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1. Introduction

Monitoring livestock behaviours is a useful way to detect breeding
events such as oestrus (Kamphuis et al., 2012) and health events such as
lameness (Chapinal et al., 2009). In pasture-based systems, monitoring
the behaviour of grazing ruminants is also important to optimise animal
intake and performance (Carvalho, 2013). However, these observations
are time consuming, labour-intensive (Penning, 1983) and sometimes
access to the animal is not easy, like in mountain environment (Schlecht
et al., 2009). For these reasons, applications that involve sensors to
automatically monitor the behaviour of livestock have grown rapidly
over the last years (Rushen et al., 2012). Among available technologies,
promising results have been obtained with accelerometers, already
widely used for human activity recognition (Mathie et al., 2004). Ac-
celerometers have been effective in discriminating behaviours of ru-
minants like grazing, ruminating or lying (Benaissa et al., 2018; Dutta
et al., 2015; Robert et al., 2009), depending on where the sensor is
attached to the animal. Accelerometers have also been used to predict
specific events such as oestrus (Shahriar et al., 2016) or urination (Lush
et al., 2018) of livestock for instance.

For their effective application in farming, sensors should provide
information about a wide range of behaviours (Rutten et al., 2013).
Animal’s posture like standing or lying, and feeding behaviours like
grazing or ruminating, are both crucial to detect health events and
assist in pasture management. For example, Yunta et al. (2012) showed
that lying bout durations are longer for moderately lame cows. Norring
et al. (2014) highlighted that lameness is associated with changes in
feeding behaviour, thereby justifying that both posture and feeding
behaviour should be taken into account to detect lameness. Concerning

pasture management, most of the studies focused on grazing, rumi-
nating, resting and active behaviours (Andriamandroso, 2017;
Giovanetti et al., 2017; Gonzalez et al., 2015), as these are the main
behaviours affecting livestock performance. Collecting lying and
standing time and identifying the main areas where animals carried out
these behaviours is also a relevant information for pasture management
and welfare monitoring (Martiskainen et al., 2009; Riaboff et al., 2018).
In the latter studies, a satisfactory discrimination of two or three be-
haviours was obtained (Benaissa et al., 2018; Giovanetti et al., 2017)
but the performance dramatically decreased when posture and feeding
behaviours were investigated (Alvarenga et al., 2016; Martiskainen
et al., 2009). Thus, the limited set of discriminated behaviours is cur-
rently a significant barrier to the practical use of sensors in farming
(Dutta et al., 2015).

Behaviour prediction generally consists of the three-following steps
(i) signal processing, (ii) feature extraction, and (iii) supervised
learning for classification. Few studies have considered step (i) to im-
prove the prediction although its importance has been demonstrated in
human activity recognition (Bersch et al., 2014). Most authors have
focused on step (ii) in selecting the best set of features (Smith et al.,
2016). Concerning step (iii), different classification algorithms have
already been compared to identify the most suitable classifier (Smith
et al., 2016; Vázquez Diosdado et al., 2015). Regarding step (iii), Ma-
chine Learning methods have been widely considered, including Sup-
port Vector Machine (SVM) (Martiskainen et al., 2009) and Random
Forest (RF) (Lush et al., 2018) but less complex methods have some-
times been applied, such as Discriminant Analysis (Barwick et al., 2018)
or Decision Tree (Robert et al., 2009). Stochastic models such as Hidden
Markov Models (HMM) have sometimes been used to incorporate
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temporal information within the behaviour sequences but it seems less
effective than common supervised algorithm (Vázquez Diosdado et al.,
2015). Yang (2009) proposed a strategy which consists in first pre-
dicting human activities with a decision tree and then smoothing the
outputs with an HMM-based Viterbi algorithm. As this 2 steps strategy
allowed improving the accuracy of the prediction of human behaviour,
it should be interesting to evaluate it for the prediction of livestock
behaviour. Finally, regardless of the prediction methods used, the
predictions obtained with the model are evaluated usually using in-
dependent windows of behaviours (Robert et al., 2009).

In this study, our aim was to develop a methodological framework
for predicting 6 behaviours expressed by dairy cows at pasture and
relevant for on-farm applications, using a three-dimensional accel-
erometer fixed on a neck-collar. The 6 behaviours of interest were
grazing, walking, ruminating while standing, ruminating while lying,
resting while standing and resting while lying. Our approach combined
a raw signal pre-processing step investigated in a previous study
(Riaboff et al., 2019) and the identification of the best machine learning
algorithm among 4 under consideration (Random Forest (RF), Support
Vector Machine (SVM), Adaboost (ADA) and eXtreme Gradient
Boosting (XGB)). A temporal smoothing with an HMM-based Viterbi
algorithm was finally applied to reassess the predictions of the beha-
viours obtained with the Machine Learning algorithms based on the
temporal structure within the sequence of behaviours.

2. Material and methods

An overview of the applied methodological framework is provided
in Fig. 1. Each step is detailed in the following sections.

2.1. Data collection

Data collection was carried out on four commercial dairy farms with
55–71 Holstein cows, located in the region Pays-de-la-Loire (France),
during the summer of 2017, and the spring and summer of 2018. On
each farm, cows that were equipped with a collar were selected based
on stage of lactation (days in milk) and number of calvings (parity), as
these factors are known to affect the time spent in different behaviours.
Therefore, we selected cows between 60 and 300 days in milk, and
representative of the herd in terms of parity. A total of 86 cows were
equipped with a sensor through the study. Further details on farms and
animals are presented in Table 1.

An RF-Track datalogger (RF-Track, Rennes, France) with a
LSM9DS1 three-axis accelerometer (STMicroelectronics, Geneva,
Switzerland) ± 2 g was used. Data were collected at 59.5 Hz. The
accelerometer was powered with two 3.7 V lithium batteries (2.6 Ah).
Data were stored on a SD card and downloaded after the experiment.
The dataloggers were 98.2 × 51.60 × 36.0 mm in size and weighed
250 g. The three-axis accelerometer was fixed on a collar and posi-
tioned on the right side of the neck as recommended by Smith et al.
(2016). Collars were tightly adjusted and a 500 g counterweight was
added to prevent them from turning around (Fig. 2) (Robert et al.,
2009). The x-axis detected the up-down direction, the y-axis detected
the backward-forward direction and the z-axis detected the left–right
direction.

