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CONVERGENCE OF A FINITE ELEMENT METHOD FOR
DEGENERATE TWO-PHASE FLOW IN POROUS MEDIA

VIVETTE GIRAULT ∗ , BEATRICE M. RIVIÈRE† , AND LOIC CAPPANERA

Abstract. A finite element method with mass-lumping and flux upwinding, is formulated for solving
the immiscible two-phase flow problem in porous media. The method approximates directly the wetting
phase pressure and saturation, which are the primary unknowns. The discrete saturation satisfies a max-
imum principle. Theoretical convergence is proved via a compactness argument. The proof is convoluted
because of the degeneracy of the phase mobilities and the unboundedness of the capillary pressure.

1. Introduction. This work discretizes on a suitable mesh a degenerate two-phase
flow system set in a polyhedral domain by a new finite element scheme that directly ap-
proximates the wetting phase pressure and saturation, similar to the formulation proposed
in [?]. Mass lumping is used to compute the integrals and a suitable upwinding is used to
compute the flux, guaranteeing that the discrete saturation satisfies a maximum principle.
The resulting system of discrete equations is a finite element analogue of the finite volume
scheme introduced and analyzed by Eymard et al in the seminal work [16]. From the point
of view of implementation, the advantage of finite elements is that they only use nodal
values and a single simplicial mesh. In particular, no orthogonality property is required
between the faces and the lines joining the centers of control volumes. From a theoretical
point of view, owing that the finite element scheme is based on functions, some steps in
its convergence analysis are simpler, but nevertheless the major difficulty in the analysis
consists in proving sufficient a priori estimates in spite of the degeneracy. By following
closely [16], the degeneracy is remediated by reintroducing in the proofs discrete artificial
pressures. From there, convergence of the numerical solutions is shown via a compactness
argument.

Incompressible two-phase flow is a popular and important multiphase flow model in reser-
voirs for the oil and gas industry. Based on conservation laws at the continuum scale, the
model assumes the existence of a representative elementary volume. Each wetting phase
and non-wetting phase saturation satisfies a mass balance equation and each phase velocity
follows the generalized Darcy law [24, 4]. The equations of the mathematical model read

∂t(ϕsw)−∇ · (ηw∇pw) = fw(sin)q̄ − fw(sw)q,

∂t(ϕso)−∇ · (ηo∇po) = fo(sin)q̄ − fo(sw)q,

pc(sw) = po − pw, sw + so = 1,

(1.1)

complemented by initial and boundary conditions. Here pw, sw, ηw, fw, (respectively, po, so, ηo, fo),
are the pressure, saturation, mobility and fractional flow of the wetting (respectively non-
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wetting) phase, ϕ is the porosity, sin is a given input saturation, and q̄, q are given flow
rates. The capillary pressure, pc, is a given function that depends nonlinearly on the satu-
ration. Because the phase mobilities are degenerate when they are evaluated at the residual
phase saturations and the derivative of the capillary pressure is unbounded, this system of
two coupled nonlinear partial differential equations has coefficients that vanish in parts of
the domain; this degeneracy makes the numerical analysis challenging.

At the continuous level, this problem has several equivalent formulations, see [7]. They are
linked to the choice of primary unknowns selected among wetting phase and non-wetting
phase pressure and saturation, or capillary pressure [19, 5]. A good state of the art can
be found in the reference [2]. Up to our knowledge, the mathematical analysis of the
system of equations was first done in [20, 1]. An equivalent formulation of the model,
based on Chavent’s global pressure that removes the degeneracy, was analyzed in [8, 9].
Since then, the global pressure formulation has been discretized and analyzed in many
references [23, 10, 22], but unfortunately, this formulation is not used in engineering practice
because the global pressure is not a physical unknown. Otherwise, with one exception, the
numerical analysis of the discrete version of (1.1), has always been done under unrealistic
assumptions that cannot be checked at the discrete level [13, 14]. Related to this line
of work, the discretization of a degenerate parabolic equation has been studied in the
literature [3, 27, 26, 17]. The only paper that performs the complete numerical analysis
of the discrete degenerate two-phase flow system written as above (i.e., in the form used
by engineers) is the analysis on finite volumes done in reference [16]. This motivates our
extension of this work to finite elements.

The remaining part of this introduction makes precise problem (1.1). The numerical scheme
is developed in Section 2. Because of the nonlinearity and degeneracy of its equations,
existence of a discrete solution requires that the discrete wetting phase saturation satisfies
a maximum principle. This is the first object of Section 3, the second one being basic a
priori pressure estimates, after which existence is shown in Section 4. The most technical
part, done in Section 5, is the derivation of an unconditional bound on an auxiliary pressure,
which allows to use a compactness argument. Weak and strong convergences are proved in
Section 6 and the equations satisfied by the limit are identified in Section 7, thus confirming
existence of a solution of the weak formulation (1.16). Numerical results are presented in
Section 8.

1.1. Model problem. Let Ω ⊂ IRd, d = 2 or 3, be a bounded connected Lipschitz
domain with boundary ∂Ω and unit exterior normal n, and let T be a final time. With
the last relation in (1.1), sw is the only unknown saturation; so we set s = sw, and rewrite
(1.1) almost everywhere in Ω×]0, T [ as

∂t(ϕs)−∇ · (ηw∇pw) = fw(sin)q̄ − fw(s)q (1.2)

−∂t(ϕs)−∇ · (ηo∇po) = fo(sin)q̄ − fo(s)q, (1.3)

complemented by a natural boundary condition almost everywhere on ∂Ω×]0, T [

ηw∇pw · n = 0, ηo∇po · n = 0, (1.4)
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and an initial condition almost everywhere in Ω

sw(·, 0) = s0
w, 0 ≤ s0

w ≤ 1. (1.5)

The fractional flows are related to the mobilities by

fw =
ηw

ηw + ηo
, fo = 1− fw. (1.6)

Recall that the phase saturations sum up to 1 and the phase pressures are related by

pc(sw) = po − pw. (1.7)

The first part of this work, up to Section 5.7, is done under the following basic assumptions:

Assumptions

• The porosity ϕ is piecewise constant in space, independent of time, positive, bounded
and uniformly bounded away from zero.
• The mobility of the wetting phase ηw ≥ 0 is continuous and increasing. The mobility

of the non-wetting phase ηo ≥ 0 is continuous and decreasing. This implies that the
function fw is increasing and the function fo is decreasing.
• There is a positive constant η∗ such that

ηw(s) + ηo(s) ≥ η∗, ∀s ∈ [0, 1]. (1.8)

• The capillary pressure pc is a continuous, strictly decreasing function in W 1,1(0, 1).
• The flow rates at the injection and production wells, q̄, q ∈ L2(Ω×]0, T [) satisfy

q̄ ≥ 0, q ≥ 0,

∫
Ω

q̄ =

∫
Ω

q. (1.9)

• The prescribed input saturation sin satisfies almost everywhere in Ω×]0, T [

0 ≤ sin ≤ 1. (1.10)

Since pc, ηα, fα, α = w, o are bounded above and below, it is convenient to extend them
continuously by constants to IR.

Although the numerical scheme studied below does not discretize the global pressure,
following [16], its convergence proof uses a number of auxiliary functions related to the
global pressure. First, we introduce the primitive gc of pc,

∀x ∈ [0, 1], gc(x) =

∫ 1

x

pc(s)ds. (1.11)
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Since pc is a continuous function on [0, 1], the function gc belongs to C1([0, 1]). Next, we
introduce the auxiliary pressures pwg, pwo, and g,

∀x ∈ [0, 1], pwg(x) =

∫ x

0

fo(s)p
′
c(s)ds, pog(x) =

∫ x

0

fw(s)p′c(s)ds, (1.12)

∀x ∈ [0, 1], g(x) = −
∫ x

0

ηw(s)ηo(s)

ηw(s) + ηo(s)
p′c(s)ds. (1.13)

Owing to (1.6),

∀x ∈ [0, 1], pwg(x) + pog(x) =

∫ x

0

p′c(s)ds = pc(x)− pc(0). (1.14)

Moreover, the derivative of g satisfies formally the identities

∀x ∈ [0, 1], ηα(x)p′αg(x) + g′(x) = 0, α = w, o. (1.15)

1.2. Weak variational formulation. By multiplying (1.2) and (1.3) with a smooth
function v, say v ∈ C1(Ω × [0, T ]) that vanishes at t = T , applying Green’s formula in
time and space, and using the boundary and initial conditions (1.4) and (1.5), we formally
derive a weak variational formulation

−
∫ T

0

∫
Ω

ϕ s ∂tv +

∫ T

0

∫
Ω

ηw∇ pw · ∇ v =

∫
Ω

ϕ s0v(0) +

∫ T

0

∫
Ω

(
fw(sin)q̄ − fw(s)q

)
v,∫ T

0

∫
Ω

ϕ s ∂tv +

∫ T

0

∫
Ω

ηo∇ po · ∇ v =−
∫

Ω

ϕ s0v(0) +

∫ T

0

∫
Ω

(
fo(sin)q̄ − fo(s)q

)
v.

But in general, the pressures are not sufficiently smooth to make this formulation mean-
ingful and following [7], by using (1.15), it is rewritten in terms of the artificial pressures,

−
∫ T

0

∫
Ω

ϕ s ∂tv +

∫ T

0

∫
Ω

(
ηw∇(pw + pwg(s)) +∇ g(s)

)
· ∇ v =

∫
Ω

ϕ s0v(0)

+

∫ T

0

∫
Ω

(
fw(sin)q̄ − fw(s)q

)
v,∫ T

0

∫
Ω

ϕ s ∂tv +

∫ T

0

∫
Ω

(
ηo∇(po − pog(s))−∇ g(s)

)
· ∇ v = −

∫
Ω

ϕ s0v(0)

+

∫ T

0

∫
Ω

(
fo(sin)q̄ − fo(s)q

)
v.

(1.16)

The two formulas coincide when the pressures are slightly more regular. With the above
assumptions, problem (1.16) has been analyzed in reference [1], where it is shown that it
has a solution s in L∞(Ω×]0, T [) with g(s) in L2(0, T ;H1(Ω)), pα, α = w, o, in L2(Ω×]0, T [)
with both pw + pwg(s) and po − pog(s) in L2(0, T ;H1(Ω)).
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2. Scheme. From now on, we assume that Ω is a polygon (d = 2) or Lipschitz poly-
hedron (d = 3) so it can be entirely meshed.

2.1. Meshes and discretization spaces. The mesh Th is a regular family of sim-
plices K, with a constraint on the angle that will be used to enforce the maximum principle:
each angle is not larger than π/2, see [6]. This is easily constructed in 2D. In 3D, since we
only investigate convergence we can embed the domain in a triangulated box. Moreover,
since the porosity ϕ is a piecewise constant, to simplify we also assume that the mesh is
such that ϕ is a constant per element. The parameter h denotes the mesh size i.e., the
maximum diameter of the simplices. On this mesh, we consider the standard finite element
space of order one

Xh = {vh ∈ C0(Ω̄) ; ∀K ∈ Th, vh|K ∈ P1}. (2.1)

Thus the dimension of Xh is the number of nodes, say M , of Th. Let φi be the Lagrange
basis function, that is piecewise linear, and takes the value 1 at node i and the value 0
elsewhere. As usual, the Lagrange interpolation operator Ih ∈ L(C0(Ω̄);Xh) is defined by

∀v ∈ C0(Ω̄), Ih(v) =
M∑
i=1

viφi, (2.2)

where vi is the value of v at the node of index i. It is easy to see that under the mesh
condition, we have

∀K,
∫
K

∇φi · ∇φj ≤ 0, ∀i 6= j. (2.3)

For a given node i, we denote by ∆i the union of elements sharing the node i and by N (i)
the set of indices of all the nodes in ∆i. In the spirit of [18], we define

cij =

∫
∆i∩∆j

|∇φi · ∇φj|, ∀i, j. (2.4)

Recall that the trapezoidal rule on a triangle or a tetrahedron K is∫
K

f ≈ 1

d+ 1
|K|

d+1∑
`=1

fi` ,

where fi` is the value of the function f at the `th node (vertex), with global number i`, of
K. For any region O, the notation |O| means the measure (volume) of O.

We define

mi =
1

d+ 1

∑
K∈∆i

|K| = 1

d+ 1
|∆i|,

and taking into account the porosity ϕ, we define more generally

m̃i(ϕ) =
1

d+ 1

∑
K∈∆i

ϕ|K |K|,
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so that mi = m̃i(1). It is well-known that the trapezoidal rule defines a norm on Xh, ‖ · ‖h,
uniformly equivalent to the L2 norm. Let Uh ∈ Xh and write

Uh =
M∑
i=1

U iφi.

The discrete L2 norm associated with the trapezoidal rule is

‖Uh‖h =

(
M∑
i=1

mi|U i|2
) 1

2

.

There exist positive constants C and C, independent of h and M , such that

∀Uh ∈ Xh, C ‖Uh‖2
L2(Ω) ≤ ‖Uh‖2

h ≤ C ‖Uh‖2
L2(Ω). (2.5)

This is also true for other piecewise polynomial functions, but with possibly different
constants. The scalar product associated with this norm is denoted by (·, ·)h,

∀Uh, Vh ∈ Xh, (Uh, Vh)h =
M∑
i=1

miU
iV i. (2.6)

By analogy, we introduce the notation

∀Uh, Vh ∈ Xh, (Uh, Vh)
ϕ
h =

M∑
i=1

m̃i(ϕ)U iV i. (2.7)

The assumptions on the porosity ϕ imply that (2.7) defines a weighted scalar product
associated with the weighted norm ‖ · ‖ϕh ,

∀Uh ∈ Xh, ‖Uh‖ϕh =
(
(Uh, Uh)

ϕ
h

) 1
2 ,

that satisfies the analogue of (2.5), with the same constants C and C,

∀Uh ∈ Xh, C (min
Ω
ϕ) ‖Uh‖2

L2(Ω) ≤
(
‖Uh‖ϕh

)2 ≤ C (max
Ω

ϕ) ‖Uh‖2
L2(Ω). (2.8)

2.2. Motivation of the space discretization. While discretizing the time derivative
is fairly straightforward, discretizing the space derivatives is more delicate because we need
a scheme that is consistent and satisfies the maximum principle for the saturation. For the
moment, we freeze the time variable and focus on consistency in space. First, we recall a
standard property of functions of Xh on meshes satisfying (2.3).

Proposition 2.1. Under condition (2.3), the following identities holds for all Uh and Vh
in Xh, with cij defined in (2.4):∫

Ω

∇Uh · ∇Vh = −
M∑
i=1

U i
∑

j 6=i,j∈N (i)

cij
(
V j − V i

)
=

1

2

M∑
i=1

∑
j 6=i,j∈N (i)

cij
(
U j − U i

)(
V j − V i

)
.

(2.9)
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Proof. The first equality is obtained by using (2.3), (2.4) and the fact that

M∑
j=1

φj = 1,

as in [15] (Section 12.1). For the second part, we use the symmetry of cij and the anti-
symmetry of V j − V i to deduce that

−
M∑
i=1

U i
∑

j 6=i,j∈N (i)

cij
(
V j − V i

)
=

1

2

M∑
i=1

∑
j 6=i,j∈N (i)

cij
(
U j − U i

)(
V j − V i

)
,

which is the desired result.

Note that cij vanishes when j /∈ N (i). Therefore, when there is no ambiguity it is con-
venient to write the above double sums on i and j with i and j running from 1 to M .

As an immediate consequence of Proposition 2.1, we have, by taking Vh = Uh,

∀Uh ∈ Xh, ‖∇Uh‖L2(Ω) =
1√
2

( M∑
i,j=1

cij|U j − U i|2
) 1

2
. (2.10)

Now, we consider the case of the product of the gradients by a third function. Beforehand,
we introduce the following notation: for indices i and j of two neighboring interior nodes,
∆i ∩∆j in two dimensions is the union of two triangles and in three dimensions the union
of a number of tetrahedra bounded by a fixed constant, say L, determined by the regularity
of the mesh. We shall use the following notation

cij,K =

∫
K

|∇φi · ∇φj|, wK =
1

|K]

∫
K

w. (2.11)

Note that ∑
K⊂∆i∩∆j

cij,K = cij. (2.12)

Then we have the following proposition:

Proposition 2.2. Let (2.3) hold. With the notation (2.11), the following identity holds
for all w in L1(Ω):

∀Uh, Vh ∈ Xh,

∫
Ω

w∇Uh · ∇Vh = −
M∑
i=1

U i

M∑
j=1

( ∑
K⊂∆i∩∆j

cij,KwK

)(
V j − V i

)
, (2.13)
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Proof. It is easy to prove that∫
Ω

w∇Uh · ∇Vh =
M∑
i,j=1

dijU
iV j, (2.14)

where

dij =

∫
∆i∩∆j

w(∇φi · ∇φj) =

∫
Ω

w(∇φi · ∇φj). (2.15)

Again, we have for any i,

M∑
j=1

dij = 0, and dii = −
∑

1≤j≤M,j 6=i

dij,

and by substituting this equality into (2.14), we obtain∫
Ω

w
(
∇Uh · ∇Vh

)
=

M∑
i,j=1

U idij
(
V j − V i

)
. (2.16)

But, in view of (2.11) and (2.15), and since ∇φi · ∇φj is a constant in each element K
contained in ∆i ∩∆j,

dij = −
∑

K⊂∆i∩∆j

cij,KwK , (2.17)

and (2.13) follows by substituting this equation into (2.16).

Note that dij = dji owing to (2.17). The first consequence of Proposition 2.2 is that the
right-hand side of (2.13) is a consistent approximation of (w,∇u · ∇ v).

Proposition 2.3. Let (2.3) hold, let u and v belong to H2(Ω) and w to L∞(Ω), and let
Uh = Ihu, Vh = Ihv be defined by (2.2). Then, there exists a constant C, independent of
h, M , u, v, and w, such that

∣∣∣ ∫
Ω

w∇u · ∇ v +
M∑
i,j=1

U i
( ∑
K⊂∆i∩∆j

cij,KwK
)(
V j − V i

)∣∣∣ ≤ C h ‖w‖L∞(Ω)‖u‖H2(Ω)‖v‖H2(Ω).

(2.18)

Proof. In view of the identity (2.13), the left-hand side of (2.18) is bounded as follows:∣∣∣ ∫
Ω

w
(
∇u · ∇ v −∇Uh · ∇Vh

)∣∣∣ ≤ ‖w‖L∞(Ω)

×
(
‖∇(u− Uh)‖L2(Ω)‖∇ v‖L2(Ω) + ‖∇(v − Vh)‖L2(Ω)‖∇Uh‖L2(Ω)

)
.

From here, (2.18) is a consequence of standard finite element interpolation error.
8



Now, if w is in W 1,∞(Ω), then again, standard finite element approximation shows that
there exists a constant C, independent of h, K ⊂ ∆i ∩∆j, and w, such that∥∥wK − w∥∥L∞(K)

≤ C h |w|W 1,∞(K) ≤ C h |w|W 1,∞(Ω). (2.19)

As a consequence, we will show that in the error formula (2.18), the average wK can be
replaced by any value of w in K. Since all K in ∆i ∩ ∆j share the edge, say eij, whose
end points are the nodes with indices i and j, then we can pick the value of w at any
point, say W̃ i,j, of eij. At this stage, we choose this value freely, but we prescribe that it
be symmetrical with respect to i and j, i.e.,

W̃ i,j = W̃ j,i. (2.20)

Then we have the following approximation result.

Theorem 2.4. With the assumption and notation of Proposition 2.3, there exists a con-
stant C, independent of h and M , such that for all u, and v in H2(Ω) and w in W 1,∞(Ω),∫

Ω

w∇u · ∇ v = −
M∑
i,j=1

U icijW̃
i,j
(
V j − V i

)
+R, (2.21)

for any arbitrary value W̃ i,j of w in the common edge eij satisfying (2.20), and the remain-
der R satisfies

|R| ≤ C h |w|W 1,∞(Ω)‖u‖H2(Ω)‖v‖H2(Ω). (2.22)

Proof. We infer from (2.12) and (2.13) that∫
Ω

w
(
∇Uh ·∇Vh

)
= −

M∑
i,j=1

U i
(
V j−V i

) ∑
K⊂∆i∩∆j

cij,K
(
wK−W̃ i,j

)
−

M∑
i,j=1

U icij
(
V j−V i

)
W̃ i,j.

Let
Rij =

∑
K⊂∆i∩∆j

cij,K
(
wK − W̃ i,j

)
,

which is symmetric in i and j by assumption (2.20). As in Proposition 2.1, the symmetry
of Rij and the anti-symmetry of V j − V i, imply

−
M∑
i,j=1

U iRij

(
V j − V i

)
≤ 1

2

( M∑
i,j=1

|Rij|
(
U j − U i

)2
) 1

2
( M∑
i,j=1

|Rij|
(
V j − V i

)2
) 1

2
. (2.23)

From the non negativity of cij,K , (2.12), and (2.19), we infer that

|Rij| ≤
( ∑
K⊂∆i∩∆j

cij,K

)
C h |w|W 1,∞(Ω) = cijC h |w|W 1,∞(Ω).
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Hence, with (2.10) and standard finite element approximation,∣∣∣ M∑
i,j=1

U iRij

(
V j−V i

)∣∣∣ ≤ C h |w|W 1,∞(Ω)‖∇Uh‖L2(Ω)‖∇Vh‖L2(Ω) ≤ C h |w|W 1,∞(Ω)‖u‖H2(Ω)‖v‖H2(Ω).

The result follows by combining this inequality with (2.18).

