the boundary value problem:{
−∂xxv = λf(x, v) x ∈ (0, 1),

v(0) = v(1) = 0,
(5.5)

is: ∫ 1

0

vxhx − λf(x, v)hdx = 0 ∀h ∈ H1
0 ((0, 1)).
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which corresponds to look for critical points of the energy functional:

I : H1
0 ((0, 1)) −→ R

v −→ I[v] :=

∫ 1

0

1

2
v2
x − λF (x, v)dx,

where F (x, v) =
∫ v(x)

0
f(x, s)ds.

Theorem 5.1 (Coercivity of I). Assume that:

lim sup
|s|→∞

λ
f(x, s)

s
< λ1((0, 1)), (5.6)

where λ1((0, 1)) = π2, the first eigenvalue of the Dirichlet Laplacian. Then I is coercive.

Proof. For simplicity we will take care only on the case in which s → +∞, the case s → −∞ follows
similarly. Since

lim sup
s→∞

λ
f(x, s)

s
< λ1((0, 1)),

we know that there exist R > 0 such that

λ
f(x, s)

s
< λ1 ∀s ≥ R

using also the fact that f(x, 0) = 0 we can write:∫ v

0

λf(s)ds =

∫ R

0

λf(s)ds+

∫ v

R

λ
f(s)

s
sds

≤
∫ R

0

λf(s)ds+
p

2

(
u2 −R2

)
≤ p

2
u2 + C(R, f, λ)

for a certain p < λ1((0, L)). So

I[u] =

∫ 1

0

1

2
u2
x − F (u)dx

≥
∫ 1

0

1

2
u2
x −

p

2
u2 − C(R, f, λ)dx

≥ 1

2

∫ 1

0

(
1− p

λ1((0, 1))

)
u2
x − C(R, f, λ)dx

≥ 1

2

(
1− p

λ1((0, 1))

)∫ 1

0

u2
xdx− C(R, f, λ)

≥ c‖u‖2H1
0 ([0,1]) − C(R, f, λ)

where c > 0 because p < λ1((0, 1)). So I is coercive.

�

Theorem 5.2 (Existence of a minimizer). Under the assumptions of Theorem 5.1, I has a minimizer.

Proof. Note that the Lagrangian L(p, z, x) = 1
2 |p|2 − F (z) is convex with respect to the variable p.

Therefore I is weakly lower-semicontinuous (Theorem 1 Ch.8 pp.468 in [29]) and the functional has a
minimizer u ∈ H1

0 ((0, L)). �

Remark 5.3. The hypothesis (5.6) is only needed for proving that the functional is coercive. For the
monostable and bistable nonlinearities, since f has a positive zero, one can extend f by zero afterwards.
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Note that for both the monostable case and the bistable case we can redefine f to be constant before
s = 0 (f(x, s) = 0 for s ≤ 0) and after s = 1 (f(x, s) = 0 for s ≥ 1). In general we are interested on
minimizers such that 0 ≤ v(x) ≤ 1. After redefining f (if needed) by

f̃(s) :=


f(s) if s ≥ 0,

0 if s < 0,

0 if s > 1,

we define the functional:

I : H1
0 ((0, 1)) −→ R

v −→ I[v] :=

∫ 1

0

1

2
v2
x − λF̃ (v)dx

where F̃ (v) = λ
∫ v

0
f̃(s)ds

Indeed I[0] = 0. Thanks to the redefinition of f , we ensure that whenever 0 is not a minimizer, the
minimizer satisfies 0 < v < 1 and the Euler-Lagrange equations:

−∂xxu = λf̃(u) x ∈ (0, 1)

u > 0 x ∈ (0, 1)

u(0) = u(1) = 0.

Indeed, if the minimizer would not satisfy 0 < v < 1, then one can reach a contradiction. Suppose that
v takes values outside [0, 1], then the function

v =


v(x) if v(x) ∈ [0, 1]

1 if v(x) > 1

0 if v(x) < 0

has a lower value for the gradient part
∫ 1

0
v2
x <

∫ 1

0
v2
x while the nonlinear part remains equal thanks to

the redefinition of f . However, by the strong maximum principle v cannot be a solution of the elliptic
problem. Therefore the minimizer must satisfy 0 < v < 1. Since 0 < u < 1, f̃ = f in this range and
therefore is a solution of our original problem as well.

Definition 5.4. We define λ∗ as the infimum value λ ∈ R+ for which there is a solution of:
−∂xxv = λf(v) x ∈ (0, 1),

0 < v < 1 x ∈ (0, 1),

v(0) = v(1) = 0.

(5.7)

The following classical result [67] makes use of subsolutions to prove that, if for a certain λ1 there exists
a nontrivial solution to (5.7), then, for any λ > λ1 there will exist a nontrivial solution. Recall that
λ = L2.

Proposition 5.5. For every λ > λ∗ there exist a nontrivial solution to (5.7)

Proof. Recall that λ = L2. We prove it making use of different domains. We will first assume that there
exists a nontrivial solution of the elliptic problem for a certain L1 > 0. Then we will see that there exists
a nontrivial solution for any L > L1, which will correspond to say that if there exists a nontrivial solution
for λ1, for any λ > λ1, there will also exist a nontrivial solution. Assume that there exists a solution to:

−∂xxv1 = f(v1) x ∈ (0, L1),

0 < v1 < 1 x ∈ (0, L1),

v1(0) = v1(L) = 0.

To prove that for any L > L1 there exists a nontrivial solution, one can construct a subsolution of:
−∂xxv = f(v) x ∈ (0, L),

0 < v < 1 x ∈ (0, L),

v(0) = v(L) = 0,
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using v1. One can extend v1 by zero in (L1, L),

ṽ(x) =

{
v1(x) if x ∈ (0, L1),

0 if x ∈ (L1, L).

ṽ is a weak subsolution for the problem in (0, L), note that 1 is always a supersolution, therefore we have
that if a nontrivial solution exists for (0, L1) for some L1 > 0, then for every L > L1 there will exist a
nontrivial solution. �

5.4. Monostable nonlinearity. .

5.4.1. Dirichlet condition 0. Using the variational structure of the problem, we will be able to give
estimates from above for λ∗. Furthermore, the existence of positive solutions and some estimates can
also be given for the case in which nonlinearities are depending on x, i.e., f : [0, 1]× R→ R.

The following Theorem was proven in [10, Theorem II.1], however, the proof given below is using a
variationa.

Theorem 5.6 (One Upper bound of λ∗). 1 Assume that

lim
s→0+

λ
f(x, s)

s
> λ1((0, 1)) uniformly in x ∈ [0, 1]

and

lim
s→∞

λ
f(x, s)

s
< λ1((0, 1)) ∀x ∈ [0, 1]

Then, for all λ > λ1((0,1))
minx∈[0,1] f ′(0,x) there exist a solution of the problem (5.4). Therefore:

λ∗ ≤ λ1((0, 1))

minx∈[0,1] f ′(0, x)
.

Proof. The main idea of the proof is simple: To prove the existence of a local minimizer for I that takes
values in 0 ≤ v ≤ 1 and to prove that 0 is not a minimizer. Since we have 0 boundary condition, the
function v = 1 is not a possible candidate. Let e1 be the first eigenfunction of the operator A = (−∂xx).
We know that this function is positive. Set v = εe1 for ε > 0 to be chosen later on.

By hypothesis, we assumed that:

lim
s→0+

λ
f(x, s)

s
> λ1((0, 1)) uniformly in x ∈ [0, 1]

this means that there exists r ∈ R+ such that

λf(x, s)

s
> λ1((0, 1)) ∀s ∈ [0, r].

Choose ε small enough such that εe1 < r and evaluate the functional:

I[εe1] =

∫ 1

0

ε2

2
∂xe

2
1 −

∫ εe1

0

λ
f(x, s)

s
sdsdx

≤
∫ 1

0

ε2

2
∂xe

2
1 − p

ε2e2
1

2
dx

for some p > λ1((0, 1)). Then integrating by parts ∂xe
2
1, using the fact that −∂xxe1 = λ1e1 and imposing

that I[εe1] < 0 i.e.

I[εe1] ≤ ε2

2

∫ 1

0

(λ1((0, 1))− p) e2
1dx < 0

we obtain the existence of a nontrivial solution. Therefore we know that for all λ > λ1((0,1))
minx∈[0,L] f ′(0,x) there

exists a positive solution, this means that

λ∗ ≤ λ1((0, 1))

minx∈[0,L] f ′(0, x)
.

1Here we provide a weaker version of the original theorem and moreover the proof given is a variational argument. In [10]
one can find also a proof that does not rely on a variational argument
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�

The following Theorem is a lower bound for this splitting in the case in which the nonlinearities are
concave and twice differentiable.

Theorem 5.7 (A Lower bound of λ∗). Let f be twice differentiable such that f ′(0) > 0 and concave, i.e.
f ′′(t) ≤ 0. Then if:

λ <
λ1((0, 1))

f ′(0)

there cannot be any positive solution to Problem (5.4), Therefore,

λ∗ ≥ λ1((0, 1))

f ′(0)
> 0

Proof. Multiply the equation by v and integrate over the domain and integrate by parts:∫ 1

0

−v∂xxvdx = λ

∫ 1

0

f(v)vdx,∫ 1

0

v2
x − λ

∫ 1

0

f(v)v = 0.

By the Poincaré inequality, ∫ 1

0

λ1((0, 1))v2 − λf(v)v ≤ 0

Now consider the Taylor formula on f

f(v) = f(0) + f ′(0)v +

∫ v

0

f ′′(t)(v − t)dt

Due to the fact that f(0) = 0 we end up with∫ 1

0

(λ1((0, 1))− λf ′(0)) v2 − λv
∫ v

0

f ′′(t)(v − t)dtdx ≤ 0

since v > 0 we have that v − t ≥ 0. Moreover, by assumption f ′′(t) ≤ 0 and we obtain that the second
term is bigger or equal than zero, hence, we can conclude that a necessary condition to have a positive
solution is: ∫ 1

0

(λ1((0, 1))− λf ′(0)) v2 ≤ 0

which concludes the proof.

�

Remark 5.8 (Space dependent nonlinearity). After a subtle change in the proof of 5.7, one can see that
indeed the result also holds for the following problem:

−∂xxv = λf(v, x) x ∈ (0, 1)

v > 0 x ∈ (0, 1)

v(0) = v(L) = 0,

(5.8)

where f(v, x) is twice differentiable with respect to v, concave with respect to v. Following the argument
one arrives at the following condition∫ 1

0

(λ1((0, 1))− λf ′(0, x)) v2 ≤ 0.

If we assume that

0 < min
x∈[0,L]

f ′(0, x) ≤ f ′(0, x) ≤ max
x∈[0,L]

f ′(0, x) < +∞

We see that in this case we obtain also a lower bound for λ∗:

λ∗ ≥ λ1((0, 1))

maxx∈[0,1] f ′(0, x)
> 0
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Theorem 5.9 (λ∗ for monostable concave nonlinearities). When f is monostable, concave and does not
depend on x we have:

λ∗ =
λ1((0, 1))

f ′(0)
> 0

When f monostable and concave but depending on x,

λ1((0, 1))

maxx∈[0,1] f ′(x, 0)
≤ λ∗ ≤ λ1((0, 1))

minx∈[0,1] f ′(x, 0)

Remark 5.10 (Uniqueness of positive solutions for concave nonlinearities). When f is concave and a
positive solution exists it is unique [9, 67].

Remark 5.11 (Non uniqueness of positive solutions for non concave nonlinearities). When f is not concave

uniqueness of the nontrivial positive solution might not hold. Assuming that f ′(0) > 0, if λ∗ < λ1((0,1))
f ′(0)

we have that for all λ such that λ∗ < λ < λ1((0, 1)) there exists a second positive solution. This is proven
using topological degree arguments [67].

5.4.2. Phase Portrait. In one dimension the elliptic equation

−∂xxu = f(u),

can be interpreted as a dynamical system by considering the ordinary differential equation:

d

dx

(
u
vx

)
=

(
vx
−f(u)

)
. (5.9)

For the monostable nonlinearity, we notice that (1, 0) is a topological saddle for the nonlinear system,
and (0, 0) is a center for the linearized system. The differential matrix is:

DF (u, v) =

(
0 1

−∂uf(u) 0

)
.

Since by definition of monostable, ∂uf(u)
∣∣
u=1

< 0 and ∂uf(u)
∣∣
u=1

> 0, we have that

DF (1, 0) =

(
0 1

−∂uf(u)
∣∣
u=1

> 0 0

)
, DF (0, 0) =

(
0 1

−∂uf(u)
∣∣
u=0

< 0 0

)
,

by symmetry with respect to the horizontal axis, we can also conclude that (0, 0) is a center for the
nonlinear system. Moreover, by the first integral of the system, we know that the separatrix of the saddle
is given by:

ux = ±
√

2(F (1)− F (u)).