Each selected cow was equipped with the collar during one day of
grazing on the first and second farm, 2, 4 or 6 days of grazing on the
third farm depending on the cow, and 3 days of grazing on the last
farm. Two trained observers recorded behaviours of the cows at pasture
at each observation session. While one observer tracked one cow during
15 min, the other observer focused on another cow. All the cows
equipped in the 4 farms were observed at least once by each of the two
observers. Therefore, we collected a minimum of 30 min of observation
per cow. A total of 57 h 21 min and 57 s of observation were performed.
The main behaviours recorded are “grazing”, “walking”, “ruminating –
lying”, “ruminating – standing”, “resting – lying“ and “resting –

standing”. The behaviours “grooming”, “urinating”, “interaction with
other cows”, “running”, “raising”, “lying down” and “grazing while
lying” were also observed. As they were each poorly represented, they
were combined as “Other”. The behaviours are defined in the ethogram
detailed in Table 2. It should be noted that the concordance between
the two observers was checked (percentage of agreement > 80%) to
ensure that observations could be considered independent of the ob-
server in the rest of the study.

The duration of observation and the number of cows for each be-
haviour are reported in Table 3.

2.2. Raw accelerometer signal processing

The pre-processing step aimed providing suitable datasets for the
subsequent application of the classification algorithms. The pre-pro-
cessing step was performed in Matlab R2018a. The total duration of
observations led to 229 continuous signal sequences of 15-minutes. Due
to a malfunction of 4 of the 30 sensors available, we collected only 199
continuous sequences. We first combined the 199 continuous sequences
of raw accelerometer signal (thereafter referred to as observation se-
quences) with the corresponding field observations. It should be noted
that the accelerometer signal and observations were time synchronized
to ensure that direct observations were associated to the correct se-
quences of accelerometer signal.

These 199 observation sequences were then split into segments
(time-window) of the same duration (size of the time-window). When
more than one behaviour was associated to a time-window, this time-
window was removed from its sequence. In this way, the features ex-
tracted from the signal windows were representative of each behaviour
specifically, which is the most suitable to train the models.
Consequently, the 199 initial continuous sequences of observation were
split into shorter continuous sequences. Furthermore, time-windows
associated to the “Other” class were discarded from the dataset. Indeed,
it combined several behaviours so it is not possible to extract re-
presentative features for this class in a supervised classification context.
Therefore, we focused on the 6 main behaviours. As signal segmenta-
tion may drastically alter the results of the prediction (Bersch et al.,
2014; Robert et al., 2009; Smith et al., 2016) several configurations
identified as affecting the quality of the prediction in a previous study
(Riaboff et al., 2019) were evaluated. In particular, window sizes of 5 s
and 10 s were evaluated as they are commonly used in similar studies
(Robert et al., 2009), while 50% and 90% overlap were compared as
recommended by Bersch et al. (2014). This resulted in testing four
different pre-processing configurations. The best results were obtained
with the configuration (10 s; 90%), in accordance with Riaboff et al.
(2019). The number of observation sequences and time-windows ob-
tained for the configuration (10 s; 90%) for every behaviour are pre-
sented in the Table 4. The study was carried out thereafter with this
configuration exclusively.

A set of features was then extracted from each 10 s-window, both in
the time and frequency domains. Features were computed from the raw
signal () of X-axis a( )x , Y-axis a( )y and Z-axis a( )z . The signal magnitude
axis (amag), considered as orientation independent (Fida et al., 2015)
was also computed (Appendix A). Each axis (a a a a, , ,x y z mag) was high-
pass filtered to get the dynamic component of the acceleration due to
the body of the cow and noted adynamic axis_ . A 6-th-order high-pass digital
Butterworth filter with a cutoff frequency of 0.3 Hz (Smith et al., 2016)
was applied to each axis of the raw data. The Overall Body Dynamic
Acceleration (OBDA) and the Vector of the Dynamic Body Acceleration
(VeDBA) were computed from the dynamic component. Each axis
(a a a a, , ,x y z mag) was also low-pass filtered to get the static component
of the acceleration due to the gravity and noted astatic axis_ . The pitch and
roll angle were calculated on a .static The sixty-seven calculated features
are listed in Table 5. The formulas used to compute each feature are
provided in the Appendix A.

It should be mentioned that the features perfectly correlated were
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excluded. Thus, the RMS on ax , the mean and median on ay, the mean
on az, the RMS on amag , the pitch and VeDBA were not considered in the
rest of the study. The features were finally normalized according to the
equation presented in the Appendix A. Therefore, the complete dataset
consisted of 61 features associated to each 10 s-window.

2.3. Creation of two independent datasets

As we are in a supervised classification context, the complete da-
taset was split into two independent datasets. Two-thirds of the 1794
observation sequences (Table 4) were randomly chosen to train the
models and the remaining observation sequences were used to evaluate

them. Random sampling of observations was stratified by behaviour in
order to make sure that each behaviour was equally frequent in both
the training and testing datasets. Therefore, the training dataset was
composed of the 10 s-windows belonging to the selected two-thirds
observation sequences. The testing dataset was composed of the re-
maining 10 s-windows.

2.4. Supervised classification of behaviour time-windows

The aim of this step was to classify the 10 s-windows from each
observation sequence optimally. For this purpose, four supervised
Machine Learning algorithms were investigated. Details about the

Fig. 1. Overview of the methodological framework used to predict the 6 main dairy cow behaviours at grazing.
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considered algorithms and the methodology used to fit the models and
predict behaviours are provided in the following sections.

2.4.1. Description of the considered Machine Learning algorithms

• Extreme Boosting Algorithm (XGB)

XGB is an ensemble classifier derived from the gradient boosting
decision tree (Friedman, 2001). XGB combines weak base classifiers
into a strong classifier. At each iteration of the training process, the
residual of a base classifier is used in the next classifier for optimizing
the objective function. In addition, XGB introduces a regularization
term to control the complexity of the model and thus prevents over-
fitting (Shi et al., 2019). Hyperparameters to tune are listed below:

• nrounds: number of boosting iterations.
• max_depth: maximum depth of a tree. High values will tend to

complicate the model with likely overfitting.
• eta: controls the learning rate. After each boosting step, it scales the

contribution of each tree by a factor range between 0 and 1. In this
manner, it prevents overfitting by making the boosting process more
conservative.

• gamma: minimum loss reduction required to make a further parti-
tion on a leaf node of the tree. The smaller, the less conservative the
algorithm will be.

• colsample_bytree: subsample ratio of columns when constructing each
tree.

• min_child_weight: minimum sum of instance weight needed in a child.
As long as the tree partition step results in leaf nodes with the sum of
instance weight above min_child_weight, the building process con-
tinues. The larger, the more conservative the algorithm will be.