The above considerations show that

−
M∑
i,j=1

U icijW̃
i,j
(
V j − V i

)
is a consistent approximation of

∫
Ω

w∇u · ∇ v,

for any symmetric choice of W̃ i,j in eij, the common edge of ∆i ∩ ∆j. This will lead to
the upwinded space discretization in the next subsection, see also [22]. Furthermore, for
all real numbers V i and W̃ i,j satisfying (2.20), 1 ≤ i, j ≤ M , the symmetry of cij and
anti-symmetry of V j − V i imply

M∑
i,j=1

cijW̃
i,j(V j − V i) = 0. (2.24)

2.3. Fully discrete scheme. Let τ = T
N

be the time step, tn = nτ , the discrete
times, 0 ≤ n ≤ N . Regarding time, we shall use the standard L2 projection ρτ defined on
]tn−1, tn], for any function f in L1(0, T ), by

ρτ (f)n := ρτ (f)|]tn−1,tn] :=
1

τ

∫ tn

tn−1

f. (2.25)

Regarding space, we shall use a standard element-by-element L2 projection ρh as well as a
nodal approximation operator rh defined at each node xi for any function g ∈ L1(Ω) by

rh(g)(xi) =
1

|∆i|

∫
∆i

g, 1 ≤ i ≤M, (2.26)

and extended to Ω by rh(g) ∈ Xh. The operator ρh is defined for any f in L1(Ω) by
ρh(f)|K = ρK(f) where, in any element K,

ρK(f) =
1

|K|

∫
K

f. (2.27)

The initial saturation s0
w is approximated by the operator rh,

S0
h = rh(s

0
w). (2.28)

The input saturation sin is approximated in space and time by

sin,h,τ = ρτ (rh(sin)). (2.29)
10



Clearly, (1.10) implies in space and time

0 ≤ sin,h,τ ≤ 1.

In order to preserve (1.9), the functions q̄ and q are approximated by the functions q̄h,τ
and q

h,τ
defined with rh and corrected as follows:

q̄h,τ = ρτ

(
rh(q̄)−

1

|Ω|

∫
Ω

(rh(q̄)− q̄)
)
, q

h,τ
= ρτ

(
rh(q)−

1

|Ω|

∫
Ω

(rh(q)− q)
)
. (2.30)

Since q̄h,τ and q
h,τ

are piecewise linears in space, they are exactly integrated by the trape-

zoidal rule and we easily derive from (1.9) and (2.30) that we have for all n,(
q̄nh , 1

)
h

=
(
qn
h
, 1
)
h
. (2.31)

The set of primary unknowns is the discrete wetting phase saturation and the discrete
wetting phase pressure, Snh and P n

w,h, defined pointwise at time tn by:

Snh =
M∑
i=1

Sn,iφi, P n
w,h =

M∑
i=1

P n,i
w φi, 1 ≤ n ≤ N.

Then the discrete non-wetting phase pressure P n
o,h defined by

P n
o,h =

M∑
i=1

P n,i
o φi, 1 ≤ n ≤ N,

is a secondary unknown. The upwind scheme we propose for discretizing (1.2)–(1.3) is
inspired by the finite volume scheme introduced and analyzed by Eymard al in [16]. For
each time step n, 1 ≤ n ≤ N , the lines of the discrete equations are

m̃i(ϕ)

τ
(Sn,i − Sn−1,i)−

M∑
j=1

cijηw(Sn,ijw )(P n,j
w − P n,i

w ) = mi

(
fw(sn,iin )q̄n,i − fw(Sn,i)qn,i

)
,

(2.32)

−m̃i(ϕ)

τ
(Sn,i − Sn−1,i)−

M∑
j=1

cijηo(S
n,ij
o )(P n,j

o − P n,i
o ) = mi

(
fo(s

n,i
in )q̄n,i − fo(Sn,i)qn,i

)
,

(2.33)
P n,i
o − P n,i

w = pc(S
n,i), 1 ≤ i ≤M, (2.34)

M∑
i=1

miP
n,i
w = 0. (2.35)

Here i runs from 1 toM−1 in (2.32) and from 1 toM in (2.33); the upwind values Sn,ijw , Sn,ijo

are defined by

Sn,ijw =


Sn,i if P n,i

w > P n,j
w

Sn,j if P n,i
w < P n,j

w

max(Sn,i, Sn,j) if P n,i
w = P n,j

w

(2.36)
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Sn,ijo =


Sn,i if P n,i

o > P n,j
o

Sn,j if P n,i
o < P n,j

o

min(Sn,i, Sn,j) if P n,i
o = P n,j

o

(2.37)

We observe that
Sn,ijw = Sn,jiw , Sn,ijo = Sn,jio ,

so that, if we interpret in (2.32) (respectively, (2.33)) ηw(Sn,ijw ) (respectively, ηo(S
n,ij
o )) as

W̃ i,j, then (2.20) and hence (2.24) hold.

Remark 2.5. Before setting (2.32)–(2.35) in variational form, observe that:

1. The scheme (2.32)-(2.35) forms a square system in the primary unknowns, Snh and P n
w .

2. Formula (2.32) is also valid for i = M . Indeed, we pass to the left-hand side the right-
hand side of (2.32) and set Ai the resulting line of index i. Let ÃM denote what should be
the line of index M , i.e.,

ÃM =
m̃M(ϕ)

τ
(Sn,M − Sn−1,M)−

M∑
j=1

cMjηw(Sn,Mj
w )(P n,j

w − P n,M
w )

−mM

(
fw(sn,Min )q̄n,M − fw(Sn,M)qn,M

)
.

Then, in view of (2.24),

ÃM =
M−1∑
i=1

Ai + ÃM =
M∑
i=1

m̃i(ϕ)

τ
(Sn,i − Sn−1,i)−

M∑
i=1

mi

(
fw(sn,iin )q̄n,i − fw(Sn,i)qn,i

)
.

By summing in the same fashion the lines of (2.33), we obtain

M∑
i=1

m̃i(ϕ)

τ
(Sn,i − Sn−1,i) = −

M∑
i=1

mi

(
fo(s

n,i
in )q̄n,i − fo(Sn,i)qn,i

)
.

A combination of these two equations yields

ÃM = −
M∑
i=1

mi

(
(fw(sn,iin )+fo(s

n,i
in ))q̄n,i−(fw(Sn,i)+fo(S

n,i))qn,i
)

= −
M∑
i=1

mi(q̄
n,i−qn,i) = 0,

by virtue of (1.6), the definition (2.25), and (1.9).

3. In (2.32) (respectively, (2.33)), any constant can be added to Pw (respectively, Po), but
in view of (2.34), the constant must be the same for both pressures. The last equation
(2.35) is added to resolve this constant.

As usual, it is convenient to associate time functions Sh,τ , Pα,h,τ with the sequences indexed
by n. These are piecewise constant in time in ]0, T [, for instance

Pα,h,τ (t, x) = P n
α,h(x), α = w, o, ∀(t, x) ∈ Ω×]tn−1, tn]. (2.38)
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In view of the material of the previous subsection, we introduce the following form:

∀Wh, Uh, Vh, Zh ∈ Xh, [Zh,Wh;Vh, Uh]h =
M∑
i,j=1

U icijW̃
ij(V j − V i), (2.39)

where the first argument Zh indicates that the choice of W̃ ij depends on Zh. Such depen-
dence, used for the upwinding, will be specified further on, but it is assumed from now on
that W̃ ij satisfies (2.20). Considering (2.24), the form satisfies the following properties,

∀Zh,Wh, Vh ∈ Xh, [Zh,Wh;Vh, 1]h = 0, (2.40)

∀Zh,Wh, Vh ∈ Xh, [Zh,Wh;Vh, Vh]h = −1

2

M∑
i,j=1

cijW̃ij(V
i − V j)2. (2.41)

This last property is derived by the same argument as in proving (2.9).

With the above notation, and taking into account that (2.32) extends to i = M , the scheme
(2.32)–(2.35) has the equivalent variational form. Starting from S0

h, see (2.28),

find Snh , P n
wh, and P n

o,h in Xh, for 1 ≤ n ≤ N , solution of, for all θh in Xh,

1

τ
(Snh − Sn−1

h , θh)
ϕ
h −

[
P n
w,h, Ih(ηw(Snh ));P n

w,h, θh
]
h

=
(
Ih(fw(snin,h))q̄

n
h − Ih(fw(Snh ))qn

h
, θh
)
h

(2.42)

−1

τ
(Snh − Sn−1

h , θh)
ϕ
h −

[
P n
o,h, Ih(ηo(S

n
h ));P n

o,h, θh
]
h

=
(
Ih(fo(s

n
in,h))q̄

n
h − Ih(fo(Snh ))qn

h
, θh
)
h

(2.43)
P n
o,h − P n

w,h = Ih(pc(S
n
h )), (2.44)(

P n
w,h, 1

)
h

= 0, (2.45)

where the choice of ηw(Snh ) in the left-hand side of (2.42) (respectively, ηo(S
n
h ) in the left-

hand side of (2.43)) is given by (2.36) (respectively (2.37)). Strictly speaking, the inter-
polation operator Ih is introduced in (2.42) and (2.43) because the forms are defined for
functions of Xh, but for the sake of simplicity, since only nodal values are used, it may be
dropped further on.

We shall see that under the above basic hypotheses, the discrete problem (2.42)–(2.45) has
at least one solution. In the sequel, we shall use the following discrete auxiliary pressures
(compare with (1.16)):

Uw,h,τ = Pw,h,τ + Ih(pwg(Sh,τ )), Uo,h,τ = Po,h,τ − Ih(pog(Sh,τ )). (2.46)

The following theorem is the main result of this work:

Theorem 2.6. Under the above basic hypotheses and the additional assumptions (5.42)–
13



(5.44), the discrete solutions converge up to subsequences as follows:

lim
(h,τ)→(0,0)

Sh,τ = s strongly in L2(Ω×]0, T [),

lim
(h,τ)→(0,0)

Uw,h,τ = pw + pwg(s), lim
(h,τ)→(0,0)

Uo,h,τ = po − pog(s), weakly in L2(0, T ;H1(Ω)),

lim
(h,τ)→(0,0)

Pα,h,τ = pα, weakly in L2(Ω×]0, T [), α = w, o,

where pw + pwg, po − pwg, and s solve the weak formulation (1.16).

The proof of the theorem requires several steps that are covered in the remaining of this
work.

3. First a priori bounds. This section is devoted to basic a priori bounds used in
proving existence of a discrete solution. Existence is fairly technical and will be postponed
till Section 4. The first step is a key bound on the discrete saturation. In a second step,
this bound will lead to a pressure estimate and in particular to a bound on the discrete
analogue of auxiliary pressures.

3.1. Maximum principle. The scheme (2.32)–(2.35) satisfies the maximum principle
property. The proof given below uses a standard argument as in [16, ?].

Theorem 3.1. The following bounds hold:

0 ≤ Sh,τ ≤ 1. (3.1)

Proof. As 0 ≤ s0
w ≤ 1 almost everywhere, by construction (2.28), we immediately have

0 ≤ min
Ω
s0
w ≤ S0

h ≤ max
Ω

s0
w ≤ 1.

The proof proceeds by contradiction. Assume that there is an index n ≥ 1 such that

Sn−1
h ≤ 1, Snh > 1.

This means there is a node i such that

Sn,i = ‖Snh‖L∞(Ω) > 1,

and thus
Sn,i > Sn−1,i.

Dropping the index n in the rest of the proof, (2.32) and (2.33) imply∑
j 6=i,j∈N (i)

cijηw(Sijw )(P j
w − P i

w) +mi

(
fw(siin)q̄i − fw(Si)qi

)
> 0, (3.2)

−
∑

j 6=i,j∈N (i)

cijηo(S
ij
o )(P j

o − P i
o)−mi

(
fo(s

i
in)q̄i − fo(Si)qi

)
> 0. (3.3)
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We first show that (3.2) holds true with Sijw replaced by Si. Indeed if P i
w > P j

w, then
Sijw = Si. If P i

w < P j
w, then Sijw = Sj, and as ηw is increasing and by assumption, Sj ≤ Si,

ηw(Sijw )(P j
w − P i

w) ≤ ηw(Si)(P j
w − P i

w).

Finally, the term vanishes when P i
w = P j

w. Therefore we have in all cases

∑
j 6=i,j∈N (i)

cijηw(Si)(P j
w − P i

w) +mi

(
fw(siin)q̄i − fw(Si)qi

)
> 0. (3.4)

A similar argument gives

−
∑

j 6=i,j∈N (i)

cijηo(S
i)(P j

o − P i
o)−mi

(
fo(s

i
in)q̄i − fo(Si)qi

)
> 0. (3.5)

The substitution of (2.34) into (3.5) yields

−
∑

j 6=i,j∈N (i)

cijηo(S
i)
(
(P j

w − P i
w) + (pc(S

j)− pc(Si)
)
)−mi

(
fo(s

i
in)q̄i − fo(Si)qi

)
> 0. (3.6)

Since pc is decreasing and Si ≥ Sj, the second term in the above sum is negative. This
implies that

−
∑

j 6=i,j∈N (i)

cijηo(S
i)(P j

w − P i
w)−mi

(
fo(s

i
in)q̄i − fo(Si)qi

)
> 0. (3.7)

The sum on j cancels by multiplying (3.4) by ηo(S
i), (3.7) by ηw(Si), and adding the two.

The sign is unchanged because either ηo(S
i) or ηw(Si) is strictly positive. Hence,

miηo(S
i)
(
fw(siin)q̄i − fw(Si)qi

)
−miηw(Si)

(
fo(s

i
in)q̄i − fo(Si)qi

)
> 0.

By definition of fw and fo, this reduces to

ηo(S
i)fw(siin)− ηw(Si)fo(s

i
in) > 0. (3.8)

Now consider the function:

r(s) = ηo(s)fw(siin)− ηw(s)fo(s
i
in). (3.9)

It is decreasing and r(siin) = 0. Then, since Si > 1 ≥ siin, see (1.10), we have

r(Si) ≤ r(siin) = 0,

which contradicts (3.8). The proof of the lower bound in (3.1) follows the same lines.
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3.2. First pressure bounds. The following properties will be used frequently:

Lemma 3.2. The fact that pc is strictly decreasing and (2.34) yield the following:

P i
w > P j

w, and P i
o ≤ P j

o implies Si ≥ Sj, (3.10)

If P i
w = P j

w, then P i
o ≥ P j

o if and only if Si ≤ Sj. (3.11)

If P i
o = P j

o , then P i
w ≤ P j

w, if and only if Si ≤ Sj. (3.12)

Let us start with a lower bound that removes the degeneracy caused by the mobilities when
they multiply the discrete pressures.

Lemma 3.3. Let pwg and pog be defined in (1.12). We have for all n and any i and j

η∗(U
n,j
w − Un,i

w )2 ≤ ηw(Sn,ijw )(P n,j
w − P n,i

w )2 + ηo(S
n,ij
o )(P n,j

o − P n,i
o )2. (3.13)

Proof. To simplify the notation, we drop the superscript n. The second mean formula for
integrals gives

pwg(S
j)− pwg(Si) =

∫ Sj

Si
fo(s)p

′
c(s)ds = fo(ξ)(pc(S

j)− pc(Si)), (3.14)

for some ξ between Si and Sj. Using (2.34) we write

U j
w − U i

w = (1− fo(ξ))(P j
w − P i

w) + fo(ξ)(P
j
o − P i

o) = fw(ξ)(P j
w − P i

w) + fo(ξ)(P
j
o − P i

o).

Therefore since fw + fo = 1, we have

(U j
w − U i

w)2 ≤ ηw(ξ)

ηw(ξ) + ηo(ξ)
(P j

w − P i
w)2 +

ηo(ξ)

ηw(ξ) + ηo(ξ)
(P j

o − P i
o)

2. (3.15)

We now consider six cases.

1) If P i
w > P j

w and P i
o ≤ P j

o , then ηw(Sijw ) = ηw(Si) and ηo(S
ij
o ) = ηo(S

j) when P i
o < P j

o ;

when P i
o = P j

o , the value of ηo does not matter. From (3.10) we then have Si ≥ Sj. Since
ηw is increasing, ηw(ξ) ≤ ηw(Si) and since ηo is decreasing, ηo(ξ) ≤ ηo(S

j). Thus we have

(U j
w − U i

w)2 ≤ ηw(Sijw )

ηw(ξ) + ηo(ξ)
(P j

w − P i
w)2 +

ηo(S
ij
o )

ηw(ξ) + ηo(ξ)
(P j

o − P i
o)

2,

and with (1.8)

(U j
w − U i

w)2 ≤ 1

η∗

(
ηw(Sijw )(P j

w − P i
w)2 + ηo(S

ij
o )(P j

o − P i
o)

2
)
. (3.16)
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2) If P i
w > P j

w and P i
o > P j

o , then ηw(Sijw ) = ηw(Si) and ηo(S
ij
o ) = ηo(S

i). From

ηo(S
i)(pc(S

j)− pc(Si)) = (ηo(S
i) + ηw(Si))

∫ Sj

Si
fo(S

i)p′c(s)ds,

and (3.14), we derive

ηo(S
i)(pc(S

j)− pc(Si))−(ηo(S
i) + ηw(Si))(pwg(S

j)− pwg(Si))

= (ηo(S
i) + ηw(Si))

∫ Sj

Si
(fo(S

i)− fo(s))p′c(s)ds.

As pc and fo are decreasing, the above right-hand side is negative. Hence

ηo(S
i)(pc(S

j)− pc(Si))− (ηo(S
i) + ηw(Si))(pwg(S

j)− pwg(Si)) ≤ 0. (3.17)

We multiply (3.17) by (P j
o − P i

o) + (P j
w − P i

w) < 0 and use (2.34),(
ηo(S

i)(pc(S
j)−pc(Si))−(ηo(S

i)+ηw(Si))(pwg(S
j)−pwg(Si))

) (
2(P j

w − P i
w) + pc(S

j)− pc(Si)
)
≥ 0.

By expanding and using the next inequality implied by (3.14), if fo(ξ) 6= 0,

(pwg(S
j)− pwg(Si))(pc(Sj)− pc(Si)) ≥ (pwg(S

j)− pwg(Si))2,

we obtain

ηo(S
i)(pc(S

j)− pc(Si))2 + 2ηo(S
i)(pc(S

j)− pc(Si))(P j
w − P i

w) ≥
(ηo(S

i) + ηw(Si))(pwg(S
j)− pwg(Si))

(
2(P j

w − P i
w) + pwg(S

j)− pwg(Si)
)
.

When (ηo(S
i) + ηw(Si))(P j

w − P i
w)2 is added to both sides, this becomes

ηw(Si)(P j
w − P i

w)2 + ηo(S
i)(P j

o − P i
o)

2 ≥ (ηo(S
i) + ηw(Si))(U j

w − U i
w)2,

and (1.8) implies the desired result. It remains to consider the case fo(ξ) = 0, i.e., pwg(S
j) =

pwg(S
i). If ηo(S

i) 6= 0, then (3.17) yields

pc(S
j)− pc(Si) ≤ 0 which implies P i

o − P j
o ≥ P i

w − P j
w,

and we deduce immediately

ηw(Si)(P j
w − P i

w)2 + ηo(S
i)(P j

o − P i
o)

2 ≥ (ηw(Si) + ηo(S
i))(P j

w − P i
w)2 ≥ η∗(P

j
w − P i

w)2.

When ηo(S
i) = 0, we have trivially

ηw(Si)(P j
w − P i

w)2 + ηo(S
i)(P j

o − P i
o)

2 = ηw(Si)(P j
w − P i

w)2 ≥ η∗(P
j
w − P i

w)2.

3) If P i
w ≤ P j

w and P i
o > P j

o , then ηw(Sijw ) = ηw(Sj) and ηo(S
ij
o ) = ηo(S

i) in the case of a

strict inequality; also Si ≤ Sj. Then (3.15) and the monotonic properties of ηw and ηo
yield (3.13). If P i

w = P j
w, then according to (3.11), Si ≤ Sj and the same conclusion holds.
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4) If P i
w ≤ P j

w and P i
o = P j

o , then from (3.12), we have Si ≤ Sj and with (3.15)

(U j
w − U i

w)2 ≤ ηw(ξ)

ηw(ξ) + ηo(ξ)
(P j

w − P i
w)2 ≤ ηw(Sijw )

ηw(ξ) + ηo(ξ)
(P j

w − P i
w)2,

which is the desired result.

5) Similarly, if P i
w = P j

w and P i
o < P j

o , then from (3.11), we have Sj ≤ Si and with (3.15)

(U j
w − U i

w)2 ≤ ηo(ξ)

ηw(ξ) + ηo(ξ)
(P j

o − P i
o)

2 ≤ ηo(S
ij
o )

ηw(ξ) + ηo(ξ)
(P j

o − P i
o)

2.

6) If P i
w < P j

w and P i
o < P j

o , (3.13) follows from the second case by switching i and j.

The pressure bound in the next theorem is the one that arises naturally from the left-hand
side of (2.42) and (2.43).

Theorem 3.4. There exists a constant C, independent of h and τ , such that

τ
N∑
n=1

M∑
i,j=1

cij
(
ηw(Sn,ijw )(P n,i

w − P n,j
w )2 + ηo(S

n,ij
o )(P n,i

o − P n,j
o )2

)
≤ C. (3.18)

Proof. We test (2.42) by P n
w,h, (2.43) by P n

o,h, add the two equations, multiply by τ and
sum over n from 1 to N . By using (2.44) and (2.41), we obtain

−
N∑
n=1

(
Snh − Sn−1

h , Ihpc(S
n
h )
)ϕ
h

+
1

2

N∑
n=1

τ
∑
α=w,o

M∑
i,j=1

cijηα(Sn,ijα )(P n,i
α − P n,j

α )2

=
N∑
n=1

τ
∑
α=w,o

(
fα(snin,h)q̄

n
h − fα(Snh )qn

h
, P n

α,h

)
h
.

(3.19)

Following [16], the first term in (3.19) is treated with the primitive gc of pc, see (1.11).
Indeed, by the mean-value theorem, there exists ξ between Sn,i and Sn−1,i such that

gc(S
n,i)− gc(Sn−1,i) = −(Sn,i − Sn−1,i)pc(ξ).

