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Abstract

This paper aims at predicting effective transport properties of fractured

porous media based on the information of cracks distribution within the ma-

terial. The porous materials are assumed to contain aligned insulating and

superconductive cracks, arranged in parallel layers. Two types of cracks dis-

tributions are considered: periodic and random distributions. In the former

periodic case, the estimates are analytically derived from the approximation

of polarization integral equations, and compare well with a numerical solu-

tion. In the latter random case, the estimates show explicit connections to

planar structure factors of hard disks, a statistical quantity of phases distri-

bution in Fourier space. Different random ensembles of hard disks are also

examined to study how they affect the effective permeability of the material.

Keywords: Permeability, Porous media, Cracks, Structure factor,

Polarization equations.

1. Introduction

It is well known that artificial and natural materials like clay, rock, shale,

polymer, foam, etc.. contain pores and cracks over a large range of length
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scales. In many industrial applications, e.g hydraulic fracturing, the porous

media are intentionally fractured to enhance the fluid transport. It is of prime

importance to predict the permeability of these materials from the informa-

tion obtained from the microstructure. In the ideal case, the tomography

imaging of the Volume Representative Element (VRE) and an associated

numerical model can be used to simulate flows through the internal pore

and crack network to predict the transport properties. Such a task is very

challenging since it requires a full knowledge of the microstructure and a

huge computation cost devoted to simulation. Since the fractured porous

media are usually randomly heterogeneous materials, it is relevant to use a

statistical description to represent the phases, in this case the pore and crack

network. Our main objective is to determine the effective transport prop-

erties of porous media containing cracks and to link the effective properties

with statistical descriptors of the porous network.

Regarding the literature on the computation of effective properties of porous

media with cracks, most of the works are based on the solutions of Es-

helby problems (Eshelby, 1957) and the associated Hill tensors for ellip-

soid voids, the cracks being obtained in the limit case of one vanishing

radius of the ellipsoid(see e.g Torquato, 2001; Milton, 2002; Nemat-Nasser

and Hori, 2013; Mura, 1987, and the references therein). Homogenization

schemes based on Eshelby’s solutions such as dilute scheme (Snow, 1969;

Shafiro and Kachanov, 2000), Mori-Tanaka, self consistent (Benveniste, 1987;

Fokker, 2001; Dormieux and Kondo, 2004; Barthélémy, 2009; Pozdniakov and

Tsang, 2004), or differential schemes (Hashin, 1988; Zimmerman, 1996) are

used to estimate the effective properties (elasticity and/or conductivity) of

the materials. However, the interaction between heterogeneities is obviously

simplified by using a basic solution related to isolated heterogeneities. To

check the validity of such schemes, numerical models have been used, like Fi-

nite Elements (Sævik et al., 2013) or a boundary integral equation approach
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(Vu et al., 2018; Pouya and Vu, 2012) or mulipole expansion (Kushch, 1997;

Kushch and Sangani, 2000). More recently, numerical schemes based on the

Fourier Transform (FT) have been used as an alternative powerful numerical

method (Michel et al., 1999) to provide effective properties. While the FT

based methods have proved to perform efficiently in many situations, the

extension of the methods to media containing cracks is still challenging. The

present paper dealing with cracks is based on such a solution in the FT do-

main.

Concerning statistical aspects, numerous works were performed since Kröner’s

pioneering work (Kröner, 1977) using correlation functions of heterogeneous

phases (see Torquato, 2001; Milton, 2002, and the references therein). The

statistical information on the heterogeneous material can be used to derive

estimates or bounds of the transport properties. However, to the best of

our knowledge, the cases of porous materials with anisotropic distribution of

cracks subject to the present research, have not been well studied.

To this aim, our work is based on the ability of the description of the flow

in FT domain to introduce naturally statistical descriptors in Fourier space,

like structure factors (Hansen and McDonald, 2006), as shown in some of our

recent works related to the case of composites (Nguyen et al., 2016; To et al.,

2013). This approach is of prime interest because structure factors can be

obtained by several ways, either numerically or experimentally. Specifically,

the structure factor has been studied in the context of physics of interacting

particles (Hansen and McDonald, 2006; Percus and Yevick, 1958; Wertheim,

1963; Ornstein and Zernike, 1914) and can be obtained numerically from

the Monte Carlo or Molecular Dynamics methods. While those latter meth-

ods are among the popular inverse techniques to generate random media with

high porosity for computation, for example, when compared with the classical

Random Sequential Addition method (RSA), their use to provide estimates
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of effective properties based on the structure factor were not considered be-

fore (Nguyen et al., 2016; To et al., 2013). Applying the same approach to

cracks is not trivial due to various issues, including the vanishing volume

fraction, the extreme contrast, the resolution and the singularity. Therefore,

the present work aims at predicting the effective behaviour of porous mate-

rials containing cracks by resolving the above issues.