The following Figure 5.2 is a representation of the phase portrait in the monostable case

Figure 5.2. Left, separatrix of the system where the blue lines limit the admissible
region f(s) = s(1− s). Right, the phase portrait inside limit curves of the separatrix.
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5.4.3. Bifurcation diagram. In Figure 5.3 (left), one can qualitatively visualize the bifurcation diagram
for a concave nonlinearity, while in Figure 5.3 (right) the case in which it is not concave. In the horizontal
axis, λ = L2 is represented, and in the vertical one, the infinity norm of the nontrivial solutions when
they exist (for further examples, see [67]).

λ∗ = λ1

f ′(0)

λ

‖u‖∞

1

λ1

f ′(0)
λ∗

λ

‖u‖∞

1

Figure 5.3. Qualitative Bifurcation diagram for the stationary solutions

5.4.4. Dirichlet condition 1. As said before, a nontrivial solution around the boundary value 1 would
have the same blocking effect. However, we shall see that in this context, such a solution does not exist.

To prove the nonexistence of a solution to the problem:
−∂xxu = λf(u) x ∈ (0, 1),

0 < u < 1 x ∈ (0, 1),

u(0) = u(L) = 1.

(5.10)

we will show that for any initial datum between 0 and 1 the solution of the parabolic problem:
∂tu− ∂xxu = λf(u) (x, t) ∈ (0, 1)× R+,

0 < u < 1 (x, t) ∈ (0, 1)× R+,

u(0, t) = u(1, t) = 1 t ∈ R+,

0 ≤ u(x, 0) ≤ 1 x ∈ (0, 1),

goes asymptotically to the constant solution u = 1. This will imply that there is no solution to (5.10).
Indeed we can write the semilinear parabolic problem as a gradient system:

ut = −∇uI[u],

where I is:

I[u] =

∫ 1

0

1

2
u2
x − λF (u)dx.

Convergence to 1 for any admissible initial data implies that I[u] has no critical point for any u ∈
H1((0, 1)) satisfying 0 < u < 1 with Dirichlet trace equals to 1. Therefore, it does not exist any weak
solution of (5.10).

For monostable nonlinearities, a Lyapunov functional exists [95]:

V (t) :=

∫ 1

0

u− 1− log(u)dx

indeed,
d

dt
V (t) = −

∫ 1

0

u2
x

u2
dx−

∫ 1

0

λf(u)
1− u
u

dx ≤ 0

Remark 5.12 (Comparison with traveling waves). Another way to check it is by using the comparison
principle with the traveling wave solution for the Cauchy problem. Indeed we know that a decreasing
traveling wave function exists for monostable nonlinearities [90, Ch.4 Th. 4.5 pp.67]. Since it is decreasing
and connecting 0 and 1 for any initial data u(x, 0) > 0 of the parabolic problem, we can choose a section
of the traveling wave that is strictly under u(x, 0). Then, the boundary conditions of this section of the
traveling wave will be below 1, so this restriction of the traveling wave is a subsolution of the parabolic
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problem with Dirichlet data equals to 1. This argument enables us to conclude that the solution of the
parabolic problem will converge to 1.

5.5. Bistable nonlinearity. .

5.5.1. Dirichlet condition 0. Now we turn our attention to bistable nonlinearities. The structure of the
proofs estimates will be similar.

Theorem 5.13 (A Lower bound for λ∗). Let f : [0, 1]×R→ R, assume that f is bounded uniformly with
respect to x. Assume furthermore that f(x, 0) = 0. Consider:

−∂xxv = λf(x, v) x ∈ (0, 1),

1 > v > 0 x ∈ (0, 1),

v(0) = v(1) = 0.

Then,
λ1((0, 1))

max(x,s)∈[0,1]2
f(x,s)
s

≤ λ∗

Proof.

λ1((0, 1))

∫ 1

0

v2dx ≤
∫ 1

0

(∂xv)2dx =

∫ 1

0

λf(x, v)vdx ≤
∫ 1

0

λPv2dx (5.11)

with P = max(x,s)∈[0,1]2 f(x, s)/s. Note that if∫ 1

0

λPv2dx < λ1((0, 1))

∫ 1

0

v2dx (5.12)

we would violate (5.11). Therefore, for any λ < λ((0, 1))/P there cannot be a nontrivial solution, hence
a lower bound on λ∗ is

λ1((0, 1))

max(x,s)∈[0,1]2
f(x,s)
s

≤ λ∗

�

Theorem 5.14 (An upper bound for λ∗). Assume that f(0) = f(θ) = f(1) = 0, and that f ′(0) < 0,
f ′(1) < 1, f ′(θ) > 0. Moreover consider F (v) =

∫ v
0
f(s)ds and assume that F (1) > 0. Consider the

interval [0, 1]. The following problem:
−∂xxu = λf(u) x ∈ (0, 1),

u > 0 x ∈ (0, 1),

u(0) = u(1) = 0.

(5.13)

has a solution for every λ ≥ 8F (1)−F (θ)
F (1)2 .

This implies an upper bound of λ∗:

π2

maxs∈[0,1]
f(s)
s

≤ λ∗ ≤ 8
F (1)− F (θ)

F (1)2
,

where the lower bound comes from Theorem 5.13.

Proof. We know that 0 is a solution of the Euler-Lagrange equations of the corresponding functional.

I[u] =
1

2

∫ 1

0

u2
xdx− λ

∫ 1

0

F (u)dx.

The strategy is similar than the one of Theorem 5.6. We construct a family of functions vδ ∈ H1
0 ((0, 1)).

We define vδ in the following way:

vδ(x) =



2

δ
x if x ∈

[
0,
δ

2

]
1 if x ∈

(
δ

2
, 1− δ

2

)
1− 2

δ

(
x−

(
1− δ

2

))
if x ∈

[
1− δ

2
, 1

]
.
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One can see the function vδ in Figure 5.4. The functions have an inner interval in which there are equal
to one. Furthermore, the functions are zero in the boundary and increase linearly to 1 (where F (1) > 0).
δ is related to the length of the inner interval in which the function is not constant.

The idea is: first ensure under which conditions on δ we have that:

∫ 1

0

F (v(x)) > c > 0,

once we have this, we choose λ in order to dominate the term:

1

2

∫ 1

0

v2
xdx.

that will depend only on the δ chosen before and thus we constructed v such that:

I[v] < 0.

Figure 5.4. Function vδ

Note that vδ ∈ H1
0 ((0, 1)) . Then we have that:

(∂xvδ)
2 =


0 if x ∈

(
δ

2
, 1− δ

2

)
4

δ2
if x ∈

(
0,
δ

2

)
∪
(

1− δ

2
, 1

)
we want to find a pair (λ, δ) for which:

I[v] =

∫ 1

0

1

2
|∂xv|2 − λ

∫ v(x)

0

f(s)dsdx < 0.

For doing so, first we choose δ > 0 to be small enough such that:∫ 1

0

∫ v(x)

0

f(s)dsdx > c > 0

we split the space integral in two parts:∫ 1

0

∫ v(x)

0

f(s)dsdx =

∫ 1− δ2

δ
2

∫ v(x)

0

f(s)dsdx+

∫
[0,1]\( δ2 ,1− δ2 )

∫ 1

0

f(s)dsdx

≥
∫

[0,1]\( δ2 ,1− δ2 )
F (θ)dx+ F (1)(1− δ)

= F (1)(1− δ) + F (θ)δ.

So, it will suffice if we require that:

0 < δ <
F (1)

F (1)− F (θ)
. (5.14)
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We fix δ fulfilling (5.14) and now or goal is to choose λ big enough so that the space integral on F (v(x))
dominates the gradient part.

I[vδ] =

∫ 1

0

1

2
|∂xvδ|2 − λF (vδ(x))dx

≤
∫ 1

0

1

2
|∂xvδ|2dx− λ (F (1)(1− δ) + δF (θ))

=

∫
(0,1)\( δ2 ,1− δ2 )

2

δ2
dx− λ (F (1)(1− δ) + δF (θ))

=
2

δ
− λ (F (1)(1− δ) + δF (θ))

so, it will be sufficient if:

λ >
2

δ (F (1)(1− δ) + F (θ)δ)
(5.15)

Hence, any pair (λ, δ) that satisfies both (5.14) and (5.15) will guarantee the existence of a nontrivial
solution. Now the question is: For which choice of δ can we obtain the minimum upper bound in terms
of λ?

We choose the δ in the interval 0 < δ < F (1)
F (1)−F (θ) such that maximizes the denominator:

δ (F (1)(1− δ) + F (θ)δ) .

We note that −F (1) + F (θ) is negative, hence we have a polynomial in δ that attains its maximum in:

δ∗ =
F (1)

2(F (1)− F (θ))

This optimal δ∗ satisfies the requirement on δ:

δ∗ =
F (1)

2(F (1)− F (θ))
<

F (1)

F (1)− F (θ)

So we have that:

λ >
8(F (1)− F (θ))

F (1)2
,

will be enough.

�

Remark 5.15. Notice that the structure of the proof of Theorem 5.14 also works for the monostable case.
When bounding by above the integral of the primitive, we will have F (1) instead of F (1)−F (θ) because
the primitive in the monostable case is monotone.

Corollary 5.16 (Unexpected Corollary). Let f by any C2(R; R) function satisfying:

• f(0) = f(θ) = f(1) = 0 with 0 < θ < 1
• consider F (v) =

∫ v
0
f(s)ds and suppose that F (1) > 0

• f ′(0) < 0, f ′(θ) > 0 and f ′(1) < 0
• f < 0 in (0, θ) and f > 0 in (θ, 1)

Then,

π2 ≤ 8
F (1)− F (θ)

F (1)2
max
s∈[0,1]

f ′(s) := Q

Proof. Indeed this is a corollary from the theorem proven before,

π2 ≤ 8
F (1)− F (θ)

F (1)2
max
s∈[0,1]

f(s)

s
≤ 8

F (1)− F (θ)

F (1)2
max
s∈[0,1]

f ′(s)

since, by the mean value theorem maxs∈[0,1]
f(s)
s ≤ maxs∈[0,1] f

′(s). �
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Remark 5.17 (Open question). The remarkable issue here is that Corollary 5.16 has a very mild reminis-
cence of the PDE theory, λ1 = π2 in [0, 1]. How can this general estimate be proven without the PDE
theory?

0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

Figure 5.5. The blue line is π, the red dots is the quantity Q depending on θ for the
prototypical example f(s) = s(1− s)(s− θ). For this nonlinearity F (1) > 0 is equivalent
to θ < 1/2. The values between 0.4 and 0.5 are not shown because the function blows
up since for θ = 1/2, one has that F (1) = 0.

Remark 5.18 (Existence of positive solutions for nonlinearities depending on space). Similar arguments
can be applied to show the existence of positive solutions with space-dependent nonlinearities. Consider:

−∂xxu = f(x, u) x ∈ (0, 1),

1 > u > 0 x ∈ (0, 1),

u(0) = u(1) = 0.

Consider that exist smooth functions θ,K : [0, 1] −→ R+ such that:

• θ(x) < K(x) for all x
• f(θ(x), x) = 0 for all x
• f(K(x), x) = 0 for all x
• f(s, x) < 0 for all 0 < s < θ(x)
• f(s, x) > 0 for all θ(x) < s < K(x)
• There exist x∗ ∈ [0, 1] such that F (K(x∗), x∗) > 0.

Then there is a finite λ for which the positive solution exists.

Remark 5.19 (Survival of the gene). The physical interpretation of the previous result is the following:
Consider a population with two characteristics. Each characteristic is advantageous only in some parts
of the environment. If the set in which one trait is advantageous is big enough, we cannot control to zero
this characteristic employing a boundary control.

Remark 5.20 (Double blocking phenomenon). Note that by constructing spatial heterogeneities like this
one, one can generate nontrivial solutions with boundary 1 and 0. Setting different values of θ(x) above
and below 1

2 for the nonlinearity f(y) = y(1 − y)(y − θ(x)) one could apply these methods to prove
the existence of both nontrivial solutions. By the comparison principle, this example leads to a double
blocking phenomenon, already observed in [82].

Proposition 5.21 (Maximum of positive solutions). Let u be a solution to:
−∂xxu = λf(u) x ∈ (0, 1),

1 > u > 0 x ∈ (0, 1),

u(0) = u(1) = 0,

with f being bistable then the maximum of u in [0, 1] is above θ:

max
x∈[0,1]

u(x) > θ.
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Proof. The proof follows by contradiction. Assume that the maximum of u is lower or equal than θ, then
the energy estimate gives us the contradiction:

0 <

∫ 1

0

u2
xdx = λ

∫ 1

0

uf(u) < 0

where the strict inequality in the left-hand side comes from the assumption that the solution is not trivial,
and the right-hand side inequality comes from the fact that f is negative in (0, θ).

�

5.5.2. Dirichlet condition θ. Note that these results imply the thresholds for λ∗θ for the bistable nonlin-
earities i.e. when the nontrivial solution to:

−∂xxv = λf(v) x ∈ (0, 1),

v > θ x ∈ (0, 1),

v(0) = v(1) = θ.