As the function pc is decreasing, then pc(ξ) ≥ pc(S
n,i) when Sn,i ≥ Sn−1,i and pc(ξ) ≤

pc(S
n,i) when Sn,i ≤ Sn−1,i. In both cases, we have

gc(S
n,i)− gc(Sn−1,i) ≤ −(Sn,i − Sn−1,i)pc(S

n,i),

and owing that ϕ is positive and constant in time, (3.19) can be replaced by the inequality

(
gc(S

N
h )− gc(S0

h), 1
)ϕ
h

+
1

2

N∑
n=1

τ
∑
α=w,o

M∑
i,j=1

cijηα(Sn,ijα )(P n,i
α − P n,j

α )2

≤
N∑
n=1

τ
∑
α=w,o

(
fα(snin,h)q̄

n
h − fα(Snh )qn

h
, P n

α,h

)
h
.

(3.20)
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As the first term in the above left-hand side is bounded, owing to the continuity of gc and
boundedness of Sh,τ , it suffices to handle the right-hand side. Let us drop the superscript
n and treat one term in the time sum. Following again [16], in view of Lemma 3.3 we use
the auxiliary pressures pwg and pwo, defined in (1.12). Clearly, (1.14) and (2.34) imply

P i
w + pwg(S

i) + pog(S
i) + pc(0) = P i

o, ∀i. (3.21)

Using this, a generic term, say Y , in the right-hand side of (3.20) can be expressed as

Y =
(
q̄h − qh, Uw,h

)
h

+
(
fo(sin,h)q̄h − fo(Sh)qh, pc(0)

)
h

+
(
fo(sin,h)q̄h − fo(Sh)qh, pog(Sh)

)
h
−
(
fw(sin,h)q̄h − fw(Sh)qh, pwg(Sh)

)
h

= T1 + · · ·+ T4.

We now bound each term Ti. For T1, (2.31) implies that any constant β can be added
to Uw,h, in particular β can be chosen so that the sum has zero mean value in Ω. Hence,
considering the generalized Poincaré inequality

∀v ∈ H1(Ω), ‖v‖L2(Ω) ≤ C
(∣∣ ∫

Ω

v
∣∣+ ‖∇ v‖L2(Ω)

)
, (3.22)

with a constant C, depending only on the domain Ω, we have

‖Uw,h + β‖h ≤ C‖Uw,h + β‖L2(Ω) ≤ C‖∇Uw,h‖L2(Ω),

with another constant C. Then Young’s inequality yields

|T1| ≤
C2

2η∗
‖q̄h − qh‖

2
h +

η∗
4
‖∇Uw,h‖2

L2(Ω),

and with Lemma 3.3, this becomes

|T1| ≤
C2

2η∗
‖q̄h − qh‖

2
h +

1

4

M∑
i,j=1

cij
(
ηw(Sij)(P j

w − P i
w)2 + ηo(S

ij)(P j
o − P i

o)
2
)
.

The term T2 is easily bounded since pc(0) is a number, and so are the terms T3 and T4, in
view of the boundedness of the saturation and the continuity of pog and pwg. We thus have

|T2 + T3 + T4| ≤ C(‖q̄h‖L1(Ω) + ‖q
h
‖L1(Ω)).

Then substituting these bounds for each n into (3.20), we obtain

1

4
τ

N∑
n=1

M∑
i,j=1

cij
(
ηw(Sn,ijw )(P n,i

w − P n,j
w )2 + ηo(S

n,ij
o )(P n,i

o − P n,j
o )2

)
≤ C

(
‖q̄h,τ − qh,τ‖

2
L2(Ω×]0,T [)

+ ‖q̄h,τ‖L1(Ω×]0,T [) + ‖q
h,τ
‖L1(Ω×]0,T [)

)
,

thus proving (3.18).
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By combining Theorem 3.4 with Lemma 3.3, we immediately derive a bound on the discrete
auxiliary pressures. The bound (3.23) with α = o follows from the same with α = w, (1.14),
and (2.34).

Theorem 3.5. We have for α = w, o

η∗‖∇Uα,h,τ‖2
L2(Ω×]0,T [) ≤ C, (3.23)

with the constant C of (3.18).

4. Existence of numerical solution. We fix n ≥ 1 and assume there exists a solution
(Sn−1

h , P n−1
w,h ) at time tn−1 with 0 ≤ Sn−1

h ≤ 1. We want to show existence of a solution
(Snh , P

n
w,h) by means of the topological degree [11, 12].

Let θ be a constant parameter in [0, 1]. For any continuous function f : [0, 1] → IR, we

define the transformed function f̃ : [0, 1]→ IR by

∀s ∈ [0, 1], f̃(s) = f(ts+ (1− t)θ).

Since θ is fixed, when t = 0, f̃(s) = f(θ), a constant independent of s. Now, (2.45) implies
that any solution Pw,h,τ of (2.42)–(2.45) belongs to the following subspace X0,h of Xh,

X0,h = {Λh ∈ Xh;

∫
Ω

Λh = 0}. (4.1)

This suggests to define the mapping F : [0, 1]×Xh ×X0,h → Xh ×X0,h by

F(t, ζ,Λ) = (Ah, Ah +Bh),

where Ah, respectively Bh, solves for all Θh ∈ Xh,

(Ah,Θh) =
1

τ
(ζh − Sn−1

h ,Θh)
ϕ
h −

[
Λh, Ih(η̃w(ζh)); Λh,Θh

]
h

−
(
Ih(f̃w(snin,h))tq̄

n
h − Ih(f̃w(ζh))tq

n

h
,Θh

)
h
,

(4.2)

(Bh,Θh) = −1

τ
(ζh − Sn−1

h ,Θh)
ϕ
h −

[
Po,h, Ih(η̃o(ζh));Po,h,Θh

]
h

−
(
Ih(f̃o(s

n
in,h))tq̄

n
h − Ih(f̃o(ζh))tqnh,Θh

)
h
,

(4.3)

and Po,h is defined by

Po,h = Λh − Ih(p̃c(ζh)). (4.4)

The choice of η̃w(ζh) in (4.2) (respectively η̃o(ζh) in (4.3)) is given by (2.36) (respectively
(2.37)) where Λh plays the role of Pw,h and Po,h is defined in (4.4). As in (2.36) and (2.37),
it leads us to introduce the variables ζ ijw and ζ ijo for all 1 ≤ i, j ≤ M . Clearly, (4.2)–(4.4)
determine uniquely Ah and Bh, and it is easy to check that Ah +Bh belongs to X0,h.
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The mapping t 7→ F(t, ζh,Λh) is continuous. Indeed, since the space has finite dimension,
we only need to check continuity of the upwinding. By splitting x into its positive and
negative part, x = x+ + x−, the upwind term, say η̃w(ζ ijw )(P j

w − P i
w) reads

η̃w(ζ ijw )(P j
w − P i

w) = ηw(tζ i + (1− t)θ)
(
(P j

w − P i
w)−
)

+ ηw(tζj + (1− t)θ)
(
(P j

w − P i
w)+

)
,

which is continuous with respect to t.

We remark that F(1, ζh,Λh) = 0 implies that (ζh,Λh) solves (2.42)–(2.45). Conversely, if
(ζh,Λh) solves (2.42)–(2.45) then F(1, ζh,Λh) = 0. Thus showing existence of a solution
to the problem (2.42)–(2.45) is equivalent to showing existence of a zero of F(1, ζh,Λh).
Before proving existence of a zero, we use the estimates established in the previous section
to determine an a priori bound of any zero (ζh,Λh) of F(1, ζh,Λh).

4.1. A priori bounds on (ζh,Λh). In the following we consider t ∈ [0, 1] and (ζh,Λh) ∈
Xh ×X0,h that satisfy

F(t, ζh,Λh) = 0. (4.5)

We first show that ζh satisfies a maximum principle.

Proposition 4.1. The following bounds hold for all (t, ζh,Λh) satisfying (4.5):

0 ≤ ζh ≤ 1. (4.6)

Proof. Either t ∈]0, 1] or t = 0. The proof for t ∈]0, 1] follows closely the argument used in
proving Theorem 3.1 and is left to the reader. For t = 0 we proceed again by contradiction.
Assume first that ‖ζh‖L∞(Ω) > 1, i.e., there is a node i such that

ζ i = ‖ζh‖L∞(Ω) > 1 ≥ Sn−1,i.

As t = 0, (4.5) reduces to∑
j 6=i

cijηw(θ)(Λi − Λj) > 0, −
∑
j 6=i

cijηo(θ)(Λ
i − Λj) > 0, ∀1 ≤ i ≤M.

Since ηo and ηw are non-negative functions satisfying (1.8), the inequalities above yield a
contradiction. A similar argument is used to show that ζh ≥ 0.

Next we show the following bound on Λh.

Proposition 4.2. There is a constant C such that for all t ∈ [0, 1] we have

η∗

M∑
i,j=1

cij
(
Λj − Λi + pwg(tζ

j + (1− t)θ)− pwg(tζ i + (1− t)θ)
)2 ≤ C. (4.7)

21



Proof. The proof follows closely that of Theorem 3.5. First we show there exists a constant
C1 independent of t such that

M∑
i,j=1

cij

(
ηw(tζ ijw + (1− t)θ)(Λj − Λi)2 + ηo(tζ

ij
o + (1− t)θ)(P j

o,h − P
i
o,h)

2 ≤ C1,

with Po,h defined in (4.4). This bound is obtained via arguments similar to those used in
proving Theorem 3.4. The main difference is that the formula is neither summed over n
nor multiplied by the time step τ . As a consequence, the constant C1 includes a term of
the form τ−1‖gc‖L∞(Ω) arising from the bound of the discrete time derivative. To finish the
proof we must show that

η∗
(
Λj − Λi + pwg(tζ

j + (1− t)θ)− pwg(tζ i + (1− t)θ)
)2 ≤ ηw(tζ ij + (1− t)θ)(Λj − Λi)2

+ηo(tζ
ij
o + (1− t)θ)(P j

o − P i
o)

2.

By (1.8), this is trivially satisfied when t = 0. When t ∈]0, 1], the argument is the same as
in the proof of Lemma 3.3.

Propositions 4.1 and 4.2 are combined to obtain a bound on ‖ζh‖h + ‖Λh‖h.
Proposition 4.3. There exists a constant R1 > 0, independent of t ∈ [0, 1], such that
any solution (ζh,Λh) of (4.5) satisfies

‖ζh‖h + ‖Λh‖h ≤ R1. (4.8)

Proof. According to Proposition 4.1, there exists a constant C1 independent of t such that

‖ζh‖h ≤ C1.

To establish a bound on ‖Λh‖h, we infer from (1.12) that the function |pwg| is bounded
by pc(0)− pc(1) because fo is bounded by one and pc is a decreasing function. Thus (4.7)
implies that there exists a constant C2 independent of t that satisfies

M∑
i,j=1

cij
(
Λj − Λi

)2 ≤ C2, i.e., ‖∇Λh‖L2(Ω) ≤
√
C2√
2
, (4.9)

owing to (2.10). As Λh ∈ X0,h, the generalized Poincaré inequality (3.22) shows there
exists a constant C3 independent of t such that

‖Λh‖L2(Ω) ≤ C3.

Then the equivalence of norm (2.5) yields

‖Λh‖h ≤ C4,

and (4.8) follows by setting R1 = C1 + C4, a constant independent of t.
22



4.2. Proof of existence. For any R > 0, let BR denote the ball

BR = {(ζh,Λh) ∈ Xh ×X0,h : ‖ζh‖h + ‖Λh‖h ≤ R}, (4.10)

and let R0 = R1 + 1, where R1 is the constant of (4.8). Since all solutions (ζh,Λh) of
(4.5) are in the ball BR1 , this function has no zero on the boundary ∂BR0 . Existence of a
solution of (2.42)–(2.45) follows from the following result:

Theorem 4.4. The equation F(1, ζh,Λh) = 0 has at least one solution (ζh,Λh) ∈ BR0.

Proof. The proof proceeds in two steps.
First, we show that the system with t = 0 has a solution:

F(0, ζh,Λh) = 0.

This is a square linear system in finite dimension, so existence is equivalent to uniqueness.
Thus we assume that it has two solutions, and for convenience, we still denote by (ζh,Λh)
the difference between the two solutions. The system reads

m̃i

τ
ζ ih −

∑
j 6=i,j∈N (i)

cijηw(θ)(Λj − Λi) = 0, 1 ≤ i ≤M, (4.11)

−m̃i

τ
ζ ih −

∑
j 6=i,j∈N (i)

cijηo(θ)(Λ
j − Λi) = 0, 1 ≤ i ≤M, (4.12)

∑
i

miΛ
i = 0. (4.13)

We add the first two equations, multiply by Λi, and sum over i. Then (2.10) and (2.41)
imply that Λh is a constant and finally (4.13) shows that this constant is zero. This yields
ζh = 0.

Next, we argue on the topological degree. Since the topological degree of a linear map is
the sign of its determinant, we have

d(F(0, ζh,Λh), BR0 , 0) 6= 0.

We also know that d(F(t, ζh,Λh), BR0 , 0) is independent of t since the mapping t 7→
F(t, ζh,Λh) is continuous and for every t ∈ [0, 1], if F(t, ζh,Λh) = 0, then (ζh,Λh) does not
belong to ∂BR0 . Therefore we have

d(F(1, ζh,Λh), BR0 , 0) = d(F(0, ζh,Λh), BR0 , 0) 6= 0.

This implies that F(1, ζh,Λh) has a zero (ζh,Λh) ∈ BR0 .

5. Additional pressure estimates. The pressure estimates (3.18) and (3.23) are
not sufficient to pass to the limit in the scheme (2.42)–(2.45). These are nonlinear equa-
tions and we need strong convergences that do not stem directly from (3.18) and (3.23).
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Following [16], we propose to derive a bound for the gradient of g, see (1.13), at s = Sh,τ .
Then, under suitable assumptions on the behavior of η′w, η′o, and p′c, we shall prove the
strong convergence of g(Sh,τ ) in L2(Ω×]0, T [) and in turn the strong convergence of Sh,τ
in L2(Ω×]0, T [).

Estimating the gradient of g(Sh,τ ) is a long and intricate process; it is based on the fact
that

|g(Sn,j)− g(Sn,i)|2 ≤ C
(
fw(Sn,i)− fw(Sn,j)

)(
g(Sn,i)− g(Sn,j)

)
,

see (5.59). Therefore, we must derive a bound for the product of the gradients of g and
fw. This is split into several steps.

5.1. A preliminary inequality. Our starting step is the following inequality:

Proposition 5.1. There exists a constant C1 independent of h and τ such that

−
N∑
n=1

τ
∑
α=o,w

[
P n
α,h, ηα(Snα,h); fα(Snh ), P n

α,h

]
h

= R1, (5.1)

where the remainder R1 satisfies |R1| ≤ C1.

Proof. By testing (2.42) with Ihfw(Snh ) and (2.43) with Ihfo(S
n
h ), adding the resulting

equalities, and multiplying by τ , we obtain

N∑
n=1

(
Snh − Sn−1

h , fw(Snh )− fo(Snh )
)ϕ
h
−

N∑
n=1

τ
∑
α=o,w

[
P n
α,h, ηα(Snα,h); fα(Snh ), P n

α,h

]
h

=

∫ T

0

((
q̄h,τ ,

∑
α=o,w

fα(sin,h,τ )fα(Sh,τ )
)
h
−
(
q
h,τ
,
∑
α=o,w

(fα(Sh,τ ))
2
)
h

)
≤ 4‖q̄‖L1(Ω×]0,T [),

(5.2)

in view of (1.6) and (1.9). To control the time difference of Sh,τ , we introduce the global
flux defined by

∀x ∈ [0, 1], G(x) =

∫ x

0

(
fw(s)− fo(s)

)
ds, (5.3)

and we write

(Snh − Sn−1
h )

(
fw(Snh )− fo(Snh )

)
= (Snh − Sn−1

h )G′(Snh ).

But by (1.6), G′(x) = 2fw(x)− 1 is increasing. Hence, considering that

G(Snh )−G(Sn−1
h ) = (Snh − Sn−1

h )G′(c),

for some c between Snh − Sn−1
h , we easily check that

G(Snh )−G(Sn−1
h ) ≤ (Snh − Sn−1

h )G′(Snh ).
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Thus, the properties of ϕ imply

N∑
n=1

(
Snh − Sn−1

h , fw(Snh )− fo(Snh )
)ϕ
h
≥ (G(SNh ), 1)ϕh − (G(S0

h), 1)ϕh .

But the boundedness of Sh,τ , the continuity of fα, and the properties of ϕ imply∣∣(G(SNh ), 1)ϕh − (G(S0
h), 1)ϕh

∣∣ ≤ C ′,

with a constant C ′ independent of h and τ . By substituting these inequalities into (5.2)
we derive (5.1) with C1 = 4 ‖q̄‖L1(Ω×]0,T [) + C ′.

5.2. Some discrete total flux inequalities. In this section, it is convenient to work
directly on the scheme (2.32)–(2.33). For each index i, the sum of the equations (2.32) and
(2.33) give, for 1 ≤ i ≤M and 1 ≤ n ≤ N ,

−
∑

j 6=i,j∈N (i)

cij

[
ηw(Sn,ijw )(P n,j

w − P n,i
w ) + ηo(S

n,ij
o )(P n,j

o − P n,i
o )
]

= mi(q̄
n,i − qn,i).

Following [16], this suggests to define a discrete anti-symmetric upwinded total flux,

F n,ij = −ηw(Sn,ijw )(P n,j
w − P n,i

w )− ηo(Sn,ijo )(P n,j
o − P n,i

o ); (5.4)

it satisfies ∑
j 6=i,j∈N (i)

cijF
n,ij = mi(q̄

n,i − qn,i). (5.5)

This identity yields a first bound for the discrete total flux.

Proposition 5.2. The discrete total flux F n,ij satisfies the following bounds for α = w, o:

∣∣ N∑
n=1

τ
M∑
i,j=1

f 2
α(Sn,i)cijF

n,ij
∣∣ ≤ 2 ‖q̄‖L1(Ω×]0,T [). (5.6)

Proof. The statement follows by multiplying (5.5) with τ f 2
α(Sn,i), and summing

N∑
n=1

τ

M∑
i,j=1

f 2
α(Sn,i)cijF

n,ij =
N∑
n=1

τ
M∑
i=1

mif
2
α(Sn,i)(q̄n,i − qn,i) ≤ 2 ‖q̄‖L1(Ω×]0,T [).

To simplify some of the calculations below, it is convenient to drop the time superscript n,
when there is no ambiguity, and restore it when needed.

By using the relation (1.7), F i,j can also be written as

F ij =−
(
ηw(Sijw ) + ηo(S

ij
o )
)
(P j

w − P i
w)− ηo(Sijo )(pc(S

j)− pc(Si))
=−

(
ηw(Sijw ) + ηo(S

ij
o )
)
(P j

o − P i
o) + ηw(Sijw )(pc(S

j)− pc(Si)).
(5.7)
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In order to insert it into (5.1), we bring forward F ij in the expressions for ηα(Sijα )(P j
α−P i

α),
α = w, o. Starting from the identity

ηw(Sijw )(P j
w − P i

w) = fw(Sijw )
[(
ηw(Sijw ) + ηo(S

ij
o )
)
(P j

w − P i
w) + ηo(S

ij
o )(pc(S

j)− pc(Si))

−ηo(Sijo )(pc(S
j)− pc(Si)) +

(
ηo(S

ij
w )− ηo(Sijo )

)
(P j

w − P i
w)
]
,

the expression (5.7) leads to

ηw(Sijw )(P j
w−P i

w) = fw(Sijw )
[
−F ij−ηo(Sijo )(pc(S

j)−pc(Si))+
(
ηo(S

ij
w )−ηo(Sijo )

)
(P j

w−P i
w)
]
.

(5.8)
Similarly,

ηo(S
ij
o )(P j

o −P i
o) = fo(S

ij
o )
[
−F ij+ηw(Sijw )(pc(S

j)−pc(Si))+
(
ηw(Sijo )−ηw(Sijw )

)
(P j

o −P i
o)
]
.

(5.9)
We also introduce the anti-symmetric quantities that collect the terms other than F ij in
(5.8) and (5.9),

Cij
w = ηo(S

ij
o )
(
pc(S

j)− pc(Si)
)
−
(
ηo(S

ij
w )− ηo(Sijo )

)
(P j

w − P i
w), (5.10)

Cij
o = −ηw(Sijw )

(
pc(S

j)− pc(Si)
)
−
(
ηw(Sijo )− ηw(Sijw )

)
(P j

o − P i
o). (5.11)

With this notation, we have

ηα(Sijα )(P j
α − P i

α) = fα(Sijα )
[
− F ij − Cij

α

]
, α = w, o.

Thus, the term that is summed over i in (5.1) has the expression

−
∑
α=w,o

fα(Si)
∑

j 6=i,j∈N (i)

cijηα(Sijα )(P j
α − P i

α) =
∑
α=w,o

fα(Si)
∑

j 6=i,j∈N (i)

cijfα(Sijα )
(
F ij + Cij

α

)
.

(5.12)

Now, we reintroduce the superscript n and to simplify, we set

A1,i,n =
∑
α=w,o

fα(Sn,i)
M∑
j=1

cijfα(Sn,ijα )F n,ij, (5.13)

Aα,i,n = fα(Sn,i)
M∑
j=1

cijfα(Sn,ijα )Cn,ij
α . (5.14)

With this notation, our next proposition is derived by substituting (5.12)–(5.14) into (5.1).

Proposition 5.3. We have, with the remainder R1 of (5.1),

N∑
n=1

τ

M∑
i=1

A1,i,n +
N∑
n=1

τ
M∑
i=1

∑
α=w,o

Aα,i,n = R1. (5.15)

We must transform suitably each term in this sum to bring forward g. Let us start with
the first term of (5.15), i.e., the combination of the discrete total flux.
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5.3. Combination of the discrete total flux. To simplify, let A1 denote the first
term,

A1 =
N∑
n=1

τ
M∑
i,j=1

∑
α=w,o

[
fα(Sn,i)cijfα(Sn,ijα )F n,ij

]
.

Inspired by (5.6), we introduce the difference

A2 = A1 −
N∑
n=1

τ
M∑
i,j=1

(
f 2
w(Sn,i) + f 2

o (Sn,i)
)
cijF

n,ij.