The porous materials considered in the present paper are therefore com-

posed of families of micropores and unconnected cracks which can be treated

separately. While the permeability of porous matrix can be well described

by Darcy’s law with a finite hydraulic conductivity, the transport behavior

across the crack is either superconductive or insulating depending on the na-

ture of the filling material. Furthermore, the geometry of the cracks, their

distribution and interactions can have a significant influence on the overall

permeability of the cracked porous material.

The contribution of this work focuses on the statistical aspect of transport

properties of porous media. Specifically, we study how to estimate the effec-

tive permeability from the distribution of identical cracks. Starting from a

periodic model (see e.g Nemat-Nasser et al., 1993; Nguyen et al., 2016; To

et al., 2013; Nguyen and To, 2018), an integral equation in terms of polar-

ization inside the ellipsoid is first established for the general case where the

porous matrix is anisotropic. Then, the effective permeability is estimated,

based on a direct approximation of the average polarization in the integral

equation. For random distributions of cracks, we show that the estimates are

directly related to the structure factor of hard discs (instead of hard spheres

for spherical inclusions), a statistical quantity that describes the local distri-

bution of cracks in Fourier space.
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2. Problem formulation and theoretical estimates

2.1. Transport equations for heterogeneous anisotropic porous materials

We study a heterogeneous and saturated porous material where the per-

meability or hydraulic conductivity K(x) (resistance R(x)) is a function of

coordinate x. The local Darcy law can be written as

j(x) = K(x).e(x), e(x) = −∇θ(x) (1)

where j, θ and e are respectively fluid velocity, pressure and (minus) pres-

sure gradient. To find the effective hydraulic conductivity Ke, the general

method is to apply suitable boundary conditions on a Representative Ele-

ment Volume (REV) V and to solve the related boundary value problem,

leading to the local variables j, e. The effective conductivity Ke is obtained

from the volume averages of j and e via the linear relation

J = Ke.E, J = 〈j〉, E = 〈e〉 (2)

The notation 〈〉V represents the volume average over V . In practice, we can

study rectangular box volumes V = a1 × a2 × a3 with Periodic Boundary

Conditions (PBC). In this case, j and e are V−periodic functions and can

be obtained by means of Fourier Transform techniques. For example, the

Fourier Transform φ(ξ) of any periodic function φ(x) is defined as

φ(x) =
∑
ξ

φ(ξ)e−iξ.x, φ(ξ) =
1

V

∫
V

φ(x)e−iξ.xdx (3)

where ξ(ξ1, ξ2, ξ3) is the wave vector

ξi = 2πni/ai, ni = 0,±1,±2, ..,±∞, i = 1, 2, 3 (4)

A classical method (Milton, 2002) is to characterize the heterogeneity effect

using the polarization τ (x) in an homogeneous material of constant conduc-
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tivity K0 (resistance R0) which is chosen arbitrarily. The polarization is

defined by its relation with the local flux as:

j(x) = K0.e(x) + τ (x), (5)

It is possible to show that j and e are connected to τ via the Fourier space

relation (Monchiet and Bonnet, 2013)

K0.e(ξ) = −P (ξ).τ (ξ) ∀ξ 6= 0, e(ξ = 0) = E

j(ξ) = Q(ξ).τ (ξ) ∀ξ 6= 0, j(ξ = 0) = J (6)

where P (ξ) and Q(ξ) are operators defined as

P (ξ) =
K0.(ξ ⊗ ξ)

ξ.K0.ξ
∀ξ 6= 0, P (ξ = 0) = 0

Q(ξ) = I − K
0.(ξ ⊗ ξ)

ξ.K0.ξ
∀ξ 6= 0, Q(ξ = 0) = 0 (7)

and I is the second order identity tensor. Making use of the relation τ =

δKe = −K0δRj where δK = K(x)−K0 and δR = R(x)−R0, the above

relations can be used to formulate the equations in physical space

K0.e = K0.E − P ∗ δK.e, j = J −Q ∗K0.δR.j (8)

in which ∗ denotes the convolution operator in the physical space. These two

basic equations are used in classical FFT based numerical homogenization

methods (Michel et al., 1999). These equations can be transformed into

equations on τ

τ = δK.E − δK.R0.P ∗ τ , τ = −K0.δR.J −K0.δR.Q ∗ τ (9)

6



Linearly combining the two integral equations with tensor (K.R0 +I)−1 and

(K.R0 + I)−1.K.R0 yields

τ = A.(T +H ∗ τ ) (10)

with

A = (K.R0 + I)−1(K.R0 − I), H = Q− P , T = K0.E + J(11)

The interest of using (10) instead of (9) is that it is more convenient to

study both limit cases: superconductor K →∞ or insulator K → 0. Unlike

δK.R0 and K0.δR, tensor A is always bounded in these two limits (Nguyen

and To, 2018).