By hypothesis, we know that f > 0 in (θ, 1), f ′(θ) > 0 , f ′(1) < 0 and f(θ) = f(1) = 0. f is monostable
in [θ, 1], indeed w = v − θ does satisfy the criteria of the previous theorems.

Theorem 5.22 (The estimates of λ∗θ for bistable nonlinearities).

π

maxs∈[θ,1]
f(s+θ)
s−θ

≤ λ∗θ ≤ min

{
2

F (1)− F (θ)
,

π

f ′(θ)

}
If f is convex in (0, θ) and concave in (θ, 1) then:

λ∗θ =
π

f ′(θ)

Leaving aside the estimates given above, one, in general, has the following result.

Theorem 5.23 (Order in the thresholds). When F (1) > 0 we have that:

λ∗θ ≤ λ∗

and fixing λ > λ∗ we denote by vθ and v0 the maximum nontrivial solution bounded by 1 of the elliptic
problem with Dirichlet boundary conditions equal to θ and 0 respectively, then:

vθ ≥ v0

Proof. The result follows from the elliptic comparison principle, together with the fact that any nontrivial
solution of the boundary value problem has its maximum above θ. �

5.5.3. Dirichlet condition 1. Here we will consider the problem:
−∂xxu = λf(u) x ∈ (0, 1),

1 > u > 0 x ∈ (0, 1),

u(0) = u(1) = 1

(5.16)

As mentioned before, by using comparison principles to sections of traveling waves, we can prove that we
converge to 1 for any domain size.

Proposition 5.24 (Convergence to 1). For any interval (0, L), the solution of the reaction diffusion
system (5.2) with Dirichlet data equals to 1 converges to u = 1.

Proof. We know that the problem:{
ut − ∂xxu = f(u) (x, t) ∈ R× R+,

0 ≤ u(0, x) ≤ 1 x ∈ R.

Has a traveling wave solution, and by Theorem 3.8, we know that the traveling wave profile is a monotone
function decreasing in the direction of the velocity vector. The idea is to use a segment of the traveling
wave as a parabolic subsolution to our problem. Now we come back to our (parabolic) problem;

∂tu− ∂xxu = f(u) (x, t) ∈ (0, L)× (0, T ),

u(x, t) = 1 (x, t) ∈ {0, L} × (0, T ),

0 < u(x, 0) < 1 x ∈ (0, L).

(5.17)
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Since the traveling wave profile is monotone decreasing, we can consider a segment of the traveling wave
below to u(x, 0) in [0, L]. Let us denote by TW (x) a traveling wave profile that satisfies:

TW (x) ≤ u(x, 0) ∀x ∈ [0, L].

Now we note that the following problem:
∂tu− ∂xxu = f(u) (x, t) ∈ (0, L)× R+,

u(x, t) = TW (x− ct) (x, t) ∈ {0, L} × R+

u(x, 0) = TW (x) x ∈ (0, L),

(5.18)

is a subsolution of (5.17), then by the parabolic comparison principle we have that the solution of (5.17)
will be above (5.18) and therefore the solution of (5.17) will converge to 1.

�

5.5.4. Phase Portrait. Here we study the ODE dynamics of system (5.9) for bistable nonlinearities. First
of all we notice that the points (0, 0) (corresponding to the stationary solution u(x) = 0) and (1, 0)
(corresponding to the stationary solution u(x) = 1) are saddles for all values of θ ∈ (0, 1). Indeed our
nonlinearity fulfills:

∂

∂u
f(u)

∣∣
u=0

< 0,
∂

∂u
f(u)

∣∣
u=1

< 0,
∂

∂u
f(u)

∣∣
u=θ

> 0

The corresponding linearized system around (0, 0) and the one around (1, 0) have the following matrices:(
0 1

− ∂
∂uf(u)

∣∣
u=0

0

)
,

(
0 1

− ∂
∂uf(u)

∣∣
u=1

0

)
The eigenvalues of those matrices are real and with a different sign. Then we know that for the nonlinear
system, we have topological saddles. On the other hand, for (θ, 0), we have that the corresponding
linearized system is a center since the eigenvalues of the matrix(

0 1
− ∂
∂uf(u)

∣∣
u=θ

0

)
lie in the imaginary axis. This is not enough to conclude, but observing that the system is symmetric
with respect to the horizontal axis, we have that (θ, 0) is a center for the nonlinear system.

One can easily find a first integral of the system:

E(u, v) =
1

2
v2 + F (u)

where F (u) =
∫ u

0
f(s)ds.

For F (1) > 0, notice that the separatrix of the saddle in 0 is the same trajectory and encloses (θ, 0).

Indeed, E(0, 0) = 0, hence we have the curves v = ±
√
−2F (u) below and above the horizontal axis. At

the point 0 < θ1 < 1 that fulfills F (θ1) = 0, these curves meet. One can see this since F (1) > 0 and since
F (u) < 0 for all 0 < u < θ, we know that there exist a 1 > θ1 > θ such that F (θ1) = 0.

Notice that when F (1) = 0 one has that F (u) < 0 for all 0 < u < 1. This means that the separatrix is
split into two trajectories that connect 0 and 1 (These are the traveling wave profiles for F (1) = 0). We

will call Γ the region in the phase-plane that the separatrix vE=0(u) = ±
√
−2F (u) encloses.

Notice that Γ is included in [0, 1]× R which means that all arcs of any length inside Γ are admissible for
our constraints.

Doing the same procedure for finding the separatrix that exit from (1, 0) we end up with the curves

vE=1(u) = ±
√

2(F (1)− F (u)). At the vertical axis, u = 0, they take values vE=1(0) = ±
√

2F (1).

Notice that, in the case of the cubic nonlinearity f(u) = u(1 − u)(u − θ), as we increase θ towards 1
2 ,

vE=1(0) is decreasing until arriving to 0 for θ = 1
2 , while, at the same time θ1 goes to 1.

Moreover, we can also find the separatrix outside our admissible domain. We can see that

vE=1 = ±
√

2(F (1)− F (u))

is well defined for u > 1 since F (u) is a strictly decreasing function so −F (u) is increasing. This means
that both separatrix do not cross the horizontal axis anymore after u = 1. This is valid also for F (1) = 0.
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Furthermore, the separatrix going out from 0 towards −∞,

vE=0 = ±
√
−2F (u)

is well defined for u < 0. Notice that this argument also holds for F (1) = 0.

See Figure 5.6 and 5.7 for the phase-portrait representation and the graphical representation of the
separatrix.

Figure 5.6. Phase portraits for f(s) = s(1− s)(s− θ), when θ < 1/2 (F (1) > 0), left in
the admissible region, right separatrix. The blue lines in the right hand side plot denote
the admissible region.

Figure 5.7. Phase portraits for f(s) = s(1− s)(s− θ) when θ = 1/2 (F (1) = 0), left in
the admissible region, right separatrix. The blue lines in the right hand side plot denote
the admissible region.

5.5.5. An expression for L in the phase plane. In the particular case of one dimension, one can obtain an
expression for the length L (time L in the ODE setting) in the phase portrait using the first integral of
the system. We restrict our study in the curves that cross the vertical axis. The parameter α ∈ (0, F (1))
is introduced.

Notice that any trajectory starting from the vertical axis until it reaches is maximum is strictly increasing.
This means that it is a C1 diffeomorphism from the time interval [0, 1/2L(α)] to its altitude [0, umax(α)].
Let us denote this diffeomorphism (that depends on α) by U : [0, 1/2L(α)]→ [0, umax(α)]. Then noticing
that umax(α) = Y (L(α)/2) and that 0 = Y (0):

L(α) = 2

∫ L(α)/2

0

dz = 2

∫ U−1(L(α)/2)

U−1(0)

dz

= 2

∫ umax(α)

0

(
U−1

)′
(u)du = 2

∫ umax(α)

0

1

U ′(U−1(u))
du.
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Now, we make use of the first integral, notice that here x plays the role of time, so the term v = ux = U ′.
Moreover, umax(α) = F−1(α) and Y ′ =

√
2
√
α− F (u). For the bistable nonlinearity F is not invertible

but in the case of looking for trajectories that cross the vertical axis and that are below the separatrix
going out from 1 we notice that in that set is invertible,

F : [θ1,
√

2F (1)]→ [0, F (1)]

is monotone increasing.

L(α) =
√

2

∫ F−1(α)

0

1√
α− F (U(U−1(u))

du =
√

2

∫ F−1(α)

0

1√
α− F (u)

du

Changing the way of parameterizing an expression for L∗ can be written in the following way:

L∗ = inf
β∈(θ1,1)

√
2

∫ β

0

du√
F (β)− F (u)

Using the aforementioned expression in [96] the authors prove the following thresholds

Proposition 5.25 (Proposition 4 in [96]). If f is C2, monostable and the following holds:

f2 ≥ 2Ff ′ on [0, 1]

then,

L∗ =
π√
π2

f ′(0)

5.5.6. Bifurcation diagrams. This subsection shows bifurcation diagrams for some bistable nonlinearities
and graphics of the bounds obtained before.

The blue and the red lines in Figure 5.8 represent the nontrivial solutions for Dirichlet boundary 0 and θ
respectively. For the blue curve, the vertical axis is the infinity norm. For the red curve, the vertical axis
is the infinity norm for when the curve is above θ and θ − ‖u − θ‖∞ when the curve is under θ. In this
way, it is showing the minimum value taken since it corresponds to solutions for the following problem:


−∂xxv = λf(v) x ∈ (0, 1)

0 < v < θ x ∈ (0, 1)

v(0) = v(1) = θ

Figure 5.9 show the bounds for the nonlinearity f(s) = s(1− s)(s− θ) for different values of θ.

λ1

f ′(θ)

λ

1

θ

λ∗ λ1

f ′(θ)
λ∗
θ

λ

1

θ

λ∗

Figure 5.8. Qualitative Bifurcation diagram for the stationary solutions for a bistable
nonlinearity that is convex in (0, θ) and concave in (θ, 1) (Left), and a bistable nonlin-
earity that is convex in (0, p) with p > θ and concave in (p, θ) as f(s) = s(1− s)(s− θ)
for θ < 1/2.
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Figure 5.9. Bounds on L∗ (Left) and L∗θ (Right) for different values of θ for the non-
linearity f(s) = s(1− s)(1− θ). The red dots represent upper bounds and the blue dots
lower bounds.

Remark 5.26. Note that the lower bound proven for λ∗ and λ∗θ is the same, in general, to our knowledge,

we do not know if λ1((0,1))
f ′(θ) is smaller or bigger than λ∗.

Remark 5.27 (Further bifurcations). More bifurcations for the boundary value θ can occur increasing λ,
the solutions that bifurcate and have oscillations around θ are not represented in the diagrams. It has to
be said that those solutions will appear after the nontrivial solution above θ and the nontrivial solution
below θ have appeared. The reason is that an oscillatory solution of:

−∂xxu = λf(u) x ∈ (0, 1),

0 < u < 1 x ∈ (0, 1),

u(0) = u(1) = θ,

is above/below θ in a set smaller measure than the original set. Therefore, the domain should be big
enough for this smaller subset to be above the thresholds. This reasoning holds for any dimension using
the monotonicity of the eigenvalues. Indeed, we have that if D ⊂ Ω then λ1(Ω) ≤ λ1(D) (see [49, Section
1.3.2])

Remark 5.28 (Harmonic Oscillator). Note that if we linearize the ODE dynamics associated with the
elliptic problem around (θ, 0), one obtains the harmonic oscillator. Indeed the linearized system

d

dx

(
u
v

)
=

(
v

−f(θ)u

)
,

corresponds to

∂xxu = −f ′(θ)u (5.19)

We observe that f ′(θ) corresponds to the frequency of the oscillations. In this way, one can intuitively
understand how nontrivial solutions that are close to v ≡ θ can exist or not. The general solution of
(5.19) is:

u(x) = A sin
(√

f ′(θ)x
)

+B cos
(√

f ′(θ)x
)
.

Imposing Dirichlet conditions lead us to the choice of B = 0. Then, one can see that a critical length is
L = π√

f ′(θ)
.

This length is the critical length for which the stationary solution v ≡ θ becomes unstable in the first
eigenfunction. Consider {

∂tu− ∂xxu = f(u) (x, t) ∈ (0, L)× (0, T )

u(0) = u(L) = θ

and linearize around u ≡ θ: {
∂tũ− ∂xxũ = f ′(θ)ũ (x, t) ∈ (0, L)× (0, T ),

ũ(0) = ũ(L) = 0.
(5.20)
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The first eigenvalue of (5.20) is π2

L2−f ′(θ), which becomes unstable when L2 > π2

f ′(θ) . The same reasoning

can be applied for further bifurcations while linking it with the instability.

.

6. Numerical visualization of the barriers for the 1-D problem

.

In this section, we aim to illustrate with figures the results obtained in the previous section. We will
consider this specific 1-D problem

−∂xxu = λu(1− u)(u− θ) x ∈ (0, 1)

u(0) = u(1) = a

0 ≤ u ≤ 1 x ∈ (0, 1).