Clearly, A2 collects the discrepancies arising from the upwinding,

A2 =
N∑
n=1

τ
M∑
i,j=1

∑
α=w,o

[
fα(Sn,i)cij

(
fα(Sn,ijα )− fα(Sn,i)

)
F n,ij

]
. (5.16)

As (5.6) yields
A1 = A2 +R2, with |R2| ≤ 4 ‖q̄‖L1(Ω×]0,T [), (5.17)

a bound for A1 stems from a bound for A2. To this end, in view of (5.16), it is useful to
consider the four subsets of indices j ∈ N (i), j 6= i, union and intersection:

Nw(i) = {j ∈ N (i) ; P n,j
w > P n,i

w }, No(i) = {j ∈ N (i) ; P n,j
o > P n,i

o }
Nw,S(i) = {j ∈ N (i), j 6= i ; P n,j

w = P n,i
w , Sn,j ≥ Sn,i},

No,S(i) = {j ∈ N (i), j 6= i ; P n,j
o = P n,i

o , Sn,j ≤ Sn,i},
UN (i) = Nw(i) ∪No(i) ∪Nw,S(i) ∪No,S(i),

NF(i) = {j ∈ N (i) ; P n,i
w > P n,j

w and P n,i
o > P n,j

o }.

(5.18)

Strictly speaking, these subsets should we written with the superscript n, but we omit it
for the sake of simplicity. Then we have the following bound for A2:

Proposition 5.4. There exists a constant C2, independent of h and τ , such that

A2 = −1

2

N∑
n=1

τ
M∑
i=1

∑
j∈UN (i)

cij
(
fw(Sn,j)− fw(Sn,i)

)2
F n,ij +R3, (5.19)

where the remainder R3 satisfies

|R3| ≤ C2 = 2 ‖q̄‖L1(Ω×]0,T [).

Proof. Let us drop the superscript n. By definition, fw(Sijw ) − fw(Si) = 0 when P i
w > P j

w

and when P i
w = P j

w and Si > Sj. Similarly, fo(S
ij
o )− fo(Si) = 0 when P i

o > P j
o and when

P i
o = P j

o and Sn,i < Sj. Therefore, the nth term in A2, say a2, reduces to

a2 =
M∑
i=1

∑
α=w,o

fα(Si)
∑

j∈Nα(i)∪Nα,S(i)

cij
(
fα(Sj)− fα(Si)

)
F ij.
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By expanding the products, this can be written

a2 = −1

2

M∑
i=1

∑
α=w,o

∑
j∈Nα(i)∪Nα,S(i)

cij
(
f 2
α(Si)− f 2

α(Sj) + (fα(Si)− fα(Sj))2
)
F ij. (5.20)

Since cij vanishes when j is not a neighbor of i, we have, by interchanging i and j and
using the anti-symmetry of F ij and the symmetry of cij,

−
M∑
i=1

∑
j∈Nw(i)

cijf
2
w(Sj)F ij =

M∑
i=1,j=1,P jw<P iw

cijf
2
w(Si)F ij. (5.21)

Similarly,

−
M∑
i=1

∑
j∈Nw,S(i)

cijf
2
w(Sj)F ij =

M∑
i=1,j=1,P iw=P jw,Si≥Sj

cijf
2
w(Si)F ij. (5.22)

Hence

−1

2

M∑
i=1

∑
j∈Nw(i)

cij
(
f 2
w(Si)− f 2

w(Sj))F ij = −1

2

M∑
i=1,j=1,P iw 6=P

j
w

cijf
2
w(Si)F ij,

and

−1

2

M∑
i=1

∑
j∈Nw,S(i)

cij
(
f 2
w(Si)− f 2

w(Sj)
)
F ij = −1

2

M∑
i=1,j=1,P iw=P jw

cijf
2
w(Si)F ij,

because there is no contribution from the indices i, j such that P i
w = P j

w, S
i = Sj since in

this case the factor F ij = 0. The same is true for the non-wetting phase. Thus

−1

2

∑
α=w,o

M∑
i=1

∑
j∈Nα(i)∪Nα,S(i)

cij
(
f 2
α(Si)− f 2

α(Sj)
)
F ij = −1

2

∑
α=w,o

M∑
i=1,j=1

cijf
2
α(Si)F ij.

By comparing with (5.6), we see that

∣∣1
2

N∑
n=1

τ
M∑
i=1

∑
α=w,o

∑
j∈Nα(i)∪Nα,S(i)

cij
(
f 2
α(Sn,i)− f 2

α(Sn,j)
)
F n,ij

∣∣ ≤ 2‖q̄‖L1(Ω×]0,T [). (5.23)

This and the equality(
fo(S

n,j)− fo(Sn,i)
)2

=
(
fw(Sn,j)− fw(Sn,i)

)2
,

readily imply (5.19).

Now, we set

Aij = cij
(
fw(Sj)− fw(Si)

)2
F ij, a3 = −1

2

M∑
i=1

∑
j∈UN (i)

Aij. (5.24)
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The next proposition simplifies the expression for a3.

Proposition 5.5. We have

a3 =
M∑
i=1

∑
j∈NF (i)

cij
(
fw(Sj)− fw(Si)

)2
F ij. (5.25)

Proof. By expanding the indices in the set UN (i), interchanging the indices i and j, and
using the anti-symmetry of Aij, we derive

a3 =
1

2

(( ∑
α=w,o

∑
P iα>P

j
α

Aij
)

+
∑

P iw=P jw,Sj≤Si

Aij +
∑

P io=P jo ,Si≤Sj

Aij
)
.

Now, we split the first two sums above as follows:∑
α=w,o

∑
P iα>P

j
α

Aij = 2
∑

P iw>P
j
w,P io>P

j
o

Aij +
∑

P iw>P
j
w,P io≤P

j
o

Aij +
∑

P io>P
j
o ,P iw≤P

j
w

Aij.

This leads to

a3 =
∑

j∈NF (i)

Aij +
1

2

( ∑
P iw>P

j
w,P io≤P

j
o

Aij +
∑

P io>P
j
o ,P iw≤P

j
w

Aij +
∑

P iw=P jw,Sj≤Si

Aij +
∑

P io=P jo ,Si≤Sj

Aij
)
.

The anti-symmetry of Aij gives∑
P iw>P

j
w,P io≤P

j
o

Aij = −
∑

P jw>P iw,P
j
o<P io

Aij −
∑

P jw>P iw,P
j
o=P io

Aij.

By substituting and applying twice again the anti-symmetry of Aij, we derive

a3 =
∑

j∈NF (i)

Aij +
1

2

( ∑
P io>P

j
o ,P iw=P jw

Aij +
∑

P iw>P
j
w,P io=P jo

Aij −
∑

P iw=P jw,Si≤Sj

Aij −
∑

P io=P jo ,Sj≤Si

Aij
)
.

(5.26)
Note that ∑

P io>P
j
o ,P iw=P jw

Aij =
∑

P io≥P
j
o ,P iw=P jw

Aij,

since the additional term is zero. Therefore, in view of first (3.11) and next (3.12),∑
P io>P

j
o ,P iw=P jw

Aij =
∑

P iw=P jw,Si≤Sj

Aij,
∑

P iw>P
j
w,P io=P jo

Aij =
∑

P io=P jo ,Si≥Sj

Aij.

Thus all terms multiplying 1
2

in (5.26) are cancelled and we recover (5.25).

By applying (5.17) and Propositions 5.4 and 5.5, A1 has the following expression:
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Proposition 5.6. We have
N∑
n=1

τ
M∑
i,j=1

∑
α=w,o

[
fα(Sn,i)cijfα(Sn,ijα )F n,ij

]
=

N∑
n=1

τ

M∑
i=1

∑
j∈NF (i)

cij
(
fw(Sn,j)− fw(Sn,i)

)2
F n,ij +R4,

(5.27)

where
|R4| ≤ 6 ‖q̄‖L1(Ω×]0,T [). (5.28)

This settles the contribution of the first term of (5.15); the second terms are handled in
the next subsection.

5.4. Terms involving the capillary pressure and mobility. These are the terms
Aα,i,n defined in (5.14). By virtue of the anti-symmetry of Cij, we can write for α = w, o

M∑
i,j=1

fα(Si)cijfα(Sijα )Cij
α = −1

2

M∑
i,j=1

(
fα(Sj)− fα(Si)

)
cijfα(Sijα )Cij

α . (5.29)

Owing to (1.6), the term with α = o in the right-hand side is 1
2

∑M
i,j=1

(
fw(Sj)−fw(Si)

)
cijfo(S

ij
o )Cij

o .
Therefore,∑
α=w,o

M∑
i=1

Aα,i,n =
1

2

M∑
i,j=1

cij
(
fw(Sn,j)−fw(Sn,i)

)(
−fw(Sn,ijw )Cn,ij

w +fo(S
n,ij
o )Cn,ij

o

)
. (5.30)

Let Kij denote the symmetric term

Kij := cij
(
fw(Sn,j)− fw(Sn,i)

)(
− fw(Sn,ijw )Cn,ij

w + fo(S
n,ij
o )Cn,ij

o

)
;

by virtue of this symmetry, we have∑
α=w,o

M∑
i=1

Aα,i,n =
∑

Pn,iw >Pn,jw

Kn,ij +
1

2

∑
Pn,iw =Pn,jw

Kn,ij. (5.31)

5.5. Combining all terms. By substituting (5.27) and (5.31) into (5.15), we obtain
the next lemma.

Lemma 5.7. We have

−
N∑
n=1

τ
∑
α=o,w

[
P n
α,h, ηα(Snα,h); fα(Snh ), P n

α,h

]
h

=
N∑
n=1

τ
[ M∑
i=1

( ∑
j∈NF (i)

cij
(
fw(Sn,j)− fw(Sn,i)

)2
F n,ij

−
∑

Pn,iw >Pn,jw

cij
(
fw(Sn,j)− fw(Sn,i)

)(
fw(Sn,ijw )Cn,ij

w − fo(Sn,ijo )Cn,ij
o

)
− 1

2

∑
Pn,iw =Pn,jw

cij
(
fw(Sn,j)− fw(Sn,i)

)(
fw(Sn,ijw )Cn,ij

w − fo(Sn,ijo )Cn,ij
o

))]
+R4.

(5.32)
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with R4 bounded by (5.28).

Thus, to bring forward g, we must suitably combine the terms of the above sum over i,
and this is done by examining all pairs of indices (i, j) involved in (5.32), i.e., the pairs of
indices in the following sets: (i) P i

w > P j
w and P i

o > P j
o , (ii) P i

w > P j
w and P i

o < P j
o , (iii)

P i
w > P j

w and P i
o = P j

o , (iv) P i
w = P j

w and P i
o > P j

o , (v) P i
w = P j

w and P i
o < P j

o . Note
that the sixth case that would be P i

w = P j
w and P i

o = P j
o brings no information because it

implies that Si = Sj.

For the argument below, we shall use the following intermediate result.

Proposition 5.8. For each indices i and j, there exist (non unique) points α and α′

between Si and Sj such that

g(Sj)− g(Si) = −ηo(α)fw(α)
(
pc(S

j)− pc(Si)
)

= −ηw(α′)fo(α
′)
(
pc(S

j)− pc(Si)
)
. (5.33)

Proof. By the definition (1.13),

g(Sj)− g(Si) = −
∫ Sj

Si
ηo(x)fw(x)p′c(x) dx = −

∫ Sj

Si
ηw(x)fo(x)p′c(x) dx. (5.34)

Since the functions ηofw and ηwfo are continuous and do not change sign between Si and
Sj, (5.33) follows from the second mean formula for integrals.

To simplify, the superscript n is dropped.

5.5.1. The case P i
w > P j

w and P i
o > P j

o . The following holds:

Proposition 5.9. Let P i
w > P j

w and P i
o > P j

o ; then the factor of τ in (5.32) satisfies

cij
(
fw(Sj)− fw(Si)

)((
fw(Sj)− fw(Si)

)
F ij −

(
fw(Si)Cij

w − fo(Si)Cij
o

))
≥ cij

(
fw(Sj)− fw(Si)

)(
g(Sj)− g(Si)

)
.

(5.35)

Proof. Let Eij denote the left-hand side of (5.35). In the case P i
w > P j

w and P i
o > P j

o , an
expansion of F ij, and Cij

α yields

Eij = = −cij
(
fw(Sj)− fw(Si)

)2(
ηw(Si) + ηo(S

i)
)(
P j
w − P i

w

)
− cij

(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)(
ηo(S

i)
(
fw(Sj)− fw(Si)

)
+ 2

ηw(Si)ηo(S
i)

ηw(Si) + ηo(Si)

)
.

As P i
w > P j

w, the first line in the above right-hand side is nonnegative and hence

Eij ≥ −cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
ηo(S

i)
(
fw(Sj) + fw(Si)

)
.

Now, either Si ≤ Sj or Si > Sj. If Si ≤ Sj, then fw(Sj) ≥ fw(Si) and pc(S
j) ≤ pc(S

i)
because fw is increasing and pc is decreasing. This implies in particular that

Eij ≥− cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
ηo(S

i)fw(Sj)

≥ −cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
ηo(x)fw(x),
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for any x between Si and Sj. Then (5.35) follows from the first part of (5.33).

If Si > Sj, then fw(Sj)− fw(Si) ≤ 0, pc(S
j)− pc(Si) ≥ 0, and we infer from (1.7) that Eij

reads

Eij =cij
(
fw(Sj)− fw(Si)

)[(
ηw(Si) + ηo(S

i)
)(
fw(Sj)− fw(Si)

)(
P i
o − P j

o

)
+
(
fw(Sj)− fw(Si)

)(
ηw(Si) + ηo(S

i)
)(
pc(S

j)− pc(Si)
)

+
(
pc(S

i)− pc(Sj)
)(
ηo(S

i)
(
fw(Sj)− fw(Si)

)
+ 2

ηw(Si)ηo(S
i)

ηw(Si) + ηo(Si)

)]
.

Since P i
o − P j

o > 0, the first line in the above right-hand side is nonnegative, and thus

Eij ≥cij
(
fw(Si)− fw(Sj)

)(
pc(S

j)− pc(Si)
)[(

fw(Si)− fw(Sj)
)(
ηw(Si) + ηo(S

i)
)

+
(
fw(Sj)− fw(Si)

)
ηo(S

i) + 2
ηw(Si)ηo(S

i)

ηw(Si) + ηo(Si)

]
,

which reduces to

Eij ≥ cij
(
fw(Si)− fw(Sj)

)(
pc(S

j)− pc(Si)
)
ηw(Si)

(
fo(S

j) + fo(S
i)
)
.

This leads for instance to

Eij ≥− cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
ηw(Si)fo(S

j)

≥ −cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
ηw(x)fo(x),

for any x between Si and Sj. Then (5.35) follows from the second part of (5.33).

5.5.2. The case P i
w > P j

w and P i
o < P j

o . We have

Proposition 5.10. Let P i
w > P j

w and P i
o < P j

o ; then the factor of τ in (5.32) satisfies

−cij
(
fw(Sj)− fw(Si)

)(
fw(Si)Cij

w − fo(Sj)Cij
o

)
≥ cij

(
fw(Sj)− fw(Si)

)(
g(Sj)− g(Si)

)
.

(5.36)

Proof. Let Eij denote the left-hand side of (5.36). We have P j
w−P i

w < 0 and P j
o −P i

o > 0.
Then Sijw = Si and Sijo = Sj; also Sj ≤ Si which implies that ηw(Sj) ≤ ηw(Si) and
ηo(S

j) ≥ ηo(S
i). The expression for Cij

α becomes (see (5.10) and (5.11))

Cij
w = ηo(S

j)
(
pc(S

j)− pc(Si)
)
−
(
ηo(S

i)− ηo(Sj)
)
(P j

w − P i
w),

Cij
o = −ηw(Si)

(
pc(S

j)− pc(Si)
)
−
(
ηw(Sj)− ηw(Si)

)
(P j

o − P i
o).
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Hence

Eij =− cij
(
fw(Sj)− fw(Si)

)(
fw(Si)

(
ηo(S

j)
(
pc(S

j)− pc(Si)
)

+
(
ηo(S

j)− ηo(Si)
)
(P j

w − P i
w)
)

+ fo(S
j)
(
ηw(Si)

(
pc(S

j)− pc(Si)
)

+
(
ηw(Sj)− ηw(Si)

)
(P j

o − P i
o))
)

= −cij
(
fw(Sj)− fw(Si)

)(
(P j

o − P i
o)
(
fw(Si)

(
ηo(S

j)− ηo(Si)
)

+ fo(S
j)
(
ηw(Sj)− ηw(Si)

))
+
(
pc(S

j)− pc(Si)
)(
fw(Si)ηo(S

i) + fo(S
j)ηw(Si)

))
= −cij

(
fw(Sj)− fw(Si)

)(
(P j

o − P i
o)
(
fw(Si)

(
ηo(S

j)− ηo(Si)
)

+ fo(S
j)
(
ηw(Sj)− ηw(Si)

))
+
(
pc(S

j)− pc(Si)
)
ηw(Si)

(
fo(S

i) + fo(S
j)
))
.

It follows from the above considerations that

−cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
ηw(Si)

(
fo(S

i) + fo(S
j)
)

≥ −cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
ηw(Si)fo(S

j)
)

≥ −cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
ηw(x)fo(x)

)
,

for any x between Si and Sj. Now, the sign of the factor

fw(Si)
(
ηo(S

j)− ηo(Si)
)

+ fo(S
j)
(
ηw(Sj)− ηw(Si)

)
is not clear. If it is nonnegative, then the whole term

−cij
(
fw(Sj)− fw(Si)

)
(P j

o − P i
o)
(
fw(Si)

(
ηo(S

j)− ηo(Si)
)

+ fo(S
j)
(
ηw(Sj)− ηw(Si)

))
is also nonnegative,

Eij ≥ −cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
ηw(x)fo(x)

)
.

and (5.36) follows from (5.33). If

fw(Si)
(
ηo(S

j)− ηo(Si)
)

+ fo(S
j)
(
ηw(Sj)− ηw(Si)

)
< 0,

then we rewrite Eij in terms of Pw,

Eij = −cij
(
fw(Sj)− fw(Si)

)[
(P j

w − P i
w)
(
fw(Si)

(
ηo(S

j)− ηo(Si)
)

+ fo(S
j)
(
ηw(Sj)− ηw(Si)

)
+
(
pc(S

j)− pc(Si)
)(
fw(Sj)ηo(S

j) + ηw(Sj)fo(S
j)
)]
.

Since the first line is now nonnegative, we infer

Eij ≥− cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
ηo(S

j)
(
fw(Sj) + fw(Si)

)
≥ −cij

(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
ηo(x)fw(x),

again for any x between Si and Sj, and the result follows from (5.33).
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5.5.3. The case P i
w > P j

w and P i
o = P j

o . In this case, pc(S
j) − pc(Si) > 0, Sj ≤ Si,

and we have the following result:

Proposition 5.11. Let P i
w > P j

w and P i
o = P j

o ; then the factor of τ in (5.32) satisfies

−cij
(
fw(Sj)− fw(Si)

)(
fw(Si)Cij

w − fo(Sj)Cij
o

)
≥ cij

(
fw(Sj)− fw(Si)

)(
g(Sj)− g(Si)

)
.

(5.37)

Proof. Let Eij denote the left-hand side of (5.37). We have Cij
w = ηo(S

i)
(
pc(S

j)− pc(Si)
)

and Cij
o = −ηw(Si)

(
pc(S

j)− pc(Si)
)
. Hence

Eij = −cij
(
fw(Sj)− fw(Si)

)(
fw(Si)ηo(S

i) + fo(S
j)ηw(Si)

)(
pc(S

j)− pc(Si)
)

= −cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)(
ηo(S

i)fw(Si) + ηw(Si)fo(S
j)
)
.

From here, (5.37) is derived as in the end of the proof of Proposition 5.10.

5.5.4. The case P i
w = P j

w and P i
o > P j

o . In this case, pc(S
j) ≤ pc(S

i) and Sj ≥ Si.
We have the following result:

Proposition 5.12. Let P i
w = P j

w and P i
o > P j

o ; then the factor of τ in (5.32) satisfies

−1

2
cij
(
fw(Sj)− fw(Si)

)(
fw(Sj)Cij

w − fo(Si)Cij
o

)
≥ 1

2
cij
(
fw(Sj)− fw(Si)

)(
g(Sj)− g(Si)

)
.

(5.38)

Proof. In this case, Cij
w = ηo(S

i)
(
pc(S

j) − pc(S
i)
)

and Cij
o = −ηw(Si)

(
pc(S

j) − pc(S
i)
)
.

Then the left-hand side Eij of (5.38) is

Eij =− 1

2
cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)(
fw(Sj)ηo(S

i) + fo(S
i)ηw(Si)

)
≥ −1

2
cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
fw(Sj)ηo(S

i),

and the proof of (5.38) proceeds as above.

5.5.5. The case P i
w = P j

w and P i
o < P j

o . In this case, pc(S
j) ≥ pc(S

i) and hence
Si ≥ Sj. We have the following result:

Proposition 5.13. Let P i
w = P j

w and P i
o < P j

o ; then the factor of τ in (5.32) satisfies

−1

2
cij
(
fw(Sj)− fw(Si)

)(
fw(Si)Cij

w − fo(Sj)Cij
o

)
≥ 1

2
cij
(
fw(Sj)− fw(Si)

)(
g(Sj)− g(Si)

)
.

(5.39)
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Proof. In this case, Cij
w = ηo(S

j)
(
pc(S

j) − pc(Si)
)

and Cij
o = −ηw(Sj)

(
pc(S

j) − pc(Si)
)
.

Then the left-hand side Eij of (5.38) is

Eij =− 1

2
cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)(
fw(Si)ηo(S

j) + fo(S
j)ηw(Sj)

)
≥ −1

2
cij
(
fw(Sj)− fw(Si)

)(
pc(S

j)− pc(Si)
)
ηo(S

j)fw(Si),

and the proof of (5.39) ends as above.