2.2. Estimates of the effective conductivity

We consider two phase materials composed of a matrix of conductivity

K0, which characterizes the reference material, and heterogeneities of con-

ductivity K1. The polarization τ vanishes in the matrix and the resulting

equation becomes

τ = χA.(T +H ∗ τ ) (12)

Here χ(x) is the characteristic function, equal to 1 in the superconductor

(insulator) areas Ω and vanishing elsewhere (matrix). From now on, we shall

use the notation A = (K1.R0 +I)−1(K1.R0−I) instead of A = χ(K1.R0 +

I)−1(K1.R0 − I) according to relation (11). It is clear that K1 → ∞
corresponds to superconductor and K1 → 0 to insulator heterogeneity. As a

consequence, one obtains:

superconductor, A = I, τ = χ(T +H ∗ τ )

insulator A = −I, τ = −χ(T +H ∗ τ ) (13)
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Obtaining the value of the effective permeability needs the solution of (13).

However, a good approximation (Nemat-Nasser and Hori, 2013) can be ob-

tained as follows: averaging both sides over the heterogeneity volume Ω and

considering τ uniform over the inclusions, i.e. τ = χ〈τ 〉Ω when evaluating

the last term of the right hand side, we obtain

〈τ 〉Ω = A.[T +C〈τ 〉Ω] (14)

The explicit expression of C is the following

C = f−1
∑
ξ 6=0

χ(−ξ)H(ξ)χ(ξ) (15)

where f = Ω/V is the volume fraction. Because H(ξ = 0) = 0, the sums∑
ξ 6=0 and

∑
ξ involvingH(ξ) are identical. Due to the choice of the reference

tensor, the polarization vanishes in the matrix, thus

〈τ 〉Ω = f−1〈τ 〉V = f−1(J −K0.E) (16)

Combining this last result with J = Ke.E and T = J + K0.E, we can

evaluate the effective tensor Ke from the relation

(I −A.C).(Ke −K0).E = fA.(Ke +K0).E (17)

and obtain

Ke = [I −A.C − fA]−1 . [I −A.C + fA] .K0

= K0 + 2f [I −A.C − fA]−1 .A.K0 (18)

We note that the calculation of tensor C related to heterogeneities with

finite dimensions can be obtained numerically without difficulty. However, a

special treatment must be used to study the problem in the crack limit due
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to the vanishing form factor χ → 0 and volume fraction f → 0. This issue

will be addressed in the following. Some ingredients of the techniques can be

found in (Nemat-Nasser et al., 1993).

2.3. Ellipsoidal inclusions and cracks centered in the periodic cell

We assume that the principal axes of the anisotropic material and of an

ellipsoidal heterogeneity centered at the origin, are directed along x1, x2 and

x3. The form factor χ(ξ) of the ellipsoids with semi axes b1, b2, b3 and volume

Ω = 4π
3
b1b2b3 is given by the expression

χ(ξ) = fϕ(η), ϕ(η) =
3(sin η − η cos η)

η3
,

η =
√

(ξ1b1)2 + (ξ2b2)2 + (ξ3b3)2, (19)

Near the crack limit, i.e b3 → 0, the form factor can be expressed as a

Figure 1: Ellipsoids and penny shape crack in unit cell.

function of wavevector by: ξ∗(ξ1, ξ2) in the plane 1− 2

χ(ξ) ' fϕ(η∗), ϕ(η∗) =
3(sin η∗ − η∗ cos η∗)

η∗3
,

η∗ =
√

(ξ1b1)2 + (ξ2b2)2 (20)
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Regarding the matrix K0, it is diagonal K0 = diag[k1 k2 k3] in the same

coordinate system. As a result, the components of tensor H read

Hij(ξ) = δij −
2kiξiξj

k1ξ2
1 + k2ξ2

2 + k3ξ2
3

∀ξ 6= 0, (i not summed)

Hij(0) = 0 (21)

To facilitate the study of aligned cracks parallel to the plane 1− 2, we rear-

range the tensor H as follows

H(ξ) = L− 2M(ξ), ∀ξ 6= 0 (22)

with

L =

1 0 0

0 1 0

0 0 −1

 ,

M (ξ) =
1

k1ξ2
1 + k2ξ2

2 + k3ξ2
3

 k1ξ
2
1 k1ξ1ξ2 k1ξ1ξ3

k2ξ1ξ2 k2ξ
2
2 k2ξ2ξ3

k3ξ1ξ3 k3ξ2ξ3 −k1ξ
2
1 − k2ξ

2
2

 (23)