By doing the change of variables v = u− a, we want to see the change of the energy functional

Jλ(v, a) =

∫ 1

0

1

2
v2
x − λ

{∫ v(x)

0

f(s+ a)ds

}
dx,

depending on the parameter λ and the Dirichlet condition a.

For representing these energy functionals, we consider the energy functional along the first and third
eigenvector of the Dirichlet Laplacian. We will plot J in the finite-dimensional subspace V generated by:

e1(x) := sin(πx), e3(x) := sin(3πx).

The functional J : V → R can be expressed in terms of the coordinates with respect to the eigenfunctions
showed before:

Je1,e3λ (α, β, a) := Jλ(αe1 + βe3, a) =

∫ 1

0

1

2
|α∂xe1(x) + β∂xe3(x)|2 − λ

{∫ αe1+βe3

0

f(s+ a)ds

}
dx,

α and β are the coordinates with respect to the e1 and e3 direction respectively.

Moreover, we observe how other critical points may appear for the Dirichlet condition 0 as increasing
the measure of the domain λ = L2 (see Figure 6.1). We have to emphasize that these plots show the
functional along with two directions, and they are only illustrative.

A Mountain pass is a saddle point of a functional. Observe that, despite the finite dimensional repre-
sentation of the functional, critical points cannot be local maxima. A steady-state can not be a local
maximum since there will always exist a high-frequency perturbation for which the steady-state will be
stable, which is a consequence of the fact that the eigenvalues of the Laplacian tend to infinity, λn → +∞.
In Figure 6.3, one can see two local minima three Mountain Passes.

The intention of Figure 6.2 is to represent how the functional evolves when one changes λ for understand-
ing why the solution of: 

−∂xxu = λf(u) x ∈ (0, 1),

1 > u > θ x ∈ (0, 1),

u = θ,

appears for a smaller value of λ than the solution of:
−∂xxu = λf(u) x ∈ (0, 1),

0 < u < θ x ∈ (0, 1)

u = θ.

(6.1)

In Figure 6.4, it has been performed a minimization with IpOpt [119] of the discretized functional: min
v∈H1

0 (0,1)∩C

∫ 1

0

1

2
v2
x − λ(F (v + a)− F (a))dx

C := {v ∈ L∞(0, 1) s.t. − b1 < v(x) < b2, b1, b2 ≥ 0}
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Figure 6.1. Functional Je1,e3λ (α, β, 0) for different values of λ

Figure 6.2. In these figures the value of Je1,e3λ (α, β, θ = 0.33) is contrasted against
different pairs of α, β for different λ
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Figure 6.3. Energy functional Je1,e3λ (α, β, θ). The values above 3 are not represented
in the picture.

In Figure 6.4, one can observe different solutions with different boundary conditions, and, in green, we
show a section of the nontrivial solution in the whole domain R{

∂xxu = f(u) x ∈ R,

0 < u < 1 x ∈ R.

The solution in the whole R corresponds to the homoclinic orbit around (0, 0) in the phase plane already
presented in the previous section.

Figure 6.4. The blue (red) lines are for nontrivial solutions with Dirichlet condition 0
( respectively θ). In green, a section of the solution whole space R.

.
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7. The construction of paths of steady-states and the control strategy

.

In this section, we will focus on the bistable nonlinearity and its control to the constant steady-state θ
as a paradigm of study for controlling to unstable equilibria using the staircase method.

In the previous sections, we have understood when barriers can appear. Whenever we are in such a
setting, we cannot expect that for all initial data, we can reach steady-states such as 0 or θ.

The steady-states 0 and 1 are linearly stable; this can be seen from the linearization and the fact that
f ′(1) < 0 and f ′(0) < 0. However, since the steady-state 0 or 1 are respectively a subsolution and a
supersolution, we cannot attain these steady-states in finite time.

On the other hand, the constant steady-state θ might be unstable or might not be the unique elliptic
solution with boundary value θ. For these reasons, understanding how we can attain θ without violating
the physical constraints is not obvious. When there is multiplicity of elliptic solutions with boundary
value θ, the trivial strategy of setting the boundary condition equal to θ does not work. In this section,
we will understand how we can reach the steady-state θ, avoiding both the instability and the multiplicity
issues.

The staircase method ensures that if we have a connected path of admissible steady-states in the interior
of the admissibility region, we can control from one steady-state to the other. Here we will devote
some attention on the understanding the construction of admissible paths of steady-states for the one-
dimensional problem. Then, once the paths have been constructed, the control strategy consists of two
phases:

(1) Dynamic phase. For any initial data, find a control function a such that is able to steer system
to an element of the path.

(2) Quasistatic phase Application of the staircase method in the constructed path to reach the target
in large time.

We will split the discussion in two situations, when F (1) > 0 (remind that F (t) =
∫ t

0
f(s)ds), in such

case barriers can exist and one cannot have controllability to θ for all admissible initial data and the
situation in which F (1) = 0. In such case, barriers do not exist and the controllability to θ holds for any
admissible initial data regardless of the stability of θ. The case F (1) < 0 is analogous to the F (1) > 0
by reversing the roles of 0 and 1. We will also analyze a bit further which states are path connected to
the steady-state 0 and the steady-state θ.

7.1. Case F (1) > 0. .

Recall that, we understand by bistable the following: f < 0 on (0, θ) and f > 0 on (θ, 1) assuming
that f ′(0) < 0, f ′(1) < 0, and that f ′(θ) > 0. In this subsection, we assume that the primitive,
F (u) =

∫ u
0
f(s)ds, evaluated at 1 is positive, F (1) > 0. We denote by θ1 the value different from 0 such

that F (θ1) = 0. In the prototypical example of bistable nonlinearity, f(u) = u(1 − u)(u − θ), one has
that F (1) = 0 when θ = 1/2 and F (1) > 0 corresponds to θ < 1/2.

Hereafter we present the strategy in [96] for finding the connected path of steady-states. The authors
make use of the phase portrait to find a path of steady-states for ensuring under certain conditions the
constrained controllability of the one-dimensional problem:

∂tu− ∂xxu = f(u) (x, t) ∈ (0, L)× (0, T ),

u(0, t) = a1(t) t ∈ (0, T ),

u(L, t) = a2(t) t ∈ (0, T ),

0 ≤ u(x, 0) ≤ 1 x ∈ (0, L).

We are looking for a path of steady-states with fixed length that connects to the stationary solution θ{
−∂xxu = f(u) x ∈ (0, L),

u(0) = a1, u(L) = a2,
(7.1)

We emphasize that it might not always be possible to do this for any initial data. Indeed, if it appears a
stationary solution, then, by the parabolic comparison principle, we will not be able to steer any initial
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data to a steady-state with a small maximum. In particular, when this solution appears, its maximum is
above θ therefore it also blocks the controllability to the steady-state θ.

7.1.1. Control strategy in [96]. The authors choose L so that 0 is the only steady-state of the problem. In
this way, setting the control to 0, one approaches asymptotically this steady-state. Afterwards, whenever
we are close to 0 the phase of attachment to the path starts.

Definition 7.1. We call Γ the region in the phase-plane that the homoclinic orbit vE=0(u) = ±
√
−2F (u)

encloses i.e.

Γ :=
{

(u, v) ∈ [0, θ1]× R : −
√
−2F (u) ≤ v ≤

√
−2F (u)

}
.

with θ1 ∈ (0, 1) being F (θ1) = 0.

More specifically one proceeds in the following way:

(1) Stabilize to 0. Set both controls to 0. For L < L∗ the solution will approach the stationary
solution 0 in the L∞ norm.

(2) Attach to a path of steady-states. Whenever the maximum is below θ, say ε, set ε as a
boundary value. v ≡ ε is a parabolic supersolution, for this reason, the solution is going to
converge to a steady-state with boundary value ε which is below ε and above 0.

−∂xxv = f(v) x ∈ (0, L)

v(0) = ε = v(L)

0 < v < ε

Let us refer to these nontrivial steady-states as vε. Wait a long time and apply local controllability
to the steady-state vε at which we were converging. In this process, we can guarantee that we do
not violate the constraints provided that we wait enough time (see [91, Lemma 8.3]).

(3) Construct the path to θ. Now we find the connected path of steady-states that bring us to
the stationary solution θ for the Dirichlet condition being equal to θ. Take the Neumann trace
of v at 0 and consider the following family of boundary conditions for the second-order ODE of
the steady-states: {

vs(0) = (1− s)ε+ sθ

∂xv
s(0) = ∂x(1− s)vε

solve from x = 0 to x = L: 
−∂xxvs = f(v)

vs(0) = (1− s)ε+ sθ

∂xv
s(0) = ∂x(1− s)vε

The set of boundary conditions that we are looking for is{
us1 = vs(0)

us2 = vs(L)

This path ends at θ by uniqueness of the solution of the ODE system:
−∂xxv = f(v)

v(0) = θ

∂

∂x
v(0) = 0

(4) Application of the staircase method with the family generated before.

The set of solutions is connected due to continuous dependence of the initial data.

The last property to verify is that the boundary condition us2 = vs(L) and the solution vs is between 0
and 1. This is a consequence of these two facts:

• There is an invariant region Γ such that (0, 0) ∈ ∂Γ and (θ, 0) ∈ Γ. Moreover, Γ is included in
the admissible set of states and it is star-shaped with respect to (θ, 0). This is a consequence of
the fact that f(s) < 0 in (0, θ) and f(s) > 0 in (0, θ1).

• In step (2), we have reached a stationary curve that lies inside Γ. (Proof in Proposition 7.2)
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• The control strategy in [96] is based on tracing a line between the Neumann and Dirichlet traces
in one extreme of the curve obtained in step 2 and the Dirichlet and Neumann trace of the target
(the point (θ, 0)). This line lies inside the invariant region Γ; hence, by solving the ODE problem
until x = L, we obtain a set of stationary solutions such that all of them lie in Γ and hence are
admissible.

Proposition 7.2 (Invariant region Γ). Γ is an invariant region.

Proof. Γ is enclosed by a homoclinic curve; by the uniqueness of the ODE, the result follows. �

Remark 7.3. Note that the convexity assumption on Γ is not needed. Indeed we need to require that
there can exist a continuous curve l : [0, 1]→ R2 such that l(s) ∈ Γ for all s ∈ [0, 1] connecting the point
l(0) = (v(0), ∂xv(0)) to l(1) = (θ, 0).

Figure 7.1 is an illustration of the procedure described before.

Figure 7.1. Strategy of [96] in the phase portrait of system (5.9). In black the repre-
sentation of the steady-states of (7.1) that are part of a connected path that connects to
the stationary solution θ. In red the values of the control that can be taken. L = 8 > Lθ,
θ = 0.33. In the right, the stationary path plotted in the space domain, the red curve is
the curve of maximum value in the invariant region Γ, in green the initial condition.

7.1.2. Connected symmetric path. A connected path of steady-states can be constructed following another
strategy than the one used in [96] that provides controls that take the same value on both sides. The
improvement is that we only require a function instead of two and enables us to control the problem with
the control on one side and Neumann boundary conditions on the other boundary and the construction
of the path is independent on the geometry of Γ. Moreover, we will see that looking at symmetric paths
leads to an easier extension to several dimensions using radial steady-states.

The idea follows from the phase plane’s symmetry (and the symmetry of radial solutions of the Poisson
equation).

• Instead of considering the boundary conditions at one extreme x = 0 as done in [96]:{
vs(0) = (1− s)ε+ sθ

∂xv
s(0) = ∂x(1− s)vε,

we consider the condition at the middle point x = L/2. By the radial symmetry, we know is a
critical point of the solution of ODE, and hence it lies in the horizontal axis of the phase portrait.
We now solve the ODE from x = L/2 to x = L (or backward to x = 0) for obtaining the necessary
conditions in the boundary. The set of steady-states is then

vs(L) = vs(0) = as s ∈ [0, 1]

where as is the projection in the first component of the solution at x = L of the Cauchy problem.

In other words, let Φ

(
x;

(
v1

v2

)
, L/2

)
be the solution at x of d

dx

(
v
vx

)
=

(
vx
−f(v)

)
with initial
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Figure 7.2. The even strategy is represented in the phase portrait of system (5.9). In
black, the representation of the steady-states of (7.1) that are part of a connected path
that connects to the stationary solution θ. In red, the values of the control that can be
taken. Red points represent the value that has to be taken in the other extreme for the
Dirichlet control. L = 1, θ = 0.33. In the right, the stationary path plotted in the space
domain, the red curve is the curve of the maximum value in the invariant region Γ, in
green the initial condition.

data at x = L/2 being

(
v1

v2

)
and consider:

as := P1Φ

(
L;

(
(1− s)vε(L/2) + sθ

0

)
, L/2

)
,

where P1 is the projection on the first component, and vε is the even stationary solution in which
we arrived after step 2 in the procedure above.

• as is continuous with respect to s due to continuous dependence of the initial data. There is
a continuously connected set of solutions to the boundary value problem associated with as by
construction.

• Notice that the trajectories lie in Γ since the path (vε(L/2)(1− s) + sθ) is in the horizontal axis
inside the invariant region Γ.