• subsample: subsample ratio of the training instances. For instance, a
subsample value of 0.5 means that XGB would randomly sample half
of the training data prior to growing trees. Subsampling will occur
once in every boosting iteration.

The XGB algorithm was applied using the R package xgboost (Chen
et al., 2018) in R 3.6.1 software (R Core Team, 2019).

• Support Vector Machine (SVM)

SVM is a supervised binary classification method (Burges, 1998).
The basic idea of the multi-class SVM problem is to construct k classi-
fiers, one for each class. The kth classifier constructs an optimal hy-
perplane between class n and the k − 1 other classes. To construct the
optimal separating hyperplane, a kernel function is used to transform
the input data into a high-dimensional space. Hyperparameters to tune
are:Ta
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Fig. 2. RF-Track 3D accelerometer and GPS sensor fixed on the collar on the
cow. The three coordinate axes of the accelerometer sensor are displayed.
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• C: cost of constraints violation. The larger, the smaller the margin of
the hyperplane will be.

• sigma: inverse kernel width for the Radial Basis kernel function.

The SVM algorithm was applied using the R package kernlab
(Karatzoglou et al., 2004) in R 3.6.1 software (R Core Team, 2019).

• Adaboost (ADA)

Adaboost is a boosting algorithm where the weak classifiers are
decision trees with a single split. Adaboost works by affecting more
weight on instances which are difficult to classify and less on those
already correctly classified. In this way, boosting promotes new models
capable of correctly classifying instances which were misclassified by
earlier models. The impact of each model is weighted depending on its
performance instead of offering the same weight to all models. Thus,
the final model converges to a strong classifier (Subasi et al., 2018).
Hyperparameters to tune are:

• max_depth: maximum depth of a tree. High values will tend to
complicate the model with likely overfitting.

• mfinal: number of iterations for which boosting is run or the number
of trees to use.

The Adaboost algorithm was applied using the R package adabag
(Alfaro et al., 2013) in R 3.6.1 software (R Core Team, 2019).

Table 2
Definition of the different behaviours under study.

Behaviour Classification description

Grazing Biting or browsing taking frequent bites, without raising the head
Walking Movement from one location to another without lowering the head at ground level
Ruminating – Lying Lying with regurgitating rumen bolus before it is chewing and then re-swallowing
Ruminating – Standing Standing with regurgitating rumen bolus before it is chewing and then re-swallowing
Resting – Lying Lying without rumination
Resting – Standing Standing without movement or rumination
Other All remaining behaviours

Table 3
Duration of observation and number of cows for each behaviour.

Behaviour Duration (HH:MM:SS) Number of cows

Grazing 27:38:57 62
Walking 01:10:19 60
Ruminating – Lying 08:05:26 44
Ruminating – Standing 03:34:27 35
Resting – Lying 08:00:00 57
Resting – Standing 03:40:10 66
Other 05:12:38 79
Total 57:21:57 86

Table 4
Number of sequences including each behaviour and number of time-windows
associated with every behaviour for the selected configuration (10 s; 90%).

Number of sequences
including the behaviour

Number of windows
associated with the
behaviour

Grazing 814 63,136
Walking 110 2155
Ruminating – Lying 504 18,203
Ruminating –

Standing
200 7024

Resting – Lying 94 20,084
Resting – Standing 131 7222
Total 1794 117,824

Table 5
Abbreviation for each of the calculated features and list of the associated publications.

Abbreviation Full name References

A Average Barwick et al. (2018) and Smith et al. (2016)
2 Variance Figo et al. (2010)

Standard deviation Bersch et al. (2014) and Smith et al. (2016)
Min Minimum Barwick et al. (2018) and Figo et al. (2010)
Max Maximum Barwick et al. (2018) and Figo et al. (2010)
Range Range Figo et al. (2010)
Q2 Median Fida et al. (2015)
Q1 First quartile Figo et al. (2010)
Q3 Third quartile Figo et al. (2010)
IQ Interquartile range Figo et al. (2010)
RMS Root Mean Square X-axis Bersch et al. (2014)
SMA Signal Magnitude Area Barwick et al. (2018)
AI Average Intensity Barwick et al. (2018)
MV Movement Variation Barwick et al. (2018) and Lush et al. (2018)

1 Skewness Dutta et al. (2015) and Martiskainen et al. (2009)

2 Kurtosis Dutta et al. (2015) and Martiskainen et al. (2009)
Max corr_ x y; The maximum of the correlation Figo et al. (2010)
Hs Spectral entropy Zaccarelli et al. (2013)
OBDA1 Overall Body Dynamic Acceleration Benaissa et al. (2018)
OBDA2 Overall Body Dynamic Acceleration Wilson et al. (2008)
VeDBA Vector of the Dynamic Body Acceleration Walker et al. (2015)
pitch Pitch angle Walker et al. (2015)
roll Roll angle Walker et al. (2015)
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• Random Forest (RF)

Random Forest is a bagging algorithm where many decision trees
are randomly built. A subset of variables and samples are randomly
chosen to build each decision tree. Each node of the decision trees aims
at segmenting the subset of samples using the randomly selected vari-
ables. The target is to find the segmentation leading to the purest
classification, i.e. leading to a maximum of instances of the same class
in every node. For the classification tree, the Gini index is usually used
to evaluate the decrease of impurity after each split. The final classifi-
cation is carried out using every random decision trees (Breiman,
2001). Hyperparameters to tune are:

• ntree: number of iterations to carry out, i.e. number of decision trees
to build.

• mtry: number of variables to choose at each iteration to build the
decision tree.

The RandomForest algorithm was applied using the randomForest
package (Liaw and Wiener, 2002) in R 3.6.1 software (R Core Team,
2019).

2.4.2. Models fitting and prediction of behaviour time-windows
The 4 Machine Learning models were fitted using the training data.

For this purpose, several combinations of hyperparameters were tested
from a generated grid of values specific to each algorithm (Section
2.4.1). For each combination of hyperparameters, the model was
evaluated using a 10-fold cross validation procedure repeated three
times. The accuracy and Cohen’s Kappa associated with the prediction

of each tested model were collected. This step was carried out with the
R package caret (Kuhn et al., 2018) in R 3.6.1 (R Core Team, 2019). For
each algorithm, the model leading to the best performance, called the
fitted model, was applied to predict a behaviour in each 10 s-window
using the testing data. At the end of this supervised classification step,
the sequences of predicted behaviours for every 10 s-window were
obtained for the 4 Machine Learning algorithms.