Using the properties of the characteristic function χ in Appendix, the tensor

C given by (15) can be rewritten as

C = (1− f)L− 2f−1
∑
ξ 6=0

χ(−ξ)M (ξ)χ(ξ) = (1− f)L− 2fS, (24)

with

S =
∑
ξ 6=0

M(ξ)ϕ2(η) (25)
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In the crack limit, form factor χ (or ϕ) is independent of ξ3 and we can define

the tensor G(ξ∗) as

S →
∑
ξ∗ 6=0

G(ξ∗)ϕ2(η∗), G(ξ∗) =
∑
ξ3

M(ξ) (26)

Using the identities in Appendix A, we have

Gij(ξ
∗) =

a2
3kiξiξj
4k3

coth[a3
2

√
(k1ξ2

1 + k2ξ2
2)/k3]

a3
2

√
(k1ξ2

1 + k2ξ2
2)/k3

, i, j = 1, 2,

G33(ξ∗) = −G11(ξ∗)−G22(ξ∗),

G13(ξ∗) = G31(ξ∗) = G23(ξ∗) = G32(ξ∗) = 0. (27)

The diagonal matrix C given by (24) can be evaluated by

C11 ' (1− f)− 2fs1 C22 ' (1− f)− 2fs2,

C33 ' −(1− f)− 2f(s1 + s2),

C12 = C1
21 = C13 = C31 = C23 = C32 = 0 (28)

with s1 and s2 being the infinite sums

s1 =
∑
ξ∗ 6=0

ϕ2(η∗)G11(ξ∗), s2 =
∑
ξ∗ 6=0

ϕ2(η∗)G22(ξ∗). (29)

Substituting into (18) and considering the limit when f → 0 yield the result

for Ke. For example for superconductive cracks, or A = I, we have

Ke =

k1(1 + 1/s1) 0 0

0 k2(1 + 1/s2) 0

0 0 k3

 (30)
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For insulating cracks, or A = −I, the effective conductivity becomes

Ke =

k1 0 0

0 k2 0

0 0 k3(1− (s1 + s2)−1)

 (31)

It can be noticed here that the presence of superconductive cracks does not

change the conductivity in direction 3 normal to a crack, i.e the material is

continuous across the crack but enhances the conductivity in the crack plane.

On the contrary, insulating cracks reduce the conductivity in direction 3 but

not in the crack plane. These results are physically consistent.

Another type of crack usually considered in geomechanics is the Poiseuille

type crack where the fluid can flow through with a finite flow rate. We assume

that the transport in that crack can be modeled using an equivalent constant

conductivity K1 which scales with the inverse pore size, or fK1 = D = cst.

As shown by Pouya and Vu (2012), using constant K1 does not necessarily

reproduce the same nonuniform local gradient field when the ellipsoidal het-

erogeneity collapses into a crack but rather the flow rate contribution of the

whole crack. To the first order of approximation of f , we can write

A = I − 2fK0.D−1 + o(f 2). (32)

For simplification, let us assume that D is aligned with K0, its principal

components being k̃1, k̃2, k̃3. Then the estimated conductivity reads

Ke =

k1(1 + (k1/k̃1 + s1)−1) 0 0

0 k2(1 + (k2/k̃2 + s2)−1) 0

0 0 k3

 (33)

We can see that when k̃1 → ∞ and k̃2 → ∞, the case of superconductive

crack above is recovered. However, when k̃1 is finite, the effective conductiv-

12



ity is different and depends explicitly on the components of tensor D.

In the special case where the matrix is isotropic in the plane 1 − 2, k1 =

k2 = k and the cracks are circular, the radii are related by b1 = b2 = b and

a1 = a2 = a. Then, the explicit expressions for s1 and s2 are

s1 = s2 = s =
γ

2

∑
η∗ 6=0

η∗ coth(γη∗)ϕ2(η∗), γ =
a3

2b

√
k

k3

, η∗ = bξ∗

(34)

The quantity s is the infinite lattice sum in ξ∗ space (2D) with lattice spacing

2π/a in both directions 1, 2. In practice, to compute numerically this sum,

we truncate it to a certain range of ξ∗ (or equivalently η∗). On the other

hand, the sums can be approximated analytically by keeping several leading

terms plus a 1D continuous integral (To et al., 2013, 2016). This is because

for high values of ξ∗ the terms in the sum fluctuate less and there are more

lattice points around the given wavevector radius ξ∗. Explicitly, we have

s ' γ

4f ∗

∫ ∞
ηc

coth(γη∗)ϕ2(η∗)η∗2dη∗ +
γ

2

∑
0<η∗<ηc

η∗ coth(γη∗)ϕ2(η∗)

(35)

where ηc is the truncation value, used to determine the number of leading

terms kept in the series, and f ∗ = πb2/a2 is the planar density of cracks.