Remark 7.4. Notice that this procedure does not depend on L; the only requirement is to be able to
reach an even stationary state inside the invariant region Γ. This means that for every L > 0 there exists
a path connecting 0 with θ.

Figures 7.2 7.4 7.6 are the representations of the proof for different values of L, for L < L∗θ, for L∗θ <
L < L∗ and L∗ < L. Figures 7.3 7.5 and 7.7 represent the value at the boundary of the continuous path
of steady-states for different values of L. Finally Figures 7.5 and 7.7 are bifurcation diagrams depending
on a, i.e. as we rise the Dirichlet condition bifurcations or unifications of solutions might appear. Indeed
the connected path uses this feature to reach θ from 0.

The key question is if we are able to reach Γ for certain initial conditions of the reaction-diffusion system
even though the barrier has already appeared.

Do they exist connected paths of steady-states with even controls that connect certain steady-states to
Γ ? For which initial conditions of the reaction-diffusion system, can we reach one of these connected
components?

7.2. A non returning path. .

The following result basically is giving an insight on which are the admissible steady-states from which
a connected path of steady-states can be constructed towards θ and 0.
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Figure 7.3. Connected path of steady-states. The value in the boundary in the vertical
axis, in the horizontal axis the parameter s ∈ [0, 1] in the vertical axis the value of the
boundary

Figure 7.4. The even strategy is represented in the phase portrait of system (5.9). In
black, the representation of the steady-states of (7.1) that are part of a connected path
that connects to the stationary solution θ. In red, the values of the control that can be
taken. Red points represent the value that has to be taken in the other extreme for the
Dirichlet control. L = 8, θ = 0.33. In the right, the stationary path plotted in the space
domain, the red curve is the curve of the maximum value in the invariant region Γ, in
green the initial condition.
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Figure 7.5. (Left) Connected path of steady-states. The value in the boundary in
the vertical axis, in the horizontal axis the parameter s ∈ [0, 1] in the vertical axis
the value of the boundary. (Center) The minimum value of ua(x), minx∈[0,L] ua(x) is
represented against a, for the connected path of steady-states. (Right) The maximum
value maxx∈[0,L] u(x) against a
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Figure 7.6. The even strategy is represented in the phase portrait of system (5.9). In
black, the representation of the steady-states of (7.1) that are part of a connected path
that connects to the stationary solution θ. In red, the values of the control that can be
taken. Red points represent the value that has to be taken in the other extreme for the
Dirichlet control. L = 20, θ = 0.33. In the right, the stationary path plotted in the
space domain, the red curve is the curve of the maximum value in the invariant region
Γ, in green the initial condition.
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Figure 7.7. (Left) Connected path of steady-states. The value in the boundary in
the vertical axis, in the horizontal axis the parameter s ∈ [0, 1] in the vertical axis
the value of the boundary (Center) The minimum value of ua(x), minx∈[0,L] ua(x) is
represented against a, for the connected path of steady-states. (Right) The maximum
value maxx∈[0,L] u(x) against a.

Proposition 7.5. Let w be an admissible steady-state fulfilling any admissible boundary conditions. Let
uL∗ be the minimum solution with respect to the L∞ norm of the problem:

−∂xxuL∗ = f(uL∗) x ∈ (0, L),

0 < uL∗ < 1 x ∈ (0, L),

uL∗(0) = uL∗(L
∗) = 0

• If maxw(x) ≤ maxx∈[0,L] uL∗ and
•

1

2
wx(0)2 + F (w(0)) ≤ F

(
max
x∈[0,L]

uL∗

)
Then there is a connected path of steady-states from w to θ and from w to 0. Moreover, if w is symmetric,
the second condition is not needed, and there exists a path that maintain even boundary conditions.

Proof. (Sketch) Let Λ denote the closed region between uL∗ and the vertical axis in the phase plane.
Given any point x in Λ fulfills conditions of Proposition 7.5.

The idea of the proof is to generate first a path towards a symmetric steady-state w∗(x). This can be done
using the trajectory from where the initial steady-state belongs to in the phase portrait (note that the first
integral 1

2w
2
x+F (w) is preserved along the trajectory). Then since 1

2wx(0)2+F (w(0)) ≤ F (maxx∈[0,L] uL∗)
we know that F (maxx∈[0,L] w

∗(x)) ≤ F (maxx∈[0,L] uL∗). Then we use the same argument as in the
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previous section (taking the Dirichlet and Neumann conditions in L/2) to build a connected path of
steady-states. The admissibility of them follows by the fact that uL∗ is the minimum solution of the
elliptic problem and that the boundary of Γ is a homoclinic orbit (hence it is associated with a solution
to the problem in the whole real line). Indeed, any symmetric admissible trajectory in the phase plane
in Int(Λ− Γ) will not attain the axis u = 0; otherwise, uL∗ will not be the minimum solution. �

The Staircase method requires a path that such that its boundary is not saturating the constraints. Here
we show that this assumption is necessary by finding a path violating such condition and for which there
is no controllability. Indeed we prove the following propositions.

Proposition 7.6. When L > L∗ there is an admissible connected path of steady-states continuous with
respect to the L∞ topology that connects the stationary solution u = 0 with the minimum solution of the
following problem: 

−∂xxu = f(u) x ∈ (0, L)

u(0) = u(L) = 0

1 > u > 0 x ∈ (0, L)

Proof. Consider the following ODE system depending on the parameter s ∈ [0, 1]
yx = v

yxx = vx = −f(y)

y(L/2) = s

yx(L/2) = 0

(7.2)

As before, we will use this system to construct a path of stationary steady-states. We start for s = 0.
By the uniqueness of the ODE, we have that y(x) = 0 is the only solution. Then, consider the family
of solutions of (7.2) depending upon the parameter s that are defined on x ∈ [0, L] (solving the ODE
forward in time and backward). Let s∗ ∈ [0, 1] be such:

s∗ = min
s∈[0,1]

{‖ys‖L∞([0,L]) such that ys is a solution of (7.2) and ys(L) = ys(0) = 0 and ‖ys‖L∞([0,L]) ≤ 1}

This s∗ ∈ [0, 1] exists because L > L∗. The path of steady-states is:

γ : [0, s∗] −→ L∞([0, L])

s −→ ys

By construction, this path is admissible. Moreover, by continuous dependence on the initial data, we
have that the path is continuous: Let

y′ = F (y)

y(0) = y0

and let

z′ = F (z)

z(0) = z0

we have that:

‖y(x)− z(x)‖∞ =

∥∥∥∥y0 − z0 +

∫ x

0

F (y(r))− F (z(r))dr

∥∥∥∥
∞

≤ ‖y0 − z0‖+

∫ x

0

‖F (y(r))− F (z(r))‖∞dr

≤ ‖y0 − z0‖+

∫ x

0

sup
x∈R2:‖x‖≤max{‖y‖L∞ ,‖z‖L∞}

‖∇F‖∞‖y(r)− z(r)‖dr

≤ C(L, ‖y‖∞, ‖z‖∞)‖y0 − z0‖
�

Proposition 7.7. It does not exist any admissible control function such that brings u∗ to 0.
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Figure 7.8. Connected path of steady-states connecting 0 and uL

Proof. Consider the stationary solution ys
∗
:{
−∂xxys

∗
= f(ys

∗
)

ys
∗
(0) = ys

∗
(L) = 0

and consider the parabolic problem under discussion:
∂ty − ∂xxy = f(y)

y(0) = y(L) = a(t)

y(x, 0) = ys
∗
(x)

with a ∈ L∞ ((0, T ); [0, 1]). By the comparison principle 3.3 we have that

y(t) ≥ ys∗ ∀a(t) ∈ L∞ ((0, T ); [0, 1])

�

Remark 7.8. As it was anticipated, we note that the assumption (4.12) of Theorem 4.2 is needed.

Remark 7.9. There is another procedure to follow a path of steady-states that does not rely on Theorem
4.2. Indeed, in [20], the authors construct a feedback law that stabilizes the quasi-static deformation
while moving from a path of steady-states. This feedback law, in our case, can violate the constraints.
However, it can be a useful alternative to follow a path of steady-states that needs to be mentioned.

Remark 7.10. In this section, we showed that we can build a path of admissible steady-states outside Γ
that connect to θ and 0.

7.3. Case F (1) = 0, even and not even controls. .

In the case in which F (1) = 0 (for the prototypical example corresponds to θ = 1/2), we have a positive
result for the admissible paths of steady-states for any length L. For any even initial data of the reaction-
diffusion system, we can bring it to a connected path of steady-states that connect 0, θ, and 1. The last
result follows from the fact that for F (1) = 0, the traveling wave that connects 0 to 1 is a stationary
solution.

Hereafter we point out the main relevant factors for the F (1) = 0 case.

(1) The region Γ is defined by the two standing traveling waves that connect the points (0, 0) and
(1, 0).

(2) By uniqueness of the ODE and the fact that the traveling waves connect the points (0, 0) and
(1, 0), there cannot exist an admissible nontrivial solution with boundary values 0 or 1.

(3) Any symmetric admissible steady-state is inside Γ.

Remark 7.11 (A simpler dynamic strategy). The path of admissible steady-states that connect any even
solution to 1 or 0 is not needed. Indeed we can directly use a dynamic strategy for the parabolic problem.
Note that in this case, by Matano, we already have the convergence to 0 and to 1 in infinite time since
they are the only stationary solutions that take boundary values 0 and 1, respectively. From the phase
portrait in the F (1) = 0 case, it is clear that the only solutions that take the same values in both
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Figure 7.9. The even strategy is represented in the phase portrait of system (5.9). In
black, the representation of the steady-states of (7.1) that are part of a connected path
that connects to the stationary solution θ. In red, the values of the control that can be
taken. Red points represent the value that has to be taken in the other extreme for the
Dirichlet control. L = 20, θ = 0.5. In the right, the stationary path plotted in the space
domain, the red curve is the curve of the maximum value in the invariant region Γ, in
green the initial condition.
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Figure 7.10. Connected path of steady-states, value in the boundary, in the horizontal
axis the parameter s ∈ [0, 1] in the vertical axis the value of the boundary In the left,
the minimum value of ua(x), minx∈[0,L] ua(x) is represented against a, for the connected
path of steady-states. At the right, the maximum value maxx∈[0,L] u(x) against a

boundaries should be inside the invariant region defined by the stationary traveling waves or separatrix
that connect 0 to 1 and vice versa.

Proposition 7.12. Let (0, L) ⊂ R, and consider that F (1) = 0. Then there exists a connected path of
steady-states us(x) such that connects 0 and 1.

Proof. For the case in which F (1) = 0 we know that the traveling wave v is a stationary solution for the
problem in R: 

−∂xxv = f(v) x ∈ R

v(+∞) = 0, v(−∞) = 1

v(0) = 1/2

(the heteroclinic orbits in the phase portrait connecting 0 and 1). The restriction of v to [0, L] is a
stationary solution. Note that v(x+ c) is also a stationary solution for any c ∈ R. Choose a direction in
c ∈ R and by considering the restriction of v(x+cs) on [0, L] we obtain a connected path of steady-states.

�

The following Figures 7.9 7.11 and 7.13 are illustrations of the paths connecting a steady-state to the
stationary solution θ to 1 and to 0. Figures 7.10 7.12 and 7.14 show its respective values at the boundary
of the continuous paths of steady-states while Figures 7.10 7.12 and 7.14 represent their bifurcation
diagrams.
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Figure 7.11. The even strategy is represented in the phase portrait of system (5.9). In
black, the representation of the steady-states of (7.1) that are part of a connected path
that connects to the stationary solution 0. In red, the values of the control that can be
taken. Red points represent the value that has to be taken in the other extreme for the
Dirichlet control. L = 20, θ = 0.5. In the right, the stationary path plotted in the space
domain, the red curve is the curve of the maximum value in the invariant region Γ, in
green the initial condition.
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Figure 7.12. (Left) Connected path of steady-states. The value in the boundary in
the vertical axis, in the horizontal axis the parameter s ∈ [0, 1] in the vertical axis
the value of the boundary (Center) The minimum value of ua(x), minx∈[0,L] ua(x) is
represented against a, for the connected path of steady-states. (Right) The maximum
value maxx∈[0,L] u(x) against a.

Figure 7.13. Even strategy represented in the phase portrait of system (5.9). In black
the representation of the steady-states of (7.1) that are part of a connected path that
connects to the stationary solution θ. In red the values of the control that can be taken.
Red points represent the value that has to be taken in the other extreme for the Dirichlet
control. L = 20, θ = 0.5. In the right, the stationary path plotted in the space domain,
the red curve is the curve of maximum value in the invariant region Γ, in green the initial
condition.
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Figure 7.14. Connected path of steady-states, value in the boundary, in the horizontal
axis the parameter s ∈ [0, 1] in the vertical axis the value of the boundary. In the left,
the minimum value of ua(x), minx∈[0,L] ua(x) is represented against a, for the connected
path of steady-states. At the right, the maximum value maxx∈[0,L] u(x) against a

.
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8. Summary of the control results

.