2.5. Consideration of the temporal structure within behaviours sequences

In order to account for the fact that the probability for a cow of
expressing a specific behaviour at a given time depends on the beha-
viour she expressed just before, an HMM-based Viterbi algorithm using
the behaviours predicted by the Machine Learning algorithms as input
was used to predict its actual behaviours. The assumptions common to
all HMMs are i) that the observations (behaviours predicted by the
Machine Learning algorithms) are imperfect measures of a true state
(actual behaviours) and that ii) the true states undergo Markovian
transitions whereby the probability of being in a state at time t (within a
given time window), only depends on the true state at time t − 1 (in the
previous time window). Therefore, as proposed by Yang (2009), the
goal of this smoothing step was to reassess the predictions of the be-
haviours obtained with the Machine Learning algorithms for each se-
quence of observation. The principle of the HMM-based Viterbi algo-
rithm smoothing is illustrated in Fig. 3. All the matrices and vectors
defining the HMM and mentioned in Fig. 3 are explained in the fol-
lowing sections.

The HMM-model noted Λ was used to estimate the unknown states
of the process noted S, i.e. the behaviours actually carried out by the

Fig. 3. Principle of the smoothing with the HMM-based Viterbi algorithm.
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cows, knowing the measurable observations noted V, i.e. the behaviours
predicted by the Machine Learning algorithms (Witten and Frank,
2011). The HMM Λ was also based on a transition matrix T providing
the probability to move from a state, i.e., a behaviour, to another at the
next time-window. The transition matrix was obtained empirically,
based on the data collected experimentally. The HMM was also defined
by its emission matrix E, representing the probability that each ob-
servation was generated by each state. The emission matrix corresponds
to the confusion matrix resulting from the prediction of the model.
Finally, initial probabilities of each state, noted π, were finally used to
define the HMM. The vector of initial probabilities was computed with
the experimental data. All the matrices and vector used to define the
HMM Λ in this study are detailed in Appendix B. A more detailed de-
finition of the HMM is provided in the Appendix C. The function “in-
itHMM” of the R package HMM (Himmelmann, 2010) in R 3.6.1 soft-
ware (R Core Team, 2019) was used to define HMM-models.

The Viterbi algorithm was finally applied to find the most probable
hidden behaviour from the preceding behaviour, based on the HMM
Λ = (T, E, π). We refer the reader to Forney (1973) for a more detailed
description of the Viterbi algorithm. The Viterbi algorithm was applied
with the function “viterbi” of the R package HMM (Himmelmann,
2010).

2.6. Evaluation of the prediction

The prediction was evaluated before and after smoothing with the
HMM-based Viterbi algorithm. The overall performance of the models
was evaluated with the accuracy, corresponding to the percentage of
well-classified instances. The Cohen’s Kappa (Cohen, 1960) was also
used to assess performance. This metric provides the agreement be-
tween observation and prediction from a model. According to the cri-
teria proposed by Cohen (1960), a Kappa higher than 0.81 was con-
sidered as an almost perfect agreement. The sensitivity and specificity
of every behaviour were also calculated to evaluate the prediction of
every behaviour. The sensitivity assessed the ability to return a positive
outcome when the hypothesis is true. The specificity assessed the ability
to return a negative outcome when the hypothesis is false. The equa-
tions for each parameter are provided in Appendix D. All the indicators
were computed with the caret package (Kuhn et al., 2018) in R 3.6.1 (R
Core Team, 2019).

3. Results

3.1. Results of model fitting

The fitted models obtained for each algorithm are presented in
Table 6.

The accuracy and Cohen’s Kappa got for every fitted model are
provided in Fig. 4.

Both accuracy and Cohen’s Kappa were higher than 0.99 for all the
algorithms using a 10-fold cross validation with the training data. The
best performance was obtained with the XGB algorithm followed by the
RF algorithm (Fig. 4.).

3.2. Results of the models using independent observation sequences

3.2.1. Overall performance
The overall performance of every model before and after the HMM-

based Viterbi smoothing are presented in Table 7. The confusion ma-
trices obtained for every prediction before smoothing are shown in
Appendix E and Appendix F, respectively.

The highest performance was obtained with XGB after smoothing
(accuracy: 0.98; Cohen’s Kappa: 0.96) followed by RF (accuracy: 0.97;
Cohen’s Kappa: 0.95). The lowest performance was obtained with the
ADA algorithm before smoothing (accuracy: 0.95; Cohen’s Kappa:
0.91). It should be noted that the smoothing with the HMM-based
Viterbi algorithm did not appear to improve the overall performance of
the models.

3.2.2. Discrimination of every behaviour
The prediction with the fitted models of XGB, RF, SVM and ADA was

also evaluated for every behaviour, before and after smoothing. The
sensitivities and the specificities of the predictions for every behaviour
for the four algorithms are detailed in Fig. 5.

The best prediction results were obtained with XGB for every be-
haviour, except for the behaviour “Resting – Standing” where the sen-
sitivity was higher with SVM (XGB: 0.78 and SVM: 0.82). The lowest
performance was obtained with ADA, except for the sensitivity of
“Walking” (0.78) and the specificity of “Grazing” (0.99) where the
performance was lower with SVM (0.70 and 0.99, respectively).

The best prediction was obtained for the behaviour “Grazing”
(sensitivity: 1.00 ± 0.00; specificity: 0.99 ± 0.00). The behaviour
“Ruminating – Lying” also reached a sensitivity and a specificity higher
than 0.97 and 0.99 after the HMM-based Viterbi smoothing, respec-
tively. Similarly, the sensitivity and the specificity of the behaviour
“Ruminating – Standing” were higher than 0.92 and 0.99 after
smoothing, respectively. However, the sensitivity of the behaviour
“Resting – Standing” reached a maximum of 0.82 with XGB after
smoothing. The models also failed in the prediction of the behaviour
“Walking” with a sensitivity lower than 0.80, except for the algorithm
XGB where a sensitivity of 0.84 was obtained after smoothing.

It should be noted that the HMM-based Viterbi smoothing improved
substantially the sensitivity of the behaviour “Resting - Standing” (+
0.04 ± 0.01) for which performance with the Machine Learning al-
gorithm were the lowest.

