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Abstract 

 

A phase shift (PS) extraction technique from magnitude spectrum is developed in the present 

paper. The proposed technique is based on the geometrical analysis of equivalent vectors 

represented by the unknown and reference signal magnitudes measured with spectrum 

analyzer in the given operation frequency band. By considering the cosine theorem, a formula 

allowing to extract PS of the tested arbitrary signals is established. Extracted PS accuracy 

analyses with respect to the power combiner reflection and isolation are performed. The 

feasibility test was carried out in the frequency band defined from 3 Hz to 0.6 GHz. As 

expected, the obtained result validates the proposed PS extraction with a good fitting between 

the calculated transmission phase and simulations. In the future, this technique can be good 

candidate useful for the EMC and signal integrity analyses of embedded printed circuit 

boards. 

 

Keywords: Phase shift (PS), extraction technique of phase shift (ETPS), RF/microwave 

circuit, methodology, measurement technique. 
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1. Introduction 

Since 1960s, the phase shift (PS) measurement is one of the key points of the RF and 

microwave communication system performance [1-2]. After the static phase measurement, 

dynamic PS technique by using synchronized PIN diodes [1] was become a revolutionary 

method for the microwave engineers. Then, further technique based on the stepped phase 

modulation was also proposed [2]. Over the decades, the progress of the RF/microwave 

system is also linked by the design process of the phase shifters with various techniques in 

millimeter wave [3-5], development of vector sum PS approach [6], design zero delay PS [7], 

implementation of robust time/phase synchronization process [8] and improvement of 

electromagnetic radiated wave technique [9-10]. Nowadays, behind the energy consumption 

optimization, the efficiency tradeoff of wireless communication depends indirectly to the 

phase shifters [11]. The phase shifter function constitutes also a solution key for diverse 

electrical systems as the design of low loss power electronic converter [12].  

Despite the quasi-omnipresence of the phase shifters in all electronic systems, the PS 

measurement knows a lot of diversity of techniques especially in link with the range of the 

application frequency bands from some Hertz to optical frequency bands [13-31]. The most 

expanded PS measurement techniques can be found in the Tera-Hertz optical engineering are 

developed with the interferometry technique [13-21]. The technique was applied to various 

applications as visualization of biological molecules with thin lubricant films [13], optical 

wavefront reconstruction [14], optical phase-grating multiplexing [15], spiral patterns with 

single shot phase shifting [16], frequency scanning laser [17], development of algorithm with 

unknown reference phases [18], decoding method [19], surface micro-topography 

measurement [20] and THz-wave phase shift measurement [21]. In the other area [22-31], 
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many different PS measurements were proposed but less popular then the optical engineering 

interferometry. For example, associated with attenuation processing, a PS measurement was 

introduced for industrial applications [22]. Then, by using spectral Foucault technique, a 

measurement technique of nonlinear temporal phase shifts was proposed [23]. In mechanical 

engineering, by exploiting a piezoelectric drive, an accurate load detection developed with the 

PS measurement was initiated [24]. In robotics engineering, an infrared localization in 

intelligent spaces based on the PS measurement was developed [25]. Then, some innovative 

applications of PS measurement for laser range finder [26] and pressure variation [27] were 

also proposed. But, the main focus of the present paper is on the development of RF and 

microwave range PS measurement technique. In this area, the existing techniques are either 

expensive as using heterodyne receiver [28], RF modulator [29], narrow band frequency 

tunable circuitry [30] or differential PS detection modulation [31].  

For this reason, we would like to address an innovative and simple technique of PS 

measurement for ultra-wideband (UWB) applications. In difference to the existing work, the 

present paper develops an innovative extraction technique of PS (ETPS) dedicated to UWB 

signals. Practically, the idea consists in combining the unknown PS signal with a reference 

one through a typically passive topology as T-power divider [32] or active [33] UWB power 

combiner (PWC). Then, mathematical process is developed to calculate the PS in the wide 

frequency band. This paper is an English translation of the Chinese reports [34-35]. 

To overcome this technical challenge, mathematical process is developed in the present paper. 