In these lecture notes, we have seen how nontrivial elliptic solutions can arise and their control conse-
quences when state-constraints are present. Moreover, we have seen how to construct paths of steady-
states for ensuring controllability to unstable steady-states.

8.1. Bistable Nonlinearities. .

The Figures 8.1 and 8.1 are a visual summary of the study. The direction of the traveling waves between
constant stationary solutions is shown together with connected paths of steady-states between those
constant solutions in a domain [0, L]. In the case of F (1) = 0, the traveling wave is stationary. Therefore,
as discussed previously, its restrictions on domains of length L give a connected path of steady-states
between 0 and 1 naturally. However, note that this path does not pass through the stationary solution θ.

1

θ

0

TW

TW

TW

1

θ

0

TW

TW

TW

Figure 8.1. (Left) Connectivity map for F (1) > 0. In red, it is shown an admissible
continuous path of steady-states (for any L) connecting stationary solutions. In green, it
is an admissible and continuous path of steady-states connecting two stationary solutions,
but in this case, its existence depends on L. In black, the existence of traveling waves
for the Cauchy problem is shown. The traveling wave from 0 to 1 is unique, while
the traveling waves from θ to 1 or to 0 are infinitely many. (Right) Connectivity map
for F (1) = 0. In red, it is shown an admissible continuous path of steady-states (for
any L) connecting stationary solutions. The traveling wave from 0 to 1 is unique and
stationary, giving a continuous path of admissible steady-states connecting 0 and 1. In
black, the existence of non-stationary traveling waves for the Cauchy problem is shown.
The traveling waves from θ to 1 or to 0 are infinitely many.

Consider the following reaction-diffusion equation:
∂tu− ∂xxu = f(u) (x, t) ∈ (0, L)× (0, T ),

u(0) = a1(t), u(L) = a2(t) t ∈ (0, T ),

u(x, 0) = u0(x) ∈ [0, 1],

(8.1)

where f is a C2 bistable function satisfying f(0) = f(1) = f(θ) = 0 for a certain θ ∈ (0, 1). Let F be

defined as F (t) =
∫ t

0
f(s)ds and a1, a2 ∈ L∞((0, T ); [0, 1]).

Condition 8.1. Let w be any stationary solution of (8.1) satisfying:
1

2
wx(0)2 + F (w(0)) ≤ F

(
max
x∈[0,L]

uL∗

)
,

maxw(x) < max
x∈[0,L]

uL∗ ,

where uL∗ is the minimum solution with respect to the infinity norm to the problem:
−∂xxuL∗ = f (uL∗) x ∈ (0, L),

uL∗(0) = uL∗(L
∗) = 0,

1 > uL∗ > 0 x ∈ (0, L),

(8.2)

where L∗ ∈ R+ is the minimum value for which the problem (8.2) has a solution.
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In the case that the solution of (8.2) does not exist, it is assumed that, given a steady-state, the condition
is always fulfilled.

Note that Condition 8.1, in particular, is asking to have the maximum below the maximum of the
minimum nontrivial solution. With the energy requirement, one can construct a parabolic supersolution
with a steady-state that is below the nontrivial solution and then either approach to 0 or use the staircase
method with the path constructed in Subsection 7.2.

Theorem 8.2. For f bistable.

If F (1) > 0.

• The solution of the system (8.1) can be driven asymptotically to 0 using the controls a1, a2 = 0
– for any initial data u0 iff L < L∗.
– for any L > 0 if u0 is below some steady-state that fulfills Condition 8.1.

• The solution of the system (8.1) can be driven asymptotically to 1 using the controls a1, a2 = 1
for any initial data u0 and for any L.
• There exists T ∗u0,L

> 0 such that for every T ≥ T ∗u0,L
the solution of the system (8.1) can be

controlled to θ iff u0 asymptotically goes to 0 when a ≡ 0.

Furthermore one has the following estimate for L∗:

π√
maxs∈[0,1] f ′(s)

≤ L∗ ≤ 2
√

2

√
F (1)− F (θ)

F (1)2
.

If F (1) = 0 then

• the solution of the system (8.1) can be driven asymptotically to 0 (or 1) using the controls a1, a2 =
0 (a1, a2 = 1) for any L > 0 and any admissible u0.
• there exists T ∗u0,L

> 0 such that for every T ≥ T ∗u0,L
the solution of the system (8.1) can be

controlled to θ for every u0 and every L > 0 and any admissible u0.

Remark 8.3. As noted in [104], 0 and θ have the same ω-limit when the control is set to 0 (a = 0).
Moreover, one can only build admissible steady-state paths between steady-states whose ω limit for
the control a = 0 are not in comparison. The proof follows by contradiction. Assume that there is an
admissible path of steady-states between two admissible steady-states whose ω-limits for the a = 0 control
are in comparison. Since, by hypothesis, a path exists, there exists a positive control function that, with
finite time, is able to bring the first steady-state to the second. However, there also exists another control
function that can bring the second to the first in finite time by means of a positive control. This enters
in contradiction with the comparison principle.

Remark 8.4. When one takes a steady-state that fulfills Condition 8.1 as an initial condition with control
a = 0, the solution asymptotically goes to 0 (due to Remark 8.3 and the fact that the steady states
fulfilling condition 8.1 are path-connected with the steady-state θ). Therefore, by comparison, all initial
conditions below a steady-state fulfilling Condition 8.1 will also asymptotically go to 0 with a a = 0
control.

Remark 8.5. Moreover, if the initial data is symmetric with respect L/2 taking the same value in u0(0) =
u0(L) the path can be constructed in a symmetric way a1(t) = a2(t) = a(t).

Remark 8.6. The construction of a symmetric path allows to control the bistable equation with one
boundary control in one extreme and Neumann condition to the other extreme. To generate a path for
several dimensions is done in [104]. However, how to proceed if we act only in a part of the boundary is
an open question (see Section 11).

Remark 8.7. Note that the continuous path of steady-states between 0 and 1 can exist if we allow ourselves
to break the constraints (see Figure 8.2).

In general, an important concern is if the ODE dynamics is going to blow up for a finite L. This would
stop any continuous path to exist regardless of the constraints.
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Figure 8.2. Non admissible continuous path from 0 to 1

8.2. Monostable Nonlinearities. .

Previously we gave precise thresholds and conditions for when the nontrivial positive solutions of the
semilinear elliptic problem appear, then for the monostable nonlinearity one can write:

Theorem 8.8. For f monostable.

Let [0, L] be a domain, the system (8.1) can be asymptotically driven to:

• 1 for any initial condition and any measure of the domain.
• 0 for any initial condition if L2 < λ∗.

where:
λ1((0, 1))

maxs∈[0,1] f ′(s)
≤ λ∗ ≤ λ < +∞

where λ1((0, 1)) is the first eigenvalue of the Dirichlet Laplacian in [0, 1].

Remark 8.9. Note that for λ > λ∗ one can still have that 0 is stable.

Following the computations in 1-D for the bistable case, it can be shown that for the monostable case in
dimension 1 one has λ = 8

F (1) .
.

9. Numerical Simulations

.

This section is devoted to seeing numerical implementations of optimal control strategies. We want to
observe the results showed above, together with some qualitative experiments. The numerical implemen-
tations performed are optimization problems of the form:

min
a∈A

J(ua;u0) (9.1)

for different A and where ua solves:
∂tu− ∂xxu = u(1− u)(u− 1/3) (x, t) ∈ (0, L)× (0, T ),

u(0, t) = a1(t), u(L, t) = a2(t), t ∈ (0, T ),

u(x, 0) = u0(x)

We have used IpOpt ( [119]) to do the optimization procedures. The order will be the following:

(1) The control strategy for Lθ < L < L∗. Here we take:

J = ‖u(T ; a)− θ‖2,

A =
{
a1, a2 ∈ L∞([0, T ]; [0, 1])

}
,
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and we observe in Figure 9.1 how the control takes values for an open time interval below θ = 1/3.
This is natural since for L > Lθ there is a nontrivial solution above θ that has to be overpassed.
Furthermore, it can be observed that the final state is close to θ as the theory supports, Figure
9.1.

(2) The lack of controllability towards 0 for L > L∗ for u0 = 1 due to the emergence of a barrier,
Figure 9.2. The functional employed in the figure is:

J = ‖u(T ; a)‖2,

A =
{
a1, a2 ∈ L∞([0, T ]; [0, 1])

}
.

However, one can reach θ when starting from u0 = 0. In Figure 9.3, the functional:

J = ‖u(T ; a)− θ‖2,

A =
{
a1, a2 ∈ L∞([0, T ]; [0, 1])

}
,

is being minimized.
(3) The existence of a minimal controllability time and the control in minimal time. First, we observe

the lack of controllability in a short time horizon (Figure 9.4) for

J = ‖u(T ; a)− θ‖2,

A =
{
a1, a2 ∈ L∞([0, T ]; [0, 1])

}
,

In Figure 9.5 the functional minimized is the time horizon

J = T,

A =
{
a1, a2 ∈ L∞([0, T ]; [0, 1]) : the trajectory fulfills θ − ε ≤ ua(T ;u0) ≤ θ + ε

}
.

Numerically this can be achieved by first generating an initial guess minimizing the L2 norm of
the difference of the final datum with the target. Then, minimizing δt, the discretization time
step. The control showed in Figure 9.5 points out that the control strategy associated with the
control in minimal time is a bang-bang function.

(4) A quasistatic control that approximately follows the path of steady-states constructed above. We
set T large, and we minimize

J =

∫ T

0

‖at‖2dt,

A =
{
a1, a2 ∈ L∞([0, T ]; [0, 1]) : the trajectory fulfillsθ − ε ≤ ua(T ;u0) ≤ θ + ε

}
.

Moreover, in Figure 9.7, one can see snapshots of the parabolic controlled state being close in the
phase plane to the elliptic ones.

Figure 9.1. Controlled state for L = 8, T = 30 and initial datum u0(x) = 1.
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Figure 9.2. Controlled state for L = 20, T = 30 and initial datum u0(x) = 1.

Figure 9.3. Controlled state for L = 20, T = 60 and initial datum u0(x) = 0.

Figure 9.4. Controlled state for L = 20, T = 15 and initial datum u0(x) = 0.

Figure 9.5. Controlled state in minimal time for L = 20 and initial datum u0(x) = 1.
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Figure 9.6. Controlled state for L = 20, T = 400 and initial datum u0(x) = 0.
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Figure 9.7. (Left) Optimal constrained control associated with Figure 9.6. (Right) in
black steady-states in the phase plane, in red snapshots of the parabolic state in the
phase plane

.

10. Extensions and other problems

.

10.1. Combining Allee Control and Boundary Control. .

10.1.1. Preliminaries. The goal of this subsection is to present the control strategy in [112] schematically.
In the reference above, the authors present the modeling of the evolution of a population of mosquitoes
when sterile mosquitoes are released. This way of acting to the system leads to an interaction to the
nonlinearity, more precisely to the Allee parameter θ:

∂tv − ∂xxv = v(1− v)(v − θ(t)) (x, t) ∈ R× R+,

0 ≤ θ(t) ≤ 1,

0 ≤ v(x, 0) ≤ 1.

The goal of the authors is to control approximately to a traveling wave in large time. They assume that
the limits limx→±∞ v(x, 0) = l± exist and they are different. The strategy of the proof relies on the
following arguments:

• Fix θ ∈ (min(l−, l+),max(l−, l+)) and let the system converge exponentially to a traveling wave
profile.
• Using that for any θ, the profile of the traveling wave for the cubic nonlinearity is the same,

one can move the control θ to move the center of the traveling wave. Note that if θ < 1/2, the
traveling wave moves in the direction such that will make 1 invade and if θ > 1/2 the opposite.
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10.1.2. Combined Strategy. Combining the two interactions more targets can be achieved. In particular,
barriers can be broken by changing the value of θ. Furthermore, one can easily obtain controllability in
large time, to any steady-state inside Γ for any θ and to sections of traveling waves. We consider the
following problem: 

∂tv − ∂xxv = v(1− v)(v − θ(t)) (x, t) ∈ (0, L)× (0, T ),

v(0, t) = a1(t) v(L, t) = a2(t) t ∈ (0, T ),

0 ≤ v(x, 0) ≤ 1.

The control strategy is:

• Take θ = 1/2, a1 = a2 = 0 for long time. Matano’s Theorem ensures the convergence to 0,
remind that, for this value of θ, there is no barrier for reaching 0.

• Change θ to the desired value between (0, 1/2) .
• set a1 = a2 = 0 and apply the strategy described in the previous sections with the staircase

method.

Furthermore for θ = 1/2, the traveling waves are stationary and they are seen in the phase portrait
connecting (0, 0) and (1, 0). We can have exact controllability to the traveling waves. Using the staircase
method, we can approach a traveling wave arc and reach it in finite time for θ = 1/2. Then changing θ,
we can move the traveling wave in the direction that we desire.