4. Discussion

4.1. Improved performance in behaviour prediction in comparison with
similar studies

Within the methodological framework proposed in the present
study, the best prediction of dairy cow behaviours was obtained by
combining (i) a preliminary study to find the most appropriate pre-
processing of the raw accelerometer signal (window size of 10 s;
overlap of 90%), (ii) a classification-prediction of the behaviours with
the XGB algorithm, and (iii) a smoothing of the predictions using the
HMM-based Viterbi algorithm. In the test dataset, the observed beha-
viours were predicted with an accuracy of 0.98 and a Cohen’s Kappa of
0.96. The sensitivities and specificities were above 0.90 for all the be-
haviours, except for the behaviour “Resting–standing” behaviour (sen-
sitivity: 0.82) and for the behaviour “Walking” (sensitivity: 0.84).
Considering (1) the range of predicted behaviours, (2) the number of
accelerometers fixed on the cows and (3) the method used to validate
the models, these results appear better than those reported in the

Table 6
Hyperparameters of fitted models for every algorithm.

Algorithm Parameters of fitted models

XGB nrounds = 250
max_depth = 6
eta = 0.4
gamma = 0
colsample_bytree = 0.8
min_child_weight = 1
subsample = 0.75

SVM C = 128
sigma = 0.05

ADA max_depth = 29
mfinal = 150

RF mtry = 15
ntree = 2000
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literature.

4.1.1. Prediction with a large range of behaviours
A satisfactory prediction has already been obtained in similar stu-

dies when few behaviours were predicted. For instance,
Andriamandroso (2017) have reached an accuracy of 0.92 to predict
the 3 behaviours “Ruminating”, “Grazing” and “Other” behaviours.
Benaissa et al. (2018) have also predicted the same 3 behaviours with
an accuracy of 0.93 using SVM. However, it should be noted that the
behaviour “Other” was predicted in these two studies, which is also
challenging as this class combined several different behaviours. The 3
behaviours “Grazing”, “Ruminating” and “Resting” were also predicted

Fig. 4. Results of model fitting for every algorithm.

Table 7
Prediction results (accuracy and Cohen's Kappa) before and after smoothing for
every algorithm.

Accuracy Cohen’s Kappa

Algorithm Before
smoothing

After
smoothing

Before
smoothing

After
smoothing

XGB 0.97 0.98 0.96 0.96
RF 0.97 0.97 0.95 0.95
SVM 0.96 0.97 0.94 0.95
ADA 0.95 0.95 0.91 0.92
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with the satisfactory accuracy of 0.93 using a discriminant analysis
(Giovanetti et al., 2017). However, in most studies, the performance
drastically decreased when more behaviours were considered. For in-
stance, Martiskainen et al. (2009) predicted 8 behaviours involving

feeding behaviours as well as posture of cows using SVM. Their in-
dicator called precision reached a value of 0.78 and a Cohen’s Kappa of
0.69. In the same way, Alvarenga et al. (2016) predicted the behaviours
“Grazing”, “Lying”, “Running”, “Standing” and “Walking” of sheep and

Fig. 5. Sensitivity and specificity of each behaviour for every algorithm, before and after smoothing with the HMM-based Viterbi algorithm.
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obtained an accuracy of 0.85 and a Cohen’s Kappa of 0.79 using a
window size of 5 s with a decision tree. Thus, our methodological fra-
mework seems to provide better performance than those obtained in
similar studies in which both posture and feeding behaviours have been
considered.

4.1.2. Prediction with a single sensor fixed on the neck
High performance has already been obtained when 2 sensors were

fixed at 2 different positions on the animal. Indeed, the chosen beha-
viours are more or less well-predicted depending on the position of the
sensor on the animal (Benaissa et al., 2017). For this reason, in order to
predict both feeding behaviours and posture (“Lying”, “Standing” and
“Feeding”) of cows, Benaissa et al. (2017) fixed an accelerometer on a
neck-collar and another one on the leg to reach an accuracy of 0.98.
However, fixing several sensors is tedious for both animals and hand-
lers, as well as costly. As the procedure developed in this study aims to
be used for practical implementations in farming, we chose to use a
single sensor. It is indeed safer and more convenient for both farmers
and animals than fixing several sensors at different places.

4.1.3. Reliable validation of the models
In many similar studies, each labelled window is affected either to

the training dataset or to the testing dataset, independently of the se-
quence of observations to which the window belongs to (Lush et al.,
2018; Martiskainen et al., 2009). Consequently, time-windows from the
same cow at the same period of observation can be found in both
training data and testing data. Due to the temporal structure of sub-
sequent behaviours, the time-windows from the same sequence of ob-
servation are highly correlated. As explained by Rahman et al. (2018),
the feature space distribution between the training data and the testing
data is therefore very similar. The prediction is systematically better
with this approach but this is not suitable to validate the algorithm. For
instance, Lush et al. (2018) have predicted the behaviours “Foraging”,
“Walking”, “Running”, “Standing”, “Lying” and “Urination event” in
sheep with an accuracy of 0.96 and a Cohen’s Kappa of 0.95 using
Random Forest. However, 75% of the labelled windows were used to
train the model and the remaining 25% were used to evaluate it, in-
dependently of the sequence of observation to which each window
belongs. In our study, performance remained strong while windows
from the same sequence of observation were either in the training data
or in the testing data.

4.2. Methodology used to get a high performance

4.2.1. Field observation data
As noted by other authors (Rahman et al., 2018), the high between-

cow variability in the recorded signal can decrease the performance of
the prediction. For this reason, during data collection, particular at-
tention was paid to cover as much variability as possible. Observations
were carried out on 86 Holstein cows from 4 farms, of different parities
and stages of lactation. The observations were also carried out in dif-
ferent paddocks (temporary versus permanent grasslands) and at dif-
ferent periods (summer of 2017 and spring and summer of 2018). In
similar studies, the number of observed animals usually ranges between
5 and 40 animals from the same farm (Alvarenga et al., 2016; Lush
et al., 2018). To the authors’ knowledge, the dataset collected is larger
and covers a wider range of conditions than those usually met in lit-
erature. As a consequence, the model was trained on a wider range of
situations than what is usually found in the literature which could have
decreased the performance of the prediction but which makes our
conclusions more robust.

4.2.2. Appropriate pre-processing
The effect of the accelerometer signal pre-processing was widely

approved in detection of human activities (Bersch et al., 2014). This
aspect has received less attention in livestock monitoring behaviour,

except for the impact of the window size (Robert et al., 2009; Smith
et al., 2016). In a preliminary study, we identified window size and the
percentage of overlap between windows to be critical when pre-pro-
cessing the data (Riaboff et al., 2019). In the present work, two different
window sizes and two different percentages of overlap were evaluated.
This allowed predicting the behaviours with a pre-processing config-
uration favourable to strong performance of prediction.