We also note that the function coth(x) is infinite at x = 0 but converges

exponentially to 1, indeed, an asymptotic expansion of this function for large

x produces coth(x) = 1+2e−2x+2e−4x+O(e−6x). In addition, the convergence

is fast, due to the exponential term. As a result, if ηc is sufficiently large,

we can make the approximation coth(γη∗) ' 1 and derive an analytical

expression for the integral term in (35). Regarding the finite sum of (35),

numerical tests show that for γ > 0.5, it is sufficient to adopt two leading
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terms, i.e ηc = 4πb/a to obtain satisfactory results. Posing ε = 2πb/a, the

explicit and simple analytical expression of s is the following

s ' 18γ

[
coth(γε)

(sin ε− ε cos ε)2

ε5
+ coth(γ

√
2ε)

(sin
√

2ε−
√

2ε cos
√

2ε)2

(
√

2ε)5

]
+

3γ

64ε3f ∗
[2 sin2 2ε− 4ε sin 4ε+ 4ε2(3− cos 4ε) + 8ε3(π − 2Si(4ε))].

(36)

Here we account for the analytical expression of ϕ(η∗) and Si is the sine

integral function.

2.4. Random distribution of aligned penny shaped cracks

Considering first N identical ellipsoids randomly distributed in the vol-

ume V , the characteristic function χ becomes

χ(ξ) =
f

N
ϕ(η)

N∑
i=1

e−iξ.c
i

(37)

where ci are locations of the ellipsoid centers. In the infinite volume limit, the

tensor C in (18) and the product χ(ξ)χ(−ξ) are equivalent to their ensemble

averages, notation 〈〉ens. Due to the relation to the structure factors defined

as

S(ξ) =
1

N

〈
N∑
i=1

e−iξ.c
i
N∑
i=1

eiξ.c
i

〉
ens

(38)

the following connection can be established

C = (1− f)L− 2f

N

∑
ξ 6=0

M (ξ)ϕ2(η)S(ξ) (39)

Next, we focus on the particular case where the ellipsoids collapse into cracks

which are non overlapping circles (b1 = b2 = b, b3 = 0) with a distribution
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that is random and isotropic in plane 1− 2 and periodical along direction 3

with period a3. The matrix is also isotropic in plane 1− 2 , i.e. k1 = k2 = k,

and the dimensions a1, a2 are very large. Consequently, the structure factor

S(ξ∗) is associated to the planar wave vector ξ∗ and depends only on its

magnitude S(ξ) = S(ξ∗) = S(ξ∗). This will change the expression for C as

follows:

C = (1− f)L− 2f

N

∑
ξ∗ 6=0

G(ξ∗)ϕ2(η∗)S(ξ∗) (40)

We note that, at the infinite volume limit a1, a2 → ∞, the ξ lattice with

spacing 2π/a1 and 2π/a2 is infinitely dense. Consequently the lattice sum

can be estimated by a continuous integral. In that case the quantities s1 and

s2 in the previous section are:

s1 = s2 = s =
γ

8π2ρ

∫
η∗ coth γη∗ϕ2(η∗)S(ξ∗)dξ∗ (41)

where ρ = N/(a1a2) is the planar number density. Since the function in the

2D integral depends only on the radius ξ∗ (or η∗), we can integrate on rings of

radius ξ∗ and thickness dξ∗ that dξ∗ = 2πξ∗dξ∗and convert it to 1D integral

s =
γ

4f ∗

∫ ∞
0

coth(γη∗)S(ξ∗)ϕ2(η∗)η∗2dη∗ (42)

where f ∗ = πρb2 is the planar crack density. We note that for a planar

isotropic distribution, the structure factor S(ξ∗) is related to the planar radial

distribution function (rdf) g(r) via the expression

S(ξ∗) = 1 + ρ

∫
e−iξ.r[g(r)− 1]dr =

= 1 + 2πρ

∫ ∞
0

J0(rξ∗)[g(r)− 1]rdr (43)
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where Jn with (n = 0, 1, ...) represents the Bessel function of the first kind and

nth order. The above equations can be rewritten using the non dimensionless

radius r̄ = r/b and wavelength η∗ in the following form

S(ξ∗) = 1 + 2f ∗H(g(br̄)− 1), H(φ(r̄)) =

∫ ∞
0

J0(r̄η∗)φ(r̄)r̄dr̄ (44)

withH(φ(r̄)) the zero-order Hankel transform of the function φ(r̄) of variable

r̄ into a function of variable η∗.
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Figure 2: Random distribution of hard disks (left) and the radial distribution function

g(r) at different fraction f∗ obtained from MC simulations (Chae et al., 1969). The radial

distribution function g(r) is the probability of finding particle at distance r from a reference

particle.