5.6. Auxiliary bound for the gradient of g. The following theorem is the first
outcome of this section.

Theorem 5.14. There exists a constant C, independent of h and τ , such that∣∣∣ ∫ T

0

∫
Ω

∇(Ih(fα(Sh,τ ))) · ∇(Ih(g(Sh,τ )))
∣∣∣ ≤ C, α = w, o. (5.40)

Proof. Owing to (1.6), it suffices to prove (5.40) when α = w. By applying Propositions
5.9–5.13 to Lemma 5.7 and combining with Proposition 5.1, we readily derive that

N∑
n=1

τ
M∑
i=1

∑
j∈N (i),Pn,iw ≥Pn,jw

cij
(
fw(Sn,j)− fw(Sn,i)

)(
g(Sn,j)− g(Sn,i)

)
≤ C, (5.41)

with a constant C independent of h and τ . Therefore, (5.40) will follow if we bound the
summand for all j such that P n,i

w < P n,j
w . But the symmetry of the summand implies that

M∑
i=1

∑
j∈N (i),Pn,iw <Pn,jw

cij
(
fw(Sn,j)− fw(Sn,i)

)(
g(Sn,j)− g(Sn,i)

)
=

M∑
i=1

∑
j∈N (i),Pn,iw >Pn,jw

cij
(
fw(Sn,j)− fw(Sn,i)

)(
g(Sn,j)− g(Sn,i)

)
.

Hence∫
Ω

∇(Ih(fw(Snh )))·∇(Ih(g(Snh ))) = 2
M∑
i=1

∑
j∈N (i),Pn,iw >Pn,jw

cij
(
fw(Sn,j)− fw(Sn,i)

)(
g(Sn,j)− g(Sn,i)

)
+

M∑
i=1

∑
j∈N (i),Pn,iw =Pn,jw

cij
(
fw(Sn,j)− fw(Sn,i)

)(
g(Sn,j)− g(Sn,i)

)
,

and (5.40), with another constant C, follows by substituting this equality into (5.41).

5.7. Bound for the gradient of g. In order to deduce from (5.40) a direct bound
for the gradient of g, we need to sharpen the assumptions on the mobility.
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5.7.1. Assumptions on the mobility. Here we assume that

ηw(0) = ηo(1) = 0,

and ηα ∈ W 1,∞(0, 1), α = w, o. Furthermore, we assume that, for all x ∈]0, 1[,

αwx
θw−1 ≤ η′w(x) ≤ 1

αw
xθw−1, θw ≥ 1, 0 < αw ≤ 1, (5.42)

αo(1− x)θo−1 ≤ −η′o(x) ≤ 1

αo
(1− x)θo−1, θo ≥ 1, 0 < αo ≤ 1, (5.43)

1

α3

xβ3−1(1− x)β4−1 ≥ −p′c(x) ≥ α3x
β3−1(1− x)β4−1, β3, β4 > 0, 0 < α3 ≤ 1. (5.44)

From (5.42) and (5.43), we deduce respectively, for all x ∈]0, 1[,

αw
θw
xθw ≤ ηw(x) ≤ 1

αwθw
xθw , (5.45)

αo
θo

(1− x)θo ≤ ηo(x) ≤ 1

αoθo
(1− x)θo . (5.46)

The sum of these two inequalities reads for all x ∈]0, 1[,

αw
θw
xθw +

αo
θo

(1− x)θo ≤ ηw(x) + ηo(x) ≤ 1

αwθw
xθw +

1

αoθo
(1− x)θo .

Let ` denote the lower bound in this inequality. It is easy to check that ` is a nonnegative
continuous function of x on [0, 1], hence uniformly continuous. Therefore, it is bounded
and as it does not vanish in this interval, it is bounded away from zero. Thus there exists
a positive constant Cmin such that

∀x ∈ [0, 1], Cmin ≤ `(x) :=
αw
θw
xθw +

αo
θo

(1− x)θo ≤ Cmax, (5.47)

where

Cmax = maxx∈[0,1]

( 1

αwθw
xθw +

1

αoθo
(1− x)θo

)
. (5.48)

5.7.2. Properties of the derivatives of fw and g. By definition, we have

g′(x) = − ηw(x)ηo(x)

ηw(x) + ηo(x)
p′c(x),

which is positive in ]0, 1[. Considering (1.8), (5.45), and (5.46), we infer

g′(x) ≤ 1

η∗α3

1

αwθw

1

αoθo
xθw−1+β3(1− x)θo−1+β4 , (5.49)
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thus implying that g′ is a bounded function, i.e., g is Lipschitz continuous. Note that the
Lipschitz constant L of g is bounded by

L ≤ 1

αα3

1

αwθw

1

αoθo
maxx∈[0,1]

(
xθw−1+β3(1− x)θo−1+β4

)
. (5.50)

On the other hand, (5.44)–(5.47) yield for all x ∈]0, 1[,

g′(x) ≥ α3

Cmax

αw
θw

αo
θo
xθw−1+β3(1− x)θo−1+β4 > 0. (5.51)

Thus g ∈ W 1,∞(0, 1) is a strictly monotonic increasing function on [0, 1] with range [0, β]
for some β > 0, hence invertible with inverse g−1 ∈ W 1,∞(0, β).

Now, we turn to fw. By definition, we have

f ′w(x) =
1

(ηw(x) + ηo(x))2

(
ηo(x)η′w(x)− ηw(x)η′o(x)

)
. (5.52)

The inequalities (5.42)–(5.47) imply that

f ′w(x) ≥ 1

C2
max

αoαw
[ 1

θo
xθw−1(1− x)θo +

1

θw
xθw(1− x)θo−1

]
.

Thus,

∀x ∈ [0,
3

4
], f ′w(x) ≥ αoαw

C2
maxθo

(1

4

)θo
xθw−1, (5.53)

and

∀x ∈ [
1

4
, 1], f ′w(x) ≥ αoαw

C2
maxθw

(1

4

)θw
(1− x)θo−1. (5.54)

Let us use these results to compare g′ and f ′w. It follows from (5.49) that

∀x ∈ [0,
3

4
], g′(x) ≤

( 1

αα3

1

αwθw

1

αoθo

θoC
2
max

αoαw

) αoαw
C2

maxθo
xθw−1,

and by setting

C1 =
( 1

αα3

1

αwθw

1

αoθo
4θo

θoC
2
max

αoαw

)
and comparing with (5.53), we obtain

∀x ∈ [0,
3

4
], g′(x) ≤ C1f

′
w(x). (5.55)

Similarly,

∀x ∈ [
1

4
, 1], g′(x) ≤

( 1

αα3

1

αwθw

1

αoθo

θwC
2
max

αoαw

) αoαw
C2

maxθw
(1− x)θo−1,
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so that, by setting

C2 =
( 1

αα3

1

αwθw

1

αoθo
4θw

θwC
2
max

αoαw

)
and comparing with (5.54), we deduce

∀x ∈ [
1

4
, 1], g′(x) ≤ C2f

′
w(x). (5.56)

This leads to the desired relation between the derivative of fw and g:

∀x ∈ [0, 1], g′(x) ≤ Cf ′w(x), (5.57)

where C = max(C1, C2).

The main result of this section follows by combining (5.57) with (5.40).

Theorem 5.15. Under the assumptions (5.42)–(5.44) on the derivatives of the mobilities
and capillary pressure, there exists a constant C, independent of h and τ , such that

‖∇(Ih(g(Sh,τ )))‖L2(Ω×]0,T [) ≤ C. (5.58)

Proof. Let (i, j) be any pair of indices. If Sn,i ≤ Sn,j, then by (5.57),

fw(Sn,j)− fw(Sn,i) =

∫ Sn,j

Sn,i
f ′w(x) dx ≥ C

∫ Sn,j

Sn,i
g′(x) dx = C(g(Sn,j)− g(Sn,i)).

As g is increasing, we have g(Sn,j)− g(Sn,i) ≥ 0. Therefore(
fw(Sn,j)− fw(Sn,i)

)(
g(Sn,j)− g(Sn,i)

)
≥ C|g(Sn,j)− g(Sn,i)|2. (5.59)

By changing both signs, the same result holds when Sn,j < Sn,i. Then (5.58) follows from
(5.40).

6. Convergence. The interpolants of pαg(Sh,τ ), g(Sh,τ ), and pc(Sh,τ ) play an impor-
tant part in this work, see Theorems 3.5 and 5.15, and (2.44). Therefore, we begin by
studying convergence properties first of Ih(g(Sh,τ )) and Ih(pαg(Sh,τ )), α = w, o, and next
Ih(pc(Sh,τ )). Some results will stem from an interesting relation between differences in
values of Sh,τ and g(Sh,τ ).

6.1. Properties of Ih(g(Sh,τ )) and Ih(pαg(Sh,τ )), α = w, o .

6.1.1. Convergence properties of Ih(g(Sh,τ )). Let K be an element of Th with
vertices ai, 1 ≤ i ≤ d+ 1 (local numbers); then∫

K

|g(Sh,τ )(tn)|2 =

∫
K

|g(
d+1∑
i=1

Sn,iφi)|2.
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As 0 ≤ Sn,i, φi ≤ 1 and g is increasing, we have

0 ≤
d+1∑
i=1

Sn,iφi ≤
d+1∑
i=1

Sn,i, g(
d+1∑
i=1

Sn,iφi) ≤
d+1∑
i=1

g(Sn,i).

Hence ∫
K

|g(Sh,τ )(tn)|2 ≤ (d+ 1)|K|
d+1∑
i=1

(g(Sn,i))2.

As a consequence, there exist constants C, D, E, independent of n, h and τ , such that

‖g(Sh,τ )(tn)‖L2(Ω) ≤ C‖Ih(g(Sh,τ )(tn))‖h ≤ D‖Ih(g(Sh,τ )(tn))‖ϕh ≤ E‖Ih(g(Sh,τ )(tn))‖L2(Ω),
(6.1)

owing to (2.5) and (2.8). These inequalities carry over to the norm in L2(Ω×]0, T [).

Now, let us prove the following convergence property of Ih(g(Sh,τ )).

Lemma 6.1. Under the assumptions of Theorem 5.15, we have

lim
(h,τ)→(0,0)

‖g(Sh,τ )− Ih(g(Sh,τ ))‖L2(Ω×]0,T [) = 0. (6.2)

Proof. For any x in any element K of Th, we have

Ih(g(Sh,τ ))(x, tn)− g(Sh,τ )(x, tn) =
d+1∑
i=1

g(Sn,i)φi(x)− g
( d+1∑
i=1

Sn,iφi(x)
)
.

As Sh,τ is a polynomial of degree one in K, it attains its maximum and its minimum in
space at vertices of K, say g(Sn,`) and g(Sn,r) are its maximum and minimum respectively.
Thus, recalling that g is a nonnegative monotonically increasing function,

d+1∑
i=1

g(Sn,i)φi(x) ≤ g(Sn,`), g
( d+1∑
i=1

Sn,iφi(x)
)
≥ g(Sn,r).

Hence

‖Ih(g(Sh,τ ))− g(Sh,τ )‖2
L2(Ω×]0,T [) ≤

N∑
n=1

τ
∑
K∈Th

|K||g(Sn,`)− g(Sn,r)|2. (6.3)

For any node i, let
κi = Max |K|,

where the maximum is taken over all elements K in ∆i. Then we can readily check that

N∑
n=1

τ
∑
K∈Th

|K||g(Sn,`)− g(Sn,r)|2 ≤ C

N∑
n=1

τ

M∑
i=1

κi
∑
j∈N (i)

∣∣g(Sn,j)− g(Sn,i)
∣∣2,
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where C is a bound for the maximum number of elements that share a common edge,
bound independent of h and τ by virtue of the regularity of the mesh. Now, recall the
classical formula in each d-simplex K,∫

K

|∇φi · ∇φj| =
1

d2

|Fi||Fj|
|K|

|ni · nj|, (6.4)

where Fi is the face opposite to the vertex ai and ni is the exterior (to K) unit normal to
the face Fi. The regularity of the mesh implies that there exists a constant c0, independent
of h and τ , such that

|ni · nj| ≥ c0.

Hence, using again the regularity of the mesh, we obtain∫
K

|∇φi · ∇φj| ≥ C hd−2
K ,

and denoting by ρij the minimum of hK for all K in ∆i ∩∆j, we deduce

cij ≥ Cρd−2
ij , (6.5)

with another constant C independent of h and τ . By collecting these results, we derive

‖Ih(g(Sh,τ ))− g(Sh,τ )‖2
L2(Ω×]0,T [) ≤ C

N∑
n=1

τ
M∑
i=1

κi
∑
j∈N (i)

( 1

ρd−2
ij

)
cij
∣∣g(Sn,j)− g(Sn,i)

∣∣2. (6.6)

With another application of the regularity of the mesh, this becomes

‖Ih(g(Sh,τ ))− g(Sh,τ )‖2
L2(Ω×]0,T [) ≤ Ch2‖∇(Ih(g(Sh,τ )))‖2

L2(Ω×]0,T [), (6.7)

(note that the power of h is independent of the dimension) and the limit (6.2) follows from
Theorem 5.15.

6.1.2. Relation between g(Sn,j)−g(Sn,i) and Sn,j−Sn,i. Here, we derive an upper
bound for Sn,j − Sn,i in terms of g(Sn,j)− g(Sn,i).

Lemma 6.2. Under the assumptions (5.42)–(5.44) on the derivatives of the mobilities and
capillary pressure, there exists a constant C, independent of h and τ , such that for all i,
j, and n

|Sn,j − Sn,i| ≤ C |g(Sn,j)− g(Sn,i)|
1
r , (6.8)

where r = max(θo + β4, θw + β3) > 1.

Proof. To simplify, we set c = Sn,i, d = Sn,j and assume c < d. From (5.51), it follows that

g(d)− g(c) ≥ α3

Cmax

αw
θw

αo
θo

∫ d

c

xθw+β3−1(1− x)θo+β4−1. (6.9)
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For the sake of brevity, we do not specify the constant factor in (6.9) and write

g(d)− g(c) ≥ C1

∫ d

c

xθw+β3−1(1− x)θo+β4−1.

Now, we argue according to the positions of c and d. There are four cases.

1) If 1
8
≤ c ≤ 7

8
, then (6.9) gives

g(d)− g(c) ≥ C1

(1

8

)θw+β3−1
∫ d

c

(1− x)θo+β4−1

= C1

(1

8

)θw+β3−1 1

θo + β4

(
(1− c)θo+β4 − (1− d)θo+β4

)
.

But

(1− c)θo+β4 − (1− d)θo+β4 = (1− c)θo+β4−1(d− c) + (1− d)
(
(1− c)θo+β4−1 − (1− d)θo+β4−1

)
≥ (d− c)

(1

8

)θo+β4−1
.

Hence

g(d)− g(c) ≥ C1

θo + β4

(1

8

)θw+β3+θo+β4−2
(d− c). (6.10)

2) If c > 7
8
, then d > 7

8
and (6.9) gives

g(d)− g(c) ≥ C1

(7

8

)θw+β3−1 1

θo + β4

(
(1− c)θo+β4 − (1− d)θo+β4

)
.

Let us set a = 1− d, b = d− c γ = θo + β4 − 1 > 0. We can also write

(1− c)θo+β4 − (1− d)θo+β4 = aγ+1
((

1 +
b

a

)γ+1 − 1
)
.

It is easy to check that the function

x 7→ (1 + x)γ+1 − 1− xγ+1

vanishes at x = 0 and is strictly monotonic increasing, hence is strictly positive for x > 0.
Hence

aγ+1
((

1 +
b

a

)γ+1 − 1
)
> aγ+1

( b
a

)γ+1
= bγ+1.

Thus
(1− c)θo+β4 − (1− d)θo+β4 ≥ (d− c)θo+β4 ,

and

g(d)− g(c) ≥ C1

(7

8

)θw+β3−1 1

θo + β4

(d− c)θo+β4 . (6.11)

41



3) If c < 1
8

and d < 7
8
, then the integrand 1− x ≥ 1− d > 1

8
and by the above argument,

g(d)− g(c) ≥ C1

(1

8

)θo+β4−1 1

θw + β3

(
dθw+β3 − cθw+β3

)
≥ C1

(1

8

)θo+β4−1 1

θw + β3

(d− c)θw+β3 .
(6.12)

4) If c < 1
8

and d > 7
8
, then c < 1

6
(d− c) < 1

2
(d− c) < d. Therefore, we can write

g(d)− g(c) ≥ C1

∫ 1
2

(d−c)

1
6

(d−c)
xθw+β3−1(1− x)θo+β4−1

≥ C1

(1

2

)θo+β4−1 1

θw + β3

((1

2
(d− c)

)θw+β3 −
(1

6
(d− c)

)θw+β3
)

≥ C1

(1

2

)θo+θw+β3+β4−1 1

θw + β3

(
1−

(1

3

)θw+β3
)

(d− c)θw+β3 .

(6.13)

Since d− c ≤ 1, θo + β4 > 1, and θw + β3 > 1, we have in all cases

g(d)− g(c) ≥ C2(d− c)max(θo+β4,θw+β3),

where C2 is the minimum of the constant factors in (6.10)–(6.13).

The convergence to zero of the differences Ih(pαg(Sh,τ ))− pαg(Sh,τ ), α = w, o, follows from
this lemma and Theorem 5.15.

Lemma 6.3. Under the assumptions (5.42)–(5.44) on the derivatives of the mobilities and
capillary pressure, there exists a constant C, independent of h and τ , such that

‖Ih(pαg(Sh,τ ))− pαg(Sh,τ )‖L2(Ω×]0,T [) ≤ C hγα , α = w, o, (6.14)

where γw = β3
r

, γo = β4
r

and in both cases, r is the exponent of Lemma 6.2.

Proof. Let us start with α = w. Arguing as in the proof of Lemma 6.1, with −pwg
(monotonic increasing) instead of g, the analogue of (6.6) holds for −pwg(Sh,τ ), with the
same notation

‖Ih(pwg(Sh,τ ))− pwg(Sh,τ )‖2
L2(Ω×]0,T [) ≤ C

N∑
n=1

τ

M∑
i=1

∑
j∈N (i)

( κi
cij

)
cij
∣∣pwg(Sn,j)− pwg(Sn,i)∣∣2,

(6.15)
and the result will stem from an adequate upper bound for pwg(S

n,j) − pwg(Sn,i), for all
neighbors j of i. To this end, we proceed as in Lemma 6.2. Let c = Sn,i, d = Sn,j and
suppose again that c < d; then by (1.12), (5.44), (5.46), and (5.47),

|pwg(Sn,j)− pwg(Sn,i)| ≤
1

Cminα3αoθo

∫ d

c

xβ3−1(1− x)θo+β4−1, (6.16)
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that we write as

|pwg(Sn,j)− pwg(Sn,i)| ≤ C ′1

∫ d

c

xβ3−1(1− x)θo+β4−1.

Here, the discussion reduces to three cases.

1) If 1
8
≤ c ≤ 7

8
, since θo + β4 − 1 > 0,∫ d

c

xβ3−1(1− x)θo+β4−1 ≤ 81−β3
∫ d

c

(1− x)θo+β4−1 ≤ 81−β3(d− c). (6.17)

2) Likewise, if c > 7
8
, ∫ d

c

xβ3−1(1− x)θo+β4−1 ≤
(8

7

)1−β3(d− c). (6.18)

3) If c < 1
8
,∫ d

c

xβ3−1(1− x)θo+β4−1 ≤
∫ d

c

xβ3−1 =
1

β3

(
dβ3 − cβ3

)
≤ 1

β3

(
d− c

)β3 . (6.19)

Indeed, by Jensen’s inequality, valid for 0 < β3 ≤ 1,

d = c+ (d− c) ≤
(
cβ3 + (d− c)β3

) 1
β3 , i.e., dβ3 ≤ cβ3 + (d− c)β3 .

Consequently, in all cases,

|pwg(Sn,j)− pwg(Sn,i)| ≤ C ′2
∣∣Sn,j − Sn,i∣∣β3 . (6.20)

Thus, by substituting into (6.15), applying Lemma 6.2, and setting γw = β3
r

, we infer

‖Ih(pwg(Sh,τ ))− pwg(Sh,τ )‖2
L2(Ω×]0,T [) ≤ C

N∑
n=1

M∑
i=1

∑
j∈N (i)

κi
cij
τcij
∣∣Sn,j − Sn,i|2β3

≤ C

N∑
n=1

M∑
i=1

∑
j∈N (i)

κi
cij
τcijA

2γw
ij ,

where Aij = |g(Sn,j)− g(Sn,i)|. Note that r > β3, hence γw < 1. Then

‖Ih(pwg(Sh,τ ))−pwg(Sh,τ )‖2
L2(Ω×]0,T [) ≤ C

N∑
n=1

M∑
i=1

∑
j∈N (i)

κi
cij

(τcij)
1−γw

(
τcij
)γw

A2γw
ij

≤ C
( N∑
n=1

M∑
i=1

∑
j∈N (i)

τcijA
2
ij

)γw( N∑
n=1

M∑
i=1

∑
j∈N (i)

( κi
cij

) 1
1−γw τcij

)1−γw
.
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But ( N∑
n=1

M∑
i=1

∑
j∈N (i)

( κi
cij

) 1
1−γw τcij

)1−γw
≤ C

(
T |Ω|

)1−γw
sup
i,j

( κi
cij

)γw
,

and (6.14) with α = w follows from (6.5), the regularity of the mesh, and Theorem 5.15.

When α = o, the proof is based on fact that −pog is nonnegative, monotonically increasing,
and satisfies the inequality

−pog(x) ≤ 1

Cmin

1

α3αwθw

∫ x

0

xθw+β3−1(1− x)β4−1.

By comparing with (6.16), we see that the above argument carries over to pog with β3

replaced by β4.

Finally, with the notation of Lemma 6.3, the following bound regarding pc(Sh,τ ) follows
from (6.14) and (1.14), and the fact that pc(0) is a constant:

‖Ih(pc(Sh,τ ))− pc(Sh,τ )‖L2(Ω×]0,T [) ≤ C hγ, (6.21)

where γ = 1
r
min(β3, β4).