4.2.3. Comparison of Machine Learning algorithms including eXtreme
Gradient boosting

High performance has already been obtained in similar studies with
SVM (Smith et al., 2016) and RF (Lush et al., 2018). The Adaboost
algorithm has only been tested by Dutta et al. (2015) for monitoring
livestock behaviour, whereas its efficiency has already been approved
in other prediction problems (Subasi et al., 2018). To the best of our
knowledge, the XGB algorithm has never been applied to the prediction
of livestock behaviour, despite its high performance in other areas (Shi
et al., 2019). The best prediction was reached with XGB in this study.
We therefore advise considering the XGB algorithm to predict livestock
behaviours with accelerometer data.

4.2.4. Consideration of the temporal structure within the behaviour
sequences

The Viterbi algorithm based on HMM uses the temporal structure
within observation sequences to find the most probable sequence of
behaviours, given a sequence of predicted behaviours obtained with the
Machine Learning algorithm. This approach may be particularly re-
levant to predict behaviours for which there is a priori no relevant
feature from accelerometer data to achieve the discrimination. For in-
stance, this is the case for the behaviours standing and lying as both the
level of activity and the head position are similar (Martiskainen et al.,
2009).

Yang (2009) showed that the accuracy of the prediction of daily
activities in humans using a decision tree increased by 0.06 after the
Viterbi smoothing. Although the improvement was less substantial in
our study, the sensitivity of the behaviour “Resting – Standing” for
which the lowest performance was obtained with the Machine Learning
algorithms was increased considerably (+ 0.04 ± 0.01).

4.3. Practical implications of the study

There is currently no reliable decision support tool to help pasture-
based systems, neither for the pasture management, nor for the mon-
itoring of animal health and welfare. The methodology developed in
this study could be integrated in such a tool.

4.3.1. Pasture management support
In rotational grazing systems, a variation of 10% of milk yield can

be explained by the fresh grass available to animals (Fulkerson et al.,
2005). The allocation of fresh grass regulated by the rotation of the
cows in the pastures is therefore critically important to keep high milk
yield. Thus, a decision support tool indicating to farmers the appro-
priate time to allocate new fresh grass to the dairy cows would be re-
levant in pasture-based systems. Both changes in the lying behaviour
(O’Driscoll et al., 2019) and feeding behaviour (Werner et al., 2019) are
expected when the quantity and the quality of grass decline. In this
respect, our methodology could be used to predict such behaviours.
Other algorithms are also required to detect when there is not enough
grass, based on the predicted behaviours. An automatic detection
system to assist pasture management in rotational grazing systems
could thus be developed, even if a work is still required on the tech-
nological aspects to make the system functional (battery life, compu-
tation time, automatic data transfer, etc.). In particular, a trade-off has
to be found for the sampling rate in order to obtain both a satisfactory
accuracy and a battery life compatible with the desired application
(Benaissa et al., 2018).
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4.3.2. Animal monitoring at pasture

• Detection of health events: the particular case of lameness detection

Some studies have shown that lameness is associated to changes to
the behaviours of dairy cows (Chapinal et al., 2009), suggesting that
behaviours could be used to detect lame cows (Barker et al., 2018). So
far, the association between behaviour and lameness has been assessed
considering either the lying behaviour (Yunta et al., 2012) or the
feeding behaviour (Norring et al., 2014). As mentioned by Willshire and
Bell (2009), the combination of lying behaviour with feeding behaviour
should help to improve both sensitivity and specificity of lameness
detection, which are currently low (Rutten et al., 2013). Consequently,
the methodological framework developed in our study may relevant to
the development of sensors predicting cow behaviour for the detection
of lameness. Other algorithms are needed to detect lameness based on
the predicted behaviours. Some technological aspects of the sensor
should also be improved (battery life, automatic data transfer, com-
putation time, etc.). This would alert automatically the farmer when a
lame cow is detected to provide earlier treatments and mitigate the pain
and costs associated with the disease (Willshire and Bell, 2009).

• Detection of a lack of comfort at pasture

Even if grazing is favourable to animal welfare (Burow et al., 2013),
some stressful situations can also occur at pasture. For instance, Schütz
et al. (2010) have shown that heat stress can occur when the tem-
perature increases and there is no shadow in the paddock. In such si-
tuations, the distance of animals from the barn compromises the de-
tection of the event by the farmer. As explained by Rushen et al. (2012),
cow behaviour is a relevant indicator to assess welfare in farming but
the biggest problem is the limited range of behaviours that have been
measured automatically. In that regard, our methodological framework
gives the opportunity to get information about the whole range of the
main dairy cows’ behaviours at pasture. An abnormal expression of one
the 6 considered behaviours could allow the detection of welfare issues
in particular if the behaviours are combined with the position of the
cows collected with a GPS sensor. As an example, Riaboff et al. (2018)
identified a heat stress situation through an overexpression of the be-
haviour “Resting” close to the drinking trough. Thus, our methodology
could be used as a basis for the development of algorithms for detecting
stressful events, even if some improvements on the technological as-
pects of the sensor are still needed, as previously explained. Such a tool
would be a way to monitor 4 out of the 5 fundamental freedoms (Farm
Animal Welfare Committee (FAWC), 2011), namely “Do not suffer from
hunger and thirst”, “Do not suffer from discomfort”, “Do not suffer from
pain, injuries and illnesses” and “Do not be afraid or stressed”.

4.4. Limitations of the studies and potential solutions

4.4.1. Overestimation of the model accuracy in an experimental context

• Validation of the models with the same cows

In this study, each algorithm was evaluated at the observation se-
quence level, as discussed in Section 4.1.3. Consequently, the signal
windows from the same observation sequence were either in the
training data or in the testing data. However, windows from the same
cow can be found in both datasets as the cows were observed several
times during the experiment. Considering the cow-level, i.e. with win-
dows from the same cow either in the training data or in the testing
data, is the most accurate way to assess the model performance. This
approach is sometimes considered in similar studies (Rahman et al.,
2018) and leads to moderate performance, with an accuracy usually
below 0.90 when a single sensor has been used. This method led also to
a decrease of performance in our study, with an accuracy of 0.85 and a

Cohen’s Kappa of 0.76 using the XGB algorithm (data not shown). This
decrease in performance is mainly due to the differences in the physical
movement between dairy cows, leading to different motion patterns
from a cow to another (Rahman et al., 2018). A way to improve the
genericity of the algorithm may consist in considering a higher number
of cows from various farms. Adding other sensors in the same electronic
box fixed on the neck-collar could be also a way to better predict
posture behaviours and then improve the genericity of the model.