In difference to the existing ones, the proposed technique is aimed to calculate the PS in the 

wide frequency band from the signal magnitudes.  

The present paper is organized in four main sections:   

- Section 2 describes the fundamental principle of the PS extraction technique. 
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- Section 3 is the accuracy analysis illustrating the PWC influence onto the extracted 

PS. 

- Section 4 is focused on the validation results with a microstrip circuit proof-of-concept 

(POC).  

- Lastly, Section 5 is the final conclusion. 

 

2. Principle of the PS extraction technique 

 

After the description of the PS extractor circuit configuration, the analytical formulation will 

be introduced in the present section. Then, realistic case theory by considering S-parameters 

will be developed. 

 

2.1 PS Extraction in Ideal Configuration 

 

The proposed PS extraction technique is inspired from the geometrical triangulation method. 

We need three signal vector magnitudes whose two inputs and one output. The output 

magnitude is measured with a spectrum analyzer (SA). Fig. 1 depicts the illustrative diagram 

configuration of the proposed PS extraction.  

 

Fig. 1.  Principle diagram of the proposed PS extraction. 
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We suppose that the DUT output as the unknown phase signal. By denoting 1−=j  the 

complex number and ω the angular frequency variable, as operating inputs, let us denote: 

• The complex reference signal with magnitude Vref and phase φref defined analytically by:

  

Vref=Vref exp[jφref(ω)].       (1)  

• This reference is compared with the complex signal with magnitude VDUT and unknown 

phase φDUT expressed in (2). This signal is assumed as an output of a device under test 

(DUT) attacked by an UWB signal from the generator. 

   VDUT=VDUT exp[jφDUT(ω)].      (2)  

Those two signals, assumed completely separated, are injected into the two input ports of 

three-port PWC. In ideal case, the PWC complex output signal should be equal to: 

T DUT refV V V= + .       (3) 

Substituting equation (1) and equation (2) into equation (3), the total signal must be given by: 

VT=VDUT exp[jφDUT(ω)]+Vref exp[jφref(ω)].    (4) 

From this last expression, we can determine φDUT(ω). The analytical formulation is 

established from the cosine theorem of arbitrary triangle. Accordingly, the total signal 

magnitude is written as: 

2 2

2

2 cos ( ) ( )

DUT ref

T

DUT ref DUT ref

V V
V

V V φ ω φ ω

 + + 
=  

  −   

.      (5) 

 

2.2 PWC S-Parameters 

 

In practical situation, it is not always easy to realize the circuits able to operate the expression 

introduced in equation (4). Similar to all RF and microwave engineering concept, it is 



White Paper 2019 

 

Page 7 by 23 
 

necessary to analyze the implemented circuit influence. The reference and DUT signal 

addition must be realized with the use of three port PWC as illustrated in Fig. 2.  

 

 

Fig. 2. Three-port PWC black box. 

 

Therefore, the total signal VT can be unintentionally affected by the PWC imperfection 

characteristics. To take into account to the PWC influence, we consider the following 

equivalent S-parameters: 

 
11 12 13

21 22 31

31 32 33

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

S j S j S j

S j S j S j S j

S j S j S j

 
 =
 
  

  

   

  

.      (6) 

In addition to this ideal hypothesis: 

S11,12,13,21,23(jω)=0        (7) 

the PWC transmission PS accuracy must be negligible. The out of phase difference can be 

formulated as: 

0)()()( 3132 −=  .       (8) 

Therefore, the only non-zero elements of the PWC S-matrix must be the transmission 

coefficients: 

 31 31 31( ) ( )exp ( )S j S=          (9) 

 32 32 32( ) ( )exp ( )S j S=    .      (10) 
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2.3 Analytical Formulation of the Proposed PS Extraction  

Consequently, by introducing the PWC parameter effect, the total voltage VT expressed in (4) 

should be approximated as: 

T ref ref DUT DUTV V V   +         (11)  

It means that, the total signal VT magnitude is written as: 

 

2 2 2 2

2

2 cos ( )