6.2. Weak convergence. All constants below are independent of h and τ .

The bound (3.1) on the discrete saturation Sh,τ implies that there exists a function s̄ ∈
L∞(Ω×]0, T [) and a subsequence of (h, τ) not indicated, such that

lim
(h,τ)→(0,0)

Sh,τ = s̄ weakly* in L∞(Ω×]0, T [). (6.22)

Proposition 6.4. The limit function s̄ satisfies

∀(x, t) a.e. in Ω×]0, T [, 0 ≤ s̄(x, t) ≤ 1. (6.23)

Proof. The convergence (6.22) means that for all ψ ∈ L1(Ω×]0, T [),∫
Ω×]0,T [

Sh,τψ →
∫

Ω×]0,T [

s̄ψ and

∫
Ω×]0,T [

(1− Sh,τ )ψ →
∫

Ω×]0,T [

(1− s̄)ψ.

We argue by contradiction. Suppose that s̄ > 1 on a set of positive measure, say D, and
take ψ = (s̄− 1)+, the positive part of s̄− 1. Then

0 ≤
∫

Ω×]0,T [

(
1− Sh,τ

)
ψ →

∫
Ω×]0,T [

(1− s̄)(s̄− 1)+ =

∫
D

(1− s̄)(s̄− 1)+,

thus contradicting the fact that (1− s̄) < 0 on D. This proves that s̄ ≤ 1. The proof that
s̄ ≥ 0 is similar.
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Regarding the pressure, the bound (3.23) yields weak convergence, up to a subsequence,
of the gradient of Uα,h,τ . We can deduce weak convergence of the sequences themselves by
applying (3.22). Indeed,∫

Ω

Uw,h,τ =
(
Uw,h,τ , 1

)
h

=
(
Ih(pwg(Sh,τ )), 1

)
h
,

owing to (2.45). Then the properties of pwg and the boundedness of Sh,τ imply that∣∣(Ih(pwg(Sh,τ )), 1)h∣∣ ≤ C.

Similarly, ∫
Ω

Uo,h,τ =
(
Ih(pwg(Sh,τ )) + pc(0), 1

)
h
,

a bounded quantity. Then we infer from (3.22) that

‖Uα,h,τ‖L2(Ω×]0,T [) ≤ C, α = w, o. (6.24)

With this, (3.23) implies that there exist functions W̄α ∈ L2(0, T ;H1(Ω)), α = w, o, and a
subsequence of h and τ (not indicated) such that,

lim
(h,τ)→(0,0)

Uα,h,τ = W̄α, weakly in L2(0, T ;H1(Ω)). (6.25)

Likewise, the function Ih(g(Sh,τ )) is bounded in L2(Ω×]0, T [) and it follows from this and
(5.58) that there exists a function K̄ ∈ L2(0, T,H1(Ω)) such that, up to a subsequence,

lim
(h,τ)→(0,0)

Ih(g(Sh,τ )) = K̄ weakly in L2(0, T,H1(Ω)). (6.26)

This implies in particular that for almost every time t, Ih(g(Sh,τ )) converges strongly in
L2(Ω). But as is well-known, these convergences are not sufficient to pass to the limit in
the nonlinear terms: they must be supplemented by a bound for a fractional derivative in
time of Sh,τ that yields compactness in time. This will stem via a bound for a fractional
derivative in time of g(Sh,τ ).

6.3. Compactness in time. Following the argument introduced by Kazhikhov, see [21],
and recalling that ‖ · ‖ϕh is equivalent to the L2 norm in finite dimension, we want to derive
first a fractional estimate in time for Ih(g(Sh,τ )) and next for g(Sh,τ ). The following lemma
is a preliminary bound written in terms of sums of the pointwise values in time.

Lemma 6.5. Under the assumptions of Theorem 5.15, there exist constants C, independent
of h and τ , such that for all integers 1 ≤ ` ≤ N − 1,

N−∑̀
m=1

τ
(
‖g(Sm+`

h )− g(Smh )‖ϕh
)2 ≤ C(`τ),

N−∑̀
m=1

τ‖g(Sm+`
h )− g(Smh )‖2

L2(Ω) ≤ C(`τ). (6.27)
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Proof. The starting point is the inequality

N−∑̀
m=1

τ
(
‖g(Sm+`

h )− g(Smh )‖ϕh
)2 ≤ L

N−∑̀
m=1

τ
(
g(Sm+`

h )− g(Smh ), Sm+`
h − Smh

)ϕ
h
, (6.28)

owing that g is Lipschitz continuous and increasing. Thus, by writing

Sm+`
h − Smh =

∑̀
k=1

(
Sm+k
h − Sm+k−1

h

)
,

testing each line of (2.42) taken at level m + k with Ih
(
g(Sm+`

h ) − g(Smh )
)
, and applying

(6.28), we obtain

N−∑̀
m=1

τ
(
‖g(Sm+`

h )− g(Smh )‖ϕh
)2 ≤ L

N−∑̀
m=1

τ
∑̀
k=1

τ
∣∣∣(fw(sm+k

in,h )q̄m+k
h − fw(Sm+k

h )qm+k

h
, g(Sm+`

h )− g(Smh )
)
h

+
[
Pm+k
w,h , Ih(ηw(Sm+k

h ));Pm+k
w,h , Ih

(
g(Sm+`

h )− g(Smh )
)]
h

∣∣∣.
(6.29)

It is easy to check that, on one hand, with r = ` or r = 0,

∣∣∣[Pm+k
w,h , Ih(ηw(Sm+k

h ));Pm+k
w,h , Ih

(
g(Sm+r

h )
)]
h

∣∣∣
=

1

2

∣∣∣ M∑
i,j=1

(
g(Sm+r,j)− g(Sm+r,i)

)
cijηw(Sm+k,ij

w )
(
Pm+k,j
w − Pm+k,i

w

)∣∣∣
≤ 1

4

M∑
i,j=1

cijηw(Sm+k,ij
w )

(∣∣g(Sm+r,j)− g(Sm+r,i)
∣∣2 +

∣∣Pm+k,j
w − Pm+k,i

w

∣∣2)
≤ 1

4

M∑
i,j=1

cij

(
ηw(1)

∣∣g(Sm+r,j)− g(Sm+r,i)
∣∣2 + ηw(Sm+k,ij

w )
∣∣Pm+k,j

w − Pm+k,i
w

∣∣2),
since ηw is increasing and Sh,τ is bounded by one. On the other hand,

∣∣(fw(sm+k
in,h )q̄m+k

h − fw(Sm+k
h )qm+k

h
, g(Sm+`

h )− g(Smh )
)
h

∣∣ ≤ C
(
‖q̄m+k‖L1(Ω) + ‖qm+k‖L1(Ω)

)
,
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where here and below, C denotes constants that are independent of `, h, and τ . Therefore,
in view of (2.10)

N−∑̀
m=1

τ
(
‖g(Sm+`

h )− g(Smh )‖ϕh
)2 ≤ L

N−∑̀
m=1

τ
([1

8
ηw(1)(`τ)

∑
r=`,0

‖∇ Ih(g(Sm+r
h ))‖2

L2(Ω)

+
1

2

∑̀
k=1

τ
M∑
i,j=1

cijηw(Sm+k,ij
w )

∣∣Pm+k,j
w − Pm+k,i

w

∣∣2]+ C
∑̀
k=1

τ
(
‖q̄m+k‖L1(Ω) + ‖qm+k‖L1(Ω)

))
≤ 1

8
ηw(1)L(`τ)

[ N∑
m=1+`

τ‖∇ Ih(g(Smh ))‖2
L2(Ω) +

N−∑̀
m=1

τ‖∇ Ih(g(Smh ))‖2
L2(Ω)

]
+

1

2
L
N−∑̀
m=1

τ
∑̀
k=1

τ
( M∑
i,j=1

cijηw(Sm+k,ij
w )

∣∣Pm+k,j
w − Pm+k,i

w

∣∣2 + C
(
‖q̄m+k‖L1(Ω) + ‖qm+k‖L1(Ω)

))
.

(6.30)

By (5.58), il suffices to bound the terms in the last line above. This is achieved by inter-
changing the sums over m and k. Let n = m + k; n runs from 2 to N and m runs from
max(1, n− `) to min(n− 1, N − `). Thus

N−∑̀
m=1

τ
∑̀
k=1

τ
M∑
i,j=1

cijηw(Sm+k,ij
w )

∣∣Pm+k,j
w − Pm+k,i

w

∣∣2
=

N∑
n=2

τ
( min(n−1,N−`)∑
m=max(1,n−`)

τ
) M∑
i,j=1

cijηw(Sn,ijw )
∣∣P n,j

w − P n,i
w

∣∣2.
But min(n− 1, N − `)−max(1, n− `) ≤ `− 1. Hence

N−∑̀
m=1

τ
∑̀
k=1

τ
M∑
i,j=1

cijηw(Sm+k,ij
w )

∣∣Pm+k,j
w − Pm+k,i

w

∣∣2 ≤ (`τ)
N∑
n=2

τ
M∑
i,j=1

cijηw(Sn,ijw )
∣∣P n,j

w − P n,i
w

∣∣2,
(6.31)

and we know from (3.18) that this last sum over n is bounded. In the same fashion,

N−∑̀
m=1

τ
∑̀
k=1

τ
(
‖q̄m+k‖L1(Ω) + ‖qm+k‖L1(Ω)

)
≤ (`τ)

(
‖q̄‖L1(Ω×]0,T [) + ‖q‖L1(Ω×]0,T [)

)
. (6.32)

Then, under the assumptions of Theorem 5.15, (6.27) follows by substituting (5.58), (6.31),
and (6.32) into (6.30). The second inequality stems from the first and (6.1).

The next theorem transforms (6.27) into integrals.

Theorem 6.6. Under the assumptions of Theorem 5.15, there exists a constant C, inde-
pendent of h, and τ , such that for all real numbers δ, 0 < δ < T ,∫ T−δ

0

∥∥g(Sh,τ (t+ δ))− g(Sh,τ (t)
∥∥2

L2(Ω)
dt ≤ Cδ. (6.33)
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Similarly, ∫ T−δ

0

∥∥Ih(g(Sh,τ (t+ δ))− g(Sh,τ (t)
)∥∥2

L2(Ω)
dt ≤ Cδ, (6.34)

with another constant C, independent of h, and τ .

Proof. The argument is not new, see for instance [25], but we recall it for the reader’s
convenience. The discussion depends on the value of δ; there are three cases: (i) 0 < δ < τ ,
(ii) δ = `τ , 1 ≤ ` ≤ N − 1, (iii) δ = τ(`+ η), 1 ≤ ` ≤ N − 1, 0 < η < 1.

(i) If 0 < δ < τ , we have for all f in L1(0, T )∫ T−δ

0

f(t) dt =
N−2∑
m=0

(∫ tm+1−δ

tm

f(t) dt+

∫ tm+1

tm+1−δ
f(t) dt

)
+

∫ tN−δ

tN−1

f(t) dt.

On the interval (tm, tm+1 − δ), by convention, see (2.38) applied to Sh,τ , Sh,τ (t + δ) =
Sm+1
h = Sh,τ (t) and on the interval (tm+1 − δ, tm+1), Sh,τ (t+ δ) = Sm+2

h . Therefore∫ T−δ

0

∥∥g(Sh,τ (t+ δ))− g(Sh,τ (t))
∥∥2

L2(Ω)
dt =

N−2∑
m=0

δ
∥∥g(Sm+2

h )− g(Sm+1
h )

∥∥2

L2(Ω)

=
N−1∑
m=1

δ
∥∥g(Sm+1

h )− g(Smh )
∥∥2

L2(Ω)
,

and (6.27) with ` = 1 yields (6.33) for this value of δ.

(ii) Let δ = `τ , for instance consider ` = 2. We have∫ tm+1

tm

∥∥g(Sh,τ (t+ 2τ))− g(Sh,τ (t))
∥∥2

L2(Ω)
dt = τ

∥∥g(Sm+3
h )− g(Sm+1

h )
∥∥2

L2(Ω)
.

Thus ∫ T−2τ

0

∥∥g(Sh,τ (t+ δ))− g(Sh,τ (t))
∥∥2

L2(Ω)
dt = τ

N−2∑
m=1

∥∥g(Sm+2
h )− g(Smh )

∥∥2

L2(Ω)
,

and (6.27) with ` = 2 yields (6.33). This argument applies to any ` with 1 ≤ ` ≤ N − 1.

(iii) Let δ = τ(`+ η) for some 0 < η < 1, and for instance consider again ` = 2. Then for
any integer m, 0 ≤ m ≤ N − 3,∫ tm+1−τη

tm

∥∥g(Sh,τ (t+ τ(2 + η))− g(Sh,τ (t))
∥∥2

L2(Ω)
= τ(1− η)

∥∥g(Sm+3
h )− g(Sm+1

h )
∥∥2

L2(Ω)
,

and ∫ tm+1

tm+1−τη

∥∥g(Sh,τ (t+ τ(2 + η))− g(Sh,τ (t))
∥∥2

L2(Ω)
= τη

∥∥g(Sm+4
h )− g(Sm+1

h )
∥∥2

L2(Ω)
.
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Hence ∫ T−τ(2+η)

0

∥∥g(Sh,τ (t+ τ(2 + η)))− g(Sh,τ (t))
∥∥2

L2(Ω)
dt

=
N−2∑
m=1

τ(1− η)
∥∥g(Sm+2

h )− g(Smh )
∥∥2

L2(Ω)
+

N−3∑
m=1

τη
∥∥g(Sm+3

h )− g(Smh )
∥∥2

L2(Ω)
.

Then (6.27) with ` = 2 and ` = 3 implies that∫ T−τ(2+η)

0

∥∥g(Sh,τ (t+ τ(2 + η))− g(Sh,τ (t))
∥∥2

L2(Ω)
dt ≤ C

(
2τ(1− η) + 3τη

)
= Cτ(2 + η).

More generally, we have∫ T−τ(`+η)

0

∥∥g(Sh,τ (t+ τ(`+ η))− g(Sh,τ (t))
∥∥2

L2(Ω)
dt

= τ(1− η)
N−∑̀
m=1

∥∥g(Sm+`
h )− g(Smh )

∥∥2

L2(Ω)
+ τη

N−(`+1)∑
m=1

∥∥g(Sm+`+1
h )− g(Smh )

∥∥2

L2(Ω)
,

and we apply (6.27) with ` to the first sum and `+ 1 to the second sum. This proves the
first part of (6.33). The proof of (6.34) follows likewise from (6.27) with ϕ = 1.

6.4. Strong convergence. With Theorem 6.6, it follows from Kolmogorov’s theorem
that the sequence Ih(g(Sh,τ )) is compact in L2(Ω×]0, T [), see [21]. Thus, again up to a
subsequence, Ih(g(Sh,τ )) converges strongly in L2(Ω×]0, T [). Since it converges weakly to
K̄ in L2(0, T ;H1(Ω)) (K̄ belongs also to L∞(Ω×]0, T [)), uniqueness of the limit implies

lim
(h,τ)→(0,0)

Ih(g(Sh,τ )) = K̄ strongly in L2(Ω×]0, T [). (6.35)

By Lemma 6.1, this also implies

lim
(h,τ)→(0,0)

g(Sh,τ ) = K̄ strongly in L2(Ω×]0, T [). (6.36)

From here, let us prove the strong convergence of Sh,τ . Recall that g is invertible with
range ]0, β[ and inverse g−1 ∈ W 1,∞(]0, β[). Let Fh,τ = g(Sh,τ ); then

Sh,τ = g−1(Fh,τ ).

The strong convergence of Fh,τ and the continuity of g−1 imply the strong convergence of
Sh,τ to g−1(K̄) in L2(Ω×]0, T [), and since Sh,τ converges weakly to s̄, uniqueness of the
limit implies that s̄ = g−1(K̄), i.e.,

lim
(h,τ)→(0,0)

Sh,τ = s̄ = g−1(K̄) strongly in L2(Ω×]0, T [). (6.37)
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This strong convergence and the continuity of g, pαg, α = w, o, and pc, also imply that

lim
(h,τ)→(0,0)

g(Sh,τ ) = g(s̄), lim
(h,τ)→(0,0)

pαg(Sh,τ ) = pαg(s̄), α = w, o, lim
(h,τ)→(0,0)

pc(Sh,τ ) = pc(s̄),

(6.38)
all strongly in L2(Ω×]0, T [). Furthermore Lemma 6.3 and (6.21) yield

lim
(h,τ)→(0,0)

Ih(pαg(Sh,τ )) = pαg(s̄), lim
(h,τ)→(0,0)

Ih(pc(Sh,τ )) = pc(s̄), strongly in L2(Ω×]0, T [).

(6.39)
In view of (6.25), this convergence implies that Pα,h,τ converges weakly in L2(Ω×]0, T [) to
some function p̄α ∈ L2(Ω×]0, T [), α = w, o. Furthermore, uniqueness of the limit implies
that W̄α, the limit function of Uα,h,τ has the form

W̄w = p̄w + pwg(s̄), W̄o = p̄o − pog(s̄). (6.40)

7. Identification of the limit. Let us pass to the limit in the equations of the scheme.
This is done in several steps because we do not have convergence of the pressure gradient.

7.1. The upwind diffusions. Since the discrete auxiliary pressures Uα,h,τ converge
weakly to W̄α in L2(0, T ;H1(Ω)), instead of treating directly the upwind diffusion terms[
Pα,h,τ , Ih(ηα(Sh,τ ));Pα,h,τ , θh

]
h
, we begin with

[
Pα,h,τ , Ih(ηα(Sh,τ ));Uα,h,τ , θh

]
h
.

7.1.1. Discrete auxiliary pressure. Let us start with the wetting phase, the treat-
ment of the non-wetting phase being much the same.

Let v be a smooth function, say v ∈ C1(Ω̄ × [0, T ]) and let Vh,τ = ρτ (Ih(v)). Assume for
the moment that s̄, the limit of Sh,τ , is sufficiently smooth, say s̄ ∈ W 1,∞(Ω×]0, T [) and
let s̄τ = s̄(tn) in ]tn−1, tn]. Then assumption (5.42) implies∥∥1

τ

∫ tn

tn−1

ηw(s̄) dt− ηw(s̄nτ )‖L∞(Ω) ≤ Cτ‖η′w‖L∞(0,1)‖∂ts̄‖L∞(Ω×]0,T [). (7.1)

Proceeding as in Section 2.2, we treat the upwinding in several steps and consider first∫ T

0

∫
Ω

ηw(s̄)∇Uw,h,τ ·∇Vh,τ =

∫ T

0

∫
Ω

∇Uw,h,τ ·∇Vh,τ
(
ρτ (ηw(s̄))−ηw(s̄τ )+ηw(s̄τ )

)
. (7.2)

But in view of (7.1),∣∣∣ ∫ T

0

∫
Ω

∇Uw,h,τ · ∇Vh,τ
(
ρτ (ηw(s̄))− ηw(s̄τ ))

∣∣∣ ≤ Cτ‖η′w‖L∞(0,1)‖∂ts̄‖L∞(Ω×]0,T [)

× ‖Uw,h,τ‖L2(0,T ;H1(Ω)‖Vh,τ‖L2(0,T ;H1(Ω)),

and the boundedness of all factors of τ , owing to (3.23) and the regularity of v, implies

lim
(h,τ)→(0,0)

∫ T

0

∫
Ω

∇Uw,h,τ · ∇Vh,τ
(
ρτ (ηw(s̄))− ηw(s̄τ )) = 0. (7.3)
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Next the weak convergence of Uw,h,τ to W̄w in L2(0, T ;H1(Ω)), the strong convergence of
Vh,τ to v in L∞(0, T ;W 1,∞(Ω)), the continuity of ηw, the regularity of s̄, and (7.3) imply

lim
(h,τ)→(0,0)

∫ T

0

∫
Ω

ηw(s̄τ )∇Uw,h,τ · ∇Vh,τ =

∫ T

0

∫
Ω

ηw(s̄)∇ W̄w · ∇ v.

Let us expand the expression in the above left-hand side. With the notation (2.11), in
view of Proposition 2.2 we have∫ T

0

∫
Ω

ηw(s̄τ )∇Uw,h,τ · ∇Vh,τ = −
N∑
n=1

τ
M∑
i,j=1

Un,i
w

( ∑
K⊂∆i∩∆j

cij,K(ηw(s̄nτ ))K

)(
V n,j − V n,i

)
.

By symmetry, this becomes∫ T

0

∫
Ω

ηw(s̄nτ )∇Uw,h,τ ·∇Vh,τ =
1

2

N∑
n=1

τ

M∑
i,j=1

( ∑
K⊂∆i∩∆j

cij,K(ηw(s̄nτ ))K

)(
Un,j
w −Un,i

w

)(
V n,j−V n,i

)
.

(7.4)
Hence

lim
(h,τ)→(0,0)

1

2

N∑
n=1

τ
M∑
i,j=1

( ∑
K⊂∆i∩∆j

cij,K(ηw(s̄nτ ))K

)(
Un,j
w −Un,i

w

)(
V n,j−V n,i

)
=

∫ T

0

∫
Ω

ηw(s̄)∇ W̄w·∇ v.

(7.5)
According to (5.42) and the regularity of s̄, ηw(s̄) belongs to L∞(0, T ;W 1,∞(Ω)), and (2.19)
gives ∥∥(ηw(s̄nτ ))K − ηw(s̄τ )

∥∥
L∞(K)

≤ C h ‖η′w‖L∞(0,1)‖∇ s̄‖L∞(Ω×]0,T [),

that allows to replace (ηw(s̄nτ ))K by any value of ηw(s̄nτ ) in K. Let us choose the upwind
value of s̄nτ as in (2.36), i.e.,

s̄n,ijw,τ =


s̄nτ (xi) if P n,i

w > P n,j
w

s̄nτ (xj) if P n,i
w < P n,j

w

max(s̄nτ (xi), s̄
n
τ (xj)) if P n,i

w = P n,j
w ,

(7.6)

and set
Rij =

∑
K⊂∆i∩∆j

cij,K
(
(ηw(s̄nτ ))K − ηw(s̄n,ijw,τ )

)
.