• Removal of the remaining behaviours from the dataset

As explained in Section 2.1, behaviours other than the 6 under in-
vestigation, i.e. the “Other” class, were removed from the dataset.
However, dairy cows can express these behaviours in real field situa-
tions. In these cases, the model will fail in the prediction because it has
not been trained to predict these specific behaviours. Consequently, the
prediction accuracy in real field situations will certainly be lower than
in our development context. As the “Other” class is a combination of
several behaviours, it is not possible to extract representative features
for this class. Consequently, training a Machine Learning algorithm to
predict the “Other” class does not seem appropriate. A solution would
be to collect observations about each specific additional behaviour and
then train the model to predict each event, as proposed by Lush et al.
(2018) for the urination event.

• Using signal windows associated to a unique behaviour

As explained in Section 2.2, the signal sequences were split into
10 s-windows associated to a unique behaviour. These windows were
then used to train the Machine Learning models. In a real field situa-
tion, dairy cows can express different behaviours within the same time
window even if we chose a short window duration to prevent this issue.
As the model has not been trained with heterogeneous time windows,
the prediction may be wrong in such cases. This is another reason why
the accuracy of the model might be reduced in real field situations. It
would be interesting to train and test the models with heterogeneous
windows in a second step to compare the accuracies, as proposed by
Benaissa et al. (2018).

4.4.2. Confusion between the prediction of standing and lying
The lowest performance was obtained for the behaviour “Resting –

Standing” (sensitivity: 0.82, specificity: 0.99 with XGB after smoothing)
because of the confusion between the behaviour “Resting – Lying”
(Appendix E). This confusion has already been mentioned in the lit-
erature when a single accelerometer is fixed on the animal neck
(Benaissa et al., 2018; Martiskainen et al., 2009). As explained by
Hamalainen et al. (2011), both the level of activity and the position of
the head are similar between these two postures. Thus, it is difficult to
find relevant features from accelerometer data alone to discriminate
these two postures. Although this confusion was reduced with the Vi-
terbi-based-HMM smoothing (Appendix F), the discrimination between
these two postures remains an important challenge when using a single
accelerometer on the neck. A solution might be to add other sensors in
the same electronic box, like a magnetometer, a gyrometer or an alti-
meter. By merging data from different sensors, new relevant features
could be found to discriminate lying and standing positions.

5. Conclusion

This study aimed to develop a methodological framework to predict
feeding behaviour and posture of dairy cows at pasture from accel-
erometer data. For this purpose, a suitable pre-processing of the raw
accelerometer signal was applied (10 s time-window, 90% overlap) and
several methods of Machine Learning were compared (eXtreme
Gradient Boosting, Random Forest, Support Vector Machine and
Adaboost). The subsequent application of a Viterbi algorithm was used
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to account for the temporal structure within behaviour sequences. The
best prediction capacity was obtained using the XGB algorithm fol-
lowed by the Viterbi smoothing, leading to an accuracy of 0.98 and a
Cohen’s Kappa of 0.96 on a test dataset. These prediction results were
higher than those obtained in the similar studies. Our methodology
therefore has great potential for the development of decision-support
tools in grazing systems, both for assisting pasture management and for
monitoring animal health and welfare.

The methodology led to an excellent accuracy of the prediction of
the behaviours but some improvements are still needed. It is still dif-
ficult to discriminate the standing from the lying posture of the cows
using a single accelerometer fixed on the neck. Another important as-
pect is the genericity of the developed procedure. These two issues
remain a main challenge for the automatic monitoring of livestock
behaviour. One potential solution would consist in combining accel-
erometer data with data from other sensors, like a gyrometer, a mag-
netometer and an altimeter, embedded in the same electronic box fixed
on the neck-collar. Merging data from different signals could help to
better discriminate the postures of the cows and ensure that the

methodology is applicable to any farms.
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Appendix A. Equation of the raw signal magnitude and the calculated features presented in Table 5

Equation of the raw signal magnitude
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Normalization of features
=c'i

ci cmin
cmax cmin

where c'i the normalized value, ci is the original value, cmin is the minimum value of feature c for all observations and cmax is the maximum value of feature c for all

observations

Appendix B. Transition matrix T, emission matrices E and vector of probabilities π used to reassess the prediction of each Machine
Learning algorithm

HMM-model is noted Λ = (T, E, π). The transition matrix T, the emission matrix E and the vector of probabilities π used to reassess the predicted
behaviours in this study are the following:
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• The transition matrix T was obtained empirically using the data collected during the experiment. The following matrix was used:

T =

Instant t + 1

Hidden states Grazing Resting – Lying Ruminating – Lying Resting –Standing Ruminating – Standing Walking

Instant t Grazing 0.9964 0.0001 0.0001 0.0004 0.0001 0.0029
Resting – Lying 0.0001 0.9983 0.0013 0.0001 0.0001 0.0001
Ruminating – Lying 0.0001 0.0041 0.9955 0.0001 0.0001 0.0001
Resting – Standing 0.01325 0.0001 0.0001 0.97775 0.00735 0.00145
Ruminating – Standing 0.00305 0.0001 0.0001 0.00155 0.99055 0.00465
Walking 0.10460 0.0001 0.0001 0.02080 0.0001 0.8743

It should be noted that when the observed probability associated to one transition was zero, it was replaced by 0.0001.

• The emission matrix E corresponds to the confusion matrix from the prediction with each Machine Learning algorithm. The following matrices
were used:

XGB Prediction Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Reference Grazing 0.993 0.000 0.000 0.000 0.000 0.007
Resting – Lying 0.000 0.910 0.003 0.086 0.001 0.000

Ruminating – Lying 0.0.000 0.004 0.981 0.011 0.002 0.002
Resting – Standing 0.000 0.077 0.016 0.850 0.057 0.000

Ruminating – Standing 0.001 0.000 0.022 0.003 0.974 0.000
Walking 0.003 0.000 0.000 0.000 0.000 0.997

SVM Prediction Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Reference Grazing 0.989 0.000 0.001 0.000 0.001 0.010
Resting – Lying 0.008 0.874 0.022 0.086 0.004 0.006

Ruminating – Lying 0.000 0.007 0.972 0.007 0.012 0.002
Resting – Standing 0.000 0.139 0.017 0.797 0.044 0.003

Ruminating – Standing 0.000 0.000 0.041 0.003 0.951 0.004
Walking 0.023 0.000 0.004 0.000 0.010 0.963