DUT DUT ref ref

T

DUT ref DUT ref T

V V
V

V V

 + + 
=  
  

 

   
      (12) 

where: 

21 31( ) ( ) ( ) ( )T ref= − −        .       (13)  

It yields that the unknown PS can be formulated by: 

2 2 2 2 2

( ) arccos ( )
2

T DUT DUT ref ref

DUT T

DUT DUT DUT ref

V V V

V V

 − −
= + 

  

 
   

 
.     (14) 

 

3. ILLUSTRATIVE CASE STUDY 

 

Two illustrative cases of ideal applications depending on the PWC S-parameters is described 

in the present section. The first case is the consideration of the completely matched and 

isolated PWC. The other case is the application with unmatched and non-isolated PWC. The 

sensitivity analyses of the reflection and isolation coefficients onto the unknown PS )(DUT  

will be studied. 

 

3.1 Illustrative Case 1: PS Extraction with Ideal DUT 
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In this case, a basic simulation method is used to validate our PS extraction technique. The 

simple idea is shown in Fig. 1 is implemented into the concrete circuit schematic depicted in 

Fig. 3. It can be reminded that we need one signal source works as reference signal (VREF) to 

input of power combiner, the other signal source excites the DUT, and the output of DUT 

(VDUT) is connected to the input of PWC. Then, the output signal of the latter denoted VT will 

be exploited to obtain the unknown PS. With circuit simulation software ADS® from 

Keysight Technologies®, a TL assigned with physical length d=7.5 cm with characteristic 

and reference impedance R0=50 Ω is used as the DUT. The ideal PWC is represented by the 

S-parameter black box: 

 

0 0 0.5

( ) 0.5 0 0.5

0 0 0

S j

 
 =
 
  

.       (15) 

Thus, the touchstone S-parameters model of commercial devices with reference Mini-circuits 

ZFRSC-123-S+ was also used as a real PWC. It is assumed perfect which the reflection and 

isolation are equal to zero. The simulation principle is shown in Fig. 3, with the magnitude of 

VT, VDUT, Vref and the phase of ref , the phase of TL DUT  is calculated using equation (14).  

 

Fig. 3. Schematic of the PS extractor circuit design in the SPICE ADS® environment. 
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Then, the ADS simulation (“Simu.”) result and theory result in the super UWB from DC to 4 

GHz are compared, as shown in Figs. 4. A good agreement between the PS from ideal (Fig. 

4(a)) and ideal (Fig. 4(b)) PWC was obtained. As expected, the behavioral PS of TL with 

perfect linear decrease from 0° with slope corresponding to the group delay 1.6 ns of about is 

observed. It can be underlined that they are very well matched with absolute inaccuracy error 

lower than ( ) ( )Simu calculatedf f−  < 0.1° in the whole considered frequency band. This result 

allows to understand and pre-validated the PS extraction feasibility in simulation environment.  

 

Fig. 4. Comparison between the calculated and simulated PS: (a) ideal and (b) real PWC. 

 

4.2 Illustrative Case 2: Influence of PWC Reflection and Isolation Coefficients 
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In the previous subsection, the ideal model of perfectly matched and isolated access PWC is 

used, but it doesn’t exist in real world. One may curiously wonder about the influence of the 

reflection and isolation on the phase extraction method. Therefore, it is keen to study this 

aspect in the present subsection. 

 

4.2.1 Influence of PWC Reflection Coefficient on PS Accuracy 

By hypothesis, we are dealing with the case of the ideal power combiner presenting the 

reflection coefficient denoted RedB in this paragraph. The S-matrix equivalent model of PWC 

is expressed as: 

 

0 0.5

( ) 0.5 0.5

0 0

e

e

e

R

S j R

R



 
 =
 
  

.      (16) 

It is varied from 20 dB to 60 dB during the simulation. The cartography mapping of Fig. 5(a) 

highlights clearly how the PS varies with the PWC reflection. As shown in Fig. 5(b), the 

calculated and simulated PS discrepancies ( ) ( )Simu calculatedf f−   increases with Re.  