Since our special system is constituted of identical nonoverlapping disks of

diameter 2b, it is interesting and convenient to approach the problem from

the statistics of disk centers in Fourier space as shown above. In this case, the

effective properties depend on the distribution of circles via the parameters

g(r) or S(ξ∗). These important quantities reflect the structure or the distri-

bution of the circles. For example g(r) shows how particles are distributed

around a reference particle. It is known that g(r) is sensitive to the algo-

rithm of realizations of the samples (Rintoul and Torquato, 1997). Here, in
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Figure 3: Structure factors S(ξ∗) of equilibrium hard disk at f∗ = 0.2 (left) and
f∗ = 0.3 (right). Comparisons between analytical approximations and particle simula-
tions (de Macedo Biniossek et al., 2018).

this work, we examine equilibrium distributions which can be generated by

Molecular Dynamics (MD) or Monte Carlo (MC) simulations and the struc-

ture functions g(r) and S(ξ) associated with this method. These methods

are increasingly used nowadays as standard tools to generate random media.

Different from the classical Random Sequential Addition (RSA) method (see

e.g Kushch and Sangani, 2000), the MD and MC methods allow a particle

random motion under interaction force without overlapping and thus help to

construct samples with higher volume fractions.

Considering the well-stirred (ws) distribution relevant for small density (f ∗ ≤
0.1) system

g(r) = gws(r) = Θ(r̄ − 2) (45)

with Θ being the Heaviside function, we can obtain the associated structure

factor

S(ξ∗) = Sws(ξ∗) = 1− 4f ∗J1(2η∗)/η∗ (46)
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At moderate density, i.e. f ∗ = 0.2 − 0.3, it can be approximated by (Bury-

achenko, 2007; Torquato, 2001)

g(r) = geq(r) ' gws(r) +
8f ∗

π

[
cos−1 r̄

4
− r̄

4

√
1− r̄2

16

]
Θ(4− r̄)Θ(r̄ − 2)

(47)

There is no analytical expression for the structure factor S(ξ∗), but it is pos-

sible to calculate numerically S(ξ∗) = Seq(ξ∗) for given ξ∗ and compute the

lattice sum s. As shown in Fig. 3, we can find that the approximation works

very well for f ∗ = 0.2. Some visible discrepancies appear at small frequencies

in case f ∗ = 0.3 due to the rough estimation of g(r) at long range. However,

the approximation reflects quite well the structure factor globally. It must

be noticed also that the function coth(γη∗)S(ξ∗)ϕ2(η∗)η∗2 in the integral ex-

pression of s vanishes at η∗ = 0. This reduces obviously the effect of the

approximation at small frequencies in the evaluation of the structure factor

on the evaluation of s.

At higher fraction f ∗, we can use Baus–Colot (Baus and Colot, 1987) ap-

proximations or numerical results issued from MD/MC simulation results

(Chae et al., 1969; de Macedo Biniossek et al., 2018).

3. Numerical applications

3.1. Periodic penny-shape cracks

As a first example, we consider a penny shape crack of radius b lying on

the plane x3 = 0 at the center of the unit cell of dimensions a1 = 1, a2 = 1

and a3 = 0.5. The periodicity of the system in the plane x1x2 corresponds

to the square lattice arrangement of the cracks. For comparison, a finite ele-

ment computation has been performed using the mesh shown in Fig. 4. The

conductivity of the anisotropic matrix is diag [10 10 5] in the same cartesian
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Figure 4: Finite element model of a single crack in a rectangular box. Due to the symmetry,
only one eighth of the unit cell is presented. The crack is modelled as a flattened ellipsoid
with different conductivity.

coordinate system. For the case of Poiseuille crack, its behavior is assumed

to be isotropic with conductivity k̃1 = k̃2 = k̃3 = 1. The radius b of the

crack is varied, resulting in the planar density f ∗ = πb2/(a1a2) varying from

0 to 0.6. To compute the estimates in (30,31,33), we use the analytical ex-

pressions (36) for the lattice sums. Numerical tests based on the analytical

estimates are in excellent agreement with the Finite Element Method (FEM)

simulations at moderate density f ∗ below the percolation limit. For example,

when b = 0.3 and b = 0.4 as present in Tab. 1 we find that the differences

between the two methods are mostly 1-2%. The largest recorded difference

is 5% corresponding to the case of large insulating cracks when b = 0.4. Not-

ing that the maximal value that b can take is 0.5 (percolation/coalescence

limit), we can conclude about the accuracy of the estimation for the range

of density.