By proceeding as in Theorem 2.4 and applying (3.23), the regularity of v, and the approx-
imation properties of Ih, we obtain

1

2

N∑
n=1

τ
M∑
i,j=1

Rij

(
Un,j
w − Un,i

w

)(
V n,j − V n,i

)
≤ 1

2

N∑
n=1

τ
( M∑
i,j=1

|Rij|
(
Un,j
w − Un,i

w

)2
) 1

2
( M∑
i,j=1

|Rij|
(
V n,j − V n,i

)2
) 1

2

≤ C h ‖η′w‖L∞(0,1)‖∇ s̄‖L∞(Ω×]0,T [)‖∇Uw,h,τ‖L2(Ω×]0,T [)‖∇Vh,τ‖L2(Ω×]0,T [)

≤ C h ‖η′w‖L∞(0,1)‖∇ s̄‖L∞(Ω×]0,T [)|v|H1(0,T ;H2(Ω)).
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With (7.5), this implies

lim
(h,τ)→(0,0)

1

2

N∑
n=1

τ

M∑
i,j=1

cijηw(s̄n,ijw,τ )
(
Un,j
w −Un,i

w

)(
V n,j−V n,i

)
=

∫ T

0

∫
Ω

ηw(s̄)∇ W̄w ·∇ v. (7.7)

To recover
∫ T

0

[
Pw,h,τ , Ih(ηw(Sh,τ ));Uw,h,τ , Vh,τ

]
h
, we write

ηw(s̄n,ijw,τ ) = ηw(s̄n,ijw,τ )− ηw(Sn,ijw ) + ηw(Sn,ijw ),

and we must examine the convergence of

X :=
1

2

N∑
n=1

τ

M∑
i,j=1

cij
(
ηw(s̄n,ijw,τ )− ηw(Sn,ijw )

)(
Un,j
w − Un,i

w

)(
V n,j − V n,i

)
.

On the one hand, owing to the smoothness of v, we have

|V n,j − V n,i| ≤ Chi‖∇ v‖L∞(Ω×]0,T [), (7.8)

where hi is the length of the edge whose endpoints are the vertices i and j. On the other
hand,

|ηw(s̄n,ijw,τ )− ηw(Sn,ijw )| ≤ C‖η′w‖L∞(0,1)|s̄n,ijw,τ − Sn,ijw |.
Hence

|X| ≤ C‖∇ v‖L∞(Ω×]0,T [)‖∇Uw,h,τ‖L2(Ω×]0,T [)

( N∑
n=1

τ
M∑
i,j=1

cijh
2
i |s̄n,ijw,τ − Sn,ijw |2

) 1
2
.

It is easy to check that

M∑
i,j=1

cijh
2
i |s̄n,ijw,τ − Sn,ijw |2 ≤ C

M∑
i=1

mi|s̄n,iτ − Sn,i|2.

Therefore

|X| ≤ C‖∇ v‖L∞(Ω×]0,T [)‖∇Uw,h,τ‖L2(Ω×]0,T [)

( N∑
n=1

τ
∥∥Ih(s̄nτ )− Snh,τ

∥∥2

L2(Ω)

) 1
2

= C‖∇ v‖L∞(Ω×]0,T [)‖∇Uw,h,τ‖L2(Ω×]0,T [)‖Ih(s̄τ )− Sh,τ‖L2(Ω×]0,T [),

where we have used the equivalence (2.5). Then, we write

‖Ih(s̄τ )−Sh,τ‖L2(Ω×]0,T [) ≤ ‖Ih(s̄τ )− s̄τ‖L2(Ω×]0,T [) +‖s̄τ− s̄‖L2(Ω×]0,T [) +‖s̄−Sh,τ‖L2(Ω×]0,T [),

and the approximation properties of Ih, the strong convergence of s̄τ to s̄ and of Sh,τ to s̄,
all in L2(Ω×]0, T [) imply that

lim
(h,τ)→(0,0)

N∑
n=1

τ

M∑
i,j=1

cij
(
ηw(s̄n,ijw,τ )− ηw(Sn,ijw )

)(
Un,j
w − Un,i

w

)(
V n,j − V n,i

)
= 0. (7.9)
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A combination of (7.9) and (7.7) yields the intermediate convergence result when the limit
function s̄ is smooth,

lim
(h,τ)→(0,0)

−
N∑
n=1

τ
[
Pw,h,τ , Ih(ηw(Sh,τ ));Uw,h,τ , Vh,τ

]
h

=

∫ T

0

∫
Ω

ηw(s̄)∇ W̄w · ∇ v. (7.10)

It remains to lift the regularity restriction on s̄. Let (Sm)m≥1 be a sequence of smooth
functions that tend to s̄ in L2(Ω×]0, T [). Then for each ε > 0, there exists an integer M0

such that

‖SM0 − s̄‖L2(Ω×]0,T [) ≤ ε. (7.11)

From (7.11), the projection properties, and the fact that M0 is fixed, we infer

‖ρτ (ηw(s̄))− ηw(s̄)‖L2(Ω×]0,T [) ≤ ‖ρτ (ηw(s̄)− ηw(SM0))‖L2(Ω×]0,T [)

+ ‖ρτ (ηw(SM0))− ηw(SM0)‖L2(Ω×]0,T [) + ‖ηw(SM0)− ηw(s̄)‖L2(Ω×]0,T [)

≤ (2 ε+ C τ)‖η′w‖L∞(0,1).

(7.12)

Now, we replace (7.2) by∫ T

0

∫
Ω

ηw(s̄)∇Uw,h,τ · ∇Vh,τ =

∫ T

0

∫
Ω

ρτ
(
ηw(s̄)− ηw(SM0)

)
∇Uw,h,τ · ∇Vh,τ

+

∫ T

0

∫
Ω

ρτ
(
ηw(SM0)

)
∇Uw,h,τ · ∇Vh,τ

=

∫ T

0

∫
Ω

ρτ
(
ηw(s̄)− ηw(SM0)

)
∇Uw,h,τ · ∇Vh,τ +

∫ T

0

∫
Ω

ηw(SM0)∇Uw,h,τ · ∇Vh,τ .

(7.13)

For the first term, owing to (7.11), the projection properties, and (5.42), we have

∣∣∣ ∫ T

0

∫
Ω

ρτ
(
ηw(s̄)−ηw(SM0)

)
∇Uw,h,τ · ∇Vh,τ

∣∣∣ ≤ ‖∇Vh,τ‖L∞(Ω×]0,T [)

× ‖∇Uw,h,τ‖L2(Ω×]0,T [)‖ηw(s̄)− ηw(SM0)‖L2(Ω×]0,T [)

≤ ε ‖η′w‖L∞(0,1)‖∇Vh,τ‖L∞(Ω×]0,T [)‖∇Uw,h,τ‖L2(Ω×]0,T [).

Then the uniform boundedness of Uw,h,τ and Vh,τ yield

∣∣∣ ∫ T

0

∫
Ω

ρτ
(
ηw(S)− ηw(SM0)

)
∇Uw,h,τ · ∇Vh,τ

∣∣∣ ≤ C ε, (7.14)

with a constant C independent of h and τ . Thus, we must examine the limit of the second
term. Since M0 is fixed and SM0 is smooth, by reproducing the previous steps, we derive
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the analogue of (7.7) for the function SM0 ,

lim
(h,τ)→(0,0)

1

2

N∑
n=1

τ
M∑
i,j=1

cijηw((SM0)
n,ij
w,τ )

(
Un,j
w − Un,i

w

)(
V n,j − V n,i

)
=

∫ T

0

∫
Ω

ηw(SM0)∇ W̄w · ∇ v =

∫ T

0

∫
Ω

ηw(s̄)∇ W̄w · ∇ v +R,

(7.15)

where

|R| =
∣∣ ∫ T

0

∫
Ω

(
ηw(SM0)− ηw(s̄)

)
∇ W̄w · ∇ v

∣∣
≤ ‖η′w‖L∞(0,1)‖SM0 − s̄‖L2(Ω×]0,T [)‖∇ W̄w‖L2(Ω×]0,T [)‖∇ v‖L∞(Ω×]0,T [) ≤ C ε.

(7.16)

To relate the left-hand side of (7.15) to
[
Pw,h,τ , Ih(ηw(Sh,τ ));Uw,h,τ , Vh

]
h
, we split

ηw((SM0)
n,ij
w,τ ) = ηw(Sn,ijw ) + ηw((SM0)

n,ij
w,τ )− ηw(Sn,ijw ),

and examine the convergence of

Y :=
1

2

N∑
n=1

τ
M∑
i,j=1

cij
(
ηw((SM0)

n,ij
w,τ )− ηw(Sn,ijw )

)(
Un,j
w − Un,i

w

)(
V n,j − V n,i

)
.

By arguing as above and using the interpolant Ih, we derive

|Y | ≤ C‖η′w‖L∞(0,1)‖∇ v‖L∞(Ω×]0,T [)‖∇Uw,h,τ‖L2(Ω×]0,T [)‖Ih((SM0)τ )− Sh,τ‖L2(Ω×]0,T [).

Finally, we write

‖Ih((SM0)τ )− Sh,τ‖L2(Ω×]0,T [) ≤ ‖Ih((SM0)τ )− (SM0)τ‖L2(Ω×]0,T [)

+ ‖(SM0)τ − SM0‖L2(Ω×]0,T [) + ‖SM0 − s̄‖L2(Ω×]0,T [) + ‖s̄− Sh,τ‖L2(Ω×]0,T [)

≤ C h‖SM0‖L∞(0,T ;H2(Ω)) + Cτ‖SM0‖H1(0,T ;L2(Ω)) + ε+ ‖s̄− Sh,τ‖L2(Ω×]0,T [),

so that
|Y | ≤ C(h+ τ + ε) + ‖s̄− Sh,τ‖L2(Ω×]0,T [). (7.17)

In the next theorem, the limit (7.10) when s̄ is only in L2(Ω×]0, T [) follows by combining
(7.13)–(7.17). The same argument holds when w is replaced by o.

Theorem 7.1. Let v ∈ C1(Ω̄ × [0, T ]) be a smooth function and let Vh,τ = Ih(v)(tn) in
]tn−1, tn]. Under the assumptions and notation on the mobility (5.42)–(5.46),

lim
(h,τ)→(0,0)

−
∫ T

0

[
Pα,h,τ , Ih(ηα(Sh,τ ));Uα,h,τ , Vh,τ

]
h

=

∫ T

0

∫
Ω

ηα(s̄)∇ W̄α · ∇ v (7.18)

where s̄ is the strong limit of Sh,τ and W̄α the weak limit of Uα,h,τ , α = w, o.
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7.1.2. The additional term . This paragraph is dedicated to the limit of∫ T

0

[
Pα,h,τ , Ih(ηα(Sh,τ )); Ih(pαg(Sh,τ )), Vh,τ

]
h
, α = w, o.

It shall be split below, as suggested by the following observation, derived from (1.12) and
(1.13):

ηw(Sijw )pwg(S
j) + g(Sj) =

∫ Sj

0

fo(x)
(
ηw(Sijw )− ηw(x)

)
p′c(x) dx,

ηo(S
ij
o )pog(S

j) + g(Sj) =

∫ Sj

0

fw(x)
(
ηo(S

ij
o )− ηo(x)

)
p′c(x) dx.

Thus, we add and subtract g and write by applying (2.9),∫ T

0

[
Pα,h,τ , Ih(ηα(Sh,τ )); Ih(pαg(Sh,τ )), Vh,τ

]
h

=
N∑
n=1

τ
M∑
i,j=1

V n,icij

[
ηα(Sn,ijα )

(
pαg(S

n,j)− pαg(Sn,i)
)

+ g(Sn,j)− g(Sn,i)
]

+

∫ T

0

∫
Ω

∇ g(Sh,τ ) · ∇Vh,τ = T1 + T2.

Since

lim
(h,τ)→(0,0)

T2 =

∫ T

0

∫
Ω

∇ g(s̄) · ∇ v, (7.19)

we must prove that the first term tends to zero. When α = w, it has the form

T1 = −1

2

N∑
n=1

τ
M∑
i,j=1

cij

(∫ Sn,j

Sn,i
fo(x)

(
ηw(Sn,ijw )− ηw(x)

)
p′c(x) dx

)(
V n,j − V n,i

)
, (7.20)

with an analogous expression in the non-wetting phase. Then (7.8) yields,

|T1| ≤
C

2
‖∇ v‖L∞(Ω×]0,T [)

N∑
n=1

τ
M∑
i,j=1

hicij
∣∣ ∫ Sn,j

Sn,i
fo(x)

(
ηw(Sn,ijw )− ηw(x)

)
p′c(x) dx

∣∣. (7.21)

Showing that T1 is small requires a technical argument that we split into several steps.

Proposition 7.2. For the wetting phase, we have

|
∫ Sj

Si
fo(x)

(
ηw(Sijw )− ηw(x)

)
p′c(x) dx

∣∣ ≤ −(ηw(Sj)− ηw(Si)
)(
pwg(S

j)− pwg(Si)
)
. (7.22)

For the non-wetting phase, the corresponding expression is bounded by

|
∫ Sj

Si
fw(x)

(
ηo(S

ij
o )− ηo(x)

)
p′c(x) dx

∣∣ ≤ (ηo(Sj)− ηo(Si))(pog(Sj)− pog(Si)). (7.23)
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Proof. Let us prove (7.22), the proof of (7.23) being similar. The discussion depends on
the respective values of Sj and Si. There are two cases: Si < Sj or Si > Sj. Of course
Si = Sj brings nothing.

1) If Si < Sj and Sijw = Si, then ηw(Sijw )−ηw(x) = ηw(Si)−ηw(x), and, as pwg is decreasing,

0 ≤
∫ Sj

Si
fo(x)(−p′c(x))

(
ηw(x)− ηw(Si)

)
dx ≤ −

(
ηw(Sj)− ηw(Si)

)(
pwg(S

j)− pwg(Si)
)
.

If Sijw = Sj, then ηw(Sijw )− ηw(x) = ηw(Sj)− ηw(x), and

0 ≤
∫ Sj

Si
fo(x)(−p′c(x))

(
ηw(Sj)− ηw(x)

)
dx ≤ −

(
ηw(Sj)− ηw(Si)

)(
pwg(S

j)− pwg(Si)
)
.

2) If Si > Sj and Sijw = Si, then

0 ≤
∫ Si

Sj
fo(x)(−p′c(x))

(
ηw(Si)− ηw(x)

)
dx ≤ −

(
ηw(Si)− ηw(Sj)

)(
pwg(S

i)− pwg(Sj)
)
.

Finally, suppose that Sijw = Sj. Then

0 ≤
∫ Si

Sj
fo(x) p′c(x)

(
ηw(Sj)− ηw(x)

)
dx ≤ −

(
ηw(Si)− ηw(Sj)

)(
pwg(S

i)− pwg(Sj)
)
.

This proves (7.22).

By substituting (7.22) into (7.21), we arrive at

|T1| ≤
C

2
‖∇ v‖L∞(Ω×]0,T [)

N∑
n=1

τ
M∑
i,j=1

hicij

(
−
(
ηw(Sn,j)− ηw(Sn,i)

)(
pwg(S

n,j)− pwg(Sn,i)
))
,

(7.24)
with an analogous bound in the non-wetting phase. Up to the factor hi, they behave like∫ T

0

∫
Ω
∇(Ih(ηα(Sh,τ ))) · ∇(Ih(pαg(Sh,τ ))), α = w, o. Thus T1 tends to zero if this quantity

is bounded or is of the order of a negative power of h that is larger than −1. We have no
direct bound for it, but as we do have a bound for

∫ T
0

∫
Ω
∇(Ih(fα(Sh,τ ))) · ∇(Ih(g(Sh,τ ))),

see (5.40), we can gain some insight by relating the two integrands. Again, we examine the
wetting phase, the treatment of the non-wetting phase being the same. The proposition
below will be applied to x1 = Sn,i and x2 = Sn,j. The condition x1 < x2 is not a restriction
because if it does not hold, the indices i and j can be interchanged without changing the
value of the two integrands.

Proposition 7.3. Under the assumptions and notation on the mobility (5.42)–(5.46), we
have for all pairs x1, x2 with 0 ≤ x1 < x2 ≤ 3

4
,(

ηw(x2)− ηw(x1)
)(
pwg(x1)− pwg(x2)

)
≤ C(xθw2 − xθw1 )(xβ32 − x

β3
1 ), (7.25)
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(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
≥ C(xθw2 − xθw1 )(xθw+β3

2 − xθw+β3
1 ). (7.26)

Similarly, we have for all pairs x1, x2 with 1
4
≤ x1 < x2 ≤ 1,(

ηw(x2)− ηw(x1)
)(
pwg(x1)− pwg(x2)

)
≤ C(x2− x1)

(
(1− x1)θo+β4 − (1− x2)θo+β4

)
, (7.27)(

fw(x2)−fw(x1)
)(
g(x2)−g(x1)

)
≥ C

(
(1−x1)θo− (1−x2)θo

)(
(1−x1)θo+β4− (1−x2)θo+β4

)
.

(7.28)
Finally, we have for all pairs x1, x2 with 0 ≤ x1 ≤ 1

4
and 3

4
≤ x2 ≤ 1,(

ηw(x2)− ηw(x1)
)(
pwg(x1)− pwg(x2)

)
≤ C

(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
. (7.29)

All constants C above are independent of x1 and x2.

Proof. According to (5.42),

ηw(x2)− ηw(x1) ≤ 1

αwθw
(xθw2 − xθw1 ).

Next, recalling that p′wg(x) = fo(x)p′c(x), we have, owing to (5.44), (5.46), and (1.8),

pwg(x1)− pwg(x2) =

∫ x2

x1

fo(x)(−p′c(x)) dx ≤ 1

η∗

1

α3

1

αoθo

∫ x2

x1

xβ3−1(1− x)θo+β4−1 dx

≤ 1

η∗

1

α3

1

αoθo

∫ x2

x1

xβ3−1 dx ≤ 1

η∗

1

α3β3

1

αoθo
(xβ32 − x

β3
1 ),

(7.30)

and (7.25), valid on [0, 1], follows from these two inequalities.

For (7.26), we use (5.53) that gives

fw(x2)− fw(x1) ≥ αoαw
C2

max

1

θoθw

(1

4

)θo
(xθw2 − xθw1 ), (7.31)

and we use (5.51) that gives

g(x2)− g(x1) ≥ α3

Cmax

αw
θw

αo
θo

1

θw + β3

(1

4

)θo+β4−1
(xθw+β3

2 − xθw+β3
1 ).

The product of the two leads to (7.26).

Regarding (7.27), (7.25), albeit valid for all x ∈ [0, 1], is not adequate for the comparison
we have in mind, and instead we use that

η′w(x) ≤ 1

αw
,

which implies that

ηw(x2)− ηw(x1) ≤ 1

αw
(x2 − x1).
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Similarly, we use

−p′wg(x) ≤ 1

η∗

1

α3

1

αoθo
41−β3(1− x)θo+β4−1,

so that

pwg(x1)− pwg(x2) ≤ 1

η∗

1

α3

1

αoθo

1

θo + β4

41−β3
(
(1− x1)θo+β4 − (1− x2)θo+β4

)
),

thus proving (7.27). Next, by applying (5.54), we have

fw(x2)− fw(x1) ≥ 1

C2
max

αoαw
θwθo

(1

4

)θw(
(1− x1)θo − (1− x2)θo

)
.

Likewise, by applying (5.51), we obtain

g(x2)− g(x1) ≥ α3

Cmax

αw
θw

αo
θo

1

θo + β4

(1

4

)θw−1+β3((1− x1)θo+β4 − (1− x2)θo+β4
)
.

The product of the two yields (7.28).

Finally, when 0 ≤ x1 ≤ 1
4

and 3
4
≤ x2 ≤ 1, since both ηw and −pwg are both increasing,

they satisfy (
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ ηw(1)

(
− pwg(1)

)
> 0.

Likewise, as both fw and g are increasing, they satisfy(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
≥
(
fw(

3

4
)− fw(

1

4
)
)(
g(

3

4
)− g(

1

4
)
)

=: D > 0.

Hence(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ − 1

D

(
ηw pwg

)
(1)
(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
,

whence (7.29). Clearly all constants involved are independent of x1 and x2.

It stems from (7.25) and (7.26), that the two left-hand sides cannot be compared when
x1 and x2 are too small. The same observation applies to (7.27) and (7.28) when 1 − x1

and 1 − x2 are too small. But in this case, there is no need for comparison because the
expression we want to bound is sufficiently small, as is shown in the next proposition where
again, x1 = Sn,i and x2 = Sn,j.

Proposition 7.4. Suppose that x1 < x2 ≤ hγ1i for some exponent γ1 > 0 such that

γ1 >
1

θw + β3

. (7.32)

Then
hi
(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ C h2

ih
δ1
i , (7.33)
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where

0 < δ1 ≤ γ1(θw + β3)− 1. (7.34)

Similarly, suppose that 1− x2 < 1− x1 ≤ hγ2i for some exponent γ2 > 0 such that

γ2 >
1

1 + θo + β4

. (7.35)

Then

hi
(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ C h2

ih
δ2
i , (7.36)

where

0 < δ2 ≤ γ2(1 + θo + β4)− 1. (7.37)

In both cases, the constants C are independent of x1, x2, and hi.

Proof. In the first case, according to (7.25), the choice (7.34) and (7.32) on γ1, we have

hi
(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ C h

1+γ1(θw+β3)
i = h2

ih
γ1(θw+β3)−1
i ,

with the constant C of (7.25), which gives (7.33). In the second case, the same argument
leads to

hi
(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ h

1+γ2(1+θo+β4)
i = h2

ih
γ2(1+θo+β4)−1
i ,

with the constant C of (7.27), thus implying (7.36) with the choice (7.37) for δ2 and the
condition (7.35) on γ2.

Now, we turn to the case when x2 is not too small.