As pointed out in Table I, with 20 dB reflection, the calculated PS presents about 

( ) ( )Simu calculatedf f−  =10° differences when compared to the simulation phase result. If the 

PWC reflection has 40 dB, the error between the theory and simulation is about 1° or 2°. 60 

dB reflection parameter makes the theory perfectly matched with the simulation results. 
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Fig. 5. PWC reflection influence on the PS accuracy. 

 

TABLE I.    INFLUENCE OF THE PWC REFLECTION COEFFICIENT ON THE CALCULATED DUT PS 

ACCURACY. 

Re (dB) -60 -40 -30 -20 

Δφmin 0.01 0.1 4 7 

Δφmax 1.5 10 14 42 

 

4.2.2 Influence of PWC Isolation Coefficient on PS Accuracy 

The present paragraph investigates the PS accuracy with respect to the isolation Is. Doing 

this, the PWC is modelled by the S-parameter black box: 
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The ideal power combiner with the isolation between the two inputs varies from 20 dB to 60 

dB is used in the simulation. The cartography mapping of Fig. 6(a) highlights clearly how the 

PS varies with the PWC isolation imperfection. As shown in Fig. 6(b), the calculated PS error 

increases with Is. As mentioned in Table II, if the power combiner has 20 dB isolation, the 

error between theory and simulation is 
max

( ) ( )Simu calculatedf f−  =10° in low frequencies, and 

max
( ) ( )Simu calculatedf f−  =5° in high frequencies.  

 

Fig. 6. PWC isolation influence on the PS accuracy. 
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Δφmax 1 9 13 31 

 

If the power combiner reflection has 40 dB, the error between the theory and simulation is 

well matched in high frequency. Compared to isolation, power combiner reflection is more 

important to the phase extraction method. 

To validate experimentally the established PS extraction technique, measurement 

investigation will be discussed in the following section. 

 

5. EXPERIMENTAL VALIDATION 

 

In this section, the PS extraction frequency domain experimentation will be described. Then, 

the obtained results will be discussed. 

 

5.1 Experimental Setup Description 

 

Fig. 7(a) represents the illustration diagram of experimental setup. A signal generator was 

used to provide the reference and the DUT input signals. The corresponding photograph is 

depicted in Fig. 7(b). The measurements were carried out with the experimental setup using 

signal generator N9310A and SA MXE N9038A from Keysight Technologies®. We choose 

the DUT as a 50-cm long coaxial cable.  
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Fig. 7. Experimental setup of the PS extraction technique POC. 

 

5.2 Discussion on Measured Results 

 

The employed PWD and PWC are commercial devices with reference Mini-circuits ZFRSC-

123-S+. These three port devices have transmission coefficients S31 and S32 as plotted in Fig. 

8. The reflection and isolation coefficients are better than -30 dB and -19 dB, respectively. 
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Fig. 8. (a) PS extraction POC experimental setup and (b) PWC S parameters. 
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Fig. 9. (a) DUT, ref. and combined measured signal magnitudes and (b) comparisons of 

calculated and simulated PS. 

 

The measurement tests were carried out in three steps successively with ref., DUT and total 

signals. The measured signal magnitudes from 3 Hz to 0.6 GHz are displayed in Fig. 9(a). The 

combined signal has a periodical aspect. The obtained PSs are sketched in Fig. 9(b). The 

calculated PS from equation (14) using the measured (“Meas.”) signal magnitudes matches 

very well with ADS® simulations (“Simu.”). The maximal absolute deviation is less than 5° 

in the considered frequency band. 
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4. Conclusion  

 

A PS extraction technique based on arbitrary and UWB signal magnitude spectrum 

measurement is developed. The analytical principle is described. The analytical formulation 

of the PS in function of the operating signal magnitudes is established from the geometrical 

cosine theorem.  

To verify the feasibility of the technique, accuracy analyses with respect to the used PWC 

parameters are performed. Then, experimental validation is performed with consideration of 

commercial PWC device. As expected, the calculated PS results from measurement and 

simulations in super UWB frequency from 3 Hz to 0.6 GHz are in good correlation. 
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