Next we examine the variation of effective properties in terms of the quan-

tities f ∗, γ and types of crack. As expected, results in Fig. 5 show that

superconductive cracks increase the permeability in the direction parallel to

the crack and insulating cracks decrease the permeability in the direction

normal to the crack. The Poiseuille crack also increases slightly the perme-
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b = 0.3 b = 0.4
Crack type FEM Est. FEM Est.

Supercond. (ke1) 12.13 12.26 15.78 15.61
Insulating (ke3) 4.49 4.46 3.80 3.60
Poiseuille (ke1) 10.68 10.30 10.8 10.8

Table 1: Comparisons of effective conductivity obtained from analytical estimates and
FEM solutions for different crack types.

ability. The latter is less sensitive to the composite parameter γ. We note

that small values of γ correspond to a high crack density in x3 direction, i.e

the crack layers are close to each other, and high conductivity of the matrix

in x1, x2 directions. As a result, the interaction between the cracks is strong.

In the other extremes, when γ is large, the influence of the cracks is weaker.

3.2. Influence of planar crack distributions

In this section, we study a set of penny shape cracks of radius b dis-

tributed randomly and isotropically on the plane x3 = 0. Our cell has thick-

ness a3 = 0.5 and is infinite along directions x1, x2. The conductivities of the

matrix and Poiseuille crack are the same as for the single crack problem in

Section 3.1.

In this case, the parameter s which governs the effective properties of cracked

materials depends on the fraction f ∗ and γ. Here we have assumed that for

each f ∗, there is a unique structure factor S(ξ∗) associated to the equilibrium

system described in Section 2.4. To compute the integral s, we compare dif-

ferent approximations of S(ξ∗) and MC simulation results for g(r) tabulated

in Chae et al. (1969) for f ∗ = 0.4− 0.6. The periodic case studied in Section

3.1 is also used for comparison.

From Table 2, we find that the discrepancies between different s estimates

are relatively small but follow the order: the WS results are higher than the
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Figure 5: Dimensionless effective permeability kei /ki for superconductive (super), insulat-
ing (insul) and Poiseuille (pois) cracks as functions of composite parameter γ and planar
density f∗.
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γ = 0.5 γ = 1.0
f ∗ WS Appr MC SQ WS Appr MC SQ
0.1 7.572 7.572 - 7.606 12.198 12.192 - 12.297
0.2 3.534 3.532 - 3.553 5.828 5.817 - 5.898
0.3 2.187 2.185 - 2.202 3.704 3.688 - 3.760
0.4 1.514 1.511 1.509 1.526 2.642 2.621 2.608 2.681
0.5 1.110 1.106 1.102 1.120 2.005 1.978 1.956 2.018
0.6 0.841 0.836 0.829 0.844 1.581 1.548 1.513 1.555

γ = 2.0 γ = 4.0
f ∗ WS Appr MC SQ WS Appr MC SQ
0.1 23.053 23.030 - 23.390 45.706 45.643 - 46.594
0.2 11.162 11.114 - 11.405 22.211 22.086 - 22.782
0.3 7.198 7.127 - 7.360 14.380 14.192 - 14.713
0.4 5.216 5.122 5.087 5.289 10.464 10.214 10.147 10.577
0.5 4.027 3.909 3.847 4.001 8.115 7.802 7.680 8.002
0.6 3.234 3.093 2.997 3.094 6.548 6.173 5.988 6.188

Table 2: Dependence of lattice sum s on the planar crack density f∗, composite parameter
γ and hard disk distribution g(r). Different RDFs of g(r) are used: Well stirred (WS),
approximation of equilibrium ensemble (Appr), Monte Carlo simulation (MC) and square
lattice (SQ) arrangement in section 3.1.
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approximation results and the latter are higher than the MC results. The

periodic distribution yields slightly higher results at small f ∗ and smaller at

high f ∗. The difference between the highest and the smallest is of order 10 %

at the high density f ∗. Since the relative changes |(kei −ki)/ki| in permeabil-

ity according to (30,31,33) are 1/|s+ 1| for superconductive crack, 1/|2s− 1|
for insulating crack and 1/|k1/k̃1 + s + 1|, the maximal differences between

the estimates is of order 6-7%. It is also interesting to note that, although

the periodic distribution is obviously oversimplifying the true random distri-

bution, the overall properties predicted by the analytical estimates for the

periodic case compare well with those obtained from the full statistical com-

putation. This result is due to the approximation of an uniform polarization

field in the crack, which is valid at small density. At higher density, the

cracks interact strongly and higher order approximations could be used to

improve the estimates (see e.g Nguyen et al., 2016; To et al., 2017).