Proposition 7.5. In addition to (7.32), suppose that the exponent γ1 of Proposition 7.4
satisfies

γ1 <
1

θw
. (7.38)

Suppose that x1 < x2 and 3
4
≥ x2 > hγ1i . Then

hi
(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ Ch

δ′1
i

(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
, (7.39)

where

0 < δ′1 = min
(
1− γ1θw, δ1

)
. (7.40)

Again, the constant C is independent of x1, x2, and hi.

Proof. Either x1 ≤ 1
2
x2 or x1 >

1
2
x2, and we examine each case.

1) When x1 ≤ 1
2
x2, formula (7.26) leads to

(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
≥
(
1− (

1

2
)θw
)(

1− (
1

2
)θw+β3

)
Cx2θw+β3

2 ,
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with the constant C of (7.26), whereas(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ Cxθw+β3

2 ,

with the constant C of (7.25). Hence

hi
(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ C

hi

xθw2

(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
,

with another constant C independent of x1, x2, and hi. Now, we use the assumption that
x2 > hγ1i . Then, owing to (7.40),

hi

xθw2
≤ h1−γ1θw

i ≤ h
δ′1
i ,

and we recover (7.39).

2) When x1 >
1
2
x2, we infer from the next to last inequality in (7.30) that

pwg(x1)− pwg(x2) ≤ 1

η∗

1

α3

1

αoθo

(
x2 − x1

)
xβ3−1

1 ≤ 1

η∗

1

α3

1

αoθo
21−β3 1

x1−β3
2

(
x2 − x1

)
.

Thus, on the one hand,(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ C

1

x1−β3
2

(
x2 − x1

)(
xθw2 − xθw1

)
, (7.41)

where C is the above constant divided by αw. On the other hand, we use the lower bound
(7.31) for the difference in fw and we need a lower bound for the difference in g. It is
derived from (5.51),

g(x2)− g(x1) ≥ α3

Cmax

αw
θw

αo
θo

(1

4

)θo+β4−1
xθw+β3−1

1 (x2 − x1)

≥ α3

Cmax

αw
θw

αo
θo

(1

4

)θo+β4−1(1

2

)θw+β3−1
xθw+β3−1

2 (x2 − x1).
(7.42)

Hence (7.31) and (7.42) yield(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
≥ Cxθw+β3−1

2

(
xθw2 − xθw1

)
(x2 − x1), (7.43)

with the product of the constants of (7.31) and (7.42). Then by combining (7.41) and
(7.43), we deduce that(

ηw(x2)− ηw(x1)
)(
pwg(x1)− pwg(x2)

)
≤ C

hγ1θwi

(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
;

which is (7.39) when δ′1 satisfies (7.40).

The case when 1− x1 is not too small is handled by the next proposition.
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Proposition 7.6. In addition to (7.35), suppose that the exponent γ2 of Proposition 7.4
satisfies

γ2 <
1

θo − 1
. (7.44)

Suppose that 1
4
< x1 < x2 ≤ 1 and 1− x1 > hγ2i . Then

hi
(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ Ch

δ′2
i

(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
, (7.45)

where
0 < δ′2 = min

(
δ2, 1− γ2(θo − 1)

)
. (7.46)

Again, the constant C is independent of x1, x2, and hi.

Proof. The proof is analogous to that of Proposition 7.5, but we sketch the steps for the
reader’s convenience. We skip the constants’ details, but stress that they are independent
of x1, x2, and hi. Again, there are two possibilities, either 1− x2 ≤ 1

2
(1− x1) or 1− x2 >

1
2
(1− x1), and we examine each case.

1) In the first case,(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ C(1− x1)1+θ0+β4 ,

and (
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
≥ C(1− x1)2θ0+β4 .

Hence(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ C

1

(1− x1)θo−1

(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
≤ C

1

h
γ2(θo−1)
i

(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
.

With (7.44) and (7.46), this implies (7.45).

2) In the second case, we have on the one hand,

pwg(x1)− pwg(x2) ≤ C(x2 − x1)(1− x1)θo+β4−1,

so that (
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ C(x2 − x1)2(1− x1)θo+β4−1.

On the other hand,

fw(x2)− fw(x1) ≥ C(x2 − x1)(1− x1)θo−1,

and
g(x2)− g(x1) ≥ C(x2 − x1)(1− x1)θo+β4−1,
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and thus(
ηw(x2)− ηw(x1)

)(
pwg(x1)− pwg(x2)

)
≤ C

1

(1− x1)θo−1

(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
≤ C

1

h
γ2(θo−1)
i

(
fw(x2)− fw(x1)

)(
g(x2)− g(x1)

)
,

whence (7.45).

In view of (7.32), (7.34), (7.38), and (7.40), let us choose

δ1 = δ′1 =
β3

2θw + β3

, γ1 =
2

2θw + β3

. (7.47)

Then (7.32) and (7.34) are satisfied, as well as (7.38) and (7.40). Likewise, in view of
(7.35), (7.37), (7.44), and (7.46), the choice

δ2 = δ′2 =
2 + β4

2θo + β4

, γ2 =
2

2θo + β4

, (7.48)

satisfies (7.35), (7.37), (7.44), (7.46). Then the desired limit follows by collecting these
results.

Lemma 7.7. Under the assumptions and notation on the mobility (5.42)–(5.46), the term
T1 defined in (7.20) tends to zero, with a similar limit in the non-wetting phase, i.e.,

lim
(h,τ)→(0,0)

N∑
n=1

τ
M∑
i,j=1

cij

(∫ Sn,j

Sn,i
fo(x)

(
ηw(Sn,ijw )− ηw(x)

)
p′c(x) dx

)(
V n,j − V n,i

)
= 0,

lim
(h,τ)→(0,0)

N∑
n=1

τ
M∑
i,j=1

cij

(∫ Sn,j

Sn,i
fw(x)

(
ηo(S

n,ij
o )− ηo(x)

)
p′c(x) dx

)(
V n,j − V n,i

)
= 0.

(7.49)

Proof. We prove the first limit. Here the parameters of Propositions 7.4 and 7.5 are chosen
by (7.47) and (7.48). It stems from the above considerations that, for each index n, the
set of all indices (i, j) from 1 to M can be partitioned into three subsets,

O1 = {(i, j) ; 0 ≤ Sn,i < Sn,j ≤ 3

4
}, O2 = {(i, j) ;

1

4
≤ Sn,i < Sn,j ≤ 1},

O3 = {(i, j) ; 0 ≤ Sn,i ≤ 1

4
and

3

4
≤ Sn,j ≤ 1}.

In turn, O1 and O2 can each be partitioned into two subsets

O1,1 = {(i, j) ∈ O1 ; Sn,j ≤ hγ1T }, O1,2 = {(i, j) ∈ O1 ; Sn,j > hγ1T },

O2,1 = {(i, j) ∈ O2 ; 1− Sn,i ≤ hγ2T }, O2,2 = {(i, j) ∈ O2 ; 1− Sn,i > hγ2T }.
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To simplify, let

Ai,j = cij

(∫ Sn,j

Sn,i
fo(x)

(
ηw(Sn,ijw )− ηw(x)

)
p′c(x) dx

)(
V n,j − V n,i

)
.

In view of (7.33) and (7.36), for all pairs (i, j) in O`,1, ` = 1, 2, Ai,j satisfies

|Ai,j| ≤ C‖∇ v‖L∞(Ω×]0,T [)h
2+δ`
i cij.

Owing to (7.39) and (7.45), for all pairs (i, j) in O`,2, ` = 1, 2, we have

|Ai,j| ≤ C‖∇ v‖L∞(Ω×]0,T [)h
δ`
i cij

(
fw(Sn,j)− fw(Sn,i)

)(
g(Sn,j)− g(Sn,i)

)
.

Finally, for all pairs (i, j) in O3,

|Ai,j| ≤ C‖∇ v‖L∞(Ω×]0,T [)hicij
(
fw(Sn,j)− fw(Sn,i)

)(
g(Sn,j)− g(Sn,i)

)
.

According to (5.40), the sum of the terms over all (i, j) in O`,2 and O3 tends to zero. For
the remaining terms, observe that by definition,

h2
i cij ≤ C|∆i ∩∆j|,

so that the sum over all (i, j) in O`,1 is bounded by Chδ`i that also tends to zero, whence
the first part of the limit (7.49). The same limit to zero holds for the non-wetting phase.

With (7.19), this lemma leads to the desired limit of the term with the auxiliary pressures.

Theorem 7.8. Let v ∈ C1(Ω̄× [0, T ]) be a smooth function and let Vh,τ (t) = Ih(v)(tn) in
]tn−1, tn]. Under the assumptions and notation on the mobility (5.42)–(5.46),

lim
(h,τ)→(0,0)

∫ T

0

[
Pα,h,τ , Ih(ηα(Sh,τ )); Ih(pαg(Sh,τ )), Vh,τ

]
h

=

∫ T

0

∫
Ω

∇ g(s̄) · ∇ v, α = w, o,

(7.50)
where s̄ is the limit of Sh,τ .

Finally, Theorems 7.1 and 7.8, together with (1.15) and (6.40), give the desired convergence
of the upwind diffusion terms.

Theorem 7.9. With the notation and assumptions of Theorem 7.1, we have for all
functions v ∈ C1(Ω̄× [0, T ]),

lim
(h,τ)→(0,0)

−
∫ T

0

[
Pα,h,τ , Ih(ηα(Sh,τ ));Pα,h,τ , Vh,τ

]
h

=

∫ T

0

∫
Ω

(
ηw(s̄)∇(p̄w + pwg(s̄)) +∇ g(s̄)

)
· ∇ v if α = w,

=

∫ T

0

∫
Ω

(
ηo(s̄)∇(p̄o − pog(s̄))−∇ g(s̄)

)
· ∇ v if α = o.

(7.51)
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7.2. Convergence of the right-hand sides. In order to pass to the limit in the
right-hand sides of (2.42)–(2.43) it is convenient to replace the quadrature formulas by
integrals. Since the quadrature formulas are exact for polynomials of degree one, this is
achieved by approximating some functions with the operator ρh, see (2.27). As sin belongs
to L∞(Ω×]0, T [), standard approximation properties of ρτ and rh and a density argument
imply

lim
(h,τ)→(0,0)

ρτ (ρK(sin)) = sin in L∞(K×]0, T [). (7.52)

Then the continuity of fα, for α = w, o, yields

lim
(h,τ)→(0,0)

fα(ρτ (ρK(sin))) = fα(sin) in L∞(K×]0, T [). (7.53)

Similarly, since q̄ belongs to L2(Ω×]0, T [),

lim
(h,τ)→(0,0)

ρτ (ρK(q̄)) = q̄ in L2(K×]0, T [).

Also the (constant in space) correction added to ρτ (rh(q̄)) satisfies

lim
(h,τ)→(0,0)

ρτ
( 1

|Ω|

∫
Ω

(rh(q̄)− q̄)
)

= 0 in L2(Ω×]0, T [).

Therefore
lim

(h,τ)→(0,0)
q̄h,τ = q̄ in L2(Ω×]0, T [). (7.54)

With the same function Vh,τ , consider the first term in the right-hand sides of (2.42)–(2.43)

X :=
N∑
n=1

τ
(
Ih(fα(snin,h))q̄

n
h , V

n
h

)
h

=

∫ T

0

(
Ih(fα(sin,h,τ ))q̄h,τ , Vh,τ

)
h
.

By definition of the quadrature formula, X has the following expression:

X =
N∑
n=1

τ
∑
K∈Ω̄

|K|
d+ 1

d+1∑
`=1

fα(sn,`iin,h,τ )q̄
n,`i
h,τ V

n,`i
h,τ .

By inserting fα(ρτ (ρK(sin))) and ρτ (ρK(q̄)), this becomes

X =
N∑
n=1

τ
∑
K∈Ω̄

|K|
d+ 1

d+1∑
`=1

(
fα(sn,`iin,h,τ )− fα(ρτ (ρK(sin)))

)
q̄n,`ih,τ V

n,`i
h,τ

+
N∑
n=1

τ
∑
K∈Ω̄

|K|
d+ 1

d+1∑
`=1

fα(ρτ (ρK(sin)))
(
q̄n,`ih,τ − ρτ (ρK(q̄))

)
V n,`i
h,τ

+

∫ T

0

∫
Ω

fα(ρτ (ρK(sin)))ρτ (ρK(q̄))Vh,τ = X1 +X2 +X3,
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since the last summand is a polynomial of degree one. We have

lim
(h,τ)→(0,0)

X3 =

∫ T

0

∫
Ω

fo(sin) q̄ v.

It remains to show that X1 and X2 tend to zero. For X1, since fo and fw have the same
derivative (up to the sign), we deduce from (5.52), (5.42), (5.43), (5.45), (5.46), and (5.47)
that f ′α is bounded in [0, 1]; hence

|fα(sn,`iin,h,τ )− fα(ρτ (ρK(sin)))| ≤ C|sn,`iin,h,τ − ρτ (ρK(sin))|.

Thus, the summand is bounded by polynomials and the equivalence of norms yields

|X1| ≤ C‖v‖L∞(Ω×]0,T [)‖sin,h,τ − ρτ (ρK(sin))‖L2(Ω×]0,T [)‖q̄h,τ‖L2(Ω×]0,T [),

that tends to zero with (h, τ). It is easy to check that the same holds for X2. Hence

lim
(h,τ)→(0,0)

∫ T

0

(
Ih(fα(sin,h,τ ))q̄h,τ , Vh,τ

)
h

=

∫ T

0

∫
Ω

fα(sin) q̄ v. (7.55)

The argument for the second term in the right-hand side of (2.42) is much the same; we
insert ρτ (ρK(s̄)) and we use the fact that

lim
(h,τ)→(0,0)

‖Sh,τ − ρτ (ρK(s̄))‖L2(Ω×]0,T [) = 0.

Then the argument used for the first term readily gives

lim
(h,τ)→(0,0)

∫ T

0

(Ih(fα(Sh,τ ))qhτ
, Vh,τ

)
h

=

∫ T

0

∫
Ω

fα(s̄) q̄ v. (7.56)

By combining (7.55) and (7.56), we obtain convergence of the right-hand sides,

lim
(h,τ)→(0,0)

(∫ T

0

(
Ih(fα(sin,h,τ ))q̄h,τ − Ih(fα(Sh,τ ))qhτ

, Vh,τ
)
h

=

∫ T

0

∫
Ω

(
fα(sin) q̄ − fα(s̄) q̄

)
v.

(7.57)

7.3. The full scheme. It remains to pass to the limit in the time derivative, say in
(2.42), summed over n, and tested with the same Vh,τ as previously, except that here we
take v(T ) = 0. After summation by parts, this term reads

N∑
n=1

(Snh − Sn−1
h , V n

h )ϕh = −
N−1∑
n=1

(V n+1
h − V n

h , S
n
h )ϕh − (V 1

h , S
0
h)
ϕ
h . (7.58)

By definition,

(V n+1
h − V n

h , S
n
h )ϕh =

∑
K∈Ω̄

|K|
d+ 1

ϕ|K
d+1∑
`=1

(V n+1,i` − V n,i`)Sn,i` .
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By inserting ρK(V n+1,i` − V n,i`) in each element, this becomes

(V n+1
h − V n

h , S
n
h )ϕh = (V n+1

h − V n
h − ρh(V n+1 − V n), Snh )ϕh +

∫
Ω

ϕρh(V
n+1 − V n)Snh .

The first term has the bound∣∣(V n+1
h − V n

h − ρh(V n+1 − V n), Snh )ϕh
∣∣ ≤ ‖ϕ‖L∞(Ω)‖V n+1

h − V n
h − ρh(V n+1 − V n)‖h‖Snh‖h.

Since the functions are piecewise polynomials, the equivalence of norms yields

∣∣N−1∑
n=1

(V n+1
h − V n

h − ρh(V n+1 − V n), Snh )ϕh
∣∣ ≤ C ‖ϕ‖L∞(Ω)

×
(N−1∑
n=1

τ‖1

τ

(
Ih(v

n+1 − vn)− ρh(V n+1 − V n)
)
‖2
L2(Ω)

) 1
2
(N−1∑
n=1

τ‖Snh‖2
L2(Ω)

) 1
2 .

Then the regularity of v, the approximation properties of Ih and ρh and the boundedness
of Sh,τ imply that

lim
(h,τ)→(0,0)

∣∣N−1∑
n=1

(V n+1
h − V n

h − ρh(V n+1 − V n), Snh )ϕh
∣∣ = 0.

Similarly, it is easy to check from the convergence of Sh,τ that

− lim
(h,τ)→(0,0)

N−1∑
n=1

∫
Ω

ϕρh(V
n+1 − V n)Snh = −

∫ T

0

∫
Ω

ϕ(∂tv)s̄.

The treatment of the initial term is the same. Hence

lim
(h,τ)→(0,0)

N∑
n=1

(Snh − Sn−1
h , V n

h )ϕh = −
∫ T

0

∫
Ω

ϕ(∂tv)s̄−
∫

Ω

ϕs0v. (7.59)

By combining (7.59), with (7.9) and (7.57), we readily see that the limit functions s̄, p̄α
and pαg(s̄) satisfy the weak formulation (1.16). This proves Theorem 2.6.

8. Numerical validation. This section proposes a numerical validation of our algo-
rithm with a two dimensional finite difference code. Details on the algorithm implemented
are given. A problem with manufactured solutions is then considered to study the conver-
gence properties of our algorithm.

8.1. Implementation of the model. To avoid dealing with nonlinear terms, we im-
plement a modified version of the algorithm proposed in section 2.3. The main difference
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consists of approximating the terms Sn+1,ij
w , Sn+1,ij

o and P n+1
o with first time order extrap-

olation. For each node 1 ≤ i ≤ M , the unknowns (Sn+1,i, P n+1,i
w ) are computed as the

solution of the following problem:

m̃i

∆t
(Sn+1,i − Sn,i)−

∑
j 6=i,j∈N(i)

cijηw(S∗,n+1,ij
w )(P n+1,j

w − P n+1,i
w )

= mif
n+1,i
1 , 1 ≤ i ≤M, (8.1)

−m̃i

∆t
(Sn+1,i − Sn,i)−

∑
j 6=i,j∈N(i)

cijηo(S
∗,n+1,ij
o )(P n+1,j

w − P n+1,i
w )

−
∑

j 6=i,j∈N(i)

cijηo(S
∗,n+1,ij
o )(p∗,n+1,j

c − p∗,n+1,i
c ) = mif

n+1,i
2 , 1 ≤ i ≤M, (8.2)

where the pressure Po has been substituted with Pw + pc with respect to (2.34). The
solution Pw is enforced to satisfy (2.35) a posteriori by subtracting its integral

∑M
i=1 miP

i
w

after solving the above problem. The terms S∗,n+1,ij
w and S∗,n+1,ij

o are approximated at
time iteration n by setting them to Sn,ijw and Sn,ijo . Eventually, the capillary pressure p∗,n+1

c

is approximated with a first order Taylor expansion with respect to the saturation S, it
reads:

p∗,n+1
c = pnc +

(
∂pc
∂S

)n
(Sn+1 − Sn). (8.3)

We note that to facilitate the implementation of this algorithm in a two dimensional finite
difference code, the source terms of the equations (2.32)-(2.33) have been replaced by
functions denoted by f1 and f2.

8.2. Numerical test with a manufactured solution. The numerical validation of
the algorithm is done by approximating the analytical solutions defined by

Pw(t, x, y) = 2 + x2y − y2 + x2 sin(t+ y), (8.4)

S(t, x, y) = 0.2(2 + 2xy + cos(t+ x)), (8.5)

on the computational domain Ω = [0, 1]2. Dirichlet boundary conditions are applied on
∂Ω on both unknowns Pw and S. The initial conditions of the problem satisfy (8.4)-(8.5).
The porosity of the domain is set to:

φ(t, x, y) = 0.2(1 + xy). (8.6)

The mobilities ηw and ηo, introduced in section 1.1, are defined as follows:

ηw = 4S2, ηo = 0.4(1− S)2. (8.7)

The capillary pressure is based on the Brooks-Corey model, it reads:

Pc =

{
AS−0.5 if S > 0.05,

A(1.5− 10S)× 0.05−0.5 otherwise.
(8.8)
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where A is a constant set to 50. The term sources f1 and f2 are computed accordingly. The
convergence tests are performed on a set of six uniform grids with respective mesh size h ∈
{0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625}. The convergence properties are evaluated by using a
time step τ set to the mesh size h with a final time T = 1. As the time derivatives and the
saturations Sn+1,ij

w , Sn+1,ij
o are computed with first order time approximation, we expect

the convergence rate in the L2 norm to be of order one. The results of the convergence

L2-norm of error Water pressure Pw Water saturation S

h ndf Error Rate Error Rate
0.2 25 8.50E-3 - 4.21E-3 -
0.1 100 4.15E-3 1.03 2.30E-3 0.87
0.05 400 2.08E-3 1.00 1.14E-4 1.01
0.025 1600 1.04-3 1.00 5.57E-4 1.03
0.0125 6400 5.23E-4 0.99 2.75E-4 1.02

Table 8.1
Results of convergence tests where the mesh size is denoted by h and the number of degrees of freedom

per unknown by ndf . The time step τ is set to h and errors are computed at final time T = 1.

tests are presented in Table 8.1. The theoretical order of convergence, equal to one, is
recovered for both unknowns which confirms the correct behavior of the algorithm.

9. Conclusions. This paper formulates a P1 finite element method to solve the im-
miscible two-phase flow problem in porous media. The unknowns are the phase pressure
and saturation, which are the preferred unknowns in industrial reservoir simulators. The
numerical method employs mass lumping for integration and an upwind flux technique. As
a consequence, the saturation is shown to be bounded between zero and one. The discrete
approximations of pressure and saturation converge to the weak solution as the time step
and mesh sizes tend to zero.
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Lions, Université Paris VI, 2009.
[13] J. Douglas, Jr, Finite difference methods for two-phase incompressible flow in porous media, SIAM

J. Numer. Anal., 20 (1983), pp. 681–696.
[14] Y. Epshteyn and B. Riviere, Analysis of hp discontinuous Galerkin methods for incompressible

two-phase flow, Journal of Computational and Applied Mathematics, 225 (2009), pp. 487–509.
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