ADA Prediction Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Reference Grazing 0.992 0.000 0.000 0.000 0.000 0.008
Resting – Lying 0.000 0.811 0.032 0.145 0.012 0.001

Ruminating – Lying 0.000 0.009 0.967 0.005 0.015 0.003
Resting – Standing 0.000 0.303 0.015 0.636 0.045 0.001

Ruminating – Standing 0.001 0.000 0.070 0.008 0.920 0.001
Walking 0.014 0.000 0.023 0.000 0.007 0.956

RF Prediction Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Reference Grazing 0.992 0.000 0.000 0.000 0.000 0.008
Resting – Lying 0.000 0.878 0.010 0.111 0.001 0.000

Ruminating – Lying 0.000 0.002 0.981 0.009 0.006 0.002
Resting – Standing 0.000 0.103 0.017 0.824 0.055 0.001

Ruminating – Standing 0.000 0.000 0.044 0.002 0.954 0.000
Walking 0.007 0.000 0.005 0.000 0.000 0.988

In these matrices, the true behaviours are in rows and the predicted behaviours in columns. Each occurrence in the confusion matrix was expressed as
a percentage of the total number of occurrences of the corresponding row. In this way, the sum of each row was equal to 1.

• The vector π was obtained empirically using the experimental data. The following vector was obtained:
π =

Hidden states Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Initial probabilities 0.5289 0.1607 0.1627 0.0622 0.0635 0.0219
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Appendix C. Definition of the HMM algorithm

A HMM-model is noted Λ = (T, E, π) and based on:
• Its hidden states which constitute the ensemble S = {s s s, , , n1 2 } where n is the number of hidden states. The state where is the HMM

at the instant t is noted qt (q St ).
• m observable symbols in each state. All the possible observations constitute the ensemble V = {v v v, , , m1 2 }. Ot V is the observed

symbol at the instant t.
• A matrix of transition probabilities between states, noted T and defined as follows:

T (i, j) = P ( = =+q s q s|t j t i1 ) ∀ i, j {1, …, n} and ∀ t {1, …, T} with:
T (i, j) > 0 ∀ i, j and. == T(i, j) 1j

n
1

• A matrix of probabilities of observation of each symbol in each state, called emission probability and noted E. This matrix is defined as
follows:

E (j, k) = P ( = =O v q s|t k t j) ∀ j {1, …, n} and ∀ k {1, …, m} with:
E (j, k) > 0 and. == kE(j, ) 1k

m
1

• A vector π of initial probabilities: π = { , , , n1 2 } where for each state i, i is the probability that the initial state of the HMM was i:
= =P q s( )i i1 ∀ i, {1, …, n} with > 0i ∀ i and. == 1i

n
i1

Once the three parameters (T, E, π) of the HMM were determined, the optimal sequence of hidden states, i.e., the most probable hidden
states given a sequence of observations, is obtained with the Viterbi algorithm.

Appendix D. Performance metrics used to assess the models

=accuracy number of well classified instances
number of instances

=Cohen s Kappa
p p

p1
o e

e

'

=
+

sensitivity TP
TP FNi

i

i i

=
+

specificity TN
FP TNi

i

i i

where po is the relative observed agreement among raters and pe is the hypothetical probability of chance agreement. The index i is the considered
behaviour; TPi (True positives) is the number of instances where behaviour i was observed and correctly predicted; FNi (False negatives) is the
number of instances where behaviour i was observed but another behaviour was predicted, FPi (False positives) is the number of instances where
behaviour i was predicted but another behaviour was observed; TNi (True negatives) is the number of instances where behaviour i was not observed
and not predicted.

Appendix E. Confusion matrices obtained with every model using the test dataset before the HMM-based Viterbi smoothing

XGB Prediction Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Reference Grazing 16,513 0 0 0 0 118
Resting – Lying 0 2857 10 269 4 1

Ruminating – Lying 0 25 5663 64 12 11
Resting – Standing 0 96 20 1057 71 0

Ruminating – Standing 3 0 46 6 2052 0
Walking 2 0 0 0 0 571

SVM Prediction Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Reference Grazing 16,479 0 11 0 10 163
Resting – Lying 26 2751 68 271 12 20

Ruminating – Lying 0 39 5549 38 69 13
Resting – Standing 0 188 23 1080 60 4

Ruminating – Standing 1 0 86 7 1983 9
Walking 12 0 2 0 5 492
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ADA Prediction Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Reference Grazing 16,508 0 0 0 0 131
Resting – Lying 0 2501 99 446 36 3

Ruminating – Lying 0 48 5458 31 87 18
Resting – Standing 0 429 21 901 64 1

Ruminating – Standing 2 0 148 18 1948 2
Walking 8 0 13 0 4 546

RF Prediction Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Reference Grazing 16,514 0 0 0 0 131
Resting – Lying 0 2844 33 359 3 1

Ruminating – Lying 0 11 5589 51 35 11
Resting – Standing 0 123 20 981 66 1

Ruminating – Standing 0 0 94 5 2035 0
Walking 4 0 3 0 0 557

Appendix F. Confusion matrices obtained with every model using the test dataset after the HMM-based Viterbi smoothing

XGB Prediction Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Reference Grazing 16,514 0 0 0 0 103
Resting – Lying 0 2840 5 237 0 0

Ruminating – Lying 0 16 5666 62 5 11
Resting – Standing 0 122 25 1088 74 1

Ruminating – Standing 2 0 43 9 2060 0
Walking 2 0 0 0 0 586

SVM Prediction Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Reference Grazing 16,480 0 10 0 10 154
Resting – Lying 24 2768 59 204 9 19

Ruminating – Lying 0 32 5573 36 53 15
Resting – Standing 0 178 22 1149 61 3

Ruminating – Standing 1 0 75 7 2001 9
Walking 13 0 0 0 5 501

ADA Prediction Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Reference Grazing 16,510 0 0 0 0 127
Resting – Lying 0 2487 68 406 20 2

Ruminating – Lying 0 39 5521 24 69 22
Resting – Standing 6 452 16 942 79 1

Ruminating – Standing 2 0 122 24 1971 0
Walking 0 0 12 0 0 549

RF Prediction Grazing Resting – Lying Ruminating – Lying Resting – Standing Ruminating – Standing Walking

Reference Grazing 16,514 0 0 0 0 128
Resting – Lying 0 2820 23 295 0 0

Ruminating – Lying 0 9 5604 46 29 11
Resting – Standing 0 149 25 1048 64 2

Ruminating – Standing 0 0 84 7 2046 0
Walking 4 0 3 0 0 560
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