10.2. Multi dimensional case. .

The results and techniques explained before can be extended in several dimensions [104]. Let us consider
a bounded domain Ω ⊂ Rd with C2 boundary of |Ω| = 1 where the following dynamics is taking place:

∂tu−∆u = λf(u) (x, t) ∈ Ω× (0, T ),

u(x, t) = a(x, t) (x, t) ∈ ∂Ω× (0, T ),

0 ≤ u(x, t) ≤ 1 (x, t) ∈ Ω× [0, T ],

(10.1)

where λ > 0.

Note that in this context, the bounds derived in Section 5 also work by adapting the proofs properly.

One should note that the first Dirichlet eigenvalue depends on the shape of the domain. This feature
has more relevance than the measure of the domain since we can consider a set with very large measure
but with a very big first eigenvalue. Proof of Theorem 5.14 is adapted by finding the biggest ball inside
the domain and making the computations for finding a subsolution. While the proof of Theorem 5.13
holds the same, and the result will depend on the first eigenvalue that, in turn, depend on the domain
geometry. Therefore, the existence of barriers is a general feature of these problems see Figure 10.1.

Figure 10.1. Simulation of the semilinear heat equation with nonlinearity f(s) = s(1−
s)(1− θ) with boundary value a(x, t) = 0 finding a barrier.
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The proof of the convergence to the constant steady-state 1 in case that F (1) > 0 follows by the trav-
eling wave solutions as in the one-dimensional case Proposition 5.24. Note that by extending the one-
dimensional traveling wave to be constant in all other d−1 remaining dimensions, one obtains a traveling
wave profile for the multi-dimensional case.

The construction of the continuous path of steady-states relies now on extending the domain to a bigger
ball, Figure 10.2,

Ω

BR

Figure 10.2. Ball containing the original domain.

and write the problem (10.2) 
−∆u = λf(u) x ∈ Br ⊂ Rd,

u(0) = a,

Du(0) = 0,

(10.2)

as an ODE problem:


urr(r) +

d− 1

r
ur(r) = −f(u(r)) r ∈ [0, RB,λ),

u(0) = a,

ur(0) = 0.

(10.3)

where RB,λ is the radius of the ball after rescaling for absorbing λ. The solutions of a semilinear elliptic
equation in a ball are radially symmetric [29, Ch. 9, pp.555]. This is why the transformation is allowed.

Furthermore, the local well-posedness of the ODE (10.3) comes from Banach contraction and Grönwall
inequality. The key points are the following:

(1) Radial solutions of the problem (10.3) dissipate:
Assume that F (1) ≥ 0 and consider the energy

E(u, v) =
1

2
v2 + F (u)

where F (u) =
∫ u

0
f(s)ds. Now we define the region:

M := {(u, v) ∈ R2 such that E(u, v) ≤ 0}
Note that the region defined by

Γ := {(u, v) ∈ [0, θ1]× R such that |v| ≤
√
−2F (u)}

satisfies Γ ⊂M . In fact, this region is the same than in the one dimensional case.
Now one considers an initial datum of the form (u0, 0) ∈ Γ, then the solution of (10.3) with

initial datum (u0, 0) satisfies:

d

dr
E(u, v) = vvr + f(u)v = −d− 1

r
v2 < 0.

As a consequence (u, v) ∈ Γ for all r > 0 and the path is admissible and globally defined.
In Figure 10.3 one can see the construction of the construction of the path.
Then, restricting to our original domain Ω, one obtains the desired path.
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(2) Another important feature is how to control to the path. For this, one realizes that the minimum
solution to 

−∆u = λf(u) x ∈ Ω,

0 < u < 1 x ∈ Ω,

u = a(x) x ∈ ∂Ω,

is radial with respect to some ball, and therefore it belongs to a path of steady-states. The
argument follows by contradiction using a comparison argument [104].

Figure 10.3. In blue the invariant region in the phase space, in black the radial tra-
jectories forming the continuous path of steady-states where the red stars indicate the
condition in the boundary. θ = 1/3, R = 30 and d = 2.

10.3. Spatially Heterogeneous case. .

In this section, we sketch a more general model studied in [82]:
∂tu−∆u+

〈
2∇N
N

,∇u
〉

= f(u) x ∈ Ω× (0, T ),

u(x, t) = a(x, t) x ∈ ∂Ω× (0, T ),

0 ≤ u(x, t) ≤ 1,

where N : Rd → (0,+∞) be a C∞ function.

10.3.1. Modeling. Note that in the modelling in Section 2, one noted that we have assumed that the
whole population N was behaving as a homogeneous heat equation. If we consider, instead, that N
follows a nonhomogeneous semilinear heat equation:

∂tN −∆N = N(κ(x)−N) (x, t) ∈ Ω× (0, T ),

∂N

∂ν
= 0 (x, t) ∈ ∂Ω× (0, T ),

N(x, 0) = N0(x) ≥ 0,

(10.4)

where κ is a C∞ function, then, it is known that there is only one positive steady-state of (10.4) []. Since
the set of set of positive steady states is a singleton and the steady state 0 is unstable, and due to the
gradient structure of the semilinear heat equation the solution of (10.4) converges to (10.5) [16],

−∆N = N(κ(x)−N) x ∈ Ω,

∂N

∂ν
= 0 x ∈ ∂Ω.

(10.5)
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Taking N from (10.5) and employing the same approximation done in Section 2, one arrives at the
following heterogeneous bistable equation

∂tu−∆u+

〈
2∇N
N

,∇u
〉

= f(u) (x, t) ∈ Ω× (0, T ),

u(x, t) = a(x, t) (x, t) ∈ ∂Ω× (0, T ),

0 ≤ u(x, t) ≤ 1 (x, t) ∈ Ω× [0, T ],

where u is a proportion.

The effect of the mother population N on the state depends on its shape. Figure 10.4 shows the effect
of the drift produced by N . In the right hand side of Figure 10.4, one can see that the drift pushes from
the boundary to the interior. For this reason, one intuitively expects that the controllability is easier in
such setting. In the left hand side of Figure 10.4, on can see that the effect of the boundary control is
diminished by the drift. This will lead to the existence of new nontrivial solutions as it is shown in the
subsequent subsections.

The new barriers block controllability from 0 to θ in Figure 10.5 (left) one can see how the minimal
controllability time blows up when varying a parameter.
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Figure 10.4. In blue the curve N(x), in orange the quotient −Nx(x)
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Figure 10.5. Minimal controllability time from 0 to θ = 1
3 versus ε = 1
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e
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σ .

10.3.2. Small drifts. In [82], a method concerning perturbations of the homogeneous path is developed
to guarantee the controllability for small drifts. Take finite sequence on the path of steady-states for the
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homogeneous equation and consider small drift equation:
∂tu−∆u+ ε 〈∇p(x),∇u〉 = f(u) x ∈ Ω× (0, T ),

u(x, t) = a(x, t) x ∈ ∂Ω× (0, T ),

0 ≤ u(x, t) ≤ 1 (x, t) ∈ Ω× [0, T ].

After making domain perturbations, the implicit function theorem can be applied to all the elements
selected from the homogeneous path to obtain a sequence of steady-states for (10.3.2) in a way that
remain close enough to apply the staircase method (see Figure 10.6), see [82, Theorem 2] for details. It
has to be remarked that we do not know if a continuous path for the perturbed problem exists, the only
requirement to apply the staircase method is to have a sequence whose elements are successively close,
see Figure 10.6 for an intuitive representation.

b

b b b

b

b

γ(0)

γ(s1)

γ(s2)
γ(s3)

γ(s4)

γ(1)

b

b

b

b

Figure 10.6. The blue dotted line represents the continuous path of steady-states for
the homogeneous equation. In red, the perturbed steady-states, linked to the unper-
turbed steady-states (black) that belong to a continuous path for the homogeneous equa-
tion.

This perturbative argument is an improvement of the Staircase method [91].

The method explained depends on the smallness of ε, however, Figure 10.5 Figure 10.5 points that we
cannot expect this method to work for big ε. We shall see in the subsection below the apearence of such
obstructions.

10.3.3. Big drifts and new barriers. In the case of radial drifts in [82], one can conclude that if the
following differential inequality is fulfilled, then one also has an invariant region in the phase portrait where
the stationary states 0 and θ belong to. In case of multi-D one has that the energy E(u, v) = 1

2v
2 +F (u)

follows:
d

dr
E = −N

′

N
v2 − d− 1

r
v2

If
d

dr
N(r) ≥ −d− 1

r
N(r),

then the energy decreases and the set:
E(u, v) ≤ 0

is positively invariant (see [82, Theorem 3]).

However, in the opposite case, new barriers can appear in the one-dimensional case. Moreover, a scheme
of the proof of the upper barrier, Figure 10.7, is also shown.

Let us consider the a Gaussian drift N(x) = e−x
2/σ. From the modeling perspective, this amounts to

say that there is a big concentration of individuals around x = 0. Consider, in addition, the following
boundary value problem: {

−∂xxu+ 4
(
x
σ

)
ux = f(u) x ∈ (−L,L),

u(−L) = u(L) = a ∈ {0, 1}.

Theorem 10.1 (Theorem 4 [82]). Let F (1) > 0. For every σ > 0, there exists a solution of (10.3.3)
satisfying the state constraints 0 ≤ u ≤ 1 with a = 1 for L big enough. Moreover, there exist another
nontrivial solution for certain L > 0 with a = 0.
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To prove the existence of the barrier function to reach 0, one can proceed with the same variational
arguments discussed previously. However, for proving the existence of the upper barrier, the same methods
do not apply, since the stationary solution 1 is a global minimum of the energy functional.

For this reason, in [82] Theorem 10.1 is proved using phase plane techniques (shooting method), namely
find an initial condition for the system:

d

dx

(
u
v

)
=

(
v

−f(u)

)
+

(
0

4
σxv

)
,(

u(0)
v(0)

)
=

(
a
0

)
,

for which at a certain L the trajectory of 10.3.3 reaches 1.

Figure 10.7. (Left) Upper barrier, solution of (10.3.3) for σ = 40. (Right) Sketch of
the phase-plane analysis for the trajectory leading to a solution of (10.3.3)

Therefore, for big domains, one cannot guarantee the controllability to any of the constant steady-states.
.

.

11. Perspectives

.

To establish the perspectives, we will first enhance the limitations of the methods applied here. One of
the most illustrative limitations is seen when nonautonomous dynamics are considered.

1) Nonautonomous dynamics and the need of a new method. Let us consider the system
∂tu− µ(t)∆u = f(u) (x, t) ∈ Ω× (0, T )

u(x, t) = a(x, t) (x, t) ∈ ∂Ω× (0, T )

0 ≤ u(x, 0) ≤ 1 x ∈ Ω

(11.1)

where a ∈ L∞((0, T ) × ∂Ω; [0, 1]), µ ∈ C1((0, T ); R+) and f : R → R is bistable. Note that the only
possible steady-states are the constant steady-states

w ≡ 0, w ≡ θ, w ≡ 1.

Therefore, there cannot exist any path of steady-states connecting any pair of steady-states. Moreover,
observe that if µ is a decreasing function, i.e. µ′ < 0, then the steady-state w ≡ θ can become, loosely
speaking, more unstable as time advances. Linearizing around w ≡ θ, keeping the control a ≡ θ, we
obtain: 

∂tv − µ(t)∆v = f ′(θ)v (x, t) ∈ Ω× (0, T )

v(x, t) = 0 (x, t) ∈ ∂Ω× (0, T )

v(x, t = 0) = v0.

(11.2)
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Figure 11.1. Space-time representation of the optimal control to w ≡ θ with initial data

w ≡ 0. The nonlinearity is f(s) = s(s− θ)(1− s) with θ = 0.33 (therefore
∫ 1

0
f(s) > 0)

and the controls have been limited to take values in [0, 1]. The optimal control problem
is to minimize the L2 distance with respect w ≡ θ. At the left µ(t) = 0.125exp(−4t), at
the right µ(t) = 0.125exp(−2.5t).

Solving (11.2) one obtains

v(x, t) =

∞∑
n=1

cn(0) exp

{
f ′(θ)t− λn

∫ t

0

µ(s)ds

}
en(x)

where en is the n-th eigenfunction of the Dirichlet Laplacian and λn its eigenvalue −∆en = λnen,
moreover cn(0) = 〈v0, en〉L2(Ω). Note that if, for instance,

∫∞
0
µ(s)ds is finite, then since f ′(θ) > 0, the

solution will grow exponentially after a certain critical time t∗. Conversely, if limt→∞ 1
t

∫ t
0
µ(s)ds = +∞

then every eigenmode will become stable after a certain t∗∗n .

There are two main questions to address:

• Can the time dependence of µ create an obstruction to the controllability?
If there there is an initial datum u0 ∈ L∞(Ω; [0, 1]) such that the solution u of the problem

∂tu− µ(t)∆u = f(u) (x, t) ∈ Ω× R+

u = 1 (x, t) ∈ ∂Ω× R+

u(·, t = 0) = u0

(11.3)

never approaches w ≡ 1 as t → +∞, or equivalently, for every t ∈ R+ there exists an open set
ω(t) ⊂ Ω such that:

u(x, t) < θ if x ∈ ω(t).