4. Concluding remarks

In this work, estimates of effective permeability of porous materials con-

taining ellipsoidal heterogeneities or penny shape cracks have been presented.

The estimates are based on an approximation of the integral equation estab-

lished for the polarization in the heterogeneities. The penny shape cracks

are treated as special ellipsoids when the aspect ratio tends to 0. The deriva-

tion of the transport properties of porous materials containing cracks in the

context of FFT modelling is a new contribution to this field.

The main contribution of this work is the derivation of effective proper-

ties for both superconductive or insulating cracks from the distribution of

cracks. We show that when the cracks are identical, lying in the same plane

and aligned, statistics of particles based on the Fourier Transform can be

used. Specifically, the overall permeability is connected to the planar struc-

ture factors of the particles. Examples including well-stirred and equilibrium
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distribution are also given. These results are of prime importance, because

the planar structure factor is a quantity that can be built from an experi-

mental observation of porous media.

Different from homogenization schemes like Mori-Tanaka (MT), Self Con-

sistent (SC) schemes, etc.. based on Eshelby inclusions, the present estimate

accounts for the interaction between the cracks due to the relative position

of the cracks, via the periodicity condition and the radial distribution func-

tion. Although the results are derived for a system of aligned cracks lying on

parallel planes, it can be extended to more general cases by several way. Es-

timates for multiple families of cracks can be obtained by applying classical

MT, SC schemes to the above systems of cracks. On the other hand, more

rigorous treatment accounting for the relative position of crack systems can

be done following the same procedure presented in the paper. This method

is more mathematically involved due to the presence of the cross correlation

term with irreducible Lerch functions (see Appendix A), the complexity of

the structure factor in 3D random cases and will be subject to future work.
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Appendix A. Analytical expressions for infinite series

For n ∈ Z and c,m ∈ R, we have the following results for infinite sums

∞∑
n=−∞

e2iπcn

n2 +m2
=

i

m
[Φ(e2iπc, 1, im)− Φ(e2iπc, 1,−im)− 1

m
]

∞∑
n=−∞

e2iπcnn

n2 +m2
= Φ(e2iπc, 1, im) + Φ(e2iπc, 1,−im) (A.1)

24



where Φ is the Lerch transcendent function

Φ(z, s, a) =
∞∑
n=0

zn

(n+ a)s
(A.2)

In the paricular case where c = 0, we have

∞∑
n=−∞

1

n2 +m2
=
π

m
coth(πm),

∞∑
n=−∞

n

n2 +m2
= 0 (A.3)

From definition (4) of the wave vector ξ, we can write

∞∑
ξ3=−∞

1

k1ξ2
1 + k2ξ2

2 + k3ξ2
3

=
∞∑

ξ3=−∞

a23
4π2k3

a23(k1ξ21+k2ξ22)

4π2k3
+ n2

3

=
a2

3

4π2k3

π√
a23(k1ξ21+k2ξ22)

4π2k3

cothπ

√
a2

3(k1ξ2
1 + k2ξ2

2)

4π2k3

(A.4)

and

∞∑
ξ3=−∞

ξ3

k1ξ2
1 + k2ξ2

2 + k3ξ2
3

= 0 (A.5)

Appendix B. Properties of characteristic functions in Fourier space

The explicit expressions for operator (H ∗ χ) acting on the tensor A(x)

are given as follows

(H ∗ χ)A =
∑
ξ

eiξ.xH(ξ)
∑
ξ′

χ(ξ − ξ′)A(ξ′), (B.1)

In the case where A is a constant, i.e A(ξ) = 0∀ξ 6= 0 and A(0) = A and

χ is the characteristic function of a geometric region Ω, the volume average
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over the volume Ω yields

〈(H ∗ χ)A〉Ω = f−1
∑
ξ

χ(−ξ)H(ξ)χ(ξ)A, (B.2)

leading to the expression of C in (15).

Furthermore, due to the properties of the characteristic function χ = χ2

and χ(0) = f , we have the relations

(χ2)(ξ) =
∑
ξ′

χ(ξ − ξ′)χ(ξ′) = χ(ξ) (B.3)

and other associated properties∑
ξ′ 6=0

χ(ξ − ξ′)χ(ξ′) = χ(ξ)(1− f) (B.4)

Setting ξ = 0 in the above equation yields another property∑
ξ 6=0

χ(−ξ)χ(ξ) = f(1− f) (B.5)

and leads to another expression of C in (24).
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