If this property holds for bistable nonlinearities of the type
∫ 1

0
f(s)ds ≥ 0, then we would have

a fundamental obstruction to the controllability to w ≡ θ purely governed by nonautonomous
phenomenology.

A further intuition that this situation is likely to occur can be seen in the following example:
consider µ such that there exists t∗ for which µ(t∗) = 0, then the equation becomes uncon-
trollable due to the lack of diffusion. When constraints are present, one should expect that a
nonautonomous obstruction arises since the controllability time is not arbitrarily small.

• How can we ensure in which situations we can control? The question above was addressing
the possibility of a new type of fundamental obstructions. However, we lack a method (so far) to
guarantee controllability under state constraints. Existing methods are based either on dissipation
plus local controllability or the staircase method that relies on steady-states’ paths. In the simple
dynamics presented above, there cannot exist any steady-state path; furthermore, there is no
dissipativity towards w ≡ θ.

In Figure 11.1 we show two simulations with different decays of µ(·). The simulation points out that if
µ′ << −1 one loses the controllability while if µ′ is small the controllability can still be achieved.
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The dynamics 11.1 has served us as a simple example, however, nonautonous dynamics are of paramount
importance in mathematical biology. One of the simplest examples are reaction-diffusion equations in
growing domains [21] 

∂tu− µ∂xxu = f(u) (x, t) ∈ (0, l(t))× (0, T )

u(x, t) = a(x, t) (x, t) ∈ {0, l(t)} × (0, T )

0 ≤ u(x, 0) ≤ 1

(11.4)

where a ∈ L∞((0, T ) × ∂Ω; [0, 1]) and l(t) ∈ C1((0, T ); R+). As a more general mathematical para-
digm, one may think on methods on how to ensure the controllability (and main obstructions to the
controllability) of systems such as

∂tu− µ∆u = f(u, t) (x, t) ∈ Ω× (0, T )

u(x, t) = a(x, t) (x, t) ∈ ∂Ω× (0, T )

0 ≤ u(x, 0) ≤ 1

(11.5)

where a ∈ L∞((0, T ) × ∂Ω; [0, 1]). Moreover, one cannot ignore the treatment of the controllability of
free boundary problems which arise naturally in many physical and biological phenomena. In this type
of problems, the domain itself is part of the unknowns of the system and the evolution of the boundary
is coupled with the state, for instance such as

∂tu− µ∂xxu = f(u) (x, t) ∈ (0, l(t))× (0, T )

u(0, t) = a(t) t ∈ (0, T )

l′(t) = g(l(t), u(1, t), ∂xu(1, t)) t ∈ (0, T )

0 ≤ u(x, 0) ≤ 1.

(11.6)

In such setting, even the controllability without state constraints is a challenging question [44].

Finally, one of the paradigms that has not been addressed is the controllability to specific trajectories of
the control system. Let us restrict, for instance to a periodic (in time) trajectory as a target. In these
notes we have mainly considered steady-states as targets. How can we control to these trajectories? The
staircase method is also limited for achieving this purpose.

As we have seen with the case of the nonautonomous dynamics, there is a need for a method that is not
steady-state reliant to guarantee controllability. Even starting with the autonomous case, it is crucial to
have a way, in particular, to guarantee that a path exists without passing through an explicit construction
or providing the controllability directly without relying on steady-states. Furthermore, we also pointed
out that, already in the scalar case, there are uncontrollability phenomena intrinsic from nonautonomous
dynamics that is not completely understood yet.

This understanding of scalar equations is a must for later going to more difficult and challenging problems
such as the controllability of reaction-diffusion systems with state constraints. At least one will be able
to encounter the difficulties that scalar equations present yet remain unsolved. Moreover, the study of
control properties of free boundary problems with (and without) constraints is an important perspective
to consider.

2) The construction of paths of steady-states. The construction of paths of steady-states is by now
an artisanal work. For instance if one seeks to guarantee the controllabiiity of

∂tu− div (A(x)∇u) + 〈b(x),∇u〉 = f(u, x) (x, t) ∈ Ω× (0, T ),

u = a(x, t) (x, t) ∈ ∂Ω× (0, T ),

0 ≤ u(x, 0) ≤ 1 x ∈ Ω,

for a general f , A and b, the construction of the paths and the conditions for when they do exist is not
trivial. However, heterogeneities are essential in practice, since the environment is, in general diverse and
space-dependant. In some places, the growth of the population can be bigger due to a higher capacity,
or the diffusion be smaller because the terrain is abrupt. In [82], a particular type of heterogeneities are
considered.

From the other side, we can also think on the control of a multidimensional semilinear equation with a
control acting on part of the boundary. In [82,104], the authors considered a control acting in the whole
boundary. How can the paths be constructed when one acts only on a portion of the boundary? How is
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the structure of the set of the steady-states? Let η ⊂ ∂Ω and consider:

∂tu−∆u = f(u) (x, t) ∈ Ω× (0, T ),

u(x, t) = a(x, t) (x, t) ∈ η × (0, T ),

∂

∂ν
u(x, t) = 0 (x, t) ∈ ∂Ω\η × (0, T ),

0 ≤ u(x, t) ≤ 1 (x, t) ∈ Ω× [0, T ].

As a general purpose, the interesting question to be able to answer is the following

Given two steady-states, can we guarantee the existence (or not) of a path of steady-states between the
two steady-states without explicitly constructing a path?

A partial answer to the negative question is given in [104], where, using the comparison principle the
authors establish a necessary condition for the existence of an admissible path between two steady-states.
Understanding the steady-state structure and its connectivity is still of independent mathematical interest
with applications aside from control.

3) Other types of diffusions and systems. In the lecture notes, we have dealt with the Laplacian for
modelling a diffusion process. However, there are plenty of other linear and nonlinear diffusion operators
that are relevant and whose controllability with constraints or the construction of paths of steady states
will be more challenging. This is the case, for instance, of the porous medium equation [19,43,85,117]:

∂tu− ∂xx(um) = f(u) (x, t) ∈ (0, L)× (0, T ),

u(0, t) = a1(t), u(L, t) = a2(t) t ∈ (0, T ),

0 ≤ u(x, t) ≤ 1 (x, t) ∈ (0, L)× [0, T ].

or other nonlinear problems [3,4]. A specific analysis also has to be done for dealing with other diffusions
such as the fractional diffusion [2, 12, 47] or even non-local reaction terms [52] for which the dynamical
system theory for generating paths of steady-states does not directly apply.

The other aspect that needs a more carfully detailed analysis is the case of systems. For instance, in the
context of evolutionary game theory [53–55], typically one deals with more than two strategies. In this
text, we motivated the problem in this context with a two strategy game that was reduced to a single
evolution equation. However, if we deal with more strategies, the reduction to a scalar equation is not
possible: 

∂tu1 − µ1∆u1 = f1(u1, u2, u3) (x, t) ∈ Ω× (0, T ),

∂tu2 − µ2∆u2 = f2(u1, u2, u3) (x, t) ∈ Ω× (0, T ),

∂tu3 − µ3∆u3 = f3(u1, u2, u3) (x, t) ∈ Ω× (0, T ),

u1 = a(x, t) ∈ [0, 1] (x, t) ∈ ∂Ω× (0, T ),

∂

∂ν
uj = 0 (x, t) ∈ ∂Ω× (0, T ) j = 2, 3,

0 ≤ ui(x, 0) ≤ 1 i = 1, 2, 3.

Constrained controllability of linear parabolic systems has been implemented in [69].Note that a phase
plane analysis will be more intricate as the complexity of the nonlinear ODE system increases significantly
with the dimension.

4) Optimal constrained controls

We have seen how the length of the domain is a crucial parameter that determines the controllability
of the equation. This can be also linked with the optimal placement of controls. For big domains, the
boundary control cannot be effective. However, the situation might be different if we consider interior
control. If we set Neumann boundary conditions and a pointwise control in the middle of the interval, by
symmetrization, we also observe the existence of fundamental obstructions as the domain grows. On the
other hand, if we allow ourselves to choose in which region are we placing our control, one can clearly
split the control region into small pieces distributed over the domain so that a barrier functions cannot
exist.

For the one-dimensional homogeneous reaction-diffusion equation, this placement is an easy problem.
However, if we consider a multidimensional problem with spatial heterogeneities, to determine where is
the “best” control region with a fixed measure is a nontrivial problem with high relevance in applications.

For related literature on the placement of sensors and actuators we refer to [97–99].
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On the other hand, the existence of a minimal controllability time and the controls in the minimal time
are also a perpective to further understand. Simulations suggest that a bang-bang control might be
possible for the minimal time control. How is the control in minimal time? Can we develop precise
estimates or a formula for the minimal controllability time?

One possible way to attack these questions would be to make use of the Pontryagin maximum principle
(see [72] for similar questions).

The starcase method gives a way to control in which the trajectory will be always inside a tubular
neighborhood of the path of steady-states. Knowing that generally speaking, there is not a unique way
to reach a specific configuration. How can we distinguish among different control possibilities? What is
the best control (in terms of minimal L2 norm or minimal flow, for example) for going from 0 to θ, for
instance?

5) Other modellings and hyperbolic problems. Here we have been addressing parabolic equations
where the comparison principle played a very strong role. However, the controllability with bounded
controls is also relevant for hyperbolic models, for instance, for the semilinear wave equation:

∂ttu− ∂xxu = f(u) (x, t) ∈ (0, L)× (0, T ),

u(x, t) = a(x, t) (x, t) ∈ {0, L} × (0, T ),

0 ≤ u(x, t) ≤ 1 (x, t) ∈ (0, L)× [0, T ).

The equation above has the same steady-states than the semilinear heat equation discussed in this text.
This means that the paths of steady-states and nontrivial solutions are the same. However, for the wave
equation, we do not have a maximum principle, this means that barriers might be avoidable, see [92].

On the other hand, the damped semilinear wave equation (telegraph equation) might present under
certain conditions a maximum principle (see [42]). There is more variety of systems where the positivity
of the state should be considered, for instance in thermoelastic systems [123].

One important remark is that control theory should be intimately related to the modeling. The natural
constraints on the modeling give rise to new mathematical challenges in control theory. In the context
of game theory, we modeled in Section 2 two strategies and an evolution of the proportion by the
replicator dynamics. However, in practical situations makes sense to consider a continuum of strategies.
For instance, in linguistics, most of the individuals are not perfectly bilingual, and their ability in the
minority language can range in a continuum spectra. Interactions with other individuals can create
an increase or decrease in this trait. For the modeling of this situation, we cite [7]. Moreover, diffusion
models are more appropriate for simple living species or chemicals. When dealing with intelligent animals,
the understanding of their way of moving in the environment is essential. In this situation also finite-
dimensional models are appropriate, and the role of the network in which individuals move plays a crucial
role in the dynamics [88,111].
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[52] V. Hernández-Santamaŕıa and K. Le Balc’h. Local null-controllability of a nonlocal semilinear heat equation. Applied

Mathematics & Optimization, pages 1–49, 2020.
[53] J. Hofbauer, V. Hutson, and G. Vickers. Travelling waves for games in economics and biology. Nonlinear Anal-Theor,

30(2):1235 – 1244, 1997.

[54] J. Hofbauer and K. Sigmund. Evolutionary game dynamics. B. Am. Math. Soc., 40(4):479–519, 2003.
[55] V. Hutson, K. Mischaikow, and G. T. Vickers. Multiple travelling waves in evolutionary game dynamics. Jpn. J. Ind.

Appl. Math, 17(3):341, Oct 2000.
[56] N. Iriberri and J.-R. Uriarte. Minority language and the stability of bilingual equilibria. Rationality and Society,

24(4):442–462, 2012.

[57] M. Jendoubi. A simple unified approach to some convergence theorems of l. simon. J. Funct Anal., 153(1):187–202,
1998.

[58] A. Khapalov. Global non-negative controllability of the semilinear parabolic equation governed by bilinear control.

ESAIM Control Optim. Calc. Var., 7:269–283, 2002.
[59] A. Khapalov. On bilinear controllability of the parabolic equation with the reaction-diffusion term satisfying newton’s

law. J. Comput. Appl. Math, 21(1):275–297, 2002.

[60] A. Kolmogorov. Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un
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[70] J. Lohéac. Nonnegative boundary control of 1d linear heat equations. Vietnam Journal of Mathematics, pages 1–26,
2021.

[71] J. Loheac, E. Trelat, and E. Zuazua. Minimal controllability time for the heat equation under unilateral state or

control constraints. Math. Mod. Meth. Appl. S., 27(09):1587–1644, 2017.
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[96] C. Pouchol, E. Trélat, and E. Zuazua. Phase portrait control for 1d monostable and bistable reaction–diffusion

equations. Nonlinearity, 32(3):884–909, feb 2019.
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[112] E. Trélat, J. Zhu, and E. Zuazua. Allee optimal control of a system in ecology. Math. Mod. Meth. Appl. S., 28(09):1665–

1697, 2018.
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